53 Stiff and Servo-Controlled Testing Machine

Reative stiffness; stiffness of rock / stiffness of machine

In soil mechanics testing, soils are generally much less stiff than the testing
machine parts.

But in rock testing, the strain that builds up in the platens may be greater than
those in the rock.

If the rock stiffness up on unloading is greater than that of the testing machine,
the machine will “unstretch” more than the rock resulting in violent
disintegration of the specimen.

“Soft machine” : machine with stiffness < stiffness of rock.

Machine (Figure drawing)

Rock

Loading to P; to Prgjure, Uunloading to P» (Jump)

In Goodman' s text
pp. 77

If kr > km P post peak

behavior can't be recorded.

* Remedies for a“soft” machine

) reduce stiffness of rock: D= P
AE

i : . P _AE

by decreasing rock cross-sectional area. Stiffness = B = _L



i) load tiff steel barsin parallel with rock.

i) Can servo-control machine sense force and displacements in rock and
machine, feeds information back into machine to more loading platen
backwards.

(stress controlled machine) more cost than (strain control machine)

54  Brazilian Split Cylinder Test: (used for super collider/conductor project)

- 2P
" pdt
From elasticity theory:
- +2_P Cosq
p r
S, =t,, =0

S, =— @ any point in thecircle

Thisisfor half space, but if the circle becomes a free surface (not tractions),
the compressive force due to P must be balanced by tension forces. (see
Timoshinko & Goodier “Theory of Elasticity” Section 4.1)



We can’t use point load for soft rock.

P ASTM specifies aradius for the frame for every core diameter.

* Note tensile strength is more than that from direct tensile test since crack opens
more in direct tension
P strength reduced.

* Thisisthe critical location where fallureisinitiated. Ratio of compressive to
tensile stressis 3:1.

* Mohr'scircle for Brazilian test.

55 Flexural test:

PL
Mma( = %)d%i = F

M, C d
St: , cC=—
[ 2
_pd*
64
PL d
_ 6 2_16 PL
St T o T o 3
pd* 3 pd
64
S :16i where P = load at failure



5.6 Ring Shear Test

Direct shear test of rock

i P _ 2P
max 2 d2
2p86—jg P
e2g
area




6.0  Stressstrain Behavior of Intact Rock
6.1 Stress
Scalar (temperature)
Vector : 3 components (load)
Tensor : 9 components
ésxx 1:xy tng iﬁll 512 S13l;I
0 Tota stresstensor: dw S teg = 2521 S 5 523H=s~”-
gzx zy SZZH @31 S32 S33@
S = Sh+Syq total stress = hydrostatic + deviatoric
total  hydrostatic deviatoric
a hydrostatic component (non-deviatoric, mean stress, dilational,
Isotropic, spherical):
éﬁ 11 +S 22 +S 33 0 O g
¢ ° S, +S ,, +S l} 1
é a ~
Sh:é 0 11 22 33 0 a:—skkdij
é 3 a 3
é 311+522+S33[j
e 0 0 a
é 3 i
where djj = 1ifi=]j
=0ifl?t
b. deviatoric stress component
&e S, +S,,+S 4,0
@S 1 - = 2 = S S 13
& S
2 & S, +S,, S5, 0
Sy =g S 9522 = 2 = S
= e 3 [}
g ® S,;+tS,, *S
? S S 11 22 33
g 31 32 (e;S 33 3



Example: triaxial test
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= (— + 2P
P o oY &Rt
ea u é
sij=€0 p OU=g
€ o pU g
& Hg 0

0

1P
Z(—+2pP
3G 2P

@ D> D> D> D> ('DT
w

0



* Read pp55-78, 179-187

* Do problems#1, #4,#5, pp218 - HW #2

Exam: - Closed book
- Till today
- » 40 min

O S =ShL+Syg

Why we bresk it see fig. pp. 69 text.

Dv _
V_ =€, 1€, +€5

o

S :Sll+522+s33

mean 3

Concave up : strain hardening
because micro cracks are closing (dilation)
P plastic permanent deformation with some rebound.

Elastic
Elastic grain deformation Pore-deformation
Grain compression
Cracking : pore structure collapse

No pesk load response



Significance of deviatoric vs. non-deviatoric loading:

*. Deviatoric stress produces distortion and destruction, while non-deviatoric stress
generally doesn’t.

** Deviatoric loading is characterized by a “peak load”

6.2 Strain, Volumetric strain and Dilation

Strain tensor:

i&ll 912 Y3 U éell €, €5 U
u_e u
%21 €5 gzsu - éezl €2 ezsu

@31 g32 eBS H @31 e32 eBSH

By definition, volumetric strain = Dv €4

[o]

Intriaxial test e, =€, = D—LL
od
d

Clateral — €22=€33 =

ﬂ = eaxial + 2 eIateral
\V/

(o]
. H H elateral
Since n = Poisson Ratio = - ——=
eaxial

DV
\' —=e_.., (1-2n
V axial ( )

o]

Vo & e4ia can be measured
Measure DV : vol. of water in/out of chamber
Then calculate n.

Fig 4.2.7 course pack ppl9.

When sample star expanding (Dilating)

n>.5 ?? violates elasticity theory.



6.3 Eladticity
ej ={ } si Constitutive equation
(1) E|:{9’ 9}S| i:1,2,3,...9

81 elastic constants would be needed to fully describe the relationship between
s &e.

Are dl 81 constants unique (different)?

2 By symmetry. €&y =6x ad Syy =Syx .....
S
e u é X Xy le_,j
e €y €y & Sw Sy Sy
8e3x €3y €, ésgx 3y SSZH

\ werecognize that only 6 strain and 6 stress tensors are unique. Number of
constants reduces to 36.

3 Furthermore, it may be shown that a relationship between syy and eyy is
identical to that between sxx and eyy.
[from strain energy consideration, receproty theory]

P Thisreduces our # of constants to 36-15 = 21, for atotally anisotropic
material.

4 If there are 3 mutually perpendicular directions of symmetry, the materia is

said to be orthotropic. The number of constantsis reduced to 9. [Wood isa
good exampl €]

EX1 Ey, EZ! nyx, nZX! nzy, GXya GyZ) GZX .



(5) If we can assume that a material is “transversely isotropic” the # of constants
isreduced to 5. [stratified soil]/

Note: text used.
E<=E
Npx = Ny
Gyz =Gz
E
G,=——
Y21+ 2,)
(6) If a material istotally isotropic: EE=F=E&
P only 2 constants N3y = N3y =Ny
ny =Gy = C':‘yz
Sll + 822 + S33
E Smain 3
K = = =
3(1- 27) 7_V STR PR
VO
81® 36® 21® 9® 5® 2
Wood Clay Rock or clay

/ Layered Clays
N
textb Eq, 6,7 Eq.6.9 Eq®.1

6.4  Some basic definition pertaining to stress-strain behavior:

1 Linearly Elastic materia: s = Ee

2. Perfectly Elagtic: s =f (e)

Eo, B E(L,UR)

3. Linear (but not elastic)



Elastic

Permanent Set or
Permanent Deformation =d

d =f(e)

strain level

Ductile state: rock sustains permanent deformations without loosing
its ability to resist load.

Brittle sate: condition in which the ability to resist load decrease with
increasing deformation.

Uniaxial compressive strength: makes the transition from ductile to
brittle behavior.

Brittle to ductile transition pressure: the confining pressure at which a
rock will exhibit no brittle behavior.

SeeFig. 3.9/ pp.21 pack.



Ch. 7.0 Failure Theoriesfor Rocks

7.1

1.2

Coulomb (1773)

- Mohr (1900)

- Griffith (1921)

- Modified Griffith (1962)

- Empirical Criteria

Coulomb — straight line theory
[t |=snptanf +S§

t . shear stress across aplane at a point at which
Strength failure occurs

Sn: norma stress on the plane on which failure occurs
f . angle of shearing resistance

S : shear axis intercept

Mohr : genera (not linear)

|t [=f(sn)

Failure line doesn’t have to be a straight line.
In fact, it is commonly concave downward.



0 Coulomb criteriais a specia case
of Mohr criteria

0 Mohr envelop is atangent to Mohr circle.

0 Mohr envelop can be plotted as aresult of drawing
tangent to Mohr’s circles from different tests.

- may not fit, different tests

o Common relationships
S1f=Qu+Sstar (45 +f/2)
Qu=2Stan (45+1/2)
(See Appendix 4 (text) for derivation)

S

q_ Cot (45 +f /2) seeFig. 1.12.

N



Fig. 1.11. Elastic modulus of various rock grades as a function of the uniaxial
compressive strength (after Kikuchi et al. 1982)

Fig. 1.12. Cohesion value of various rock grades as a function of the uniaxial
compressive strength (after Kikuchi et al. 1982).



Max. stress ratio can aso be determined:

S1f = O + S3 tat (45 +  /2)

1= du 158 4P a5+112)

S1f S 1f

1= 2“ +K tarf (45 + £ /2)
1f

(@]

x
K o :él- Y > co? 45+ 12)
Sit g

Fig 1.11 (1982)

Thisisknown 1966 seeFig. 1.4 —igneous (course pack
1.5 — sedimentary
1.6 — metamorphic

Classification system.
Ex. BM

high strength  average modulus ratio

7.3 Griffith Brittle Crack Theory (1921)

- takeinto account cracks (based on presence of tiny imperfection everywhere)

- failure by continuation of cracks
- failure by tension at crack tip

He hypothesized that fractures caused by stress concentrations at the tips of minute
cracks which pervade the material. Fracture is initiated when the max. stress near the
tip of the most favorably oriented crack reaches a value which is a characteristic of

the material.



S1>S3

* Assume cracks are elliptical.

1. S1,S3
2' Sa; Sb
3. St
4, Cartezian coord. ® édliptical coordinate
X, Y R, T
T =angle
X =
Y =

at crack tip R=R,<<1 T=0



@cracktip R=Ry<<1

T=0

x=csnhRsnT

y=ccoshRcosT

Note: f T=0andR << 1.0
Xx=0

y = c (i.e. Yacrack length)



5. AtsmdlR, ® s; (3.8)

6. Max & min. S p (3.10)

7. Plug35& 3.6into 3.9 b (3.10)

8. Find Quitica to maximizes; b

s
L p (311
19 310

9. q=90%into (3.10) P (3.13)

Griffith Criteria (3.14)

From 3.14
(51-53F=8To(S1+S3) Whens;+3s3>0 (1.3

S3=-Tg whens;+3s3 <0 (1.b)

- look at arepresentation in s 1-S3 plane:



- look at arepresentation in p-q plane:
Let  p=%(s1+s3)
q="2(s1- S3)
Then Egn (1.8) may be written as
(20)>=8T, 2p when 4p-2q>0

o °=4Top when 2p>q

And egn (1.b) becomes
p-g=-To

g=p+To when 2p<q

(2.8)

(2.b)



(51-53°=8To(S1+s3) for s;+3s3>0

Sa3=-T, for S1+3s3<0
1
:E (S,+S3)
1
q :E(Sl' 33)
Griffith Criteria:
for 2p>q P=4Top
for 2p<q g=p+To

Note: inap-q diagram, the line failure envelope connects the tops of Mohr circles.
Note: The Mohr’s circles for al points of the line AB touch at point A
To find the Mohr envelope for points on the parabola BC, we have to find the

envelope of the circles with center (p,0) and radius g. The equation for such a
curveis

f()=(s-p°+t>°=¢

(s-p?+t?-4Top=0 - 3
, m ., .
Since ‘ﬂ_ =0 (i.e. zero dope) at thetop of circle
Y

Thenfrom (3) P 2(s-p)(-1)+0-4T,=0
-2(s-p—-4T,=0

-25+2p-4T,=0



-S+p-2T,=0
p=s+2T, = (4)
Combining (3) & (4),
[S-(5+2T)2+t?=4To(s +2Ty) =0
4T° +1°-4Tos-8T, =0
t°=4To(s +To) - ®)
This is Griffith theory for brittle crack.

shear stress = f (normal, another term)

S t

0 20T,
2T, 28Ty
3T, 40T,

For unconfining comp. stress

s3=0
(S1-5S3/=8To(S1+S3)

$:°=8ToS1 b s1=8T, orqu=8T,

— =8 istoo low compared to actual exp. Results.

Actually ?_—“ >8  becauseof 3-D problem

(]



3-D Giriffith Theory vidlds:

(Sz - 83)2 + (83- 81)2 + (Sl- 52)2 =24T, (S]_ +So + 83)
For uniaxial unconfined condition, (s2 =s3=0), we end up with:
812+512:24T081

=5 =24T,S1 s1=12T, or Qu=12T,

as arule of thumb: _?_—” =10

o]

Table3.1

* Note egn (5) doesn’t account for fraction in case the cracks closed up under
hydrostatic pressure.

** Modified Griffith Theory (Mclintock & Walsh, 1962)

They allowed for fraction along the surface of closing cracks.

To=Vasy[(taf f + 1)Y2 -tanf] —Vass[(taf f + )2 +tanf].

max. shear stress: t=2To+sntanf

Note: this suggests that

S=2T,



Empirical Criteria of Failure: best way for rock.

0 dotests
0 draw best failure envelope

* draw afailure envelope tangent to experimentally obtained Mohr Circles.

1.

Murrel (1965):
s1=qu+bss"
where b & m are constants.

Bieniawski (1974) proposed a similar expression:

.. .M
as, 0 s, 0
li:1+N Si

v @ g

N and M are constants for a given rock, and employ s3 = T, tension
cut-off.

Johnston (1985) proposed:

Sy = C— S * s9
e [%]
where s, =% - =S¢
du
. s,
S 3n = —
4y
S= 1.0 for intact rock.
Note: 1. for unconfined compression (s3¢=0) P s1,¢=1.0.
2. for uniaxia tensile strength (s1¢=0, s3¢=59

t



Note:

fB=1.0 (for over-consolidated clays B = 1.0)
S1nt= (M S3 ¢+ 1 10

If M= ﬂ we get Mohr-Coulomb theory exactly.
1-anf
i.e. B=10 b envelopeisdt. line

ifB1 1.0 b envelopeisnot <. line

How he choose data
Criteriafor accepting data  : - uniaxial tensile
- Brazilian result (Fig. 2)
- triaxial test
Eliminate some data ® if splitting instead of shear. (Fig. 1-a)
Fig. 3 b B =f (confining pressure)
B=1-.0172 (log s 9>
where s¢in kPa.
B is independent of rock type.
Fig.4 M isf (confining pressure + rock type)
M =2.065 + 0.170 (log s 9* : dolomite, limestone, chalk.
M —2.065 + 0.231 (logs0? : shae, Sate, mudstone, clay.

M = 2.065 + 0.270 (log s.0° : quartzite, sandstone.

M = 2.065 + 0.659 (log s 9? : coarse grained, igneous & metamorphic.



Fig 9 sﬂ:—faglC rocktypeg
' e ;

- Table3 sc¥st =24.3102.9

The softer the rock the lower the s s ratio.

f =20°-60° Table 3.3/ pp. 83



