Pricing Construction Equipment

Equipment Categories

- 1. Hand Tools: accounted for as an add-on at end of estimate
- Equipment used for variety of work tasks (e.g. generators, compressors, tower cranes, pick-up trucks): accounted for as a General Expense under "Site Equipment"
- Equipment used for specific tasks (e.g. excavation equipment, cranes): Priced against the work item on which it will be used.

Rent or Buy Equipment?

- Advantages of renting equipment:
 - Do not have to maintain a large pool of specialized equipment
 - Provides access to new and most efficient equipment
 - No storage requirements
 - Simplifies accounting of equipment cost
- Advantages of buying equipment:
 - Financial advantage
 - Indicates contractor's stability and qualification

Owning Cost of Equipment

- When comparing ownership against rental the following costs of ownership must be accounted for:
 - 1. Equipment Depreciation
 - 2. Maintenance & Repair
 - 3. Financing Expenses
 - 4. Insurance
 - 5. Storage
 - 6. Fuel & Lubricants cost

Depreciation

- Depreciation is related to the allocation of the cost of acquisition of an equipment over its life.
 (Different from market value depreciation, obsolescence, or physical depreciation)
- There are several depreciation methods. We will consider these three:
 - The straight-line method
 - The declining balance method
 - The production or use method

Straight-Line Depreciation

- Most common because of its ease
- Depreciation is uniform over the equipment life:
- Annual Depreciation = (Initial Cost – Estimated Salvage Value)/ Estimated Life (years)
- Example:
 - Excavator price= SR 500,000; Useful Life = 5 years
 - Salvage Value = SR100,000
 - > Annual Depreciation = (500,000 100,000) / 5
 - = SR 80,000

Declining Balance Depreciation

- Recognizes that depreciation diminishes over time.
- Need to determine
 - Average annual rate of depreciation (AARD)
 1 / (Estimated Useful Life)
 - Book value (end of year n)
 Initial Cost Accumulated Depreciation
 or
 Book value (and of year n 1)
 - Book value (end of year n-1) Depreciation of year n
- Depreciation in Year n
 Book Value (end of year n-1) x AARD

Declining Balance (Example)

	Depreciation	ו	
End of Year	Rate	Depreciation	Book Value
0	0.0	-	500,000
1	0.2	100,000	400,000
2	0.2	80,000	320,000
3	0.2	64,000	256,000
4	0.2	51,200	204,800
5	0.2	104,800	100,000

Production or Use Depreciation

- Production depreciation depends on equipment usage.
- Procedure:
 - Estimate total production units over the useful life of equipment (P)
 - Determine depreciation per unit of production
 - (Initial cost Salvage value) / Total production units
 - Determine depreciation in Year n
 - depreciation per unit x Year n production units

Production Depreciation Example

		Production	Depreciation
Price	SV	units	per unit
500,000	100,000	10,000	40
	Units		
End of Year	Produced	Depreciation	Book Value
	M^3	SR	SR
0	0	-	500,000
1	2800	112,000	388,000
2	1600	64,000	324,000
3	2000	80,000	244,000
4	1500	60,000	184,000
5	2100	84,000	100,000

Rubber-Tired Equipment

- Tires are treated separately from the equipment because the life of the equipment is longer than the life of tires.
- Therefore, the price of tires is separated from the price of the equipment.
- Depreciation and Repair & Maintenance costs for the equipment is determined separately from the Depreciation and Repair & Maintenance costs for the tires.

Maintenance & Repair Costs

- May vary depending on equipment type and job conditions
- Cost allocation is based on a percentage of depreciation cost
- When straight-line method is used depreciation is constant and so maintenance charge will also be constant. More realistic is that depreciation decreases and maintenance increases. The assumption is that the increase in one is offset by the decrease in the other

Financing Expenses

- Estimated based on the Average Annual Investment in the equipment

Insurance & Storage Expenses

- If information about these expenses is available they should be used
- If expenses are not known they can be estimated as a percentage of the Average Annual Investment (similar to the financing costs)
- In the second case the percentage is added to the interest rate to estimate an *equipment overhead rate* for the financing and & insurance and storage expenses combined.

Fuel & Lubricants Expenses

- Best to use historical data from previous projects when available
- Otherwise it can be estimated based on: engine type, engine size, operating factor, atmospheric pressure and temperature.
- At 29.9 in of mercury pressure and 60° F fuel consumption:
 - Gasoline engine: 0.06 gal per hp-hour
 - Diesel engine: 0.04 gal per hp-hour

Fuel & Lubricants Expenses

- The operating factor is a percentage of the engine rated power. Equipment do not operate at full power constantly. The factor is the ratio of the average power used to the full power rating.
- Lubricants: Estimate cost as a percentage of fuel costs (text uses 10% in examples)

Equipment Operator Costs

- Operator expenses are also added to the equipment cost as follow:
 - Hourly wage: 80 SR/hour
 - Productivity: 50 m³ per hour
 - Amount to be charged for operator cost: SR 80 / 50 m³ = 16 SR/m³

Company Overhead Costs

- Mark-up for Company overhead costs on the equipment are applied to the equipment rate if the purpose is to quote a rental rate.
- If the equipment rate is to determine the cost of using the equipment on a project then the mark-up is not added to the equipment rate. In this case mark-up is added to the bid at the end of the estimate.

Summary

Equipment Cost Item Method of Determination

- Depreciation Method (SL, DB, Production)
- Maint. & Repairs % of Depreciation
- Financing Expenses Average Annual Investment x interest rate
- Insurance & Storage % of Average Annual Investment
- Fuel / Lubricants

Formula (0.06/0.04 gal per hphour)

Equipment Operator Based on Operator wage

Example Calculate ownership cost per hour for a crawler-type excavator powered by a 250-hp diesel engine based on the following data

> Vehicle Operating Factor Purchase Price Freight Salvage Value Life Expectancy Hours per Year Maintenance & Repair Tire Cost Tire Life Maintenance & Repair (Tires) Equipment Overhead Fuel Cost

Average Annual Investment (Price + SV) / 2 Fuel Consumption 250 hp x 50% x 0.04 gal/hp-hr <u>Annual Cost</u> Depreciation Vehicle: (Price - SV) / Life Maint & Repair: (110% of Dep) Equipment OH: 11% of AAI Vehicle Fixed Cost Excavator 250-hp Diesel 50% 850,000 10,000 350,000 6 Years 2000 110% NA (track vehicle) NA (track vehicle) NA (track vehicle) 11% Average Annual Investrr 1.5 Per Gal

605,000

5 Gal per hour

85,000 93,500 66,550 245,050

Freight	10,000	
Salvage Value	350,000	
Life Expectancy	6 Years	
Hours per Year	2000	
Maintenance & Repair	110%	
Tire Cost	NA (track vehicle)	
Tire Life	NA (track vehicle)	
Maintenance & Repair (Tires)	NA (track vehicle)	
Equipment Overhead (Finance, Ins, & Storage)	11% Áverage Annual Investm	
Fuel Cost	1.5 Per Gal	
Average Annual Investment		
(Price + SV) / 2	605,000	
Fuel Consumption	·	
250 hp x 50% x 0.04 gal/hp-hr	5 Gal per hour	
Annual Cost	·	
Depreciation		
Vehicle: (Price - SV) Life	85,000	
Maint & Repair: (110% of Dep)	93,500	
Equipment OH: 11% of AAI	66,550	
Vehicle Fixed Cost	245,050	
Hourly Cost:		
Vehicle Cost	122.53	
Tire Depreciation	0	
Maintenance & Repair on tires	0	
Fuel: Consumtion x Price	7.50	
Oil: 10% of Fuel	0.75	
Cost per Hour	130.78	

Vehicle	Dump truck 120 hp Gasoline
Operating Factor	40%
Purchase Price	370,000
Freight	5,000
Salvage Value	50,000
Life Expectancy	5 Years
Hours per Year	1,800
Maintenance & Repair	130%
Tire Cost	20,000
Tire Life	4,000
Maintenance & Repair (Tires)	15% of tire depreciation
Equipment Overhead	11% Average Annual Investm
Fuel Cost	4 Per Gal
Average Annual Investment	
(Price + SV) / 2	212,500 (Price includes tires)
Fuel Consumption	
120 hp x 40% x 0.06 gal/hp-hr	2.88 Gal per hour
Annual Cost	·
Depreciation	
Vehicle: (Price - SV) Life	61,000
Maint & Repair: (% of Dep)	79,300
Equipment OH: 11% of AAI	23,375
Vehicle Fixed Cost	163,675
Hourly Cost:	
Vehicle Cost	90.93
Tire Depreciation	5

Freight	5,000	
Salvage Value	50,000	
Life Expectancy	5	Years
Hours per Year	1,800	
Maintenance & Repair	130%	
Tire Cost	20,000	
Tire Life	4,000	
Maintenance & Repair (Tires)	15%	of tire depreciation
Equipment Overhead	11%	Average Annual Investn
Fuel Cost	4	Per Gal
Average Annual Investment		
(Price + SV) / 2	202,500	
Fuel Consumption		
120 hp x 40% x 0.06 gal/hp-hr	2.88 Gal per hour	
Annual Cost		
Depreciation		
Vehicle: (Price - SV) Life	61,000	
Maint & Repair: (% of Dep)	79,300	
Equipment OH: 11% of AAI	22,275	
Vehicle Fixed Cost	162,575	
Hourly Cost:		
Vehicle Cost	90.32	
Tire Depreciation	5	
Maintenance & Repair on tires	0.75	
Fuel: Consumtion x Price	11.52	
Oil: 10% of Fuel	1.152	
Cost per Hour	108.74	