
* Comments on: 
 
o  Effective stress law for rocks: 
 
1) σtotal = σ′ + u 
 

 u = zw γw  
 

This is OK for soil, but for rock is not.  Back to the original derivation: 
 
σtotal = σ′ + u (1 – as) 
 
        a/A 
 
in soil as is negligible. 
 
But in rock as may not be as negligible as in soil, especially in cemented rock. 
 
But how to find as !!! 

 
2) For low porosity rocks, pore water pressure may not be continuous. 
 
 
 
 
 
 
 
 
 
 
 
 Anisotropy:  angle of bedding plane, foliation 
 
 Fig. 3.23 for continuous rock. 
 
1) φ = 30  corresponds to failure angle ≈ (45 - φ/2) 
 
2) Cracked rock 
 

  -  Fig. 3.21 size effect  
4

q
q u

u =  

      large   small 
 



some reasons as k,  V 
 
∴ encountered more as cracks ……. 
 
 ⇓ 
 
∴  use high factor of safety i.e. 
 



8.0  In-situ stresses: 
 

What are σ1 and σ3 ? 
Can we predict them? 
Why we want to measure them? 
 
-  in soils we generally assume σx = σy ≠ σz 
o  in rock it is less likely that σx = σy. 
 because  →  tectonic forces 
    →  layer are not horizontal 

 
1)  Excavation 
 
 plan view : excavate along 
 
 
 
 
 
 ∴  Excavate // to larger stress 
 
2) Tunneling 
 
 if you have a choice to build (1) or (2) 
 plan view 
 aim : safety 
 
 
 Rock burst is likely to happened more 
 in tunnel (1) 
 
 ∴  choose (2)  ∴  (1) is unsafe 
 
 if safety is of concern. 
 
 
 ∴  make tunnel ⊥  to larger stress. 
 



• Flat topography: 
 

σv & σH generally correspond to the 
principal stresses. 

 
 
 
 
 
 
• Hilly topography: 
 

principal stresses at the surface 
will follow the topography. 

 
 
*   Vertical stresses: 
 
For flat unfolded earth 
 
 σv = γ ⋅ Z 
   depth 
       unit wt. of rock 
 
 
*  Horizontal stress:  generally much more difficult to predict than σr. 
 

 let 
v
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 look at τ - vs σ. 
 
 if σv is given    →  min. σH before failure 
   →  max. σH before failure 
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 These two values are associated with different tectonic movements. 
 



1) 
 
    σv = σ1 
 
   
       σH = σ3 = Ka σv 
 
         Normal fault 
 
 
2) 
    σv = σ3 
 
         σH = σ1 = Kpσv 
 
       Reverse fault or thrust fault 
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σv  is easier to find, but not always, see text, Fig. 4.3.  
 
 
 
      stiffer layer 
 

loads transferred through stiffer layer to this point 
 
σv maybe 3 * γ Z 
 
-  Fig. 10.6  California……. 
 
-   Fig. 4.7 
 
 
 near surface 
 
     γH >σv   ⇒   K > 1.0 
 
 ∴ σv = 0 near surface and σH is more 
 
 
*  Change in K due to erosion: σv decrease  ⇒  K increase. 
 
Assume elasticity & isotropy 
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i.e  K > Ko 
 
the higher the Z the less the change in K-value. ⇒ 
 
This explain  Ka ≈ Kp in Fig. 4.7. 



HW # 4. Ch. 4, # 1, 2, 6, 9. 
 
---- 
 
We have talked about in-situ stresses, and we’ll talk today about tech. to measure 
them. 
 
See course pack pp. 30 
 
Tech.  →  Overcoring 
 →  Doorstopper methoc 
 →  Flat Jack method 
 
8.2 Measurement of In-Situ Stresses 
 
8.2.1 Overcoring  (strain relief method) 
 
1. drill a hole into rock mass (with diameter d) 
 
2. insert torpedo which measure strain in 3-directions 
 
3. drill a larger hole with (D > 2 d) 
 
 
 
 
 
 
 
 
 
-  three sets of deformation buttons @ 0o, 60o, 120o 
-  test data yields deformation, ∆d @ 3 diameters 60o apart 
 
*  From theory of elasticity and isotropic behavior assumed: 
 
 ∆d (θ) = σx f1 + σy f2 +  σz f3 + τxz f4 
 



where f1 = d (1 + 2 cos 2θ) 
E

d
E

1 22 ν
+

ν−
 

 f2 = 
E
dν

 

 f3 = 
E

d
E

1
)2cos21(d

22 ν
+

ν−
θ−  

 f4 = d (4 sin 2 θ) 
E

1 2ν−
 

 
⇒   we get equations  ⇒ ∆d (θ = 0o) = ….. 
    ∆d (θ = 60o) = ….. 
    ∆d (θ = 120o) = ….. 
 
 
Therefore, we have 3 equations, but for unknowns, σx, σy, σz, τxz 
 
Solution 
 
a) for vertical hole 
 
 i) assume one of the stresses 
  i.e. σv = γZ = σx 
 
 
 
for horizontal 
 ii) assume   σy = 0 
 
 
b) for deep 
 

Drill three boreholes for three tests and 
hope it is in the same rock. 
They should (at least 10′ apart) so that one will not affect other. 
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From overcoring  E, υ, geometry  need to solve for 
and assumed σy 

 

  need τyz , τxy ……. perform test in different directions  
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8.2.2 Doorstopper Technique:  strain rosette is installed on a flat rock surfaces and 

overcored. 
 
 

Strain from three oriented at 60o angle, are used to 
determine εx, εy, γxy, which can e used in the theory of 
elasticity to find change in stress and the in-situ stresses. 
 
SEE Ch. 4 & Appendix 2 of text for equations. 

 
 
8.2.3 Flat-Jack Method simplest one 
 
 1. mount extensometer to measure 
  change in length. 
 
 
 
 
 2. cut a square slot into the rock. 



  
3. install flat jack into slot, and apply 
 pressure to reopen, slot to do. 
 
 
 
 
 
 
 
 
 
 
 
 
8.2.4 Hydraulic Fracturing: 
 
 
 
 
 
 
 
 
Fig. 4.10  pp.31  course pack. 
 
 
For the element   → 
 

maxmin hh3 σ−σ=σ θ    (1) 
 
one pressure is applied internally of magnitude p,  
Lane’s solution tells us that:  σθ

 borehole wall must decrease by p.  i.e. 
 

P3
maxmin hh −σ−σ=σ θ  (2) 

 



σθ goes from compression to tension. 
 
when tensile stress is reached   σθ = − To   (3) 
 
⇒   P = Pc1 in text     (4) 
 
∴ subst. 3 into (2) 

 

1chh0 p3T
maxmin

−σ−σ=−     (5) 
 
 
Once the crack forms, it will continue cracking until the water pressure is reduced to 
Pshut in.  At this point we have stress equilibrium and 
 
 

minhinshutP σ=       (6) 
 
Now wee drop the pressure, allowing the crack to close; and once again raise the 
pressure to above Pshut in.  The new max pressure that can be reach is Pc2 at which 
point, the tensile strength in the crack is zero.  i.e.  reopen closed crack (not 
propagating the crack).  
 
∴ 2chh P30

maxmin
−σ−σ=     (7) 

 
Combine Eq. (5) & (7)  
 
 T0 = Pc1 – Pc2 
 
Then go back into Eq. (5) to solve for 

maxhσ . 
 
Limitation 
 
1. not be used in shallow foundation ………… vertical stress in the min. hori. 

crack. 
 



• This test is good in oil ….. 
 
• Fig. 4.7 
 
 

highest principle & stress ⊥  falt….. falt is sliding 
 
 
 
 
 
 
 
direction of 

maxhσ & 
minhσ  ?? → lower a TV camera 

 



*  overcoring 
 

make sure that annular area  
is large enough  ⇒  not to break 
is small enough ⇒ not to have sufficient  

       self-wt. 
 
 
 
 
*  for deep 
 
 

- Find stresses in local coordinate 
- Transform them to global coordinate 

 
⇒ ∆d(θ) = f  (σx , σy , σz , τxz, τzy)    ⇒  get 3 eqns. from one test 
⇒ ∆d(θ) = f         ⇒  get 3 eqns 
⇒ ∆d(θ) = f         ⇒  get 3 eqns. 
 
     (9 eqns. 6 are independent ) 

 
 
 
 
 
 
Therefore the stresses can be determined uniquely. 



9.0   Aspects of Structural Geology 
          The study of earth beneath & geometry.  
  
9.1   Definition 
 
Dip:  the angle at which a plane is downward inclined to a horizontal surface. It is the 
largest vertical angle, and is therefore measured in a plane perpendicular to the strike. 
 
Strike:  the direction (bearing) of a horizontal line on an inclined plane. 
 If ground surface is flat, the outcrop of the plane corresponds to the strike. 
 
δ :  Dip angle 
α : apparent dip (will always e smaller than δ) 
β  : angle between strike and the apparent dip 
 
tan α = tan δ sin β   →  see Nomogram pp.74 course pack. 
 

   or  
β
α

=δ
sin
tan

tan  

 
Nomenclature:  in USA N45oE   25oS 
 
   First letter always N or S  0 to 90 
         N or S exception if strike is  
  0 to 90o         then dip will E or W. 
 
  Second letter always E or W 
 
 
Strike :  from North 45o towards east. 
 
Dip :  25o downward toward S. 
 



In Europe:  use azimuth 0o to 360o such that dip is always ton the right. 
 
Ex. 295o , 30o 
   dip: downward to right of strike 
 Strike from North rightwards  
 
    Same as N65oW, 30oN 
 
 
 
Thickness:  perpendicular distance between two parallel planes bounding a layer. (t) 
 
a) outcrop measurement ⊥  strike. 
 

 
w
t

Sin =δ  

 
 t = w sin δ 
 
 
 
 
 
 
 
 
b) if outcrop measurement is not ⊥  strike: 
 
 w = d sin β  
 
 t = d sin β  sin δ 
 



c) if outcrop measurement is not ⊥  strike and is on sloping ground. 
 

t = s | sin δ σ sin β  ± sin σ cos δ | 
 
use + if σ and δ are in opposite directions 
 
use − if σ and δ are in the same directions 

 
 
 
9.2 Dip, strike and outcrop patterns from drill hole data: 
 
 Ex. 1 
 
 
 
 
 
 
 
 
 
 
 
 Assume that we hit same rock at 300′, 300′ and 100′ in A, B & C. 
 
     (elevation not depth) 
 
  

∴  Strike is the line connecting A & B because they hit same rock at same 
elevation. 
 
- get ⊥  to AB from C  ……………… D ⇒  in horizontal plane 
 
- make cE // AB  where cE = 300-100 
 
  (vertical in plane) 
 
- connect ED  ⇒  δ 

 
  (in dipping plane) 
 
Ex. 2 



Outcrop Pattern of a Dipping Bed 
 
 The outcrop pattern of a horizon* can be predicted if a contour map showing 
the topography is available, if the dip and strike of the horizon are known, and if the 
location of one exposure of the horizon is given.  This is possible, however, only if 
the horizon is truly a plane surface – that is, if its dip and strike are constant. 
  
 The figure below illustrates the procedure that may be followed. The horizon 
outcrops at X.  The ground surface is represented by 100-foot contours.  Inasmuch as 
the horizon is known to strike N.75oW. and the dip 20oS., it is possible to predict its 
position at any place in the area. 
 
 Starting about an inch from the left border of the map extend a line SS′ 
through the outcrop X parallel to the strike of the horizon (N.75oW.).  Inasmuch as the 
outcrop is at an altitude of 800 ft, at every place on this line the horizon has an 
altitude of 800 feet.  Now make a vertical section at right angles to the strike by 
drawing AB perpendicular to the strike of the bed at any convenient distance to the 
left of the map.  The intersection of AB and SS′ may be designated by C.  At C lay off 
the angle BCE equal to the dip of the horizon, in this instance 20 degrees.  CE is the 
trace of the horizon on the vertical section.  Along SS′ from point C lay off 100-foot 
units (equal to the topographic contour interval), using the same scale as that of the 
map. 
 
 Through each 100-foot point above or below C draw a line parallel to AB to 
an intersection with line CE.  The intersections are points on the bedding plane; they 
are 100 feet apart vertically.  From each of these intersections draw lines parallel to 
SS′.  These lines are 100-foot structure contours on the horizon.  A each point where a 
structure contour intersects a topographic contour of the same altitude, the horizon 
will outcrop.  Mark the locations of these intersections with small circles.  When 
connected, these circles, show the predicted outcrop pattern. 
 
 
* “Horizon” refers to a surface having no thickness. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Outcrop pattern intersect ground plane. 
 
 
H.W. 5 (# 5 pp. 36 course pack). 
 



9.3 Structural Features and Outcrop Patterns: 
 
Def: 
 
9.3.1 Folds:  a distortion of a volume of material that manifests itself as a bend or 

nest of bends in linear or planer elements within the material. 
 
1) Consider early geology deposition system 
 
 
 
 
 
 
 
 
 
 
2) By tectonic stresses 
 
 
 
 
 
 
 
 
3) By erosion -  glacical 
   -  water 
   -  wind 
   -  ….. 
 
 ∨   syncline :  youngest at the middle 
 
 ∧   anticline :  oldest at the middle 
 
 
 Map pattern 
 



Syncline:  Folds that are concave upward 
    o  youngest rock in center 
 
Anticline:  Folds are concave downward 
    o  older rocks are in the center 
 
 
 
 
 
 
 
 
 
 
in addition to fold, hinge line might dip from the horizontal by an angle called plunge. 
 
plunge:  dip of the hinge line. 
 
 
 
By erosion 
 
 
 
 
Map patters:   → 
 
 
Plunging anticline: 
 
 
X-section 
 



plunging cencling 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
if tectonic stresses are too high ∴ 
 
 
9.3.2 Fault: a fracture surface in a rock body along which one side has been offset 

relative to the other. 
 

Fault zone: a zone of sheared, crushed or foliated rock in which numerous 
small dislocations have taken. 

 



Place adding up to an appreciable total offset of the deformed walls. 
 
 
A faults “attitude” is given by its dip & strike. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Relative motion: 
  
1. Normal fault, a gravity fault 
 
  Ka :  caused by gravity force 
 
2. Reverse fault, thrust fault 
 
  Kp : caused by high 
   horiz. pressure 
 
 
*  Displacement : 
 

AB = net slip 
BC = dip slip 
BD = strike slip 
AE = throw 
ED = heave 
< CAB = rake 

 



• For a strike-slip fault  
 

°≅≅ 0rakeand0BC  
 
• For a dip-slip fault 
 

°≅°= 90rakeand0BD  
 
 
SE course pack  pp. 38 
 
 
Erosion old at top in footwall Fig. 111. 
 
 
Fig. 112 not much in pattern 
 
 
Fig. 113 as if         but beds are originally inclined. 
 
 
Fig. 114 
 
 
Fig. 115 
 
 
pp. 39 
 
Fig. 116 dip & slip movements  //  bedding planes 
 
Fig. 117 re-occuring pattern 
 
Fig. 118 
 
Fig. 119 
 
Fig. 120 bedding planes are not // …. 
 
 
Figs. 111-120:  we know B, we have to interpret A. 
 

 



Graphical representation of 
 
Stereo net:  is projection of 3-D plane into 2-D. 
 
pp. 40 course pack. 
 
 
 
9.4 Stereographic Projection (Example) 
 
Pr. # 1:   Draw a plane with N 0oE, 30oW 
 
Sol.  1. Mark North & South 
 2. Draw the strike 

3. From West count 10, 20, 30 (dip.) 
4. Draw line 

 
 
Pr. #2:   Draw a plane with N 30oE, 70oN 
 

1. Strike ……………. 
2. Rotate yellow until strike coincide NS 
3. 70o 

 
 
Pr. #3:   Project a line plunging 40o towards N 30oE 
 
 
Pr. #4:  Line plunging 20o toward N 20oW 
 
 
Pr. #5:  Determine the strike & dip of plane containing both lines in # 3 & # 4. 
  Rotate until → → they meet one great cicle. 
 



Sol.  dip = 41o 
 strike = N 44oW 
 
 
Pr. #6:   Find the direction and plunge of a line defined by the planes from # 1 & # 2. 
 
 strike = S 37oW 
 plunge = 20o 
 

a plane can be represented by a single point on the stereograph which is the tip 
of the normal. 

 
 
Pr. #7:   Find normals, n̂  to the planes from #1 & #2. 
 
 If dip = 0 ⇒  normal 
 
 If dip = 90o ⇒  normal 
 
 

∴  angle between plane & its normal = 90o 
 
∴  measure 90o from plane. 
 
 
-   1n̂  2n̂  
 
-   plane containing both normals. 

 
 
Pr. #8:   Rotate until they are same 
 
 
Pr. #9:   Normal of this plane is point  
 ⇒  Normal of intersection of two planes. 
 



Planes 
Lines 
Intersections 

 
 
 
Pr. #10:   Find the locus of lines making 20o with the first line of Pr. #3. 
 
 
 measure  20o 20o 
 
 
Find mid point, draw a circle. 
 
 
All lines meet circle is as 20o. 
 
 
 
* Another way 
 
 
1. Find angles between two lines 
 
 
 
 
 
 
 
H.W. #6 
 
Read Appendix #5 
 
 Do pr. #2, #3, #6. 
 



Application of stereo.net. 
 
1. Seismic 
 
 
 
 
 

Plot it in stereo.nets.    pp. 43 
 
 ⇒   Find the mechanism  pp. 44 

 
 
 
2. Geophysics     pp.46 
 
 
3. Str. geology 
 
 
4. Joint survey for large projects (tunnel, dam, …..) 
 
 -  Find strikes & dips 

-  Plot normals of planes into a stereograph  ≈ pp.48 
-  Superimpose over the net  pp. 42 
-  Find how many points at each triangle. 
-  Remove net 
-  Make contours on 
 map of ore-dominant joint pattern. 

 



 10.0  Discontinuous Rock 
 
-   see next table 
-   see Fig. 6.1  pp. 47  course pack. 
-   plotting joint on stereographic  pp. 48, 49 
 
 not only quantity, but also quality 
 joints of fault. 
       pp. 48 
 
 
10.1 Joint testing: 
 
a) Sampling:  if you see visible joint 
 core it with long core. 
 
b) Molding & casting: 
 
 
 
 
 
 
 
 
 Reconstruct joint geometry in the lab from plaster. 
 
 
 
10.2 Laboratory testing: 
 
a) direct 
 shear 
 test 
 
  
 Stress-strain dia:  see fig. 6.12 / pp. 50. 
 
 



CLASSIFICATION OF ROCK DISCONTINUITIES 
 

Name Typical 
Spacing 

Method for Identification Effects on Engineering 
Properties, Design 

Micr- fissures 1 mm – 1 cm magnifying glass 
or 
optical microscope 
 
Can’t be seen by usual 
naked eye. 

Reflected in E, ν, qu, 
etc. of laboratory size 
samples. May result in 
strength anisotropy.  

fissures 1 cm – 10 cm visible in hand samples Reflected in E, ν, qu, 
etc. of laboratory size 
samples. Control 
strength anisotropy. 
May influence 
development of failure 
planes. 

joints 10 cm – 10 m Clearly visible, usually 
planer discontinuities. 
Typically exist in two or 
more “sets”. Little to no 
previous movement 
observed along joints. 
May be weathered. 

Controls kinematics of 
bock motion. E, ν, qu, 
etc. of intact rock 
becomes almost 
irrelevant in stability 
analysis. Joint testing 
may be performed to 
determine φjoint and 
sjoint. Critical in slope 
stability, tunneling, etc. 

shears 1 m to 100 m Discontinuities along 
which previous movement 
has occurred due to minor 
faulting or interlayer slip. 
Easily identified by the 
offset or a zone of crushed 
rock. 

Could result in 
movements of large 
constructed facilities. 

faults 10 m to  
      100′s km 

Large, sometimes 
continental size 
discontinuities along 
which significant 
movement has occurred in 
the past resulting in 
changes to the structural 
geology. Often shown on 
maps of structural 
geology. 

Generally, a constructed 
facility will not induce 
movements, but is in 
potential danger due to 
movements of the fault. 

 



Stability 
 
• Constant normal force 
 

direct shear test with constant 
normal force. 

 
 
 
 
 
 
 
• Dilation partially restrained 
 
 
 
 
 
 
 
 Deformable material with known E ⇒ modeling the block. 
    more stiff than rock. 
 
This is a hard test.  But we can use simple shear test. 
 
See Fig. 5.17 pp. 51 To simulate actual …… 
 

-   from Fig. 5.17b we need ∆V = 0. 
 
    if we can allow initial deformation only. 
 
a :  normal force 
 
b :  normal & shear 
 
c :  normal & shear 

 
 
b) Triaxial test 
 
 ν + β  = 90o 
 

 βσ−σ+σ+σ=σ 2
3131d cos)(

2
1

)(
2
1

 

 

 βσ−σ=τ 2
31d sin)(

2
1

 



Or 4sin)( 2
313d σ−σ+σ=σ  

 
 4sincos)( 31d Ψσ−σ=τ  
 

∴  sample is difficult to obtain 
      can’t get similar cases. 

 
 
c) Multi stage testing 
 

rapidly increase σ3 as soon as joint 
begins slipping and repeat test. 
 
 
Result 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10.3 Strength Model for jointed rock 
 
1) Patton 1966:  (Bilinear) 
 

φu : friction angle of a smooth joint 
 
i  :  asperity angle 

 
          σT  tan (φu + i) 
@ σ  = σT   ⇒  Ip =   
          ST  + σT  tan φJ 
 

 equal  ⇒  
)tan)i((tan

S

Ju

J
T φ−+φ

=σ



residual frictional angle 
 
for intact rock 
 
 
Bi : …… due to riding asperity 
 
 
τp = σ tan (φu + i) if σ < σT  
 
τp = SJ + σ tan φjoint if σ > σT  
 
 

It can be shown that 
]tan)i([tan

S

uu

J
T φ−+φ

=σ   

 
but asperities are not regular. 

 
 
2. Ladonyi and Archambault (1970) 
 
 modification 
 

 
us

maxsus
peak tanv)a1(1

a)tanv()a1(
φ−−

τ+φ+−σ
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&
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 where as = % of area with asperities sheared 
  τmax = shear strength of the intact rock 
  σ = normal stress 
  v&  = dilancy rate 
 
      itanv =&  
 
 
 

 

o   if σ  →  0   ,  as = 0 and 
u

u
p tanv1

)tanv(
φ−
φ+σ

=τ
&
&

 

 

 
u

u
p tanitan1

)tani(tan
φ−
φ+σ

=τ  ⇒   τp = σ tan (φu + i) 

 



o    if σ  →  ∞   then  as  →  1.0 
 
 τpeak = τmax 
 
 
See fig. 6.14 pp. 52 
 


