CHE 306
Stagewise Operations
Fall 2010

Extraction of Partially Miscible Systems

Instructor: Dr. Housam Binous
KFUPM, Dhahran
All extraction systems are partially miscible to some extent

If partial miscibility is very low, one can use treatment for completely immiscible systems. Thus, one use the McCabe & Thiele analysis or Kremser equation

If partial miscibility is appreciable, one has to account for variable flow rates

For ternary systems: use a convenient stage-by-stage analysis

For multicomponent systems: use computer calculations
Consider a ternary system

Equilibrium between two liquid phases

\[T_1 = T_{II} \]

\[P_1 = P_{II} \]

Compositions of phases I & II are related
Consider a ternary system

Gibbs phase rule \[F = C - P + 2 = 3 \]

T, P are fixed

Must specify one composition in either phases

All other compositions will be known
Figure 14-1. Equilibrium for water-chloroform-acetone at 25 °C and 1 atm.
Table 14-1. Equilibrium data for the system water-chloroform-acetone at 1 atm and 25°C
(Alders, 1959; Perry and Green, 1997, p. 2-33)

<table>
<thead>
<tr>
<th>x_D Water</th>
<th>x_S Chloroform</th>
<th>x_A Acetone</th>
<th>y_D Water</th>
<th>y_S Chloroform</th>
<th>y_A Acetone</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.19</td>
<td>0.81</td>
<td>0.00</td>
<td>0.5</td>
<td>99.5</td>
<td>0.00</td>
</tr>
<tr>
<td>82.97</td>
<td>1.23</td>
<td>15.80</td>
<td>1.3</td>
<td>70.0</td>
<td>28.7</td>
</tr>
<tr>
<td>73.11</td>
<td>1.29</td>
<td>25.60</td>
<td>2.2</td>
<td>55.7</td>
<td>42.1</td>
</tr>
<tr>
<td>62.29</td>
<td>1.71</td>
<td>36.00</td>
<td>4.4</td>
<td>42.9</td>
<td>52.7</td>
</tr>
<tr>
<td>45.6</td>
<td>5.1</td>
<td>49.3</td>
<td>10.3</td>
<td>28.4</td>
<td>61.3</td>
</tr>
<tr>
<td>34.5</td>
<td>9.8</td>
<td>55.7</td>
<td>18.6</td>
<td>20.4</td>
<td>61.0</td>
</tr>
</tbody>
</table>
Solvent: chloroform
Diluent: water
Solute: acetone

AEBRD: solubility envelope
AEB: saturated extract line
BRD: saturated raffinate line
B: plait point
ER: tie line
Raffinate: diluent-rich phase

Extract: solvent-rich phase
Types I & II systems

Figure 14-3. Effect of temperature on equilibrium of methylcyclohexane-toluene-ammonia system from Fenske et al., AIChe Journal, 1, 335 (1955), copyright 1955, AIChe
Mixing operation

Figure 14-4. Mixing operation; A) equipment, B) triangular diagram
For a ternary system:

There are three independent mass balances

overall \[F_1 + F_2 = M \]

solute \[F_1 x_{A,F_1} + F_2 x_{A,F_2} = M x_{A,M} \]

diluent \[F_1 x_{D,F_1} + F_2 x_{D,F_2} = M x_{D,M} \]
Coordinates of mixing point M

\[
\begin{align*}
xa,M & = \frac{F_1 x_{A,F_1} + F_2 x_{A,F_2}}{F_1 + F_2} \\
xd,M & = \frac{F_1 x_{D,F_1} + F_2 x_{D,F_2}}{F_1 + F_2}
\end{align*}
\]
F_1, F_2 and M are collinear

slope from M to $F_2 = \text{slope from } M \text{ to } F_1$

Lever-arm rule

\[
\frac{F_1}{F_2} = \frac{MF_2}{F_1M}
\]

Alternative forms of lever arm rule

\[
\frac{F_1}{M} = \frac{F_2M}{F_1F_2} \quad \text{and} \quad \frac{F_2}{M} = \frac{F_1M}{F_1F_2}
\]
Single-stage extractor

Batch extractor \iff Single vessel equipped with mixer

Continuous single-stage extractor \iff Requires a mixer and a steller
Feed & solvent: continuously fed to mixer

Raffinate & extract: continuously withdrawn from settler
Known variables: $S, F, y_{A,S}, y_{D,S}, x_{A,P}, x_{D,P}, T$ and P

Need to find: $E, R, y_{A,E}, y_{D,E}, x_{A,R}, x_{D,R}$

E and R are streams in equilibrium with each other
Calculation method

1/ plot S, F

2/ draw straight line between S and F

3/ use lever-arm rule to locate M

4/ construct tie line through point M

5/ find compositions of E and R streams

6/ find E/R using mass balances
Cross-flow extraction

Figure 14-8. Cross-flow extraction; A) cascade, B) solution of triangular diagram.
Contercurrent extraction cascades

Figure 14-9. Countercurrent extraction cascade
External Mass balances

Specified variables: T, P, flow rates and compositions of streams F and S, desired composition of solute in raffinate product (or percent removal)

Need to determine: number of equilibrium stages, flow rates and composition of outlet raffinate and extract streams
External mass balances

\[
E_0 + R_{N+1} = R_1 + E_N
\]

\[
E_0 y_{A,0} + R_{N+1} x_{A,N+1} = R_1 x_{A,1} + E_N y_{A,N}
\]

\[
E_0 y_{D,0} + R_{N+1} x_{D,N+1} = R_1 x_{D,1} + E_N y_{D,N}
\]
\(E_N \) and \(R_1 \) are on the saturated raffinate and extract curves, respectively

\[\downarrow \]

Relationships between: \(y_{A,N} \) \(y_{D,N} \) and \(x_{A,1} \) \(x_{D,1} \)

5 equations need to be solved simultaneously for the 5 unknowns

\[E_{N'} \ R_{1'} \ x_{D,1'} \ y_{A,N} \text{ and } y_{D,N} \]
Locate M

\[
x_{A,M} = \frac{E_0 y_{A,0} + R_{N+1} x_{A,N+1}}{E_0 + R_{N+1}}
\]

\[
x_{D,M} = \frac{E_0 y_{D,0} + R_{N+1} x_{D,N+1}}{E_0 + R_{N+1}}
\]
Figure 14-10. *External mass-balance calculation; A) mixer-separation representation, B) solution on triangular diagram*
Locate R_1 \(\xrightarrow{\text{Use known value of } x_{A,1}} \)

Draw a straight line going through M and R_1

Intersection with saturated extract curve: E_N

R_1ME_N is not a tie line
Difference points & stage-by-stage calculations

Stage-by-stage calculations are made in order to determine:

- Number of stages
- Flow rates and compositions inside the cascade

External mass balances $\iff E_N, R_1, y_{A,N}$ and $y_{D,N}$
Known R_1

R_1 and E_1 are in equilibrium

Find E_1

E_1 and R_2 passing streams

4 unknowns: $x_{A,2}$, $x_{D,2}$, E_1 and R_2

3 mass balances around stage 1

R_2 is a saturated raffinate stream

Find R_2
Continue along the column until by repeating same procedure described to obtain E_1 and R_2

Stop when you reach raffinate specification (given by $x_{A,1}$)
Can use a graphical method:

Tie lines \rightarrow equilibrium relationships

$x_{A,j}$ and $x_{D,j}$ relationships \Rightarrow use saturated raffinate curve

Need a method to represent graphically mass balances
Mass balance around first stage

\[E_0 - R_1 = E_1 - R_2 \]

Difference point:

\[\Delta = E_0 - R_1 = \cdots = E_j - R_{j+1} = \cdots = E_N - R_{N+1} \]

constant
Net flow of solute and diluent is constant:

\[\Delta x_{A,\Delta} = E_0 y_{A,0} - R_1 x_{A,1} = \cdots = E_j y_{A,j} - R_{j+1} x_{A,j+1} \]
\[= \cdots = E_N y_{A,N} - R_{N+1} x_{A,N+1} \]

\[\Delta x_{D,\Delta} = E_0 y_{D,0} - R_1 x_{D,1} = \cdots = E_j y_{D,j} - R_{j+1} x_{D,j+1} \]
\[= \cdots = E_N y_{D,N} - R_{N+1} x_{D,N+1} \]

\[\Delta, E_j, R_{j+1} \text{ are collinear} \]
Coordinates of difference point: \(\Delta \)

They can be negative

\[
x_{A,\Delta} = \frac{E_0y_{A,0} - R_1x_{A,1}}{\Delta} = \frac{E_Ny_{A,N} - R_{N+1}x_{A,N+1}}{\Delta}
\]

\[
x_{D,\Delta} = \frac{E_0y_{D,0} - R_1x_{D,1}}{\Delta} = \frac{E_Ny_{D,N} - R_{N+1}x_{D,N+1}}{\Delta}
\]
Graphical method

\[R_1 \quad \Rightarrow \quad E_1 \]

Use tie line
Equilibrium relationship

\[\Delta E_1 \quad \Rightarrow \quad R_2 \]

Use operating line
Mass balances

\[R_2 \quad \Rightarrow \quad E_2 \]

\[\Delta E_2 \quad \Rightarrow \quad R_3 \]
Graphical method consists of alternating between tie lines (equilibrium relationships) and operating lines (mass balances).

Number of stages