KEY

Work Sheet Ch# 7, 8

Solve 20 Questions

O1:

 $\Delta E = -2.179 \times 10^{-18} \left[\frac{1}{\Lambda^2} - \frac{1}{12^2} \right]$ $= 2.118 \times 10^{-18} \left[\frac{1}{\Lambda^2} - \frac{1}{12^2} \right]$ $\Rightarrow \lambda = \frac{h^2}{\Delta E} = 9.38 \times 10^{-18} \text{ m}$

Q2:

"No two electrons in an atom can have the same four quantum numbers" This statement is known as:

- A. Bohr's theory
- B. Hund's rule
- C. De broglie model
- the Pauli exclusion principle
- E. Heisenberg uncertainty principle

Q3:

What is the maximum number of electrons in an atom having the quantum numbers: n = 4, l = 3, $m_1 = -2$, $m_s = +1/2$?

only one é, According to Pauli exclusion principle

Q4: What is the energy of a photon with m = 5.201 x 10^{44} gg $\times \frac{1 \text{ Mg}}{10^3 \text{ g}} = 5.201 \text{ x } 10^{47} \text{ Mg}$ $E = m c^2 = (5.201 \times 10^{-47} \text{ Mg}) (3 \times 10^{8} \text{ m/s})^2 = 4.68 \times 10^3 \text{ Mg m/s}^2$ Q5:

Q6: Which of the following are polar molecules: (PH₃) SO₂ CO₂, SO₃

 $PH_3 \quad \forall \vec{e} = 5 + 3$ $= 8\vec{e}$ $= 18\vec{e}$ $|\vec{b}| = |\vec{b}| = |$

Q7: DA = Bond Breacking - Bond formed
Given bond energy (kJ/mol) = B. $E(reack) - B.E(rod)$ C=C 612 = B. $E(reack) - B.E(rod)$ C-C 347 C-H 414 = 6/2 + 436 - 2(414) -347 H-H 436 = -n7 KJ/rod
Estimate ΔH _{rxn} , in kJ/mol, for the following reaction
$CH_2 = CH_2 + H \rightarrow CH_3 - CH_3$ $H \rightarrow CH_3 - CH_3$ $H \rightarrow CH_3 - CH_3$ $H \rightarrow CH_3 - CH_3$
Q8: Among the following molecules find the two having the same shape (Nl) Γ_3 , NO_3 , (SO^2)
they have trigonal Pyramidal Shape.
Q9: Blue light has a frequency of 6.6 X 10^{14} Hz. Calculate the energy of a mole of blue light photons in J/mol. $= (6.0 \text{ LX} \cdot 0^{23}) \frac{1}{6} (8.6 \text{ X} \cdot 0^{14} \text{ S}^{-1})$
= 2.6×10 5/mol
Q10: What is the total number of lone pairs in the Lewis structure of nitric acid HONO ₂ ? 7 lone pairs Q11: What is the formal charge of nitrogen in the preferred Lewis structure of the anion NCS? $F = C(N) = -1$
Which of the following species has the highest ionic character? A. HCl B. HBr C. HI D. H ₂ E HF 3.19 C D E N 5 highest
Q13: Which of the following ions is largest in size? A. Na ⁺ B. K ⁺ C. Cl ⁻ D Se ²⁻ E. F ⁻
Se ² > Cl > K + > F > Nd + largest Isoelectronic Isoelectronic 2 Si3e

Q14: Calculate the wavelength in nm for a transition from n = 6 to n = 4, in a hydrogen atom.

$$\Delta E = hV = \frac{hC}{A}$$

$$\Rightarrow \lambda = \frac{hC}{|\Delta E|} = 2.627 \times 10^{-6} \text{ m}$$

$$= 2627 \text{ nm}$$

Q15:

Arrange the following sets of quantum numbers in order of increasing energy.

- a) (2, 1, 0, +1/2)

- b < a < d < cb) (1, 0, 0, -1/2) c) (3, 2, -2, +1/2) d) (3, 1, -1, -1/2)

The electron configuration of Mo is [Nr] 5 8 44 (exception)

Q17:

Which of the following statements are true?

- (a) Within a group the higher the atomic number the larger the atomic radius.
- b) Within a period the higher the atomic number the lower the first ionization
- (c) The electron affinity is the energy change when an electron is added to a gaseous
- d) For a given element, the anion is smaller in size than the cation.

Q18:

The uncertainty in the speed of an electron is 0.0500 m/s. calculate the minimum uncertainty in its position. (mass of the electron = 9.11×10^{-28} g, assume zero uncertainty on the mass of the electron). $\Delta X \cdot \Delta (m \cdot V) = \frac{1}{4\pi}$ (mass in $\times 3$)

Q19:

Which one of the following sets of quantum numbers is not acceptable?

A.
$$n = 3$$
, $1 = 2$, $m_l = -2$, $m_s = -1/2$

B.
$$n = 4$$
, $1 = 1$, $m_1 = 1$, $m_s = +1/2$

B.
$$n = 4$$
, $1 = 1$, $m_1 = 1$, $m_s = +1/2$
 $n = 5$, $1 = 2$, $m_1 = -3$ $m_s = +1/2$
D. $n = 2$, $1 = 0$, $m_1 = 0$, $m_s = -1/2$

$$n = 2$$
 $1 = 0$ $m_1 = 0$ $m_2 = -1/2$

E.
$$n = 1$$
, $1 = 0$, $m_1 = 0$, $m_s = +1/2$

Q20:

Which of the following statements is NOT true?

- (A) the more we are certain about the position of the electron in an atom, the more accurately we know its momentum.
- B. In the hydrogen atom, different orbitals having the same "n" have the same energy.
- C. The higher the frequency of a radiation the shorter is its wavelength.
- D. 1s orbital of the hydrogen atom is described by the sphere that encloses 90% of the total electron probability.
- E. Light has the dual properties of both particle and wave.

Q21:

Q22:

The number of bonding pairs in the Lewis structure of N₂Cl₂ (Cl N N Cl) is:

Q23:

What is the molecular shape of BrF₅?

Q24:

In which of the following species resonance occurs:

- A. NF₃
- (B) SO₂
- C. H₂O
- D. NH₄⁺
- E. BeH₂

-due to high formula Charge - Not octet