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RAbstract

This paper presents results of a laboratory experimental program performed on limestone rock samples, using both

static and dynamic methods. The objective is to compare elastic properties (elastic modulus and Poisson’s ratio) for

limestone rock, determined by static and dynamic methods, under different conditions. The static elastic modulus and

Poisson’s ratio were determined using cylindrical specimens tested under unconfined compression using a strain-

controlled loading frame. Minor cycles of unloading–reloading were made at various stress levels. The data were

analyzed to evaluate the effect of stress–strain level on the secant and tangent moduli as well as on Poisson’s ratio. The

values of the tangent modulus and Poisson’s ratio during the minor cycles at various stress levels were also obtained.

The dynamic elastic modulus and Poisson’s ratio were determined for rock specimens using an ultrasonic system

equipped with pairs of transmitting and receiving transducers: one P-wave and two polarized S-waves. Measurements

were made at different confining pressures. The effects of cyclic loading, unloading, and reloading conditions were

investigated. The static and dynamic results obtained for the investigated rock were analyzed and compared. The findings

were also compared with similar results available in the literature for limestone rocks. The equivalent confinement to

compensate for the cohesion was introduced to have a general form for the initial modulus that can be used even for

cohesive materials at unconfined condition. For unconfined condition, the initial modulus is correlated with the un-

confined compressive strength.
 RD 2004 Elsevier B.V. All rights reserved.
COKeywords: Limestone rock; Static/dynamic modulus and Poisson’s ratio; Cyclic loading; Confining pressure; Uniaxial compressive strength
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N1. Introduction

The elastic constants (elastic modulus and Pois-

son’s ratio) are considered to be among the main
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fundamental mechanical properties of rock materials

required for the analysis and design of engineering

projects involving rocks. Limestone is a sedimentary

rock encountered in many engineering projects world-

wide. The elastic constants are extensively used in

various formulations and modeling techniques, in

order to predict the stress–strain behaviour of rocks

subjected to various loading conditions. There are two

ways of finding these constants: static and dynamic
ENGEO-02267; No of Pages 18
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tests, each of which can be performed either in the

field or in the laboratory.

In the laboratory, the static elastic constants are

computed from the stress–strain response of a

representative specimen of the material subjected

to a uniaxial loading. The dynamic method is based

on nondestructive geophysical (seismic/acoustic)

testing. It involves the measurement of compression

and shear wave velocities of a known frequency

wave, traveling through a representative sample of

the rock material. The elastic constants, based on

the dynamic method (ultrasonic or logging), are

widely used for hydraulic fracture design and well-

bore/perforation stability evaluations in the petro-

leum industry.

It has been reported in the literature that the static

and dynamic elastic moduli differ in values. There are

many explanations proposed to explain this differ-

ence—ranging from strain amplitude effects to visco-

elastic behavior. Additionally, this difference was

explained as static measurements being more influ-

enced by the presence of fracture, cracks, cavities,

planes of weakness, or foliation (Zisman, 1933; Ide,

1936; Sutherland, 1962; Coon, 1968). Investigation of

such difference is still an active area of research, to

understand the various contributing parameters and to

enable a better interpretation of the mechanical prop-

erties from wave velocity measurements. The exis-

tence of some discrepancy in the values of these

constants between static and dynamic methods as

reported in the literature requires good judgment and

further investigation of the methods used to determine

these constants. Also, the relationships between the

constants determined from the two methods need to

be evaluated.

This paper presents results of a laboratory

experimental program performed on limestone rock

samples, using both static and dynamic methods.

The objective is to compare elastic properties

(elastic modulus and Poisson’s ratio) for specimens

obtained from a limestone rock outcrop in Saudi

Arabia, as determined in the laboratory using the

static and dynamic methods. For static method,

the effects of cyclic loading and stress–strain level

on the values of the elastic properties were

investigated. For dynamic method, the effects of

confining pressure and cyclic loading were also

studied.
ED P
ROOF

2. Background

2.1. Literature review

There is no consensus in the literature on an exact

definition of the static Young’s modulus, or on a

method that can uniquely determine it. The static

modulus is usually determined according to ASTM

D 3148 standard, which states that the axial modulus

may be calculated using any one of several methods

employed in engineering practice, such as:

1) the tangent modulus at a stress level, which is some

fixed percentage of the maximum strength;

2) the average slope of the straight line portion of the

stress–strain curve;

3) the secant modulus, from zero stress to some

percentage of maximum strength.

The static method gives rise to a large scatter of

results, but it can provide results at high strains (10� 2)

that occur in the mining industry. On the other hand,

the dynamic method involves a smaller scatter of

results, but these belong to the low strain category

(10� 5). Because of that, Vutukuri et al. (1974) con-

cluded that a comparison of static and dynamic

moduli is meaningful only if the values of the static

modulus are taken at low strain–stress levels (i.e.,

using the initial tangent modulus).

The relationships between static and dynamic elas-

tic properties have been studied since the early 1930s

when techniques involving the propagation of acous-

tic waves were used in the characterization of rocks in

mining, petroleum, and geotechnical engineering. Dy-

namic measurements are often used because they are

easy to obtain and are nondestructive. Also, there are

rarely enough cores available for the static method.

The ratio of the dynamic modulus (Ed) to static

modulus (Es) reported in the literature for limestone

rocks varies between 0.85 and 1.86 (Table 1). This

ratio is usually large for rocks having a small modulus

of elasticity (GRI, 1992). However, for rocks with a

high modulus of elasticity, this ratio is low and may be

less than 1.0. Various forms of correlations between

Ed and Es reported in the literature are given below

(both expressed in gigapascals).

King (1983) reported the results of 174 measure-

ments of the static elastic modulus (Es) as a function

of the dynamic elastic modulus (Ed) for igneous and
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t1.1 Table 1

Values of static and dynamic elastic properties of limestone rockst1.2

Rock name Es (GPa) Ed (GPa) Ed/Es ms md md/ms Referencest1.3

Chalcedonic limestone 55.160 46.886 0.85 0.18 0.25 1.39 US Bureau of Reclamation (1953)t1.4
Oolitic limestone 45.507 53.698 1.18 0.18 0.21 1.17 US Bureau of Reclamation (1953)t1.5
Stylotitic limestone 38.612 57.146 1.48 0.11 0.27 2.45 US Bureau of Reclamation (1953)t1.6
Limestone 1 66.882 70.895 1.06 0.25 0.28 1.12 US Bureau of Reclamation (1953)t1.7
Limestone 2 16.548 28.132 1.70 0.18 0.20 1.11 US Bureau of Reclamation (1953)t1.8
Limestone 3 33.786 62.842 1.86 0.17 0.31 1.82 US Bureau of Reclamation (1953)t1.9
Leuders limestone (normal) 24.133 33.304 1.38 0.21 0.22 1.05 Chenevert (1964), static;

Youash (1970), dynamict1.10
Leuders limestone (parallel) 24.822 33.261 1.34 0.21 0.22 1.05 Chenevert (1964), static;

Youash (1970), dynamict1.11
Limestone 18.444 23.793 1.29 – – – Rzhevsky and Novik (1971)t1.12
Solenhofen limestone 63.7 – – 0.29 – – Goodman (1989)t1.13
Bedford limestone 28.509 – – 0.29 – – Goodman (1989)t1.14
Tavernalle limestone 55.803 – – 0.30 – – Goodman (1989)t1.15
Limestone, USSR 53.9 – – 0.32 – – Wyllie (1992)t1.16
Limestone 21–103 – – 0.24–0.45 – – Bowles (1997)t1.17
Limestone 24.8–60.45 – – 0.2–0.28 – – Palchik and Hatzor (2002)t1.18
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metamorphic rocks from the Canadian shield. Using

linear regression, the following relationship was

reported:

Es ¼ 1:263Ed � 29:5 with R2 ¼ 0:82 ð1Þ
Van Heerden (1987) tested 10 different types of

rocks, and he found that in most cases, Ed is greater

than Es, but the dynamic Poisson’s ratio (md) is smaller

than the static Poisson’s ratio (ms). Results were fitted

by the following relationship:

Es ¼ aEb
d ð2Þ

where the two parameters a and b are constants, but

depend on the stress level.

Eissa and Kazi (1988) obtained the following

relationships:

Es ¼ 0:74Ed � 0:82 with R2 ¼ 0:84 ð3Þ
log10Es ¼ 0:02þ0:7log10ðqEdÞ with R2 ¼ 0:96 ð4Þ

They concluded that the correspondence between

the two moduli (Eq. (3)) is rather low. A better estimate

was found by including the rock density (�, g/cm3) in

the relationship (Eq. (4)).

Goodman (1989) indicated that the tangent modu-

lus obtained from the loading curve contains both

recoverable and nonrecoverable strains. In general,

whenever the modulus value is calculated directly

from the slope of the rising portion of a virgin loading

curve, the determined property should be reported as a

modulus of deformation rather than a modulus of
ED P
R

elasticity. Unfortunately, this is not universal practice

at present. He concluded that the elastic constants

(elastic modulus and Poisson’s ratio) should be de-

fined with respect to the reloading curve.

Plona and Cook (1995) investigated the effect of

stress cycles on static and dynamic moduli for sand-

stone. They have shown that the static Young’s

modulus, when consistently defined in terms of small

amplitude, is similar to the dynamic Young’s modulus

measured along the stress direction. They also dem-

onstrated that major and minor stress–strain cycles

are useful tools to explore the relationships between

static and dynamic properties of rocks.

2.2. Geology

The investigated limestone rock belongs to the

‘‘Khuff’’ formation, which relates to the early Triassic

to late Permian age [215–270 million years before

present (MYBP)]. The structural geology for this

formation indicates that it outcrops at various places

in the Central Province of Saudi Arabia, with an

altitude reaching some hundreds of meters above sea

level, and it dips toward the east to a depth of about

2000–4000 m below sea level in the Eastern Province

(Powers et al., 1963). Fig. 1 gives a general structural

geology of sedimentary rock formations in Saudi

Arabia, including the Khuff formation. Fig. 2 shows

photos of a side of a new highway cut made through
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sample collection site.

Fig. 3. XRD
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the outcrop of this formation at the Gassim area of

Saudi Arabia. These photos indicated the layering

nature of this limestone formation, and the variation

of the thickness of layers. This makes it difficult to

obtain a representative sample for the entire forma-

tion. Rock blocks were collected from the thick layers

found in the face of the cut. The orientations of the

blocks were marked in the site, and they were trans-

ported to the laboratory for specimen preparation.

2.3. Rock description

Preliminary studies showed that this rock is a very

homogeneous, beige-colored, muddy limestone. It is

extremely dense and lacks any visible pores under a

polarizing microscope. The physical properties in-

clude a dry density of 2586 kg/m3, a specific gravity

of 2.737, a void ratio of 0.055, and a porosity of 5.4%

(Al-Shayea et al., 2000). The tensile strength (rt) of
this limestone rock was found to be 2.31 MPa (Khan

and Al-Shayea, 2000). The mineralogical composition

of this rock determined by X-ray diffraction (XRD)

analysis (Fig. 3) indicates that this rock is very pure

limestone (99% CaCO3).
E

results.
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3. Experimental work

3.1. Static testing

3.1.1. Specimen preparation

Cylindrical specimens of 23.5 mm in diameter were

drilled from the rock blocks described above. The

drilled specimens were cut into lengths of 50.8 mm,

using a high-speed rotary saw. The ratio of length to

diameter is maintained at greater than 2. The end faces

of the specimens were ground using an end-face

grinder, and then checked for evenness and perpendic-

ularity with respect to the vertical axis. At the mid-

height of each specimen, two small strain gauges were

attached: one along the length (vertical) and one along

the circumference (horizontal). The strain gauges were

the GFLA-6-50 type (Tokyo Sokki Kenkyujo, Japan).

3.1.2. Testing setup

A strain-controlled loading frame, having a ca-

pacity of 100 kN, was used for the load application
UNCORRECT

Fig. 4. Unconfined com
PROOF

(Fig. 4). The frame is equipped with a load cell to

measure the applied load, and with an LVDT to

measure the vertical displacement. Rock specimen

was mounted under the loading frame. The load cell,

the LVDT, and the strain gauges were connected to a

computerized data logger (TDS-303 type; Tokyo

Sokki Kenkyujo). All measuring devices were cali-

brated, and the tests were made according to ASTM

Standard D 3148-86 (ASTM, 1993).

3.1.3. Monotonic loading

For specimens 1 and 2, the load was gradually

applied at a rate of 0.0021 mm/s, until the specimen

failed. The applied load, the vertical displacement,

and the vertical and horizontal strains were continu-

ously recorded during loading.

3.1.4. Cyclic loading

Another specimen was tested under cyclic loading.

The load was gradually applied at a rate of 0.0021

mm/s to a certain level, and slight unloading–reload-
ED 

pressive testing.
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ing cycles were applied. This test included three

cycles of about 5–10% of qu, at different stress levels,

before the specimen failed. The applied load, the

vertical displacement, and the vertical and horizontal

strains were continuously recorded during loading.

3.2. Dynamic testing

3.2.1. Specimen preparation

Cylindrical specimens of 38 mm (1.5 in.) in

diameter were drilled from the rock blocks described

above. Then the drilled specimens were cut into

23F 2 mm (1.0 in.) lengths, using a high-speed rotary

saw. These dimensions are in accordance with the

specification of the testing method. The end faces of

the specimens were ground using an end-face grinder.

The end faces were checked for evenness and perpen-

dicularity with respect to the vertical axis of the

specimen, using a V-block and a dial gauge.

3.2.2. Velocity measurement

For velocity measurement, an Autoplab 500 ultra-

sonic system (NER) was used. The schematic of the
UNCORRECT

Fig. 5. Schematic of the ultrasonic
 P
ROOF

system is shown in Fig. 5, which consists of an

ultrasonic transducer assembly and a metallic safety

enclosure. A pressure vessel mounted inside the safety

enclosure is connected to two hand pumps mounted

on the sides of the safety enclosure. One of the pumps

with an intensifier serves the purpose of pressurizing

the confining fluid. The transducer assembly has one

P-wave pair and two polarized S-wave pairs of

transmitting and receiving transducers. The trans-

ducers, with a central frequency of 700 kHz, are

housed inside stainless steel platens.

Before testing, the density of the specimen was

measured. Then, the specimen was mounted in the

system as follows. A shear wave couplant was applied

at the end faces of the rock specimen, and then the

specimen was slipped into a rubber sleeve. The rubber

sleeve, along with the specimen, was placed between

the platens of the transducer assembly in a way to

ensure a good contact between the platens and the

specimen’s faces. Steel clamps tightly clamped both

ends of the rubber sleeve against the platens. Then

transducer assembly was slipped inside the pressure

vessel. Light oil was poured into the pressure vessel as
ED

velocity measurement setup.
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a confining fluid, and the sample was pressurized to the

desired level.

At one end of the rock specimen, the transmitting

traducers excited P- waves and S-waves, and then

these signals were received at the other end of the

specimen by the receiving transducers. A Unix-based

software controls the excitation and transmission of the

wave, and the data are stored in a personal computer.

Velocity measurements were made at different confin-

ing pressures, as the confining pressure was increased

(loading) and also as the confining pressure was

decreased (unloading). Tests were made in accordance

with ASTM Standard D 2845-90 (ASTM, 1993).
ROO

328

329

330
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332

333

Fig. 7. Static tangent modulus vs. vertical stress.
4. Results and discussions

4.1. Static results

4.1.1. Results of monotonic loading

Fig. 6 shows the stress–strain relationships of two

rock specimens, tested under a monotonic unconfined

compressive load. The variation of vertical stress is

presented with both vertical and horizontal strains (ev
and eh). The unconfined compressive strength meas-

urements of specimens 1 and 2 were 102 and 107

MPa, respectively.
UNCORRECT 334
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353Fig. 6. Stress– strain relationship from unconfined compressive test.
ED PThe static tangent modulus (Etan) was obtained as

the first derivative of the vertical stress (r) with

respect to the vertical strain (ev). First, a formula

was produced to describe the relationship between

the vertical stress (r) and the vertical strain (ev), for
each of the stress–strain curves shown in Fig. 6. Then

this formula was differentiated with respect to ev to

obtain the static tangent modulus (Etan):

Etan ¼ dðrÞ=dðevÞ ð5Þ

Fig. 7 shows the variation of the static tangent

modulus (Etan) with the vertical stress level. The

vertical stress level is defined as the vertical stress

(r) normalized to the respective unconfined compres-

sive strength ( qu) of the specimen. Etan increases with

increasing qu percent until a certain level, beyond

which it starts to decrease. For specimen 1, Etan

increases from an initial value of 54.8 GPa until a

value of 61.0 GPa at qu%= 39%, then it starts to

decrease until a value of 45.9 GPa just before failure

defined by the crushing of the specimen. For this

specimen, failure occurred at a sudden brittle fashion,

without a significant plastic deformation, not allowing

Etan to approach zero. For specimen 2, Etan increases

from an initial value of 33.727 GPa until a value of

50.1 GPa at qu%= 37.5%, then it starts to decrease,
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t2.1Table 2

Values of static elastic properties at different stress levels t2.2

Stress level Etan (GPa) Esec (GPa) ms t2.3
(% qu) 1 2 1 2 1 2 t2.4

0 54.997 33.373 – – 0.217 0.230 t2.5
25 60.030 47.944 59.036 41.176 0.288 0.278 t2.6
33 60.657 49.575 59.212 43.170 0.276 0.281 t2.7
50 60.392 50.110 59.295 45.295 0.263 0.289 t2.8
67 57.965 46.227 59.304 45.839 0.254 0.306 t2.9
75 56.095 42.514 59.345 45.645 0.251 0.315 t2.10
100 44.343 5.739 56.058 39.049 0.250 0.431 t2.11
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approaching zero to a value of 9.6 GPa just before

failure.

Fig. 8 shows the variation of the static Poisson’s

ratio (ms) with the vertical stress level. The Poisson’s

ratio is the negative of the ratio of the horizontal

strain to the vertical strain, as measured by the strain

gauges:

ms ¼ �eh=ev ð6Þ

Table 2 gives a summary of the values of the

static elastic constants (Etan, Esec, and ms) at various
percentages of the stress level (% qu), in which Esec

is the secant modulus. The elastic modulus obtained

from the slope of the straight line portion of the

stress–strain curve was found to be about 60 and 49

GPa for specimens 1 and 2, respectively. These

values are close to those of the tangent modulus at

a stress level equal to 50% qu. The values of the

elastic constants obtained from this study are within

the ranges reported in the literature for limestone

rocks (Table 1).

The modulus ratio (E/qu) is the ratio of elastic

modulus to the unconfined compressive strength,

which is used in classifying intact rock specimens.

This ratio was about 590 and 450 for specimens 1 and

2, respectively. For most rocks, the E/qu ratio lies

between 200 and 500, but extreme values range as
UNCORREC

Fig. 8. Static Poisson’s ratio vs. vertical stress.
ED P
ROOFwidely as 100–1200. In general, the modulus ratio is

higher for crystalline rocks than for clastic rocks

(Goodman, 1989).

4.1.2. Results of cyclic loading

Fig. 9 shows the stress–strain relationships for the

rock specimen tested under unconfined compressive

load with three small cycles of unloading and reload-

ing at different stress levels. The unconfined com-

pressive strength was 76.2 MPa. Table 3 gives the

values of the tangent modulus (Etan) and Poisson’s

ratio (ms) at different stress levels (for loading, unload-
ing, and reloading conditions). Figs. 10 and 11 give

the variation of the static tangent modulus (Etan) and

the Poisson’s ratio (ms), respectively, with the vertical

stress level.
Fig. 9. Stress– strain relationship from cyclic unconfined compres-

sive test.
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t3.1 Table 3

Values of static tangent modulus and Poisson’s ratio at loading, unloading, and reloading conditionst3.2

qu Stress level Tangent modulus (GPa) Poisson’s ratiot3.3
(MPa) (% qu) Loading Unloading Reloading Average

unloading/

reloading

Loading Unloading Reloading Average

unloading/

reloadingt3.4

0 30.335 – – – – – – –t3.5
76.230 29.5–35.3 35.493–35.596 51.396 46.868 47.885 0.175 0.159 0.170 0.165t3.6

57.5–64.6 33.427–31.861 50.511 50.233 49.523 0.205 0.200 0.215 0.208t3.7
83.3–93.5 24.132–13.988 51.292 43.784 45.267 0.209 0.201 0.160 0.181t3.8
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Fig. 10 shows that the tangent modulus at the

unloading and reloading conditions is higher than that

at the loading condition. This difference increases

with increasing stress level, from about 35% at the

first cycle (at a stress level of about 33% qu) to about

137% at the third cycle (at a stress level of about

88% qu). The tangent modulus obtained from the

unloading–reloading curves is higher in value and

has less variation than that obtained from the loading

curve. Furthermore, the tangent modulus obtained

from the unloading curve is higher in value and has

less variation than that obtained from the reloading

curve; it is almost constant regardless of the stress

level.
UNCORRECT

Fig. 10. Static tangent modulus vs. vertical stress from cyclic

unconfined compressive test.
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On the other hand, Fig. 11 shows that the Poisson’s

ratio is less affected by the conditions of loading,

unlading, and reloading. This is ascribed to the fact

that the nonrecoverable strains exist in both the hori-

zontal and vertical components of the strains that are

used to compute the Poisson’s ratio. The Poisson’s

ratios obtained from the loading and unloading curves

have less variation than that obtained from the re-

loading curve.

4.2. Dynamic results

From the velocity measurements of the P-waves

and S-waves (VP and VS, respectively), the dynamic
Fig. 11. Static Poisson’s ratio vs. vertical stress from cyclic

unconfined compressive test.
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elastic modulus (Ed) and the dynamic Poisson’s ratio

(md) were determined according to:

Ed ¼ qV 2
S

3V 2
P � 4V 2

S

V 2
P � V 2

S

� �
ð7Þ

and

md ¼
ðV 2

P � 2V 2
S Þ

2ðV 2
P � V 2

S Þ
ð8Þ

where q is the density of the rock material.

4.2.1. Results of monotonic loading

The variations of the dynamic elastic modulus and

the dynamic Poisson’s ratio with respect to the con-

fining pressure (rc) are shown in Figs. 12 and 13,

respectively. These variations are best fitted by the

following quadratic polynomials:

Ed ¼ 44:109þ 2:033� 10�1rc � 1:341� 10�3r2
c

ð9Þ

and

md ¼ 0:233þ 7:736� 10�4rc � 4:535� 10�6r2
c

ð10Þ

where Ed is in gigapascals and rc is in megapascals.
UNCORREC 449
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467Fig. 12. Dynamic elastic modulus vs. confining pressure.
ED PThe values of Ed and md for an unconfined condi-

tion (rc = 0) were found by extrapolation to be 44.1

GPa and 0.233, respectively. The value of Ed is found

to increase monotonically with rc to a value of 52.0

GPa at rc = 70.5 MPa. This increase amounts to about

17.9%. Notice that this value of rc is close to the

value of qu for this rock material. On the other hand,

the value of md (Fig. 13) is found to increase mono-

tonically with rc to a value of 0.262 at rc = 70.5 MPa.

This increase amounts to about 12.4%. Another rock

specimen tested at a low confining pressure of 1.1

MPa produced a value of Ed equal to 48.08 GPa and a

md value of 0.281.

4.2.2. Relationship between elastic modulus and

confining pressure

Because Ed is obtained at very low stress–strain

level, it represents the initial tangent modulus.

According to Janbu (1963), the initial tangent modu-

lus (Ei) for soils is assumed to increase with the

confining pressure (rc) according to the following

exponential form:

Ei ¼ KPaðrc=PaÞn ð11Þ

where Pa is the atmospheric pressure (Pa = 101.325

kPa) used to nondimensionalize the parameters K and

n. From a logarithmic plot of (Ei/Pa) vs. (rc/Pa), the

parameters K and n can be determined as the intercept
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at rc/Pa = 1.0 and the slope, respectively. The values

of Ed from Fig. 12 were replotted using a log–log

scale (Fig. 14, open squares and dashed line). The K

and n parameters in Eq. (11) for the tested rock sample

are found to be 342,980 and 0.061, respectively. For

soils, the dimensionless modulus number (K) varies

from about 300 to 2000, and the exponent (n) ranges

between 0.3 and 0.6 (Mitchell, 1993). Values of K and

n for a variety of soils were reported by Wong and

Duncan (1974) and Duncan et al. (1980).

However, Eq. (11) represents the case of cohesion-

less soils, and it deteriorates for the case of no

confinement (rc = 0). For the case of cohesive materi-

als (rocks, cohesive soils, or concrete), Eq. (11) needs

to be modified so that Ei has a nonzero value at the

unconfined condition. This can be achieved by intro-

ducing an equivalent confinement (re) that needs to be
added to the applied confining pressure (rc) to com-

pensate for the cohesion. The modified form for Ei is

recommended to have the following form:

Ei ¼ K̄Pa½ðre þ rcÞ=Pa�n̄ ð12Þ

where K̄ and n̄ are the modified parameters.
UNCORRECT

Fig. 14. K and n parameters for the variation of ini
D P
ROOF

The equivalent confinement (re) can be determined

using Mohr circle and Mohr–Coulomb failure enve-

lope, as represented in Fig. 15. From those for the case

of unconfined compression (the solid circle and en-

velope; Fig. 15), it can be shown that the cohesion (C)

for cohesive materials (rock, cohesive soil, or con-

crete) can be expressed in terms of the unconfined

compressive strength ( qu) as follows:

C ¼ ð1� sin/Þ
2cos/

qu ð13Þ

where / is the angle of internal friction, which can be

determined from the angle of inclination of the failure

plan (h) (Fig. 15) according to:

/ ¼ 2*h � 90 ð14Þ

From the static tests (Section 4.1.1), the angle of

inclination of the failure plan (h) was found to be

about 67.5j and 64.5j for specimens 1 and 2, respec-

tively (see broken specimen; Fig. 4). Using Eq. (14),

the angle of internal friction (/) has an average value

of 42j. This is within the typical range of values for /
reported in the literature for limestone rock, which is
E

tial tangent modulus with confining pressure.
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34.8–45j (Goodman, 1989; Bowles, 1997). Using the

average value of qu for specimens 1 and 2 (105 MPa)

and their average value of / (42j) in Eq. (13), the

average cohesion (C) is 0.223*qu = 23.3 MPa.

From Eq. (13), the value of the cohesion normal-

ized to the unconfined compressive strength (C/qu
ratio) is a function of the angle of internal friction

(/) only, and has the following form:

C

qu
¼ ð1� sin/Þ

2cos/
ð15Þ

The variation of C/qu ratio vs. the angle of internal

friction (/) is depicted in Fig. 16 (solid line). For a

range of values of / between 30j and 60j for rocks,

the corresponding range of value of C/qu ratio is 0.289

and 0.134, respectively.

From Fig. 15, the equivalent confinement (re) can

be shown as:

re ¼ C*cot/ ¼ C
cos/
sin/

ð16Þ

Substituting Eq. (16) into Eq. (13) yields:

re ¼
qu

2

1

sin/
� 1

� �
ð17Þ
D PUsing the average value of qu for specimens 1 and

2 (105 MPa) and their average value of / (42j) in Eq.

(17), the equivalent confinement (re) is 0.247*qu =
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25.9 MPa. Notice that the value of re =Ccot/ is much

greater than the tensile strength (rt = 2.31 MPa) of this

limestone rock, which is in accordance with the

tension cutoff superimposed on the Mohr–Coulomb

failure criterion in the negative region (Goodman,

1989).

From Eq. (17), the value of the equivalent con-

finement normalized to the unconfined compressive

strength (re/qu ratio) is a function of the angle of

internal friction (/) only, and has the following form:

re

qu
¼ 1

2

1

sin/
� 1

� �
¼ 1� sin/

2sin/
ð18Þ

The variation of re/qu ratio vs. the angle of internal

friction (/) is also depicted in Fig. 16 (dashed line).

For a range of value of / for rocks between 30j and

60j, the corresponding range of value of re/qu ratio is

0.5 and 0.077, respectively.

For the case of no confinement (rc = 0), the initial

tangent modulus (Ei) for the tested rock can be

calculated from Eq. (12) in terms of unconfined

compressive strength:

Ei ¼ 24; 545ðquÞ0:127 ð19Þ

where both Ei and qu are in megapascals.

This gives a value of Ei equal to 44.2 GPa, which

compares well with the value of Ed found by extrap-

olation (Fig. 12 or Eq. (9)) to be 44.1 GPa.

Eq. (19) has a similar form to that used to calculate

the modulus of elasticity for normal-weight concrete

(Ec), as given by Ec = 4700( fcV)
0.5, where fcV is the

unconfined compressive strength for concrete and

both Ec and fcVare in megapascals (ACI, 1989).

Eq. (12) with the equivalent confinement (re)

given by Eq. (17) is general in nature and can be

used for any material, including the cohesive materials

(rock, cohesive soil, or concrete). The effect of con-

sidering the cohesion is equivalent to shifting the

Mohr circle and the Mohr–Coulomb failure envelope

(Fig. 15) along the horizontal axis by a magnitude

equal to re (the dotted circle and envelope), and

maintaining the same value of /. As a special case

of cohesionless materials, qu = 0 and, consequently,

re = 0, which makes Eq. (12) boil down to Eq. (11).

Adding the value of re = 25.9 MPa to the confining

pressure, the values of Ed from Fig. 12 were replotted
ED P
ROOF

also in Fig. 14 (solid circles and line). The modified

parameters K̄ and n̄ (in Eq. (12)) for the tested rock

sample are 216,357 and 0.127, respectively. Notice

that K̄ it is less than K, but n̄ is greater than n.

4.2.3. Results of cyclic loading

The effects of increasing and decreasing the con-

fining pressure (loading and unloading) on Ed and md
were studied by testing another rock specimen under

such cyclic loading. The results for Ed and md are

shown in Figs. 17 and 18, respectively. The best

fitting is a quadratic polynomial of the form:

Ed ¼ Aþ Brc þ Cr2
c ð20Þ

and

vd ¼ Āþ B̄rc þ C̄r2
c ð21Þ

where A, B, and C are the fitting constants.

These constants are shown in Table 4, and they are

comparable with those of Eqs. (9) and (10). The

values of Ed obtained from Fig. 17 by extrapolation

at rc = 0 are 41.3 and 42.6 GPa for loading and

unloading conditions, respectively. Notice that the
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values during unloading are slightly higher than those

during loading by a maximum of 3.3%. The value of

Ed increases monotonically with rc to a value of 51

GPa at rc = 80 MPa. This increase amounts to about

23.5%. On the other hand, the value of md obtained

from Fig. 18 by extrapolation at rc = 0 is 0.223 for

both loading and unloading conditions. The values

during unloading are slightly higher than those during

loading. The value of md increases monotonically with

rc to a value of 0.258 at rc = 80 MPa. This increase

amounts to about 15.7%.

The values of Ed from Fig. 17 were replotted in

Fig. 19 using a log–log scale, with the value of

re = 25.9 MPa being added to the confining pressure.

The modified parameters K̄ and n̄ in Eq. (12) for the

tested rock sample are 176,176 and 0.152, respec-
UNCO 632
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Table 4

Parameters for Ed and md forms

Property Parameter Condition

Loading Unloading

Ed A 41.262 42.634

B 0.228516 0.225958

C � 1.39215� 10� 3 � 1.56353� 10� 3

md Ā 0.223 0.223

B̄ � 0.685� 10� 3 � 1.129� 10� 3

C̄ � 0.3100� 10� 5 � 0.8647� 10� 5
ED Ptively, for loading condition, and 210,046 and 0.127,

respectively, for unloading condition.

4.3. Comparison between static and dynamic values

The dynamic values of Ed and md obtained from

Figs. 12 and 13 by extrapolation at rc = 0 (44.1 GPa

and 0.233, respectively) compare well with the aver-

age static values of Es and ms at the initial state of

loading, which are 44.2 GPa and 0.224 (for specimens

1 and 2; Table 2).

The values of Es determined by the three different

methods proposed by ASTM vary by as much as 20%.

Therefore, comparison between the results of the

static and dynamic methods will be more meaningful

after establishing a reliable and replicable method for

determining the static modulus of elasticity. The ratios

of Ed/Es and md/ms are within the ranges reported in the

literature. Because of the high strength and low

porosity of the investigated rock, the value of Ed/Es

is about unity.

The static properties are more scattered than the

dynamic ones. The scatter in the values of the

static and dynamic elastic properties is ascribed to

lithological variation and the distribution of micro-

cracks in the rock materials. Additional causes of

further scatter in the case of the static properties
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can be attributed to any misalignment during sample

preparation and mounting, which leads to loading

eccentricity.

Cyclic loading affects the static tangent modulus

much more than the dynamic modulus. The difference

in the value of the static tangent modulus between the

unloading and reloading conditions is about 137% at a

stress level of about 88% qu. The values of Ed during

unloading are slightly higher than those during loading

by a maximum of 3.3%.
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5. Conclusions

The values of the static elastic constants (Es and

ms) are not constants, but are functions of the stress–

strain level. The value of Es increases with an

increase of the stress–strain level to a maximum

value, beyond which it starts to decline. The in-

crease in Es is attributed to the increase in the

density and closure of microcracks following com-

pression. The decrease in Es after that is attributed

to the induced damage that degrades the integrity of

the rock material. The changes in these mechanical

properties are reflections of the continuous changes

in the physical properties of the rock material during

loading, especially those attributed to permanent

deformation.

The values of Es determined by the three different

methods proposed by ASTM vary by as much as 20%.

Therefore, there is still a need for the establishment of

a reliable and replicable method for determining the

static modulus of elasticity. The comparison between

the results of the static and dynamic methods will

have more meaning after the establishment of such a

method. The ratios of Ed/Es and md/ms are within the

ranges reported in the literature. Because of the high

strength of the investigated rock, the value of Ed/Es is

about unity.

The scatter in the values of the static and

dynamic elastic properties is ascribed to lithological

variation and the distribution of microcracks in the

rock materials. Additional causes of further scatter

in the values of the static properties can be

attributed to the sensitivity of these properties to

any misalignment during sample preparation and

mounting, which may have produced some loading

eccentricities.
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The elastic constants (elastic modulus and Pois-

son’s ratio) should be defined with respect to the

unloading–reloading curves at a specific value of the

stress level (% qu), not with respect to the loading

curve that contains both recoverable and nonrecover-

able strains.

Cyclic loading indicates that the static tangent

modulus during the unloading and reloading condi-

tions is higher than that at the loading condition.

This difference increases with increasing stress level,

from about 35% at a stress level of about 33% qu to

about 137% at a stress level of about 88% qu. The

tangent modulus obtained from the unloading–

reloading curves is higher in value and has less

variation than that obtained from the loading curve.

Furthermore, the tangent modulus obtained from the

unloading curve is higher in value and has less

variation than that obtained from the reloading curve;

it is almost constant regardless of the stress level. On

the other hand, the static Poisson’s ratio is less

affected by the conditions of loading, unloading,

and reloading.

The value of Ed is found to increase with rc from

44.1 GPa for unconfined condition to 52 GPa at rc=

70.5 MPa—a 17.9% increase. On the other hand, the

value of md is found to increase with rc from 0.233 for

unconfined condition to 0.262 at rc = 70.5 MPa—a

12.4% increase. Under cyclic loading, the values of Ed

and md during unloading are slightly higher than those

during loading.

The introduction of the concept of the equivalent

confinement (re) to compensate for cohesion made a

contribution to a general form for the initial modulus

(Eq. (12)) that can be used for any material, including

the cohesive (rock, cohesive soil, or concrete) and

noncohesive materials. The new power form (Eq.

(12)) made it possible to evaluate the initial modulus

even for the case of unconfined condition (rc = 0).

For unconfined condition, the initial modulus is

correlated with unconfined compressive strength

(Eq. (19)).

List of symbols

Ā Fitting constant

B̄ Fitting constant

C̄ Fitting constant

K̄ Modified parameter 1 for initial tangent

modulus [intercept at (re + rc)/Pa = 1.0]
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n̄ Modified parameter 2 for initial tangent

modulus [slope of the log(Ei/Pa) vs. log(rc/
Pa) plot]

q Density of the rock material

r Vertical stress

rc Confining pressure

re Equivalent confinement to compensate for

the cohesion

rt Tensile strength

md Dynamic Poisson’s ratio

ms Static Poisson’s ratio

eh Horizontal strain

ev Vertical strain

a Constant parameter

A Fitting constant

b Constant parameter

B Fitting constant

c Cohesion

C Fitting constant

E Modulus of elasticity

Ec Modulus of elasticity for concrete

Ed Dynamic elastic modulus

Ei Initial tangent modulus

Es Static elastic modulus

Esec Secant modulus

Etan Static tangent modulus

fcV Unconfined compressive strength for

concrete

K Parameter 1 for initial tangent modulus

(intercept at rc/Pa = 1.0)

MYBP Million years before present

n Parameter 2 for initial tangent modulus

[slope of the log(Ei/Pa) vs. log(rc/Pa) plot]

Pa Atmospheric pressure = 101.325 kPa

qu Unconfined compressive strength

R2 Coefficient

VP P-wave velocity

VS S-wave velocity

XRD X-ray diffraction

/ Angle of internal friction

h Angle of inclination of the failure plan
N 826
827
828
829
830
831
832
833
834
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