Modeling of jointed rock

(1), (2)

o Strength as a function of joint orientation:

From before:
$$\tau_{\text{max}} = S_J + \sigma_d \tan \phi_J$$

 $\sigma_d = \frac{1}{2} (\sigma_1 + \sigma_3) + \frac{1}{2} (\sigma_1 - \sigma_3) \cos 2\beta$
 $\tau_d = \frac{1}{2} (\sigma_1 - \sigma_3) \sin 2\beta$

Combining $\Rightarrow \frac{1}{2} (\sigma_1 - \sigma_3) \sin 2\beta = S_J + \left[\frac{1}{2} (\sigma_1 + \sigma_3) + \frac{1}{2} (\sigma_1 - \sigma_3) \cos 2\beta\right] \tan \phi_J$ after Algebraic

$$\frac{\sigma_{I}}{S_{J}} = \frac{2 + 2\left(\frac{\sigma_{3}}{S_{J}}\right) \tan \phi_{J}}{(1 - \cos\beta \tan \tau_{J}) \sin 2\beta} + \frac{\sigma_{3}}{S_{J}}$$

 $\sigma_1 \& \sigma_3$: stresses at failure

• For what range of β, failure will be by sliding along joint??

* Conditions for sliding Along a Discontinuity:

Failure criteria for intact rock: $\tau_{max} = S_R + \sigma \tan \phi_R$

 $\label{eq:transformation} \mbox{Failure criteria for discontinuous rock: } \tau_{max} = S_J + \sigma \mbox{ tan } \varphi_J \quad \mbox{if } \sigma > \sigma_T \\$

Patton's law:
$$\tau_{max} = \sigma \tan(\phi_u + i)$$
 if $\sigma < \sigma_T$

If
$$\beta > \frac{2\beta_1}{2}$$

 $< \frac{2\beta_2}{2}$ } if sliding

if not \Rightarrow new crack

↓

 $\begin{array}{l} \mbox{Failure will occur along the discontinuity of } 2\beta_1 < 2\beta < 2\beta_2 \\ \mbox{or} \quad \beta_1 < \beta < \beta_2. \end{array}$

alternatively $\psi_1 + \psi > \psi_2$

<u>Note</u>: The value of β_1 & β_2 are function of

 $\beta_1 \ \& \ \beta_2 = f \ (\sigma_1, \ \sigma_3, \ \varphi_R, \ S_R, \ S_J, \ \varphi_u, \ i, \ \sigma_T$

Failure is due to sliding along discontinuity

Failure through intact rock.

Course pack Fig. 6.6 pp. 53 6.7

H.W. #7

Water Pressure affects in Discontinuous Rock:

 $\sigma' + \sigma_T \text{ - } P_w$

Pore water pressure required to cause failure must be considered separately for each of the three modes of failure.

For a particular $\boldsymbol{\psi}$

a) Failure by riding over asperities

$$P_{w} = \sigma_{3} + (\sigma_{1} - \sigma_{3}) \left\{ \sin^{2} \psi - \frac{\sin \psi \cos \psi}{\tan (\phi_{u} + 2)} \right\}$$

b) Failure by shearing through asperities:

$$P_{w} = \frac{S_{J}}{\tan \phi_{J}} + \sigma_{3} + (\sigma_{1} - \sigma_{3}) \left\{ \sin^{2} \psi - \frac{\sin \psi \cos \psi}{\tan \phi_{J}} \right\}$$

c) Failure at intact rock:

$$P_{w} = \sigma_{3} - \frac{\left[(\sigma_{1} - \sigma_{3}) - 2 S_{R} \tan(45 + \frac{\phi R}{2})\right]}{\tan^{2} (45 + \frac{\phi R}{2}) - 1}$$

Compute all three to find P_w minimum required to cause failure.

- 11. Deformability of rock masses (rather than intact rock) see Ch 6 text.
- 11.1 <u>Def.</u>:

Modulus of permanent deformation.

Μ

- 11.2 In-situ Tests for determining rock mass modulus:
- 11.2.1 Plate Bearing test:
 - i) Reaction Against Anchor
 - ii) Reaction Against an opposite wall

Theory:
$$\varpi = \frac{Gp(1-v^2)a}{E}$$

where $\overline{\omega}$ = displacement measured (average of three readings) p = plate pressure (applied) a = plate radius $G = \pi/2$ if plate is rigid or 1.7 if plate is flexible. Typical Results:-

$$E = C a (1 - v^{2}) \frac{P}{\overline{\omega}_{elastic component}}$$

mass modulus

$$M = Ca (1 - v^2) \frac{P}{\varpi - \varpi_{elastic}}$$

If extensometers are used:

$$E = \frac{(1+\nu) P}{\varpi} \left[\frac{-Z^2}{\sqrt{Z^2 + a^2}} + 2(1-\nu) \sqrt{Z^2 + a^2} - (1-2\nu) \right]$$

 ϖ = displacement at depth Z.

See fig. pp.58

11.2.2 Borehole Dilatometer:- pressure a borehole $\rightarrow \Delta u$ See fig. pp. 59

$$\mathbf{E} = (1 - \mathbf{v}) \Delta \mathbf{P} \, \frac{\mathbf{a}}{\Delta \mathbf{u}}$$

easy test

11.3 Modulus of Fractured Rock (Rock mass) from intact Rock & Joint properties

A: Joint Testing

B: Intact Rock stress-strain test

elastic compression of intact rock

 $= \frac{\sigma_n}{E_{rock}} \cdot S$ (assuming S much larger than joint width)

compression of joint $\delta = \frac{\sigma_n}{K_n}$

Total Deformation = $\frac{\sigma_n}{E_{rock}} S + \frac{\sigma_n}{K_n}$

Strain in the rock mass = $\varepsilon_{\text{rock mass}} = \frac{\text{Total Deformatio n}}{S}$

$$= \frac{\sigma_n}{E_{rock}} + \frac{\sigma_n}{K_n S}$$

$$E_{\text{rock mass}} = \frac{\sigma_{n}}{\varepsilon_{\text{rock mass}}} = \frac{\sigma_{n}}{\frac{\sigma_{n}}{E_{\text{rock}}} + \frac{\sigma_{n}}{K_{n}S}} = \frac{E_{\text{rock}} \cdot K_{n}S}{E_{\text{rock}} + K_{n}S}$$

Derivation for $G_{\!rock\,\,mass}$ follows in the same manner.

$$G_{\text{rock mass}} = \frac{G_{\text{rock}} \cdot K_{\text{s}} \cdot S}{G_{\text{rock}} + K_{\text{s}} \cdot S}$$

→ Do both tests, to to field to measure S → Do test on rock, go to field & do tests with small \Rightarrow Extrapolate for larger S.

11.4Rock Indices for estimating
$$E_{rock mass}$$
: (approximate)a.Bieniawski (1978): $E(GPa) = 2(RMR) - 100$ for RMR 55b.using Modulus Reduction Factor $= \frac{E_{rock mass}}{E_{rock}} = f(RQD)$

see Fig. 7.2 from US army corp of engg.

H.W. # 8 Ch. #4 & 9

12. Slope Stability in Rocks

More complicated than soil \checkmark predetermine failure planes it can fail in tension

- 12.1 Types of Failure
- i. plane sliding (one joint of orientation is significant)
- ii. wedge-type failure (Two joints sets (or more) are significant

iii) Toppling failure

- 12.2 <u>Plane Sliding</u>:
- a) <u>Kinematics</u>

if $\delta > a$	no failure
$\text{if } \delta < a$	failure

For failure to be kinematically feasible $\delta < \alpha$

(the discontinuity must (daylight))

o stereographic plot presentation for (a)

represents dip vector δ_1

if $\delta = \delta_1$ failure is kinematically possible

if $\delta = \delta_2$ failure is not possible

it is enough for δ to be > α failure to failure, but δ have to be > δ_{min} .

b) strength : (ϕ) :

since $\phi > \alpha$: block will <u>not</u> slide.

: $\phi < \alpha$ block will slike.

o stereonet presentation for (b)

If dip rector plots in this area, failure can't occur.

 \therefore joint is not steep enough

stereonet for (a) & (b).

Combining the 2 criteria:

failure can only <u>occur</u> if dip vector plots in shaded area.

joint must both daylight and its angle must exceed $\varphi_J.$

Note: This only due to self weight of block.

- still wt. of adjacent blocks.
- still wt. of adjacent water pressure.

Example of using stereonet for vector addition:

Ex.1 given two forces: $200 = acting in the direction N80^{\circ}W plunging 50^{\circ} 600 = acting in the direction S40^{\circ}W plunging 20^{\circ}$

Find the resultant force and its direction.

Solution: (Procedure)

1. Find the common plane of the two forces.

rotate until they plot on same circle. \rightarrow angle = 55°

2. Determine the resultant force by parallelogram theorem. (draw to scale). Find resultant. Find angle = 13° .

3. Plot direction of the resultant on stereonet.

 $S50^{\circ}W, 290^{\circ}$

Forces acting on rock blocks:-

- 1. Block self weight.
- 2. Forces transmitted from adjacent blocks.
- 3. Forces due to water pressure.
- 4. Dynamic loads.
- 5. Reinforcement (rock bolts).

 $\text{if } \varphi < \varphi_J \qquad \qquad \text{stable} \qquad \qquad$

How to plot ϕ -circle?

To plot the friction circle on stereonet:

- 1. Locate the normal to the failure plane, \hat{n}
- 2. Plot two points on the diameter of the circle each being ϕ_J° from the normal (measured along the diameter).
- 3. Construct ϕ -circle having the line between the two points (in step # 2) as the diameter.

If resultant vector, \hat{r} is inside the circle, failure doesn't occur.

factor of safety against sliding

$$F.S. = \frac{\tan \phi_{available}}{\tan \phi_{required}}$$

Ex. 1. A joint strikes S30°E and dips 60° NE

 $\phi_J 25^o$

resultant of all forces $\,\hat{r}\,$ acts in the direction S50°W and plunges 20°,

Find the factor of safety.

- <u>Procedure</u> 1. Plot the friction circle for the joint.
 - 2. Plot resultant force \hat{r} .
 - 3. Find angle between \hat{r} and \hat{n} . (put them in same greater circle)

$$\Rightarrow \qquad \phi_{\text{reqd.}} = 15^{\circ}$$

4.
$$\therefore \phi_{\text{available}} = \phi_{\text{J}} = 25^{\circ}$$

:. F.S. =
$$\frac{\tan 25}{\tan 15} = 1.74$$

Ex. 2 Assume that the only force acting on the block is its <u>self-weight</u>. Determine the minimum bolt force and direction required to raise the F.S. to 1.0 for a block weighing 20 tons.

i.e. dipping $90^{\circ} \Rightarrow$ plot @ the center of streonet.

 $\hat{\mathbf{w}} =$ weight vector

- \rightarrow \hat{w} not inside friction circle \Rightarrow F.S. << 1.0.
- <u>Procedure</u>: 1) \hat{w} will plot @ center of streonet \Rightarrow F.S. << 1.0.
 - 2) Find the point on the ϕ -circle at which \hat{r} will make the smallest angle with \hat{w} .

answer. 35°

if bolt driven S60°W

3) Construct force diagram

own wt.)	
angle of resultant	}	bolt force
	J	& resultant

4. Determine a line of minimum length from tip of \hat{w} to the \hat{r} line. |B| = 11 Tons 35° up from horizontal.

Ex. 3. What bolt force would be required to achieve F.S. = 2.5.

Sol. F.S. = $\frac{\tan \phi_{\text{available}}}{\tan \phi_{\text{reqd.}}} = \frac{\tan 25^{\circ}}{\tan \phi_{\text{reqd.}}} = 2.5$ $\tan \phi_{\text{reqd.}} = \frac{\tan 25^{\circ}}{2.5} = \implies \phi_{\text{reed.}} = 10.5^{\circ}$

min. angle between \hat{w} and $\phi_{circle} = 49.5^{\circ}$

 $|\mathbf{B}| = 15$ Tons 49.5° up from horizontal

 $\underline{Ex. 4.}$ What both force would be required if the bolt are to be driven due west.

|B| = 16.5 T

Analysis of Plane Slides by traditional Block Sliding Analysis

Ref. Book (Hock & Bray 1977)

#1.

Crack intercepts crest of slope

$$W = \frac{1}{2} \gamma H^2 \left[\left(1 - \left(\frac{Z}{H} \right)^2 \right) \cot \delta - \cot \alpha \right]$$

#2.

Crack intercepts face of the slope.

$$W = \frac{1}{2} \gamma H^2 \left[(1 - \frac{z}{H})^2 \cot \delta (\cot \delta \tan \alpha - 1) \right]$$

Area of sliding surface: $A = \frac{H-Z}{\sin \delta} * 1$

Resultant of water pressure along the vertical crack.

$$\mathbf{V} = \int_{\mathbf{o}}^{\mathbf{Z}_{\mathbf{w}}} \mathbf{Z} \, \mathrm{d}\mathbf{Z} = \frac{1}{2} \, \gamma \, \mathbf{Z}_{\mathbf{w}}^2$$

 $\begin{array}{ll} \mbox{Resultant of water pressure acting on the sliding} \\ \mbox{surface} = \ U = \gamma_{\rm w} \ \frac{Z_{\rm w}}{2} \cdot A & = \frac{1}{2} \ \gamma_{\rm w} \ Z_{\rm w} \ A. \end{array}$

Shear Forces Along Sliding Surface:

Forces resisting shear:

 $(S_J + \sigma_n' \tan \phi_J) A$

$$\sigma_n' = \sigma - u = \frac{W \cos \delta - V \sin \delta - U}{A}$$

Sliding occurs when the driving shear forces = forces resisting shear.

F.S. $(W \sin \delta + V \cos \delta) = S_J A + (W \cos \delta - V \sin \delta - U) \tan \phi_J$

For Case #1:

F.S.
$$\left[\frac{1}{2}\gamma H^2 \left[\left(1-\left(\frac{Z}{H}\right)^2\right)\cot\delta -\cot\alpha\right]\sin\delta + \frac{1}{2}\gamma_w Z_w^2\cos\delta\right]$$

= $S_J \frac{H-Z}{\sin\delta} + \left[\frac{1}{2}\delta H^2 \left[\left(1-\left(\frac{Z}{H}\right)^2\right)\cot\delta -\cot\alpha\right]\cos\delta$
 $-\frac{1}{2}\gamma_w Z_w^2\sin\delta - \frac{1}{2}\gamma_w Z_w A\right]\tan\phi_J$

Since we have some control over α_1 , we can solve for it.

Cot
$$\alpha = \frac{\left[a \left(F.S. \sin \delta - \cos \delta \tan \phi\right) + U \tan \phi + V \left(\sin \delta \tan \phi + FS. \cos \delta\right)\right] - S_J A}{b \left(F.S. \sin \delta - \cos \delta \tan \phi\right)}$$

where $a = \frac{1}{2} \gamma H^2 \left(1 - \left(\frac{Z}{H}\right)^2\right) Cot \delta$
 $b = \frac{1}{2} \gamma H^2$
 ΔS_J is more important for steep slopes (α is large)

 $\Delta \phi_J$ is more important for high slopes (H is large)

Drainage of water can be very effective in stabilizing rock slopes.

* Wedge Failure Analysis

a) <u>Kinematics</u>: for sliding of a wedge, use \hat{I} (the interaction of 2 planes in place of the dip vector \hat{D} .

: if the plunge of \hat{I} is less than α , the wedge sliding is kinematically possible.

- Find normals to two planes \hat{n}_1 , \hat{n}_2
- Rotate until $\,\hat{n}_1\,\&\,\,\hat{n}_2\,$ on one greater circle.

Failure can occur in one of three ways.

1.	if \hat{D}_1 daylights	
2.	if \hat{D}_2 daylights	plane sliding
3.	if \hat{I}_{12} daylights \rightarrow	sliding

If we have 3 sets of joints; Failure can occur on:

- 1. \hat{D}_1 daylight
- 2. \hat{D}_2 daylight
- 3. \hat{D}_3 daylight
- 4. \hat{I}_{12}
- 5. Î₁₃
- 6. Î₂₃

b) <u>Strength</u>: If $\phi_J >$ plunge of \hat{I} failure cannot occur. Furthermore, for very acute (steep) wedges, considerable strength is obtained from roughness along the discontinuities, so \hat{I} can often be steeper than ϕ_J without failure.

Conventional Wedge Analysis

Ref. Hock & Bray "Rock Slope Engineering" Institution of Mining & Metallurgy 1981

Geometry:

- ψ_{fi} = inclination of slope, slope measured in the view at right angles to the line of intersection.
- ϕ_J = joint friction angle.

actual slope is $> \psi_{f2}$

 ψ_{I} = plunge of line of intersection.

Sliding will occur if $\psi_{fi} > \psi_I > \phi$

Forces:

Assume sliding is resisted by friction only.

$$F.S. = \frac{(R_A + R_B) \tan \phi_J}{W \sin \psi_i}$$

 $\Sigma F_{\rm H} \implies R_{\rm A} \sin \left(\beta - \frac{1}{2} \xi\right) = R_{\rm B} \sin \left(\beta + \frac{1}{2} \xi\right)$

 ΣF_r along line of intersection $\Rightarrow R_A \cos \left(\beta - \frac{1}{2}\xi\right) - R_B \cos \left(\beta + \frac{1}{2}\xi\right) = W \cos \psi_i$

Solving for $R_{\!A}$ & $R_{\!B}$ and adding

$$R_{A} + R_{B} = \frac{W \cos \psi_{i} \sin \beta}{\sin \frac{1}{2} \xi}$$

$$\therefore \quad \text{F.S.} = \frac{\sin \beta}{\sin \frac{1}{2} \xi} \cdot \frac{\tan \phi_{J}}{\tan \psi_{i}}$$
f.s. for plane sliding

 $(F.S.)_{wedge} = K * (F.S.)_{plane}$

<u>Fig. 96:</u>

- ξ : angle between joints
- β : angle of tilt of line of intersection

<u>Note</u>: This is limited to joints having their normals coplan (same plan) 180° in phase.

 $F.S.=A \ tan \ \varphi_A + B \ tan \ \varphi_B$

A & B see pp.211 - end.

<u>Ex</u> .		Dip	Dip. direction	фı
	Plane A Plane B	$\frac{40^{\rm o}}{70^{\rm o}}$	165 285	35° 20
	Difference	 30°	120	

 $A=1.5\ ,\qquad B=.7$

F.S. = $1.5 \tan 35 + 0.7 \tan 20 = 1.3$

This method is good better : $\xi \& \beta$ is difficult to find in field.

If F.S. ≥ 2 \therefore Wedge failure is almost impossible.

o Wedge Analysis on stereographic projection.

Text pp.---- Fig. 8.16

- 1. Find \hat{n}_1 and, \hat{n}_2 then \hat{I}_{12}
- 2. Draw greats circle through \hat{n}_1 , I_{12} and \hat{n}_2 , I_{12}
- 3. Construct ϕ circles for n_1 and n_2 . This gives the four points of intersection: p, q, s & t.
- 4. Construct great circles connecting p.s. and q.t.

if resultant of all forces.

Toppling Failure

a) flexural toppling

b) block toppling

- c) combination of flexural and toppling
- Static Analysis of Block Toppling
- a. <u>Single block:</u>

if W is to left of \Rightarrow Failure

condition if impending failure

Cot
$$\alpha = \frac{\Delta y}{\Delta x}$$

Cot $\alpha < \frac{\Delta y}{\Delta x} \implies$ failure will occur.

Long narrow blocks on steep slopes are more susceptible to failure.

b. <u>Multiple blocks:</u>

Resisting Moments:

$$P_{n-1}(L_n) + \mu P_n \Delta x + W \cos \alpha \frac{\Delta x}{2}$$

Overturning Moments

$$P_n(M_n) + \sin \alpha \frac{\Delta y}{2}$$

Setting R.M. = O.M., toppling will occur if

$$P_{n-1} < \frac{P_n (M_n - \mu \Delta x) + \frac{W}{2} (\Delta y \sin \alpha - \Delta x \cos \alpha)}{L_n}$$

Many equations

Ref. Zanbak, Caner "Design Charts for Rock Slopes Susceptible to Toppling" J. of Geot. Engg., ASCE, Vol. 109, No. 8.

Stereographic Analysis for Flexural Toppling:

major principle direction ∴ no stress normal to slope

Topping will occur only if there is relative motion between dipping layer.

slippage must occur

Criterion for toppling failure: resultant should be outside ϕ -circle.

If we lay off an angle ϕ_J from the normal to the dipping beds, and it falls outside of the slope, then failure will occur because the direction of applied compression is outside of the ϕ -circle.

Toppling will occur if $(90-\delta) + \phi_J < \alpha$

 $Or \qquad \delta > 90 + \phi_J - \alpha$

Toppling

No Toppling

фJ

If \hat{n} in this region, flexural toppling will occur if strike is

if $> 30^{\circ}$: toppling

is not towards excavation.

H.W. #8 Ch. 8	Prob. # 1 :	Use: Set 1 Strike N40°E
	Prob. # 2:	Use $\phi_J = 30^\circ$
	Prob. # 3:	Use: dip $55^{\circ}NE$ P = 600 Tons $\phi = 35^{\circ}$

13.0 Foundation on Rock

- Excessive settlement \rightarrow compressibility of joints
- Bearing capacity

Fig. 9.1

Karstic:

Ca O₂, dissolvable

sinkable in Florida

a) Shallow Foundations:

spread footings

b) Deep Foundations

H. piles Precast conc. Piles Pipe piles

> Pier Socketed into rock

13.1 Shallow Foundations:

For intact rock in its elastic range:

Settlement may be predicted by:

$$u = \frac{C.P (1 - v^2)a}{E}$$
: plate bearing

where

$$C = -\pi/2 \text{ if rigid} \\ - 1.7 \text{ if flexible}$$

P: applied stress

- E: Young's Modulus
- ν : Poisson's ratio
- a: radius of footing (or equivalent)
- o If rock is not homogeneous se same as soil

Stress distribution beneath footings.

- a) for homogeneous isotropic rock, elasticity solution are generally available. \rightarrow point load integrate to get it for any shape.
- b) for heterogeneous, anisotropic rock, finite element methods may be required.

Vertical

Line load

<u>Horizontal</u>

if there is a joint then tension will in opening crack \Rightarrow stress will not be transmitted if total stress is tension.

Inclined

Fig. 9.8 not intact rock

resultant can't go outside ϕ_J

 \Rightarrow slippage \Rightarrow realignment of stresses

Close Form Solution

- 1. Resolve Q & P
 - // & \perp to pidding planes

1977 <u>Bray</u>

$$\sigma_{\rm r} = \frac{h}{\pi r} \left[\frac{X \cos \beta + yg \sin \beta}{(\cot \beta - g \sin^2 \beta)^2 + h^2 \sin^2 \beta \cos^2 \beta} \right]$$

where
$$g = \left(1 + \frac{E}{(1 - v^2)k_n S}\right)^{1/2}$$

 $h = \left\{\left(\frac{E}{1 - v^2}\right)\left[\frac{2(1 + v)}{E} + \frac{1}{k_s \cdot S}\right] + 2\left(g - \frac{v}{1 - v}\right)\right\}^{1/2}$

 E,ν : are intact rock properties

 \boldsymbol{k}_n , \boldsymbol{k}_s : are joint stiffnesses

S = Spacing

Fig. 9.9

Fig. 9.10

* Strains and settlements beneath loaded rock masses.

Procedure

- 1. determine the stress distribution.
- 2. determine the equivalent elastic properties

$$G_{ns} = G_{nt} = \frac{G_{Rock} K_s S}{G_{Rock} + K_s S}$$

Similarly

$$E_{n} = \frac{E_{Rock} K_{n} S}{E_{Rock} + K_{n} S}$$
$$E_{s} = E_{t} = E_{rock}$$

$$v_{sn} = v_{tn} = \frac{\varepsilon_n}{\varepsilon_s} = v_{rock}$$

by symmetry,

$$\frac{\mathbf{v}_{sn}}{\mathbf{E}_{s}} = \frac{\mathbf{v}_{ns}}{\mathbf{E}_{n}} \qquad \therefore \qquad \mathbf{v}_{ns} = \mathbf{v}_{nt} = \frac{\mathbf{E}_{n}}{\mathbf{E}_{s}} \mathbf{v}_{sn}$$
$$= \frac{\mathbf{E}_{rock} \mathbf{K}_{n} \mathbf{S}}{\mathbf{E}_{rock} + \mathbf{K}_{n} \mathbf{S}} \cdot \frac{\mathbf{v}_{rock}}{\mathbf{E}_{s} = \mathbf{E}_{rock}}$$
$$= \frac{\mathbf{K}_{n} \mathbf{S} \cdot \mathbf{v}_{rock}}{\mathbf{E}_{rock} + \mathbf{K}_{n} \mathbf{S}}$$

3. Employ the constitutive relationship for transversely isotropic media:

Bearing Capacity of Shallow Foundations on Rock.

Fig. 9.5

 \therefore The largest horizontal stress that can be developed to support the rock beneath the footing is the unconfined compressive strength, q_u.

since
$$\sigma_{1f} = \sigma_{3f} \tan^2 (45 + \phi/2) + q_u$$

 $\therefore q_f = q_u \tan^2 (45 + \phi/2) + q_u$
 $q_f = q_u (N_{\phi} + 1)$
bearing capacity factor $\Rightarrow N_{\phi} = \tan^2 \left(45 + \frac{\phi}{2}\right)$
 $q_{all} = \frac{q_f}{F.S.} = \frac{q_f}{3}$ especially F.S. = 3.0

o Table 9.2: most rock of the region is very conservative

New York Detroit \rightarrow largest values \rightarrow highest buildings.

Drop Foundations on Rock:

a) bearing capacity increases with depth due to increase in confinement.

 $\sigma_v \neq 0 \quad \Rightarrow$

b) bearing capacity doesn't increase with depth.

Settlement of Deep Foundations:	- rock
	- pier: pile or corrosion

a) due to rock deflection for

elastic material :
$$w_{\text{base}} = \frac{\frac{\pi}{2} P_{\text{end}} (1 - \nu^2) a}{E \cdot n}$$

n = f (embedment depth, radius and v)

ℓ/a v	0	2	4	6	8	14
0	1.0	1.4	2.1	2.2	2.3	2.4
.3	1.0	1.6	1.8	1.8	1.9	2.0
.5	1.0	1.4	1.6	1.6	1.7	1.8

b) due to concrete deformation:

$$\omega_{\text{concrete}} = \frac{P \ell_{c} + \ell}{E_{c}}$$

But P is not constant along the pile.

c) Correction for load transfer due to side friction:-Neglect side friction through the soil.

derived in Appendix : same as one for consolidation

$$\sigma_{Z} = P_{max} \cdot e - \left[\frac{2 v_{c} \tan \phi_{rc}}{1 - v_{c} + (1 + v_{r}) \frac{E_{c}}{E_{r}}} \cdot \frac{Z}{a}\right]$$

 ν_c , $\nu_r~:~\mbox{Poisson's ratio of concrete & rock}$

 φ_{cv} : friction angle for rock/concrete & interface

 E_{c} , E_{v} : Young's moduli for concrete & rock.

$$\therefore \Delta w = \frac{1}{E_c} \int_0^\ell (P_{max} - \sigma_z) \, dZ$$

d) \therefore Total Deformation (settlement) = $w_{base} + w_{concrete} - \Delta w$

Determining depth of "socketing" into rock to insure against bearing capacity failure.

(1) <u>Ref</u>: Osterberg & Gill F.E.M. study (1971)

found that even small embedment (socketing) into rock greatly reduces P_{end} by taking load in side friction.

Therefore shaft diameters can be reduced.

Fig. 9.18

(2) Ladanyi (1977) proposed a procedure for determining socketing depth.

o Assumptions:

- a) no load transfer along concrete/soil interface.
- b) bond between concrete and rock broken \Rightarrow use residual strength.

$$\sigma_{\rm max} = \frac{P}{\pi a^2}$$

$$\sigma_z = \sigma_{max} e$$

For soft rock:

 $\tau_{residual} = \alpha \ S_u$

 S_u : undrained shear strength

 α : reduction factor, $0.3 < \alpha < 0.9$, typically $\alpha = 0.5$

For hard rock: $\tau_{\text{res.}} \simeq \frac{q_u}{20}$

where $q_u =$ unconfined comp. strength.

Procedure:

1. Determine shaft diameter "a" based on concrete strength.

2. Assume that
$$Q_p = 0$$
, then $\ell = \ell_1 = \frac{P}{2\pi a \tau_{all}}$

- 3. Choose $\ell = \ell_2$ such that $\ell_2 < \ell_1$.
- 4. Compute $\sigma_Z @ Z = \ell_2$.
- 5. If σ_Z)_{@ Z = ℓ^2} > q_{all} , then assume a new ℓ_2 .
- 6. If σ_Z)_{@ $Z = \ell^2 \leq q_{all}$, determine τ along perimeter of pile}

$$\tau = \frac{1}{2 \pi a \,\ell_2} \left[\left(1 - \frac{\sigma_Z}{\sigma_{max}} \right) \mathbf{P} \right]$$

 $\begin{array}{ll} \text{7.} & \text{Repeat the procedure to find the shortest ``\ell`' for which} \\ & \sigma)_{{}_{@\,\ell}} \leq q_{all} \quad \text{and} \quad \tau \leq \tau_{all} \end{array}$

 q_{all} ??? :: for shallow foundation. No vertical stress

$$q_{all} = \frac{q_u (N_{\phi} + 1)}{F.S.}$$

For Deep Foundation

Since q_{all} as determined for shallow foundations would be very conservative, \therefore use a smaller factor of safety, say 1.5 to 2.

Final : open book & notes.

- (1) Geological Rock = texture
- (2) Permeability

- (3) Testing <u>Brazilian</u> - <u>2 point load</u>
- (4) Triaxial

(5) Denatoric - stress - strain

• Disc. Faults
$$\rightarrow$$
 shears \rightarrow joints \rightarrow fissures \rightarrow microfissures
• Geo. class \rightarrow Geometric \rightarrow Igneous \rightarrow - extrusive (volcanic)
- intrusive (plutonic)
Sedimentary - detrital
- elastic - nonelastic
- elastic -

$$\frac{1}{V_{\ell}^{*}} = \sum_{i=1}^{n} \frac{C_{i}}{V\ell_{i}} \implies I_{Q} \% = \frac{V_{\ell}}{V_{\ell}^{*}} * 100\% \text{ no fissure } I_{Q} = 100 - 1.6 \text{ n }\%$$

• RQD = $\frac{\sum LX''}{\sum L}$ • Failure \rightarrow Tension \rightarrow Shear \rightarrow Compaction

• Unconfined comp. test $\frac{L}{D} = 2 - 3 \implies q_u = \frac{P_{max}}{A}$ • Triaxial Testing: strength = f (confining p.) • Brazilian split cylinder test $\sigma_t = \frac{2P}{\pi dt}$

- Flex $\sigma_t = \frac{16}{3} \frac{PL}{\pi d^3} \qquad I = \frac{\pi 6^4}{64}$
- Ring shear test $\tau_{max} = \frac{2P}{\pi d^2}$

*
$$\sigma_{ij} = \frac{1}{3} \sigma_{kk} \delta_{ij} + \tau_{ij}$$

 $D_1 = \frac{\Delta \overline{\sigma}}{\Delta \overline{\epsilon}} = 3K \implies$
 $D_2 = \frac{\Delta \sigma_{1, dev}}{\Delta \epsilon_{1, dev}} = 2G \implies$
 $E = \frac{3D_1 D_2}{D_2 + 2D_1} , \quad v = \frac{D_1 - D_2}{2D_1 + D_2}$

$$G_{yx} = \frac{E_x}{2(1+v_{yx})} \implies G = \frac{E}{2(1+v)} \implies 2G = \frac{E}{1+v}$$

$$K = \frac{E}{3(1-2v)} \implies 3K = \frac{E}{(1-2v)}$$

$$\lambda = \frac{Ev}{(1+v)(1-2v)}$$

$$e_x \left[\frac{1}{E} - \frac{-v}{E} - \frac{-v}{E} - 0 - 0 - 0 \right] \left[\sigma_x \right]$$

$\left[\epsilon_{x} \right]$		$\frac{1}{E}$	$\frac{-\nu}{E}$	<u>-ν</u> Ε	0	0	0	$\left[\sigma_{x}\right]$
ϵ_{y}		$\frac{-\nu}{E}$	$\frac{1}{E}$	$\frac{-\nu}{E}$	0	0	0	σ_{y}
ϵ_z		$\frac{-\nu}{E}$	$\frac{-\nu}{E}$	$\frac{1}{E}$	0	0	0	$\int \sigma_z \left[\right]$
γ_{xy}	-	0	0	0	$\frac{2(1+\nu)}{E}$	0	0	τ_{xy}
γ_{yz}		0	0	0	0	$\frac{2(1+\nu)}{E}$	0	τ_{yz}
γ_{zx}		0	0	0	0	0	$\frac{2(1+\nu)}{E}$	$\left[\tau_{_{ZX}} \right]$

$\int \sigma_x$]	$\lambda + 2G$	λ $\lambda + 2G$	λ	0	0	0]	$\left[\epsilon_{x} \right]$
σ_{y}		λ	$\lambda + 2G$	λ	0	0	0	ϵ_{y}
σ_z		λ	λ	$\lambda \\ \lambda + 2G \\ 0$	0	0	0	ε_z
τ_{xy}		0	0	0	G	0	0	γ_{xy}
τ_{yz}		0	0	0	0	G	0	γ_{yz}
τ_{zx}	J	0	0	0	0	0	G	$\left[\gamma_{zx}\right]$

(1) Failure

(2)

(3)

(4)

1) Road

2) Foundation

Multistage

Ι	σ_3	σ_1
Π	σ_3	σ_1
III	σ_3	σ_1

- 1) Draw joint failure
- 2) He gave us $\tau = S_i + \sigma \tan \phi$ for intact rock.

For failure occurs on the joint	$\beta_1 < \beta < \beta_2$
For failure occurs on the intact	$ \begin{array}{l} \beta < \beta_1 \\ \beta > \beta_2 \end{array} $

Disadvantage of overcoring:

- 1. The linear dependence of the stresses upon, the one elastic const. *t*.
- 2. Large drill cores to make the rock not crack.