Example 8.1 Steam generated in a power plant at a pressure of 8,600 kPa and a temperature of 500°C is fed to a turbine. Exhaust from the turbine enters a condenser at 10 kPa, where it is condensed to saturated liquid, which is then pumped to the boiler.

- (a) Determine the thermal efficiency of a Rankine cycle operating at these conditions.
- (b) Determine the thermal efficiency of a practical cycle operating at these conditions if the turbine efficiency and pump efficiency are both 0.75.
- (c) If the rating of the power cycle of part (b) is 80,000 kW, what is the steam rate and what are the heat-transfer rates in the boiler and condenser?

$$2 = \frac{|W_s(net)|}{|\phi(60iler)|}$$

State 2
$$P = 8600 \text{ kpa}$$
 $S_2 = 6.6858 \frac{15}{16} \text{ k}$
 $T = 500 ^{\circ} \text{ C}$ = $H_2 = 3391.6 \frac{195}{194}$

(a)
$$step 2 \rightarrow 3^{l}$$

State 3^{l} $P = 10 \text{ KPa}$ two phase fluid with $S = 6.6858 \frac{K_{2}}{K_{2}}$

$$X_3' = 0.8047$$
 $H_3' = 2117.4 \frac{105}{19}$ (See example 7.6)

exactly similar

=>
$$W_s = H_3^2 - H_2 = -1274.2 \frac{127}{19}$$
 (5)

step $3^1 \longrightarrow 4$

state 4 is saturated liquid at Mokpa

=> $H_4 = 191.8 \frac{157}{19}$ (see steam teatles)

step $4 \longrightarrow 1$ isentropically

saturated liquid is pumped from 10 lepa

to subcooled liquid at 8600 kPa

 $W_s = (\Delta H)_s = \sqrt{\frac{R^2}{N}}$ Op ladiabahe - reversible or isentropic

= $V(R_2 - R_1)$

almost constant = V sat liquid

= $1.01 \times 10^{-3} \frac{m^3}{105}$.

=> $W_s = 1.01 \times 10^{-3} (8600 - 10) = 8.6759 \frac{157}{19}$.

=> $H_1 = H_4 + (\Delta H)_s = 191.8 + 8.7 = 200.5 \frac{KT}{19}$

$$Q(boiler) = H_2 - H_1 = 3391.6 - 200.5$$

= $3191.1 \frac{105}{108}$

$$now$$
 $W_S(nef) = -1274.2 + 8.7$
= -1265.5 $\frac{105}{19}$

$$2 (Rankine) = \frac{|W_s(net)|}{Q(60iler)} = \frac{1265.5}{3191.1}$$

Step
$$2 \rightarrow 3$$

$$\downarrow$$
See (a)

$$W_{s} = \Delta H = 0.75 (\Delta H)_{s} = -955.6 \frac{15}{19}$$

$$=) H_3 = H_2 + \Delta H = 2436 \frac{19}{18}$$

Step 3
$$\rightarrow$$
 4

See (a)

O (condenser) = H4 - H3 = 191.8-2436

= 2244-2 | CJ | Jeg |

$$Step 4 \rightarrow 1 \quad See(a)$$

$$W_s = \frac{(W_s)_s}{0.75} = 11.6 \quad \frac{145}{19}$$

$$Pamp$$

$$H_1 = H_4 + \Delta H_{4 \rightarrow 1} = 191.8 + 11.6$$

= 203.4 $\frac{19}{19}$

step 1->2

District.

$$Q(boiler) = H_2 - H_1 = 3391.6 - 203.4$$

= 3188.2 $\frac{107}{194}$.

$$= 0.2961$$
(c) $W_s(net) = 80000 \text{ kW} \left(\frac{105}{5}\right)$

$$=) \dot{m} = \frac{\dot{W}_{s}(net)}{W_{s}(net)} = \frac{80000}{(-955.6 + 11.6)}$$
$$= 84.75 \underline{lcg}$$