بسم الش الرحمن الرحيم

King Fahd University of Petroleum \& Minerals

Department of Chemical Engineering

CHAPTER 2: INTRODUCTION TO ENGINEERING CALCULATIONS

By
Dr. Nabeel Salim Abo-Ghander

```
Jan 26th, 2014
```

2.1 Units and Dimensions:

Consider the following Case:

Numerical Value

Unit

2.1 Units and Dimensions:

\checkmark Dimension is a property that can measured such as length, time, temperature, ... etc or calculated by multiplying or dividing other dimensions such as volume (length ${ }^{3}$), area (length ${ }^{2}$), velocity (length/time), ... etc.
\checkmark Units can be divided into:

1. Measurable units (specific values of dimensions defined by convention, custom, laws)
2. Countable units (Don't have specific values of dimensions).

Examples:

$$
\begin{array}{cc}
\text { grams } & \text { mass } \\
\text { seconds } & \text { times } \\
\text { centimeters or feet } & \text { length }
\end{array}
$$

Relation to mathematical operations:

\checkmark Addition and Subtraction:

Quantities of the same units can be added or subtracted.

$$
\text { Quantity } 1 \text { + Quantity } 2 \text { = Quantity } 3
$$

Numerical values are added (subtracted) while units are copied as are.
\checkmark Multiplication and Division:

Quantities of the same or different units are multiplied or divided

$$
\text { Quantity } 1 \times \text { Quantity } 2=\text { Quantity } 3
$$

Numerical values as well as units are multiplied or divided.

Example 2.1-1:

Perform the following mathematical operations if possible:

1. $3.0 \mathrm{~cm}+4.0 \mathrm{~cm}$
2. $5.0 \mathrm{~g}+10.0 \mathrm{~kg}$
3. $\quad 10.0 \mathrm{~N} \times 5.0 \mathrm{~m}^{2}$
4. $\quad 12.0 \mathrm{~kg} / \mathrm{hr} \times 4.0 \mathrm{hr}$
5. $10.0 \mathrm{~km} / 2.0 \mathrm{hr}$
6. $5.0 \mathrm{~kg} / \mathrm{s} \div 0.2 \mathrm{~kg} / \mathrm{m}^{3}$

2.2 Conversion of Units:

Given:

$$
\mathrm{a}=\mathrm{b}
$$

can be written as $\frac{a}{b}$ leading to:
Equivalence between two expressions of the same quantities may be defined as a ratio.

2.2 Conversion of Units:

\checkmark Conversion factor is defined as a ratio of new unit to old unit used to convert between quantities,

Given Unit $\times \underline{\text { Desired Unit }}$

Given Unit

Example 2.2-1Convert the following:

1. 36 mg to grams
2. 5 km to cm
3. $1.0 \mathrm{~cm} / \mathrm{s}^{2}$ to $\mathrm{km} / \mathrm{yr}^{2}$

2.3 Systems of Units

Units can be broken up into:

1. Basic units, i.e. units of length, mass, time, temperature, etc
2. Multiple units, i.e. multiples or fractions of basic units such as hour, minute, millisecond, centimeter, ... etc
3. Derived units are those obtained by:
a. Multiplying or dividing basic or multiple units such as m^{3}, $\mathrm{m}^{2}, \mathrm{~m} / \mathrm{s}, \mathrm{m} / \mathrm{s}^{2}$.
b. Equivalents of compound units such as $1 \mathrm{~N}=1 \mathrm{~kg} \times \mathrm{m} / \mathrm{s}^{2}, 1$ dyne $=1 \mathrm{~g} \times \mathrm{cm} / \mathrm{s}^{2}, 1 \mathrm{lb}_{\mathrm{f}}=32.174 \mathrm{lb}_{\mathrm{m}} \times \mathrm{ft} / \mathrm{s}^{2}$.
2.3 Systems of Units

Quantity	Unit
Length	m
Mass	kg
Time	s
Moles	Gram-mole
Temperature	Kelvin
Electric Current	Ampere
Light Intensity	candela

2.3 Systems of Units

Quantity	SI	CGS	American Engineering
Length	m	cm	ft
Mass	kg	g	lb_{m}
Time	s	s	s
Force	N	Dyne	lb_{f}

2.3 Systems of Units

Prefixes are used with the SI units indicating powers of tens as follows:

Prefix	Indication
Mega (M)	10^{6}
Kilo (k)	10^{3}
Centi (c)	10^{-2}
Mili (m)	10^{-3}
Micro (μ)	10^{-6}
Nano (n)	10^{-9}

FACTORS FOR UNIT CONVERSIONS

Quantity	Equivalent Values
Mass	$\begin{aligned} & 1 \mathrm{~kg}=1000 \mathrm{~g}=0.001 \text { metric ton }=2.20462 \mathrm{lb}_{\mathrm{m}}=35.27392 \mathrm{oz} \\ & 1 \mathrm{lb}_{\mathrm{m}}=16 \mathrm{oz}=5 \times 10^{-4} \text { ton }=453.593 \mathrm{~g}=0.453593 \mathrm{~kg} \end{aligned}$
Length	$\begin{aligned} 1 \mathrm{~m} & =100 \mathrm{~cm}=1000 \mathrm{~mm}=10^{6} \text { microns }(\mu \mathrm{m})=10^{10} \text { angstroms }(\AA) \\ & =39.37 \mathrm{in} .=3.2808 \mathrm{ft}=1.0936 \mathrm{yd}=0.0006214 \mathrm{mile} \\ 1 \mathrm{ft} & =12 \mathrm{in} .=1 / 3 \mathrm{yd}=0.3048 \mathrm{~m}=30.48 \mathrm{~cm} \end{aligned}$
Volume	$\begin{aligned} 1 \mathrm{~m}^{3} & =1000 \mathrm{~L}=10^{6} \mathrm{~cm}^{3}=10^{6} \mathrm{~mL} \\ & =35.3145 \mathrm{ft}^{3}=220.83 \text { imperial gallons }=264.17 \mathrm{gal} \\ & =1056.68 \mathrm{qt} \\ 1 \mathrm{ft}^{3} & =1728 \mathrm{in} \cdot{ }^{3}=7.4805 \mathrm{gal}=0.028317 \mathrm{~m}^{3}=28.317 \mathrm{~L} \\ & =28,317 \mathrm{~cm}^{3} \end{aligned}$
Force	$\begin{aligned} & 1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}=10^{5} \text { dynes }=10^{5} \mathrm{~g} \cdot \mathrm{~cm} / \mathrm{s}^{2}=0.22481 \mathrm{lb} \mathrm{f} \\ & 1 \mathrm{lb}=32.174 \mathrm{lb}_{\mathrm{f}} \cdot \mathrm{ft} / \mathrm{s}^{2}=4.4482 \mathrm{~N}=4.4482 \times 10^{5} \text { dynes } \end{aligned}$
Pressure	$\begin{aligned} 1 \mathrm{~atm} & =1.01325 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}(\mathrm{~Pa})=101.325 \mathrm{kPa}=1.01325 \mathrm{bar} \\ & =1.01325 \times 10^{6} \mathrm{dynes} / \mathrm{cm}^{2} \\ & =760 \mathrm{~mm} \mathrm{Hg} \text { at } 0^{\circ} \mathrm{C}(\text { torr })=10.333 \mathrm{~m} \mathrm{H}_{2} \mathrm{O} \text { at } 4^{\circ} \mathrm{C} \\ & =14.696 \mathrm{lb}_{\mathrm{f}} / \mathrm{in} . .^{2}(\mathrm{psi})=33.9 \mathrm{ft} \mathrm{H} \mathrm{H}_{2} \mathrm{O} \text { at } 4^{\circ} \mathrm{C} \\ & =29.921 \mathrm{in} . \mathrm{Hg} \text { at } 0^{\circ} \mathrm{C} \end{aligned}$
Energy	$\begin{aligned} 1 \mathrm{~J} & =1 \mathrm{~N} \cdot \mathrm{~m}=10^{7} \mathrm{ergs}=10^{7} \text { dyne } \cdot \mathrm{cm} \\ & =2.778 \times 10^{-7} \mathrm{~kW} \cdot \mathrm{~h}=0.23901 \mathrm{cal} \\ & =0.7376 \mathrm{ft}-\mathrm{lb}_{\mathrm{f}}=9.486 \times 10^{-4} \mathrm{Btu} \end{aligned}$
Power	$\begin{aligned} 1 \mathrm{~W} & =1 \mathrm{~J} / \mathrm{s}=0.23901 \mathrm{cal} / \mathrm{s}=0.7376 \mathrm{ft} \cdot 1 \mathrm{~b} / \mathrm{s}=9.486 \times 10^{-4} \mathrm{Btu} / \mathrm{s} \\ & =1.341 \times 10^{-3} \mathrm{hp} \end{aligned}$

Example: The factor to convert grams to lb_{m} is $\left(\frac{2.20462 \mathrm{lb}_{\mathrm{m}}}{1000 \mathrm{~g}}\right)$.

Example 2.3-1: Conversion Between Systems of Units

Convert $23 \mathrm{lb}_{\mathrm{m}} \times \mathrm{ft} / \mathrm{min}^{2}$ to its equivalent in $\mathrm{kg} \times \mathrm{cm} / \mathrm{s}^{2}$?

2.4 Force and Weight

\checkmark According to Newton second law, force is defied as the product of the mass and acceleration.

$$
F=m \times a
$$

Units are:
$\mathrm{SI} \rightarrow \mathrm{kg} \times \mathrm{m} / \mathrm{s}^{2}$
$\mathrm{CGS} \rightarrow \mathrm{g} \times \mathrm{cm} / \mathrm{s}^{2}$
Ameri. $\rightarrow \mathrm{lb}_{\mathrm{m}} \times \mathrm{ft} / \mathrm{s}^{2}$
\checkmark Pound-force is defined as the product of $1 \mathrm{lb}_{\mathrm{m}}$ and acceleration of gravity at sea level and latitude of 45°, i.e. $\mathrm{a}=32.174 \mathrm{ft} / \mathrm{s}^{2}$.

2.4 Force and Weight

Example 2.4-1: Calculate:

1. Force in Newton required to accelerate a mass of 4.0 kg at a rate of $9.00 \mathrm{~m} / \mathrm{s}^{2}$?
2. Force in dyne required to accelerate a mass of 4.0 g at a rate of $9.00 \mathrm{~cm} / \mathrm{s}^{2}$?
3. Force in lb_{f} required to accelerate a mass of $4.00 \mathrm{lb}_{\mathrm{m}}$ at a rate of $9.00 \mathrm{ft} / \mathrm{s}^{2}$?

2.4 Force and Weight

Define $\mathrm{g}_{\mathrm{c}} \equiv$ conversion factor as:

$$
\begin{array}{ll}
\text { SI: } & \mathrm{g}_{\mathrm{c}}=\frac{1.0 \mathrm{~kg} \times \mathrm{m} / \mathrm{s}^{2}}{1.0 \mathrm{~N}} \\
\text { CGS: } & \mathrm{g}_{\mathrm{c}}=\frac{1.0 \mathrm{~g} \times \mathrm{cm} / \mathrm{s}^{2}}{1.0 \mathrm{dyne}} \\
\text { Ameri: } & \mathrm{g}_{\mathrm{c}}=\frac{32.173 \mathrm{lb}_{\mathrm{m}} \times \mathrm{ft} / \mathrm{s}^{2}}{1.0 \mathrm{lb}_{\mathrm{f}}}
\end{array}
$$

\checkmark Weight of an object is the force exerted by gravitational attraction. It is calculated according to:

$$
W=m \frac{g}{g_{c}}
$$

2.4 Force and Weight

\checkmark Gravitational acceleration is given at sea level and 45° latitude as:

$$
\begin{aligned}
\mathrm{g} & =9.8066 \mathrm{~m} / \mathrm{s}^{2} \\
& =980.66 \mathrm{~cm} / \mathrm{s}^{2} \\
& =32.174 \mathrm{ft} / \mathrm{s}^{2}
\end{aligned}
$$

2.6 Dimensional Homogeneity and Dimensionless

Quantities

Consider:

$$
u\left(\frac{m}{s}\right)=u_{o}\left(\frac{m}{s}\right)+g\left(\frac{m}{s^{2}}\right) t(s)
$$

Dimensions: $\quad \frac{\text { length }}{\text { time }}=\frac{\text { length }}{\text { time }}+\frac{\text { length }}{\text { time }^{2}} \times$ time

- An equation is dimensionally homogeneous if and only if all additive terms on both sides of the equation have the same dimensions. The equation is also consistent in terms of units, i.e. length is in meters and time is in second.

2.6 Dimensional Homogeneity and Dimensionless

Quantities

Consider:

$$
u\left(\frac{m}{s}\right)=u_{o}\left(\frac{m}{s}\right)+g\left(\frac{m}{s^{2}}\right) t(\min)
$$

Dimensions:

$$
\frac{\text { length }}{\text { time }}=\frac{\text { length }}{\text { time }}+\frac{\text { length }}{\text { time }^{2}} \times \text { time }
$$

- An equation is dimensionally homogeneous if and only if all additive terms on both sides of . The equation is inconsistent in terms of units, i.e. length in meter but time in seconds and minutes. A proper conversion factor must be introduced.

$$
u\left(\frac{m}{s}\right)=u_{o}\left(\frac{m}{s}\right)+g\left(\frac{m}{s^{2}}\right) t(\min) \times \frac{60 s}{1 \min }
$$

2.6 Dimensional Homogeneity and Dimensionless Quantities

Consider:

$$
u\left(\frac{m}{s}\right)=u_{o}\left(\frac{m}{s}\right)+g\left(\frac{m}{s^{2}}\right)
$$

Dimensions:

$$
\frac{\text { length }}{\text { time }}=\frac{\text { length }}{\text { time }}+\frac{\text { length }}{\text { time }^{2}}
$$

- An equation is not valid if it is dimensionally non-
homogeneous.

Summary of Cases:

	Dimensionally Homogeneous	Consistent	Example	Actions
\sim 	$\sqrt{ }$	\checkmark	$u\left(\frac{m}{s}\right)=u_{o}\left(\frac{m}{s}\right)+g\left(\frac{m}{s^{2}}\right) t(s)$	Valid It can be used
N 0 0 0	\checkmark	X	$u\left(\frac{m}{s}\right)=u_{o}\left(\frac{m}{s}\right)+g\left(\frac{m}{s^{2}}\right) t(\min)$	A conversion factor is needed
n 	X	-пп	$u\left(\frac{m}{s}\right)=u_{o}\left(\frac{m}{s}\right)+g\left(\frac{m}{s^{2}}\right)$	Invalid It can't be used

Example 2.6-1:

Consider the equation:

$$
D(f t)=3 t(s)+4
$$

1. If the equation is valid, what are the dimensions of constants 3 and 4 ?
2. If the equation is consistent in its units, what are the units of 3 and 4?
3. Derive an equation for the distance in meters in terms of time in minutes?

Procedure to drive equivalent equations in different units:

1. Define new variables by affixing primes to the old variable names with the new units.
2. Write the old variables in terms of the new ones.
3. Substitute in the old expression and simplify the equation.

Dimensionless Quantities:

1. Pure Numbers such as $1,2,3 / 2,1 / 4$, and so on.
2. Multiplicative combination of variables may result in dimensionless quantities such as:

$$
\text { Rynold's no. }=\frac{\mathrm{D}(\mathrm{~cm}) \times \mathrm{u}\left(\frac{\mathrm{~cm}}{\mathrm{~s}}\right) \times \varrho\left(\frac{\mathrm{g}}{\mathrm{~cm}^{3}}\right)}{\mu\left(\frac{\mathrm{g}}{\mathrm{~cm} \times \mathrm{s}}\right)}
$$

$$
\text { Mass Ratio }=\frac{\mathrm{M}(\mathrm{~g})}{\mathrm{M}_{\mathrm{O}}(\mathrm{~g})}
$$

3. Exponents such as "a" in X^{a}.
4. Arguments of transcendental functions such as:

X	in	$\sin (\mathrm{X})$
Y	in	$\exp (\mathrm{Y})$
Z	in	$\log (\mathrm{Z})$

Example 2.6-2: Dimensional homogeneity and

dimensionless groups

A quantity k depends on temperature T in the following manner:

$$
k\left(\frac{\mathrm{~mol}}{\mathrm{~cm}^{3} \times s}\right)=1.2 \times 10^{5} \exp \left(-\frac{20,000}{1.987 T}\right)
$$

The units of the quantity $20,000 \mathrm{are} \mathrm{cal} / \mathrm{mol}$, and T in K (Kelvin). What are the units of 1.2×10^{5} and 1.987 ?

2.7 Process Data Representation and Analysis

Operating chemical plants is based on measuring data, such as: temperature, flowrates, pressure, concentrations....etc

2.7 Process Data Representation and Analysis

Consider the following:
\checkmark Temperature:

Dip a thermometer
(Direct measurement)
\checkmark Concentration:

Higher the concentration of ions in the solution, higher the current passes in the circuit

Indirect measurement (Measuring the variable through a known relation

$\bigcirc \mathrm{Cu}^{+2}$ with another one).

2.7 Process Data Representation and Analysis

\checkmark In the previous experiment, only current can be measured!

$\mathrm{C}_{1} \quad \mathrm{C}_{2}$

C_{3}

Calibration Experiment:
Experiment in which solution
of known concentration are
prepared and X is measured for

Concentration	Current
C_{1}	I_{1}
C_{2}	I_{2}
C_{3}	I_{3}
C_{4}	I_{4}

2.7 Process Data Representation and Analysis

What would I do if the current I got was not one of the listed values in the table?

2.7 Process Data Representation and Analysis

For any set of data x and y :

Interpolation: estimation of " y " for a given " x " located within the date range.
Extrapolation: estimation of " y " for a given " x " located outside the data range.

2.7 Process Data Representation and Analysis

Techniques to obtain an estimate for a given " x ":

1. Two-point linear interpolation.
2. Graphical method.
3. Least squared method

2.7 Process Data Representation and Analysis

\checkmark For any two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, a straight line equation connecting them is:

$$
y=y_{1}+\frac{x-x_{1}}{x_{2}-x_{1}}\left(y_{2}-y_{1}\right)
$$

- Suitable if the points in the table are close to each other.
- Not recommended if the data points are widely spread.

2.7 Process Data Representation and Analysis

Example: Values of a variable (f) are measured at several times (t):

f	1	4	8
t	1	2	3

Using the two-point linear interpolation, calculate:
a. $f(t=1.3)$
b. $t(f=5.0)$

2.7 Process Data Representation and Analysis

- A straight line equation passing through two points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is given by:

$$
\begin{gathered}
y=a x+b \\
a \equiv \text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
b \equiv \text { intercept }=\left\{\begin{array}{l}
y_{1}-a x_{1} \\
y_{2}-a x_{2}
\end{array}\right.
\end{gathered}
$$

2.7 Process Data Representation and Analysis

1. Plot the data points.
2. Look for the best curve passing through the data points.
3. Read your values from the resulting curve OR
4. Obtain an equation for the straight line considering any two points.

2.7 Process Data Representation and Analysis

\checkmark If a set of data and a nonlinear model is available, the following procedure is applied:

1. Try to rewrite the model in a linear form:

$$
f(x, y)=a g(x, y)+b
$$

2. Calculate $f(x, y)$ and $g(x, y)$
3. Plot $f(x, y)$ vs. $g(x, y)$.
4. Obtain the values of the model constants, $\mathrm{a} \& \mathrm{~b}$.

2.7 Process Data Representation and Analysis

Example: two variables P and t , are related by the equation:

$$
P=\frac{1}{m t^{1 / 2}+r}
$$

The following data are taken:

P	0.279	0.194	0.168	0.120	0.083
t	1.0	2.0	3.0	5.0	10.0

Calculate m and r ?

2.7 Process Data Representation and Analysis

1. Rewrite the nonlinear model in a linear form, i.e.

$$
f(x, y)=a g(x, y)+b \quad \frac{1}{P}=m t^{1 / 2}+r
$$

2. Calculate and using the data given:

P	0.279	0.194	0.168	0.120	0.083
t	1.0	2.0	3.0	5.0	10.0
$1 / \mathrm{P}$	3.58	5.15	5.95	8.33	12.05
$\mathrm{t}^{1 / 2}$	1.0	1.41	1.73	2.24	3.16

2.7 Process Data Representation and Analysis

Pvs. t

2.7 Process Data Representation and Analysis

1/P vs. $\mathbf{t}^{0.5}$

2.7 Process Data Representation and Analysis

1. Power law functions:

$$
\begin{gathered}
y=a x^{b} \\
\ln (y)=b \ln (x)+\ln (a)
\end{gathered}
$$

For a given set x and $\mathrm{y}, \ln (\mathrm{y})$ vs. $\ln (\mathrm{x})$ on a rectangular coordinate gives a straight line with "slope $=b$ " and "intercept $=\ln (a)$ ".

2.7 Process Data Representation and Analysis

2. Exponential functions:

$$
\begin{aligned}
& y=b \exp (a x) \\
& \ln (y)=a x+\ln (b)
\end{aligned}
$$

For a given set x and $\mathrm{y}, \ln (\mathrm{y})$ vs. x on a rectangular coordinate gives a straight line with "slope $=\mathrm{a}$ " and "intercept $=\ln (\mathrm{b})$ ".

2.7 Process Data Representation and Analysis

1. Rectangular Coordinate Graph Paper.
2. Semi-log Graph Paper.
3. Log-log Graph Paper

2.7 Process Data Representation and Analysis

A component A depleted in a solution with time due to an unknown chemical reaction. The data of concentration of A collected vs. time are as follows:

t (min)	0	1	2	3	4
C_{A} (mole/L)	10	6.07	3.68	2.23	1.35

It is requested to fit the above data into the following model:

$$
C_{A}(t)=C_{A 0} \exp (-k t)
$$

What are the values of " k " and " $\mathrm{C}_{\mathrm{A} 0}$ "?

2.7 Process Data Representation and Analysis

\checkmark The given model can be rewritten as:

$$
\ln \left(C_{A}\right)=\ln \left(C_{A 0}\right)-k t
$$

\checkmark Two options for plotting:

1. Plot $\ln \left(C_{A}\right)$ vs. t on rectangular coordinate to obtain a straight line of slope $=-k$, and intercept $=\ln \left(\mathrm{C}_{\mathrm{A} 0}\right)$.

$\mathrm{t}(\mathrm{min})$	0	1	2	3	4
$\mathrm{C}_{\mathrm{A}}($ mole $/ \mathrm{L})$	10	6.07	3.68	2.23	1.35
$\ln \left(\mathrm{C}_{\mathrm{A}}\right)$	2.30	1.80	1.30	0.80	0.30

2. $\operatorname{Plot} \mathrm{C}_{\mathrm{A}}$ vs. t on a semi-log graph paper.

2.7e Linear Regression (Least squared method)

This technique is based on minimizing the error between the data and the model predictions.

$$
O F(a, b)=\sum_{i=1}^{n}\left[y_{i}-\left(a x_{i}+b\right)\right]^{2}
$$

2.7e Linear Regression (Least squared method)

Best Line: $\quad y=a x+b$

$$
\begin{array}{ll}
s_{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} & s_{x x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} \\
s_{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i} & s_{x y}=\frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i}
\end{array}
$$

Slope:

$$
a=\frac{s_{x y}-s_{x} s_{y}}{s_{x x}-\left(s_{x}\right)^{2}}
$$

Intercept:

$$
b=\frac{s_{x x} s_{y}-s_{x y} s_{x}}{s_{x x}-\left(s_{x}\right)^{2}}
$$

2.7e Linear Regression (Least squared method)

Best Line:

$$
y=a x
$$

$$
s_{x x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} \quad s_{x y}=\frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i}
$$

Slope:

$$
a=\frac{S_{x y}}{S_{x x}}
$$

2.7e Linear Regression (Least squired method)

$\mathrm{t}(\min)$	0	1	2	3	4
$\mathrm{C}_{\mathrm{A}}(\mathrm{mol} / \mathrm{L})$	10	6.07	3.68	2.23	1.35
$\ln \left(\mathrm{C}_{\mathrm{A}}\right)$	2.30	1.80	1.30	0.80	0.30

2.7e Linear Regression (Least squired method)

$\mathrm{t}(\mathrm{min})$	$\mathrm{C}_{\mathrm{A}}(\mathrm{mol} / \mathrm{L})$	$\ln \left(\mathrm{C}_{\mathrm{A}}\right)$	$\mathrm{t}^{2}\left(\min ^{2}\right)$	$\mathrm{t}^{*} \ln (\mathrm{CA})$
0	10	2.30	0	0
1	6.07	1.80	1	1.80
2	3.68	1.30	4	2.60
3	2.23	0.80	9	2.4
4	1.35	0.30	16	1.2
10	----	6.50	30	8.0

Thank You

