بسم الله الرحمن الرحيم

King Fahd University of Petroleum & Minerals
DEPARTMENT OF CIVIL ENGINEERING

First Semester 1433-34 / 2012-13 (121) CE 203 STRUCTURAL MECHANICS I

Major Exam I

Tuesday, October 16, 2012 7:15-9:15 P.M.

Student	Family					First			
Name									
			1		1		1	1	т
ID No. (9 Digits)									

CIRCLE YOUR COURSESECTION NO.								
Section #	ection # 1&2 3 4 5 6 7							
Instructor	Hamdan	Suwaiyan	Shamshad	Salah	Mesfer	Khathlan	Saeid	

Summary of Scores

Summary of Scores						
Problem	Full Mark	Score				
1	20					
2	20					
3	20					
4	20					
5	20					
Total	100					
Remarks						

Notes:

- 1. A sheet that includes selected Basic Formulae and definitions is provided with this examination.
- 2. Write clearly and show all calculations, FBDs, and units.

Problem 1: (20 points)

The bar ABC is supported by a pin-support at A and a short link BE which has a circular cross-section having a diameter D. For the load shown and with the information listed in the Table:

- a. Determine the required diameter D of the cross-section of link BE.
- b. Determine the shear stress in the bolt at pin-support A which has a diameter of 40 mm.
- c. Determine the required plate thickness **t** at support A.

Given	θ	Safety	Material Ultimate Strength (MPa)			
		factor	Normal σ	Bearing σ		
Value	30°	1.5	450.	200.		

Problem 2: (20 points)

The stress-strain diagram for a specimen having a length of 300 mm and a diameter of 25 mm is shown below.

- a. Determine the modulus of elasticity, the ultimate stress and the fracture stress.
- b. Determine the yield strength using the 0.2% offset method.
- c. Determine the new length and diameter when the specimen is stressed to 400 MPa.
- d. Determine the final length when the specimen is stressed to 600 MPa and then unloaded.

v = 0.35

Problem 3: (20 points)

In the figure shown,

- a- prove that the problem is *statically determinate*;
- b- based on the conclusion of pat (a), determine the stresses in AB, CD, and DE; indicate Tension or Compression.

Note that all dimensions given, including the gap, are before applying the load and temperature.

	Properties	L	A	Е	ΔΤ	α	
	Member	(m)	(m^2)	(N/m^2)	(°C)	(/°C)	
	AB	0.2	$20(10)^{-6}$	50 (10) ⁹	+20	$10(10)^{-6}$	
	CD	0.25	$25(10)^{-6}$	$100 (10)^9$		$20(10)^{-6}$	
	DE	0.1	$25(10)^{-6}$	$100(10)^9$	-10	$20(10)^{-6}$	
Α		В	С			D	E
	500 N ◀		}[750	N 🚛		
		1-m	l l ım gap				

Problem 4: (20 points)

In the figure shown, determine the forces in members AB, CD, and FG; indicate Tension or Compression. All members have the same length, area, and material (L, A, E).

Problem 5: (20 points)

The plate shown in the figure has a uniform thickness t and is subjected to a tensile force P = 10 kN. Determine the required thickness of the plate if the allowable normal stress is 150 MPa.

