بسم الله الرحمن الرحيم

King Jahd University of Petroleum & Minerals DEPARTMENT OF CIVIL ENGINEERING

Second Semester 1432-33 / 2011-12 (112)

CE 203 STRUCTURAL MECHANICS I

Major Exam I

Tuesday, March 13, 2012 7:00-9:15 P.M.

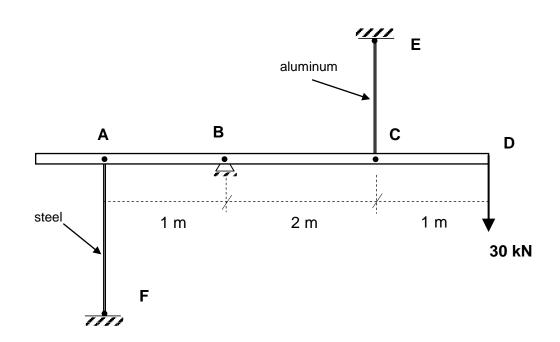
Student	Family	Family					First			
Name		<u>'</u>								
					1		Т	1	1	
ID No.										
(9 Digits)										

CIRCLE YOUR COUR\$E\$ECTION NO.								
Section #	2	3 & 9	4 & 6	5	7	8	10	
Instructor	Hamdan	Altayyib	Khathlan	Suwaiyan	Salah	Ali	Saeid	

Summary of Scores

Summary of Scores						
Problem	Full Mark	Score				
1	20					
2	20					
3	20					
4	20					
5	20					
Total	100					
Remarks						

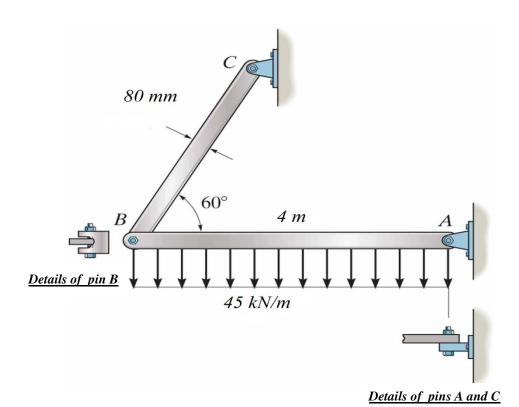
Notes:


- 1. A sheet that includes selected Basic Formulae and definitions is provided with this examination.
- 2. Write clearly and show all calculations, FBDs, and units.

Rigid member ABCD, is supported by the pin and the two cables.

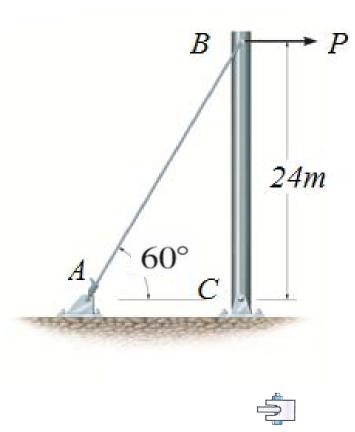
- a) Calculate the stresses in the cables due to the application of the shown force.
- b) Calculate the vertical displacement of point D.
- c) In one <u>statement</u>, explain what will happen to the stresses in the cables if the temperature of the steel cable <u>only</u> is increased.

$$\begin{split} E_{steel} &= 200 \ GPa \\ E_{aluminum} &= 70 \ GPa \end{split}$$


Cable	Length	Area (mm ²)	Material
AF	1.5 m	315	Steel
CE	1 m	600	Aluminum

The beam is supported by a pin at A and link BC. Determine:

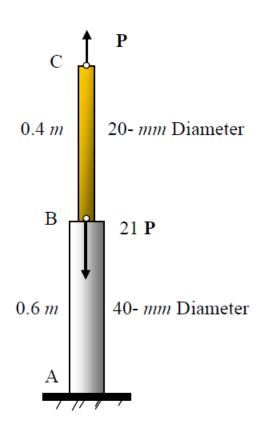
- a) the average shear stresses in the pins at A and B,
- b) the average normal stress in link BC,
- c) the bearing stress between pin C and the link.


All pins have a diameter of 20 mm. Thickness of link BC = 20 mm

The rigid pipe is supported by a pin at C and a guy wire AB. The pin has a diameter of 20 mm while the guy wire has a diameter of 10 mm. If the allowable normal stress for the guy wire is $\sigma_{allow} = 255$ MPa and the allowable shear stress for the pin is $\tau_{allow} = 131$ MPa, determine:

- a) the maximum P_{max} that can be applied to the assembly,
- b) the stretch in length and reduction in diameter of the guy wire AB.

Use E = 68.9 GPa and v = 0.35.

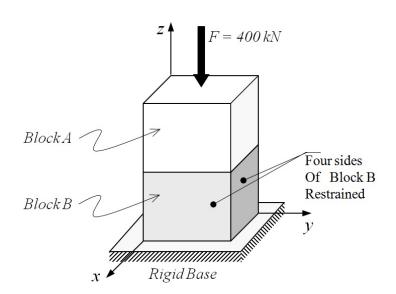


Detail of connection at C

Rod ABC has a negligible mass and only supports two axial loads P and 21 P as shown. If *only* part BC is subjected to a temperature change ΔT = 40 °C, determine:

- a. the required value of **P** if the length ABC should remain unchanged,
- b. the displacement δ_B of point B,
- c. the relative displacement $\delta_{B/C}$,
- d. the final length L_{AB} .

Given E = 70 GPa and α = 24 x 10⁻⁶/ °C.



Block A rests on block B as shown. Each block is a cube with initial dimensions 200x200x200 mm. The 4 side-faces of block A are free to displace, while the 4 side-faces of block B are prevented from expanding (i.e. restrained in the x and y directions). Determine:

- a) the vertical displacement of the force F,
- b) the stress σ_x for block A, and for Block B,
- c) the value of the Shear Modulus (G) for block A.

Ignore self-weight and any friction.

$$E = 1$$
 GPa, and $v = 0.2$

