King Fahd University of Petroleum & Minerals CIVIL ENGINEERING DEPARTMENT

Course Name:	CE 559 – Rock Mechanics (2-3-3)	
Instructor:	Dr. Naser A. Al-Shayea	
Course Objective:	To provide a selection of concepts, techniques, and applications of rock mechanics pertaining to engineering problems.	
Course Description:	Graduate Bulletin (2003-2005), p.175 Geological classification and index properties of rocks; strength and deformability behavior of intact and jointed rock masses; in-situ stresses; lab and field test methods; aspects of structural geology; stability of rock slopes; applications to surface excavations, underground openings and tunnels; foundations on rocks.	
Prerequisite:	Graduate standing and consent of instructor	
Textbook:	Introduction to Rock Mechanics, 2 nd end., 1989 by R.E. Goodman, John Wiley & Sons, Inc.	

Selected References:

- 1. Farmer, I.W., Engineering Behavior of Rocks, 2nd ed., Chapman and Hall, 1983.
- 2. Goodman, R.E. and Shi, G.H., Block Theory and Its Application to Rock Engineering, Prentice-Hall, 1985.
- 3. Hoak, E. and Bray, J., Rock Slope Engineering, 3rd ed., Institute of Mining and Metallurgy, London, 1981.
- 4. Hoak, E. and Brown, E.T., Underground Excavations in Rock, Institute of Mining and Metallurgy, London, 1981.
- 5. Hudson, J.A., Brown, E.T., Fairhurst, C., and Hoek, E. (Editors), Comprehensive Rock Engineering Principles, Practice and Projects, 1993.
- 6. Jaeger, J.C. and Cook, N.G.W., Fundamentals of Rock Mechanics, 3rd ed., Chapman and Hall, London, 1979.
- 7. Jumikis, A.R., Rock Mechanics, Trans-Tech Publication, 1983.
- 8. Lama, R.D., Vutukuri, V.S., and Saluja, S.S., Handbook on Mechanical Properties of Rocks, Trans-Tech Publication, Rockport, MA, 1974-1979.
- 9. Pande, G.N., Beer, G., and Williams, J.R., Numerical Methods in Rock Mechanics, John Wiley & Sons Ltd., 1990.

- 10. Turchaninov, I.A., Iofis, M.A., and Kasparyan, E.V., Principles of Rock Mechanics, Terraspace, Rockville, MD, 1979.
- 11. Wyllie, D.C., Foundations on Rock, Chapman & Hall, 1992.
- 12. Selected technical papers from Journals and Symposiums.

Course Syllabus

	<u>Topics</u>	<u>No. of Lectures/Labs</u>
1.0	INTRODUCTION	1
	1.1 Definitions of Rock	
	1.2 Definition of Rock Mechanics	
2.0	GEOLOGICAL CLASSIFICATION	2
	2.1 Genetic Classification of Rock	
	2.2 Goodman's Classification of Rocks	
3.0	INDEX PROPERTIES OF ROCKS	2
	3.1 Porosity	
	3.2 Density	
	3.3 Permeability	
	3.4 Point Load Strength	
	3.5 Schmidt Hammer Rebound Number	
	3.6 Slaking Durability	
	3.7 Sonic Velocity	
	3.8 Rock Quality Designation (RQD)	
	3.9 Bieniawski's Geomechanics Classification System	
4.0	FAILURE MECHANISMS IN ROCK	2
	4.1 Tension	
	4.2 Shear	
	4.3 Crushing	
	4.4 Mixed Mode	
5.0	LABORATORY STRENGTH TESTING	2
	5.1 Unconfined Compression Test	
	5.2 Triaxial Compression	
	5.3 Stiff and Servo-Controlled Testing Machines	
	5.4 Brazilian Split-Cylinder Test	
	5.5 Flexural Tests	
	5.6 Ring Shear Tests	
6.0	STRESS AND STRAIN BEHAVIOR OF INTACT ROCK	4
	6.1 Stress Tensors	
	6.2 Strain, Volumetric Strain	
	6.3 Stress-Strain Relationship – Elasticity	
	6.4 Definitions and Concepts	
EXA	M # 1	1
7.0	FAILURE CRITERIA	5
	7.1 Maximum Normal Stress Theory	
	7.2 Maximum Normal Strain Theory	
	7.3 Maximum Shear Stress Theory	
	7.4 Maximum Total Strain Energy Theory	

	7.5 Maximum Distortional Strain Energy Theory	
	7.6 Coulomb Theory	
	7.7 Mohr Theory	
	7.8 Grimth Theory	
	7.9 Modified Griffith Theory	
	7.10 5-D Ollinui Theoly 7.11 Empirical Criteria of Failure	
	7.12 Effective Stress Theory	
	7.12 Enective Success Theory 7.13 Size Effects	
	7.14 Strength Anisotropy	
8.0	IN-SITU STRESSES	2
	8.1 Vertical Stress	
	8.2 Horizontal Stress	
	8.3 Measurement of In-Situ Stresses	
9.0	ASPECTS OF STRUCTURAL GEOLOGY	6
	9.1 Basic Definitions	
	9.2 Dip, Strike and Outcrop Pattern from Drill Hole Data	
	9.3 Structural Features	
	9.4 Stereographic Projection Problems	
10.0	PLANES OF WEAKNESS IN ROCK	3
	10.1 Definitions of Microfissures, Fissures, Joints, Shears & Faults	
	10.2 Joint Surveys, Plotting Joints	
	10.3 Joint Testing	
	10.4 Strength Models	
	10.5 Strength as a Function of Joint Orientation	
	10.0 Conditions for Shaling Along a Discontinuity	
	10.7 Effect of water Flessure	
11.0	DEFORMABILITY OF ROCK MASSES	2
	11.1 Definitions of Moduli	
	11.2 Determining Rock Mass Modulus	
EXA	M # 2	1
12.0	SLOPE STABILITY OF ROCK	7
	12.1 Types of Slope Failures	
	12.2 Plane Sliding	
	12.3 Vector Analysis on Stereographic Projection	
	12.4 Rock Reinforcement-Stereographic Analysis	
	12.5 Analysis of Plane Slides by Traditional Block Sliding	
	12.6 Wedge Failure	
	12.7 Toppling Failure	
13.0	ROCK FOUNDATIONS	5
	13.1 Types of Bedrock Surfaces	
	13.2 Foundation Types	
	13.3 Footings on Rock	

- 13.3.1 Stress Distribution Beneath Footings13.3.2 Bearing Capacity and Settlement

13.4 Drilled Piers Socketed Into Rock

- 13.4.1 Modes of Failure
- 13.4.2 Settlement of Deep Foundations
- 13.4.3 Distribution of Loads
- 13.4.4 Ladanyi Procedure for Determining Optimum Depth of Embedment

Total

-----45

CE 559 Rock Engineering

SUGGESTED TERM PAPER TOPICS FOR CE 559 ROCK ENGINEERING

- 1. Case Histories: Foundations on Rock
- 2. Rock Bolting
- 3. Shotcreting
- 4. Blast Vibration monitors
- 5. Blasting Vibrations
- 6. Response Spectra for Blast Vibrations
- 7. Fracture Mechanics
- 8. Seepage through Discontinuities
- 9. Statistical Methods for Joint Orientations
- 10. Effect of Joint Orientation on Permeability
- 11. Effect of Joint Orientation on Wave Propagation
- 12. Hydraulic Fracturing
- 13. Slope Stability
- 14. Subsidence
- 15. Numerical Modelling
- 16. Rock Drilling and Sampling
- 17. Servo-Controlled Testing Machines
- 18. Acoustic Emissions in Rock
- 19. In-Situ Stress Measurement
- 20. Constitutive Models for Rock
- 21. Computer (Graphics) Program for Stereonets
- 22. Rock Creep
- 23. Rock Blast Design
- 24. Other

TERM PAPER GRADING FOR CE 559 – ROCK ENGIENERING

1.	EFFORT (30 POINTS)	
2.	SYNTHESIS OF REFERENCED MATERIALS (20 POINTS)	
3.	ORGANIZATION (10 POINTS)	
4.	FIGURES & TABLES (10 POINTS)	
5.	NOTATION (10 POINTS)	
6.	SUBMISSION ON THE TIME (10-N POINTS WHERE N=DAYS LATE)	
7.	VISUAL PRESENTATION (5 POINTS)	
8.	GRAMMAR AND SYNTAX (5 POINTS)	

Ref:

- 1. Natural Science Library
- 2. Eng. Sc. Library ASCE Geotech Journal- Civil Engg. (Non-Tech.)