
Modeling of jointed rock 
 
(1), (2) 
 
 
 
o   Strength as a function of joint orientation: 
 
 
 
 
 
 
 
 
 
From before: JdJmax tanS φσ+=τ  
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after Algebraic …………….. 
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σ1 & σ3 :  stresses at failure 
 
• For what range of β , failure will 
      be by sliding along joint?? 
 
 
 
*  Conditions for sliding Along a Discontinuity: 
 
 Failure criteria for intact rock:  τmax  =  SR + σ tan φR 
 
 Failure criteria for discontinuous rock:  τmax = SJ + σ tan φJ   if σ > σT  
 
    Patton’s law:     τmax = σ tan (φu + i)   if σ < σT 



⇓ 
 

If 
2

2 1β
>β  

   if sliding 

 
2

2 2β
<  

 
 
if not ⇒  new crack 
 
 
 
 
 
 
 
 
Failure will occur along the discontinuity of 2β1 < 2β  < 2β2 
  or   β1 < β  < β2. 
 
alternatively ψ1 + ψ > ψ2 
 
 
 
 
 
Note:  The value of β1 & β2 are function of 
 
β1 & β2 = f (σ1, σ3, φR, SR, SJ, φu, i, σT  
  
 
 
 
 
 
 
 
 
 
Failure is due to sliding along discontinuity 
 
 
Failure through intact rock. 
 



Course pack Fig. 6.6 pp. 53 
         6.7 
 
 
 
 
 
 
H.W. # 7 
 
Water Pressure affects in Discontinuous Rock: 
 
σ′ + σT  - Pw 
 
 
Pore water pressure required to cause failure 
must be considered separately for each of 
the three modes of failure. 
 
For a particular ψ 
 
a) Failure by riding over asperities 
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b) Failure by shearing through asperities: 
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c) Failure at intact rock: 
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Compute all three to find Pw minimum required to cause failure. 

 



11.   Deformability of rock masses (rather than intact rock)  see Ch. 6 text. 
 
11.1   Def. : 
 
 Modulus of permanent deformation. 
 
  M 
 
 
 
 
 
 
 
11.2 In-situ Tests for determining rock mass modulus: 
 
11.2.1 Plate Bearing test:- 
 
 i)   Reaction Against Anchor 
 
 
 
 
 
 ii) Reaction Against an opposite wall 
 
 
 
 
 

Theory: 
E

a)1(pG 2ν−
=ϖ   

 
        where ϖ = displacement measured (average of three readings) 
   p = plate pressure (applied) 
   a = plate radius 
   G = π/2 if plate is rigid or 1.7 if plate is flexible. 
 
 



Typical Results:- 
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If extensometers are used: 
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=ϖ displacement at depth Z. 
 
 
See fig.  pp.58 
 
 
11.2.2 Borehole Dilatometer:-  pressure a borehole  →  ∆u 
 
 See fig. pp. 59 
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a
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easy test 
 



11.3 Modulus of Fractured Rock (Rock mass) from intact Rock & Joint properties 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  A:  Joint Testing   B:  Intact Rock 
               stress-strain test 
 
 
elastic compression of intact rock 
 

      S
E rock

n ⋅
σ

=  (assuming S much larger than joint width) 
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Derivation for Grock mass follows in the same manner. 
 
 
 
 
 
 
 

SKG
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G
srock

srock
massrock ⋅+
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→  Do both tests, to to field to measure S 
→  Do test on rock, go to field & do tests with small  ⇒  Extrapolate for larger S. 
 
 
 
 
11.4 Rock Indices for estimating Erock mass:  (approximate) 
 
a. Bieniawski (1978): E (GPa) = 2 (RMR) − 100 for RMR  55 
 

b. using Modulus Reduction Factor )RQD(f
E

E

rock

massrock ==   

 
 
  see Fig. 7.2 from US army corp of engg. 
 
 
------- 
 
H.W. # 8 
Ch. #4 & 9 
 



12. Slope Stability in Rocks 
 
      predetermine failure planes 
 More complicated than soil 
      it can fail in tension 
 
  
12.1 Types of Failure 
 
i. plane sliding 
 (one joint of orientation is significant) 
 
ii. wedge-type failure 
 (Two joints sets (or more) are significant 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
iii)  Toppling failure 
 
 
 
 
 
 
 
 
12.2 Plane Sliding: 
 
a) Kinematics 
 
 if δ > a  no failure 
 if δ < a  failure 
 



For failure to be kinematically feasible  δ < α 
 
(the discontinuity must (daylight)) 
 
o    stereographic plot presentation for (a) 
 
 represents dip vector δ1 
 
 
 
if δ = δ1 failure is kinematically possible 
 
if δ = δ2  failure is not possible 
 
it is enough for δ to be > α failure to failure, but δ have to be > δmin. 
 
 
b) strength : (φ): 
 
 since φ > α :  block will not slide. 
 
 ∴ φ < α block will slike. 
 
 

o stereonet presentation for (b) 
 

If dip rector plots in this area, failure 
can't occur. 
 
∴ joint is not steep enough 
 
 
stereonet for (a) & (b). 
 
 
Combining the 2 criteria: 
 
failure can only occur if dip 
vector plots in shaded area. 
 



joint must both daylight and its angle must exceed φJ. 
 
 
Note: This only due to self weight of block. 
 
 -  still wt. of adjacent blocks. 
 -  still wt. of adjacent water pressure. 
 



Example of using stereonet for vector addition: 
 
Ex.1 given two forces:   200 = acting in the direction N80oW plunging 50o 
    600 = acting in the direction S40oW plunging 20o 
 
 Find the resultant force and its direction. 
 
Solution: (Procedure) 
 
1. Find the common plane of the two forces. 
 
 
 rotate until they plot on same circle.  →  angle = 55o 
 
 
 
2. Determine the resultant force by parallelogram theorem. (draw to scale).  Find 

resultant.  Find angle = 13o. 
 
 
 
 
 
 
 
 
 
 
 
3. Plot direction of the resultant on stereonet. 
 
  S50oW, 2900 
 



Forces acting on rock blocks:- 
 
1. Block self weight. 
2. Forces transmitted from adjacent blocks. 
3. Forces due to water pressure. 
4. Dynamic loads. 
5. Reinforcement (rock bolts). 
 
 
 
 if φ < φJ  stable 
 
 
 
 
 
 
 
 
How to plot φ-circle? 
 
To plot the friction circle on stereonet: 
 
1. Locate the normal to the failure plane, n̂  
 
2. Plot two points on the diameter of the circle each being o

Jφ  from the normal 
(measured along the diameter). 

3. Construct φ-circle having the line between the two points (in step # 2) as the 
diameter. 

 
If resultant vector, r̂ is inside the circle, failure doesn’t occur. 

 



 
 
 factor of safety against sliding 
 

required

available

tan
tan

.S.F
φ
φ

=  

 
 
Ex. 1. A joint strikes S30oE and dips 60o NE 
 
 φJ 25o 
 

resultant of all forces r̂  acts in the direction S50oW and plunges 20o, 
 
Find the factor of safety. 

 
Procedure  1. Plot the friction circle for the joint. 
 

2. Plot resultant force r̂ . 
 
3. Find angle between r̂  and n̂ .  (put them in same greater circle) 
 
  ⇒ φreqd. = 15o 
 
4. ∴  φavailable = φJ = 25o 
 

 ∴  F.S. = 74.1
15tan
25tan

=  

 
 



Ex. 2 Assume that the only force acting on the block is its self-weight.  Determine 
the minimum bolt force and direction required to raise the F.S. to 1.0 for a 
block weighing 20 tons. 

 
   i.e.  dipping 90o  ⇒  plot @ the center of streonet. 
 
ŵ = weight vector 
 
 →  ŵ not inside friction circle  ⇒  F.S.  << 1.0. 
 
 
Procedure: 1) ŵ  will plot @ center of streonet  ⇒  F.S. << 1.0. 
 

2) Find the point on the φ-circle at which r̂  will make the smallest 
angle with ŵ . 

 
 
  answer.   35o 
 

if bolt driven S60oW 
 
 
3) Construct force diagram 
 
 
own wt. 
angle of resultant  bolt force 
   & resultant 

 



4. Determine a line of minimum length from tip of ŵ  to the r̂  line. 
 
 | B | = 11 Tons 35o up from horizontal. 
 
 
Ex. 3.  What bolt force would be required to achieve F.S. = 2.5. 
 

Sol.  5.2
tan

25tan
tan

tan
.S.F

.reqd.reqd

available =
φ

°
=

φ
φ

=   

 

 =
°

=φ
5.2
25tan

tan .reqd   ⇒  φreed.  =  10.5o 

 
 
 
 
 
 
 
 
 
 
 

min. angle between ŵ  and φcircle = 49.5o 
 
 
 
 
 
 
 
 
 
 
 
 
|B| = 15 Tons  49.5o up from horizontal 

 



Ex. 4. What both force would be required if the bolt are to be driven due west. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
|B| = 16.5 T 
 



Analysis of Plane Slides by traditional Block Sliding Analysis 
 
Ref.  Book (Hock & Bray 1977) 
 
 
 
#1. 
 
 
 
 
 
 
 
 Crack intercepts crest of slope 
 

 ( )[ ]α−δ−γ= cotcot)(1H
2
1

W 2
H
Z2   

 
 
 
#2. 
 
 
 
 
 
 
 
 Crack intercepts face of the slope. 
 

 [ ])1tan(cotcot)1(H
2
1

W 2
H
Z2 −αδδ−γ=  

 

 Area of sliding surface:  1
sin

ZH
A ∗

δ
−

=  

 
 Resultant of water pressure along the vertical crack. 
 

 ∫ γ==
wZ

o

2
wZ

2
1

ZdZV  

 
 Resultant of water pressure acting on the sliding 
 surface = .AZAU ww2

1
2

Z
w

w γ=⋅γ=   
 



Shear Forces Along Sliding Surface: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Forces resisting shear: 
 
(SJ + σn′ tan φJ) A 
 

σn′ = σ − u = 
A

UsinVcosW −δ−δ
 

 
 
Sliding occurs when the driving shear forces = forces resisting shear. 
 

( ) JJ tan)UsinVcosW(AScosVsinW.S.F φ−δ−δ+=δ+δ  
 
For Case #1: 
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Since we have some control over α1, we can solve for it. 
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∆SJ is more important for steep slopes (α is large) 
 
∆φJ is more important for high slopes  (H is large) 
 
 
Drainage of water can be very effective in stabilizing rock slopes. 
 
 
 



*  Wedge Failure Analysis 
 
 
a)   Kinematics:   for sliding of a wedge, use Î (the interaction of 2 planes in place of 

the dip vector D̂ . 
 
∴ if the plunge of Î  is less than α, the wedge sliding is kinematically possible. 
 
 
-  Find normals to two planes 1n̂ , 2n̂  
 
-  Rotate until 1n̂ & 2n̂  on one greater circle. 
 
 
 
Failure can occur in one of three ways. 
 
1. if 1D̂  daylights 

2. if 2D̂  daylights plane sliding 

3. if 12Î  daylights   →  sliding 
 
 
 
If we have 3 sets of joints;  Failure can occur on: 
 
1. 1D̂  daylight 

2. 2D̂  daylight 

3. 3D̂  daylight 

4. 12Î  

5. 13Î  

6. 23Î  
 
 
 
b) Strength:   If φJ > plunge of Î  failure cannot occur. 

Furthermore, for very acute (steep) wedges, considerable strength is obtained 
from roughness along the discontinuities, so Î  can often be steeper than φJ 
without failure. 

 
 



Conventional Wedge Analysis 
 
 
Ref.  Hock & Bray “Rock Slope Engineering” 
 Institution of Mining & Metallurgy 1981 
 
 
Geometry: 
 
ψfi = inclination of slope, slope measured in 
         the view at right angles to the line of 
         intersection. 
 
φJ = joint friction angle. 
 
       actual slope is > ψf2 
 
ψI = plunge of line of intersection. 
 
 
Sliding will occur if ψfi > ψI > φ 
 
 
Forces: 
 
Assume sliding is resisted by friction only. 
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JBA
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tanRR

.S.F
ψ

φ+
=  

 
Σ FH  ⇒    ( ) ( )ξ+β=ξ−β 2

1
B2

1
A sinRsinR  

 
Σ Fr along line of intersection   ⇒  RA ( ) ( ) i2

1
B2

1 CosWCosRCos ψ=ξ+β−ξ−β  
 



Solving for RA & RB and adding 
 

ξ

βψ
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2
1

sin

sincosW
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∴   
i

J

2
1 tan

tan
sin
sin

.S.F
ψ
φ

⋅
ξ

β
=  

 
       f.s. for plane sliding 
 
 
(F.S.)wedge = K ∗ (F.S.)plane 
 
 
Fig. 96: 
 
   ξ :  angle between joints 
 
   β  :  angle of tilt of line of intersection 
 
 
Note: This is limited to joints having their normals coplan  
      (same plan)   180o in phase. 
 
 
 
 
F.S. = A  tan φA + B tan φB 
 
 
A & B  see pp.211  -  end. 
 
 
Ex.   Dip  Dip. direction  φJ 
 
 Plane A 40o  165   35o 
 Plane B 70o  285   20 
   -----  ----- 
 Difference 30o  120 
 
A = 1.5  , B = .7 
 



F.S.  =  1.5  tan 35 + 0.7 tan 20 = 1.3 
 
This method is good better :   ξ & β  is difficult to find in field. 
 
If F.S. ≥ 2 ∴  Wedge failure is almost impossible. 
 
 
 
o  Wedge Analysis on stereographic projection. 
 
 
Text pp.----   Fig. 8.16 
 
 
1. Find 1n̂  and, 2n̂  then 12Î  
 
2. Draw greats circle through 1n̂ , I12 and 

2n̂ , I12 
 
3. Construct φ circles for n1 and n2. 
 This gives the four points of intersection: p, q, s & t. 
 
4. Construct great circles connecting p.s. and q.t. 
 
 
 
 if resultant of all forces. 
 



Toppling Failure 
 
 
a)   flexural toppling 
 
 
 
 
 
 
 
 
b)   block toppling 
 
 
 
 
 
 
c)   combination of flexural and toppling 
 
 
 
 
• Static Analysis of Block Toppling 
 
a.   Single block: 
 
 if W is to left of   ⇒  Failure 
 
 
 condition if impending failure 
 

  
x
y

Cot
∆
∆

=α  

 

  
x
y

Cot
∆
∆

<α  ⇒  failure will occur. 

 
 
Long narrow  blocks on steep slopes are more susceptible to failure. 
 
 
 
b.   Multiple blocks: 
 



Resisting Moments: 
 

2
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Overturning Moments 
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Setting R.M. = O.M. ,  toppling will occur if 
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2
W
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Many equations 
 
 
Ref.  Zanbak, Caner  “Design Charts for Rock Slopes Susceptible to Toppling” J. of 

Geot. Engg., ASCE, Vol. 109, No. 8. 
 



Stereographic Analysis for Flexural Toppling: 
 
 
 
 
 
 
 
      major principle direction 
            ∴  no stress normal to slope  
 
 
Topping will occur only if there is  
relative motion between dipping layer. 
 
 
slippage must occur  
 
Criterion for toppling failure:  resultant  
should be outside φ-circle. 
 
 
 
If we lay off an angle φJ from the normal to the dipping beds, and it falls outside of 

the slope, then failure will occur because the direction of applied compression is 
outside of the φ-circle. 
 
 
 
 
 
 
 
 
 
Toppling will occur if (90-δ) + φJ < α 
 
  Or δ > 90 + φJ - α 
 



φJ 
     φJ 
 
 
 
 
 
Toppling    No Toppling 
 
 
 
 
 
 
 
 
 
If n̂  in this region, flexural toppling will occur if strike is 
 
 
 
 
 
 
 
 
 
 
 
 
if   > 30o   ∴ toppling 
 
 
is not towards excavation. 
 
 
 
H.W. #8  
Ch. 8   Prob. # 1 : Use: Set 1 Strike N40oE 
 
   Prob. # 2: Use  φJ = 30o 
 
   Prob. # 3: Use:  dip 55oNE 
         P = 600 Tons 
         φ = 35o 



13.0 Foundation on Rock 
 
 -  Excessive settlement  →   compressibility of joints 
 -  Bearing capacity 
 
 
 
 
Fig. 9.1 
 
 
 Karstic: Ca O2, dissolvable  sinkable in Florida 
 
 
 
a) Shallow Foundations: 
 
 
 
        spread footings 
 
 
 
 
b) Deep Foundations 
 
  H. piles 
  Precast conc.    Piles 
  Pipe piles 
 
 
 
 
 
 
     Pier 
     Socketed 
     into rock 
 



13.1 Shallow Foundations: 
 
 For intact rock in its elastic range: 
 
 Settlement may be predicted by: 
 

  
E

a)1(P.C
u

2ν−
=   :  plate bearing 

 
 
 where   
 
  C =  - π/2  if rigid  
          -  1.7 if flexible 
 
  P :  applied stress 
 
  E :  Young’s Modulus 
 
  ν :  Poisson’s ratio 
 
  a :  radius of footing (or equivalent) 
 
 
o    If rock is not homogeneous …… se same as soil 
 
     Stress distribution beneath footings. 
 
 
a) for homogeneous isotropic rock, elasticity solution are generally  
 available.   →  point load …… integrate to get it for any shape. 
 
b) for heterogeneous, anisotropic rock, finite element methods may be required. 
 



c) Fig. 9.7  Line load 
 
 
 
 
   Vertical 
 
 
 
 
 Horizontal 
 
 
if there is a joint then tension 
will in opening crack  ⇒  stress will not be 
transmitted if total stress is tension. 
 
 
 
 
Inclined 
 
 
 
 
 
 
Fig. 9.8 not intact rock 
 
 
resultant can’t go 
outside φJ 
 
⇒ slippage  ⇒  realignment of stresses 
 
 



Close Form Solution 
 
1.    Resolve Q & P 
 
 //  &  ⊥  to pidding planes 
 
 
1977 Bray 
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E, ν :  are intact rock properties 
 
kn , ks : are joint stiffnesses 
 
S = Spacing 
 
 
 
 
 
Fig. 9.9 
 



Fig. 9.10 
 
----- 
 
*  Strains and settlements beneath loaded rock masses. 
 
Procedure 
 
1.   determine the stress distribution. 
 
2.   determine the equivalent elastic properties 
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3. Employ the constitutive relationship for transversely isotropic media: 
 
 



































τ

τ

τ

σ

σ

σ































=



































ε

γ

γ

ε

ε

ε

ν−ν−

ν−ν−

ν−ν−

st

nt

ns

t

s

n

E
1

EE

EE
1

E

EEE
1

st

nt

ns

t

s

n

00000

00000

00000

000

000

000

ss

st

s

sn

s

st

ss

sn

s

sn

s

sn

n

 

 



Bearing Capacity of Shallow Foundations on Rock. 
 
Fig. 9.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
∴  The largest horizontal stress that can be developed to support the rock beneath the 
footing is the unconfined compressive strength, qu. 
 
since u

2
f3f1 q)2/45(tan +φ+σ=σ  

 
     ∴  qf = qu tan2 (45 + φ/2) + qu 
 
 qf = qu (Nφ + 1) 
 
   bearing capacity factor ⇒ Nφ = tan2 ( )245 φ+  
 

 qall = 
3
q

.S.F
q ff =   especially F.S. = 3.0 

 
 
o   Table 9.2:  most rock of the region is very conservative 
 
  New York  Detroit  →  largest values  →  highest buildings. 
 



Drop Foundations on Rock: 
 
a) bearing capacity increases with 
 depth due to increase in confinement. 
 
 σv ≠ 0      ⇒ 
 
 
 
 
 
 
 
 
 
 
b) bearing capacity doesn’t increase 
 with depth. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Settlement of Deep Foundations: -  rock 
     -  pier:  pile or corrosion 
 
a) due to rock deflection for 

 elastic material : 
nE

a)1(P
w

2
end2

base ⋅
ν−

=
π

 

 
 n = f (embedment depth, radius and ν) 
 
 

      l/a 
   ν 

0 2 4 6 8 14 

0 1.0 1.4 2.1 2.2 2.3 2.4 
.3 1.0 1.6 1.8 1.8 1.9 2.0 
.5 1.0 1.4 1.6 1.6 1.7 1.8 

 



b) due to concrete deformation: 
 

  
c

c
concrete E

P ll +
=ω  

 
 But P is not constant along the pile. 
 
 
c) Correction for load transfer due to side friction:- 
 Neglect side friction through the soil. 
 
 derived in Appendix  :  same as one for consolidation 
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 νc , νr  :  Poisson’s ratio of concrete & rock 
 
 φcv :  friction angle for rock/concrete & interface 
 
 Ec , Ev :  Young’s moduli for concrete & rock. 
 

     ∴  dZ)P(
E
1

w
o zmax

c
∫ σ−=∆
l

 

 
 
d) ∴   Total Deformation (settlement) = wbase + wconcrete - ∆w 
 



Determining depth of “socketing” into rock to insure against bearing capacity failure. 
 
(1)   Ref: Osterberg & Gill 
  F.E.M.  study (1971) 
 
found that even small embedment 
(socketing) into rock greatly 
reduces Pend by taking load in side 
friction. 
 
Therefore shaft diameters can be reduced. 
 
Fig. 9.18 
 
 
(2)   Ladanyi  (1977)  proposed a procedure for determining  
        socketing depth. 
 
o   Assumptions: 
 
 a)  no load transfer along concrete/soil 
      interface. 
 
 b)   bond between concrete and rock broken 
        ⇒  use residual strength. 
 

  
2max a

P
π

=σ  

 
  σz = σmax e 
 
For soft rock: 
 
      τresidual = α Su 
 
 Su :  undrained shear strength 
 
 α :  reduction factor, 0.3 < α < 0.9 , typically α = 0.5 
 



For hard rock:  
20
q~ u

.res −τ  

 
 where  qu = unconfined comp. strength. 
 
Procedure:  
 
1. Determine shaft diameter “a” based on concrete strength. 
 

2. Assume that Qp = 0 , then l = l1 = 
alla2

P
τπ

 

 
3. Choose l = l2  such that l2 < l1. 
 
4. Compute σZ @ Z = l2. 
 
5. If σZ)@ Z = l2 > qall , then assume a new l2. 
 
6. If σZ )@ Z = l2 ≤ qall, determine τ along perimeter of pile 
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7. Repeat the procedure to find the shortest “l” for which 
 all@ q) ≤σ l      and τ ≤ τall 
 
qall ???   ∴  for shallow foundation.  No vertical stress 
 

  
.S.F

)1N(q
q u
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+
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For Deep Foundation 
 
 
Since qall as determined for shallow foundations would be very conservative,  ∴use a 

smaller factor of safety, say 1.5 to 2. 

 
 
Final :  open book & notes. 

 



(1) Geological Rock = 
 texture 

 

 

(2) Permeability 

 

 

 

 

(3) Testing  -  Brazilian 

    -  2 point load 

 

 

(4) Triaxial 

 

σ3 = 

σ1 =  321V
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∆L1 
φ   V & ε2 = ε3 = ___ 
Lo 

 
 
      E  ε1 = f (σ1 σ2 σ3 E, Y) 
 
        ε2 = 
 
       E, V  →  G 
 

        
)1(2

E
G

ν+
=  

 
(5) Denatoric  -  stress 
   -  strain 
 



• Disc.    Faults  →  shears  →  joints  →  fissures  →  microfissures 
• Geo. class  →  Geometric  →  Igneous  →  - extrusive (volcanic) 

    - intrusive (plutonic) 
 
             unconsolidated 
          Sedimentary   -  detrital         Lithification 
            -  chemical        consolidated 
            →  cementation 
           -  elastic  -  nonelastic        →  compaction 
            →  dessication 
            →  crystallization 
          Metamorphic  →  heat 
     →  pressure 
     →  chemically active fluds 
 
            foliated    unfoliated 

      shale 
      ↓ 
      slate 
      ↓ 
      phyllite 
      ↓ 
      schist 
      ↓ 
      gneiss 
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• Point load test 
   d = 54 mm 
   L = 1.5 D 
   Is = P/D2 
  Qu = C Is 

 
• Vp

2 = E/δ 
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l   no fissure  IQ = 100 − 1.6 n % 



• 
L
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• Failure →  Tension 
   →  Shear 
   →  Compaction 

• Unconfined comp. test 32D
L −=  ⇒  

A
P

q max
u =  

• Triaxial Testing:  strength = f (confining p.) 

• Brazilian split cylinder test 
dt
P2

t π
=σ  

• Flex   
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• Ring shear test  
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(1) Failure 
 
 
 
 
 
 
 
 
(2)  
 
 
 
 
 
 
 
 
 
 
 
(3) 
 
 
 
 
 
 
 
 
 
 
 
 
(4) 
 
 



1) Road 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2) Foundation 
 
 



 
 
 
 
 
 
 
 
           Multistage 
 
      I σ3 σ1 
 
      II σ3 σ1 
 
      III σ3 σ1 
 
 

1)   Draw joint failure 
 
2)   He gave us 

         τ=Si +σ tan φ 
               for intact rock. 
 
 
 
 
 
 
For failure occurs on the joint  β1 < β  < β2 
 
For failure occurs on the intact β  < β1 
      β  > β2 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Disadvantage of overcoring: 
 
1. The linear dependence of the stresses upon, the one elastic const. t. 
 
2. Large drill cores to make the rock not crack. 
 
  
 
 
         
 


