HOME WORK # 8

Dr. Juruf R.S.

by

Civil Engineering Department King Fahd University of Petroleum and Minerals Dhahran KEY TO HOMEWORK # 8.

.

PROBLEM #
$$O(6-49)!$$
-
SOLUTION:-
FGOURED:-
FGOURED:-
Gendigs Streatsus a cvected
at points B\$C.
SECTION PROPERTIES:-
 $\overline{y} = \frac{2A\overline{y}}{2A}$.
 $I = \zeta(\overline{z} + Ad^2)$
 $\overline{y} = \frac{2(f(0 \times 40) \times 20] + [(c\overline{x}) \times 10] (40 + 5)]}{2(10 \times 40] + [(x\overline{y}) \times 10]}$
 $\overline{y} = \frac{2}{2} \int \frac{10}{12} + ((0 \times 40) (32 \times -20)^2] + [(x\overline{y}) \times 10] (40 + 5)] = 32.5 \text{ mm}$.
 $\overline{y} = \frac{363.34}{2} \times 10^3 \text{ mm}^3$
Bending Streatsus:-
 $\overline{y} = \frac{363.34}{2} \times 10^3 \text{ mm}^3$
 $\overline{z} = \frac{16}{2} = \frac{(45 \times 10^3) (40 - 32.5)}{363.34 \times 10^3} = 1.55 \text{ Mpa}$.
 $\overline{z} = \frac{1.55 \text{ Mpa}}{2} = \frac{1.55 \text{ Mpa}}{2}$

PEOBLE PHF (S)
$$(6-SS)! - 4$$

SOLUTION!-
SOLUTION!-
REAULTED!-
PLAULTAINT TORES in beam
as stop Hange A and bostom
Harman Stressed :?
Section PSTee? Heal :
 $Y = 4.5A$
 $Y = 5.5A$
 $Y = 4.5A$
 $Y = 5.5B$
 $Y = 4.5B$
 $Y = 4.5B$

At centre q top flange A!-
=
$$\frac{HY}{I}$$
 = $15 \times 10^{3} \times 12 \times (4 \cdot 24335 - 05)$
At centre q bottom flange 8)-
= $\frac{HY}{I}$ = $15 \times 10^{3} \times 12 \times (5 \cdot 5(25 - 0.5))$
= $\frac{HY}{I}$ = $15 \times 10^{3} \times 12 \times (5 \cdot 5(25 - 0.5))$
= $4 \cdot 55 \times 10^{3} \times 12 \times (5 \cdot 5(25 - 0.5))$
At . Top atanje A
Ha = $0 \times 10^{3} \times 12 \times 10^{3} \times 12 \times 10^{3} \times 12^{3} \times 10^{3} \times$

$$max = (B)max = 5.0 kh'$$

PROBLEM # (4) (6-61) >-
GOINTED :-
Absolute Maximum
bending Stresse
: JLie maximum bending occurs at fixed End
: Max = 40 + (8x 10) + (10x6) + (2x 6x 5)
= 216 kip + 4.
: Absolute Maximum Bending Stressing beam; -

$$= \frac{216 kip + 4}{(8 \times 10)^2} = = 3593 Psi$$

$$= 216 \times 10^3 x 12 \times \frac{16}{2}$$

PROBLEH # (5) (6.67):-
S21 (dion):-
S21 (dion):-
Requised:-
Absolute Maximum
bending Strews?
Section Properties:

$$= \frac{10000}{1000}$$

 $= \frac{10000}{1000}$
 $= \frac{100000}{1000}$
 $= \frac{10000}{1000}$
 $= \frac$

$$J_{battom} = \frac{6:25 - in}{12} + 8x1 \times (2.75 - 0.5)^{2} + 1 \times 8^{3} + 1 \times 8 \times (6.25 - 4)^{2}$$

$$= \frac{124.34}{12} + 8x1 \times (2.75 - 0.5)^{2} + 1 \times 8 \times (6.25 - 4)^{2}$$

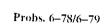
$$C = \frac{124.34}{12} + \frac{124.34}{12}$$

$$C = \frac{124.34}{12} + \frac{124.3}{12}$$

$$= \frac{124.34}{12} + \frac{12}{12}$$

$$= \frac{12}{12} + \frac{12}{12} + \frac{12}{12} + \frac{12}{12}$$

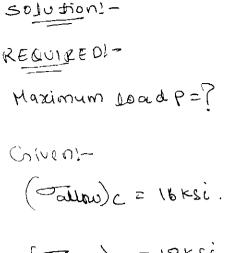
$$= \frac{12}{12} + \frac{12}{1$$


Υ P

$$(allow)t = 18 KSC.$$

MMAX = PXS = SPFip.tt.

Jtop = 1×8×0.5 + 1×8×5


= 2:25 in.

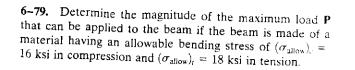
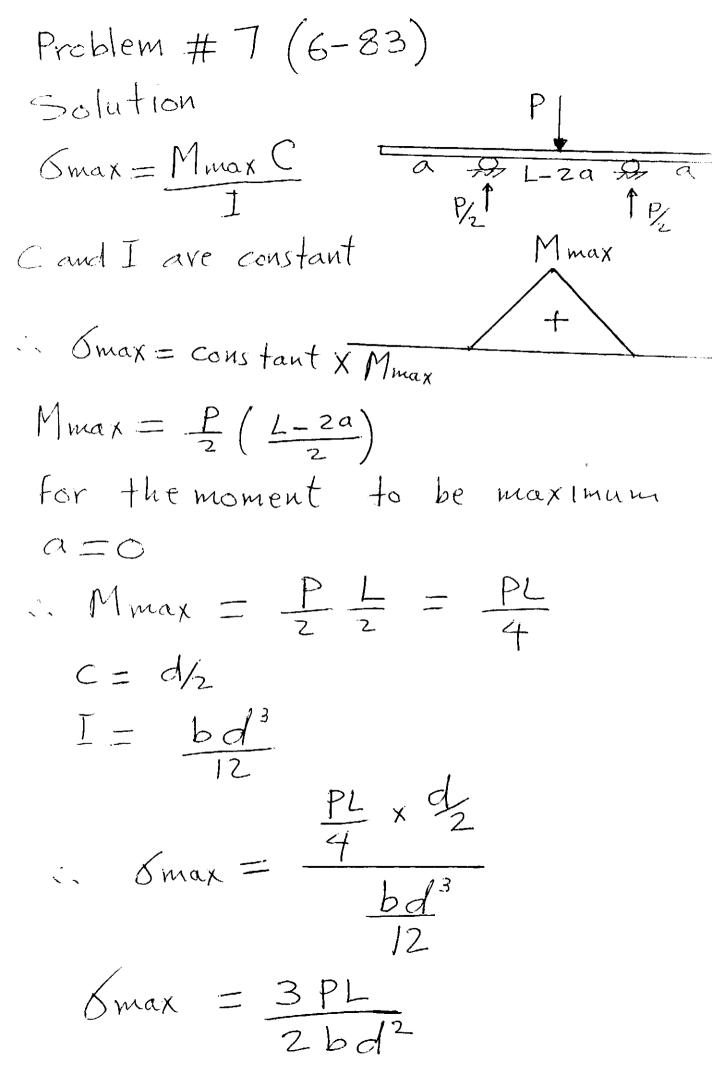

JP JMmax

Fig 🕡

- - 10 ft -----


PROBLEN# 6 (6-79)!-

78.00

<u>8 in.</u> 8 in.

 $\frac{1}{1} - 5 \text{ ft} - \frac{1}{1}$

