
5.3 Stiff and Servo-Controlled Testing Machine 
 
 Relative stiffness:  stiffness of rock / stiffness of machine 
 

In soil mechanics testing, soils are generally much less stiff than the testing 
machine parts. 
 
But in rock testing, the strain that builds up in the platens may be greater than 
those in the rock. 
 
If the rock stiffness up on unloading is greater than that of the testing machine, 
the machine will “unstretch” more than the rock resulting in violent 
disintegration of the specimen. 
 
“Soft machine” :  machine with stiffness < stiffness of rock. 
 
 
 
 
 
Machine  (Figure drawing) 
 
 
 
 
Rock 
 
 
 
Loading to P1 to Pfailure, unloading to P2 (Jump) 
 
 
In Goodman’s text 
 pp. 77 
 
If kR > km ⇒ post peak 
 
behavior can’t be recorded. 
 
 

*  Remedies for a “soft” machine 
 

 i) reduce stiffness of rock:   
AE
PL

=∆   

  by decreasing rock cross-sectional area. Stiffness = 
L
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=
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ii) load stiff steel bars in parallel with rock. 
 
iii)  Can servo-control machine sense force and displacements in rock and 

machine, feeds information back into machine to more loading platen 
backwards. 

 
 (stress controlled machine) more cost than (strain control machine) 

 
 
5.4 Brazilian Split Cylinder Test:  (used for super collider/conductor project) 
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From elasticity theory: 
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-  prove by plugging into equilibrium equations: 
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Since d.cos θ = r 
 

 
d
P

r π
σ

2
=  @ any point in the circle 

 
This is for half space, but if the circle becomes a free surface (not tractions), 
the compressive force due to P must be balanced by tension forces.  (see 
Timoshinko & Goodier “Theory of Elasticity” Section 4.1) 

 



We can’t use point load for soft rock. 
 
⇒  ASTM specifies a radius for the frame for every core diameter. 
 
 
 
*  Note tensile strength is more than that from direct tensile test since crack opens 

more in direct tension 
    ⇒  strength reduced. 
 
*  This is the critical location where failure is initiated.  Ratio of compressive to 

tensile stress is 3:1. 
 
*  Mohr’s circle for Brazilian test. 
 
 
 
5.5 Flexural test: 
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5.6 Ring Shear Test 
 
 
 Direct shear test of rock 
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6.0 Stress-strain Behavior of Intact Rock 
 
6.1    Stress 
 

Scalar (temperature) 
   ↓ 
Vector :  3 components (load) 
   ↓ 
Tensor :  9 components 
 
 

o   Total stress tensor:   ij
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 σ  =  σh + σd   total stress = hydrostatic + deviatoric 
  
       total      hydrostatic     deviatoric 
 
 

a.  hydrostatic component (non-deviatoric, mean stress, dilational, 
   isotropic, spherical): 
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 where  δ ij = 1 if i = j 
       = 0 if I ≠ j 
 
 
b. deviatoric stress component 
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Example:  triaxial test 
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*  Read   pp 55-78,  179-187 
 
*  Do  problems #1, #4, #5,      pp 218  -  HW #2 
 
 
 Exam:   -  Closed book 
    -  Till today 
    -  ≈ 40 min 
 
o   σ = σh + σd 
 
 Why we break it see fig. pp. 69 text. 
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1. Concave up :  strain hardening 
 because micro cracks are closing (dilation) 
 ⇒ plastic permanent deformation with some rebound. 
 
2. Elastic 
 
  Elastic grain deformation  Pore-deformation 
       Grain compression 
 
 
3. Cracking : pore structure collapse 
 
4.      :   No peak load response 
 
 
----- 
Fig. 3.7 
 



Significance of deviatoric vs. non-deviatoric loading: 
 
*.  Deviatoric stress produces distortion and destruction, while non-deviatoric stress 
generally doesn’t. 
 
**.  Deviatoric loading is characterized by a “peak load” 
 
 
6.2 Strain, Volumetric strain and Dilation 
 
 Strain tensor: 
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 By definition, volumetric strain = kk
oV
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 In triaxial test   
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  Since    ν =  Poisson Ratio = -
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  Vo & εaxial can be measured  
  Measure ∆V : vol. of water in/out of chamber 
  Then calculate ν. 
 
Fig. 4.2.7  course pack pp19. 
 
When sample star expanding (Dilating) 
 
ν > .5  ??   violates elasticity theory. 



6.3 Elasticity 
 
 ε ij = {        }  σij  Constitutive equation 
 
(1) εI = {9×9} σI   i = 1,2,3, …9 
 
 81 elastic constants would be needed to fully describe the relationship between  

σ & ε. 
 
Are all 81 constants unique (different)? 

 
(2) By symmetry.   εxy = εyx  and  σxy = σyx   ….. 
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∴  we recognize that only 6 strain and 6 stress tensors are unique.  Number of 
constants reduces to 36. 
 

(3) Furthermore, it may be shown that a relationship between σyy and εxx is 
identical to that between σxx and εyy. 

 [from strain energy consideration, receproty theory] 
 
 ⇒  This reduces our # of constants to 36-15 = 21, for a totally anisotropic 

material. 
 
(4) If there are 3 mutually perpendicular directions of symmetry, the material is 

said to be orthotropic.  The number of constants is reduced to 9. [Wood is a 
good example] 

 
 Ex, Ey, Ez, νyx, νzx, νzy,  Gxy, Gyz, Gzx . 
 



(5) If we can assume that a material is “transversely isotropic” the # of constants 
is reduced to 5.  [stratified soil]/ 

 
 Note:  text used.      
 
         Ex = Ey  
         νzx = νzy 
         Gyz = Gxz 
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(6) If a material is totally isotropic: Ex = Ey = Ez 
 ⇒ only 2 constants   ν3y = ν3y = νxy 
      Gxy = Gxz = Gyz 
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81→36→21→9→5→2 
 

             Wood          Clay  Rock or clay 
                        Layered Clays     

 
text ⇒  Eq, 6,7    Eq. 6.9             Eq 6.1 
 
 
6.4 Some basic definition pertaining to stress-strain behavior: 
 
 1. Linearly Elastic material:   σ = Eε 
 
 
 
 
 
 2. Perfectly Elastic:  σ = f (ε) 
 
   E0 , Es, Et  (L, U, R) 
 
 
 
 3. Linear (but not elastic) 
 



4. Elastic 
 
 
 
 
5. Permanent Set or  
 Permanent Deformation = δ 
 
 δ = f(ε) 
 
            strain level 
 
 
6. Ductile state:  rock sustains permanent deformations without loosing 

its ability to resist load. 
 
 
 
7. Brittle sate:  condition in which the ability to resist load decrease with 

increasing deformation. 
 
 
 
 
 
 
 
 
 
 
 
8. Uniaxial compressive strength:  makes the transition from ductile to 

brittle behavior. 
 
 
9. Brittle to ductile transition pressure:  the confining pressure at which a 

rock will exhibit no brittle behavior. 
 
  See Fig. 3.9 / pp.21  pack. 
 



Ch. 7.0  Failure Theories for Rocks 
 
- Coulomb (1773) 
 
- Mohr (1900) 
 
- Griffith (1921) 
 
- Modified Griffith (1962) 
 
- Empirical Criteria 

 
 
 

7.1 Coulomb – straight line theory 
 
| τ | = σn tan φ + Si 
 
τ :  shear stress across a plane at a point at which 
      Strength failure occurs 
 
σn :  normal stress on the plane on which failure occurs 
 
φ :  angle of shearing resistance 
 
Si :  shear axis intercept 

 
 
 
7.2 Mohr :  general (not linear) 

 
| τ | = f (σn) 
 
Failure line doesn’t have to be a straight line. 
In fact, it is commonly concave downward. 

 



o   Coulomb criteria is a special case  
      of Mohr criteria. 
 
o   Mohr envelop is a tangent to Mohr circle. 
 
o   Mohr envelop can be plotted as a result of drawing 
     tangent to Mohr’s circles from different tests. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

- may not fit,  different tests 
 
 
o   Common relationships 
 

σ1, f = qu + σ3 tan2 (45 + φ/2) 
 
qu = 2 Si tan (45 + φ/2) 
 
 (See Appendix 4 (text) for derivation) 
 

2
1

q
S

u

i =  Cot (45 + φ/2) see Fig. 1.12. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.11. Elastic modulus of various rock grades as a function of the uniaxial 
compressive strength (after Kikuchi et al. 1982) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.12.  Cohesion value of various rock grades as a function of the uniaxial 
compressive strength (after Kikuchi et al. 1982). 
 



Max. stress ratio can also be determined: 
 

σ1f = qu + σ3 tan2 (45 + φ/2) 
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Fig. 1.11  (1982) 
 
This is known  1966 see Fig. 1.4 – igneous (course pack 
      1.5 – sedimentary 
       1.6 – metamorphic 
Classification system.  
 
Ex. B  M 
 
   high strength    average modulus ratio 
 
 
 
7.3 Griffith Brittle Crack Theory (1921) 
 

- take into account cracks (based on presence of tiny imperfection everywhere) 
- failure by continuation of cracks 
- failure by tension at crack tip 

 
He hypothesized that fractures caused by stress concentrations at the tips of minute 
cracks which pervade the material.  Fracture is initiated when the max. stress near the 
tip of the most favorably oriented crack reaches a value which is a characteristic of 
the material. 
 



σ1 > σ3 
 
 
 
 
 
 
 
 
 
 
*  Assume cracks are elliptical. 
 
 
1. σ1 , σ3 
 
2. σa , σb 
 
3. σt 
 
4. Cartezian coord.  →  elliptical coordinate 
 
       X , Y   R  ,  T 
 
 
 T = angle 
 
 
 
 
 X  =  
 
  
 Y = 
 
 
 
 
 
 at crack tip  R = Ro << 1 T = 0 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
@ crack tip  R = R0 << 1 
 
  T = 0 
 
 
x = c sin h R sin T 
 
y = c cos h R cos T 
 
 
Note:  if T = 0 and R << 1.0 
 
  x = 0 
 
  y = c (i.e. ½ crack length) 
 



5. At small Ro  →  σt (3.8) 
 
 
6. Max & min.  σt ⇒ (3.10) 
 
 
7. Plug 3.5 & 3.6 into 3.9 ⇒ (3.10)  
 
 

8. Find  θcritical to maximize σt  ⇒ 
θ∂
σ∂ t  ⇒  (3.11) 

 
 
9. θ = 90o into (3.10) ⇒ (3.13) 
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 From 3.14 
 
 (σ1 - σ3)2 = 8 To (σ1 + σ3) when σ1 + 3 σ3 > 0 (1.a) 
 
 σ3 = - To when σ1 + 3 σ3  < 0   (1.b) 
 
 
-  look at a representation in σ1-σ3 plane: 
 



-  look at a representation in p-q plane: 
 
 Let  p = ½ (σ1 + σ3) 
 
  q = ½ (σ1 - σ3) 
 
Then Eqn. (1.a) may be written as 
 
 (2q)2 = 8 To 2p when  4p – 2q > 0 
 
   or q2 = 4 To p  when 2p > q   (2.a) 
 
 
And eqn. (1.b) becomes 
 
 p-q = - To 
 
 q = p + To  when 2p < q   (2.b) 
 
 



(σ1 - σ3)2 = 8 To (σ1 + σ3) for σ1 + 3 σ3 > 0 
 
 σ3 = - To  for σ1 + 3 σ3 < 0 
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Griffith Criteria: 
 
for  2 p > q  q2 = 4 To p 
 
for 2 p < q  q = p + To 
 
Note:  in a p-q diagram, the line failure envelope connects the tops of Mohr circles. 
 
Note:  The Mohr’s circles for all points of the line AB touch at point A 
 
 

• To find the Mohr envelope for points on the parabola BC, we have to find the 
envelope of the circles with center (p,o) and radius q.  The equation for such a 
curve is: 

 
f (p) = (σ - p)2 + τ2 = q2 
 
(σ - p)2 + τ2 – 4 To p = 0  ------ (3) 

 

Since 0
p
f

=
∂
∂

 (i.e. zero slope)  at the top of circle 

 
Then from (3)   ⇒ 2 (σ-p) (-1) + 0 – 4 To = 0 
 
   - 2 (σ-p) – 4 To = 0 
 
   - 2 σ + 2 p – 4 To = 0 
 



 - σ + p – 2 To = 0 
 
 p = σ + 2 To    ------ (4) 
 
Combining (3) & (4), 
 
 [σ - (σ + 2 To)]2 + τ2 – 4 T0 (σ + 2 To) = 0 
 
 4 To

2 + τ2 – 4 To σ - 8 To
2 = 0 

 
  τ2 = 4 To (σ + To)  ------ (5) 
 
This is Griffith theory for brittle crack. 
 
 shear stress = f (normal, another term) 
 

σ τ 
0 2.0 To 

2 To 2.8 T0 
3 To 4.0 To 

 
 
 
For unconfining comp. stress 
 
σ3 = 0 
 
(σ1 - σ3)2 = 8 To (σ1 + σ3) 
 
 σ1

2 = 8 To σ1  ⇒ σ1 = 8 To or qu = 8 To 
 

8
T
q

o

u =  is too low compared to actual exp. Results. 

 

Actually  
o

u

T
q

> 8 because of 3-D problem 

 



3-D Griffith Theory yields: 
 
 (σ2 - σ3)2 + (σ3 - σ1)2 + (σ1 - σ2)2 = 24 To (σ1 + σ2 + σ3) 
 
For uniaxial unconfined condition,  (σ2 = σ3 = 0), we end up with: 
 
 σ1

2 + σ1
2 = 24 To σ1 

 
 = σ1

2  = 24 To σ1  σ1 = 12 To or qu = 12 To 
 

as a rule of thumb:  10~
T
q

o

u =  

 
 
Table 3.1 
 
 
*  Note eqn (5) doesn’t account for fraction in case the cracks closed up under 
hydrostatic pressure. 
 
**  Modified Griffith Theory (Mclintock & Walsh, 1962) 
 
They allowed for fraction along the surface of closing cracks. 
 
 To = ¼ σ1 [(tan2 φ + 1)1/2  - tan φ] – ¼ σ3 [(tan2 φ + 1)1/2  + tan φ]. 
 
 max. shear stress: τ = 2 To + σN tan φ 
 
 
 
 
 
 
Note:  this suggests that 
 
 Si = 2 To 
 



5- Empirical Criteria of Failure:  best way for rock. 
 

o do tests 
o draw best failure envelope 

 
*  draw a failure envelope tangent to experimentally obtained Mohr Circles. 
 
1. Murrel (1965): 
 
 σ1 = qu + b σ3

m 
 
 where b & m are constants. 
 
2. Bieniawski (1974)  proposed a similar expression: 
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 N and M are constants for a given rock, and employ σ3 = To tension  

cut-off. 
 

3. Johnston (1985) proposed: 
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S = 1.0 for intact rock. 
 
Note:  1. for unconfined compression (σ3′ = 0)  ⇒  σ1n′ = 1.0. 
 
 2. for uniaxial tensile strength  (σ1′ = 0 , σ3′ = σt′) 
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Note: If B = 1.0  (for over-consolidated clays  B = 1.0) 
 
  σ1n′ = (M σ3n′ + 1)1.0 
 

 If  
φ−
φ+

=
sin1
sin1

M  we get Mohr-Coulomb theory exactly. 

 
 
 i.e. B = 1.0  ⇒  envelope is st. line 
 
  if B ≠ 1.0   ⇒  envelope is not st. line 
 
 
Paper: 
 
1. How he choose data 
 
2. Criteria for accepting data :  -  uniaxial tensile 
        -  Brazilian result  (Fig. 2.) 
        -  triaxial test 
 
3. Eliminate some data  →  if splitting instead of shear.  (Fig. 1-a) 
 
4. Fig. 3  ⇒  B = f (confining pressure) 
 
  B = 1 - .0172 (log σc′)2 
 
        where  σc′ in kPa. 
 
  B is independent of rock type. 
 
5. Fig. 4  M is f (confining pressure + rock type) 
 

a. M = 2.065 + 0.170 (log σc′)2 :  dolomite, limestone, chalk. 
 
b. M – 2.065 + 0.231 (log σc′)2 :  shale, slate, mudstone, clay. 
 
c. M = 2.065 + 0.270 (log σc′)2 :  quartzite, sandstone. 
 
d. M = 2.065 + 0.659 (log σc′)2 :  coarse grained, igneous & metamorphic. 

 



 

-  Fig. 9  σc′ = f 
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-  Table 3  σc′/σt = 24.3 to 2.9 
 
 The softer the rock the lower the σc′/σt ratio. 
 
 
 φ = 20o – 60o  Table 3.3 / pp. 83 
 
  


