1.1.3 Clay Minerals

- Weathering of fedspar + mica
- Small particle size \rightarrow large surface area per unit mass
- Have residual (-ve) charge
- Plastic behavior
- Groups * kaolinite
 - * montmorillonite
 - * illite
 - * palygorskite
 - * chlorite
 - * vermiculite
 - * halloysite
- Clay layer-lattice structure
- (layer silicates)
- o understand properties

structure _____ Octahedral unit

- <u>T.</u> 4 oxygen (or hydroxyls) enclosing a <u>silicon</u> atom
 - Combine into a <u>sheet</u> structure
 - Each oxygen in the base is <u>shared</u> by two tetrahedral
 - Tips are hydroxyls in a silica <u>sheet</u>
- O. o Aluminium iron, or magnesium atom enclosed by 6 hydroxyls
 - Combined into sheets

Spacing between T & O sheets

- Small
- Link via mutual oxygen or hydroxyl ions
- Alternate

A. <u>Two-layer lattice:</u>

- 1. <u>Kaolinite:</u>
- alternate T & O
- a series of units linked together to form stacks
- L&t

Table 1.3

- hydrogen bonds between layers \rightarrow strong
- stable \rightarrow water can't enter between sheets to expand unit cells
- @ water, some hydroxyls dissociate & lose hydrogen atoms → (-ve)
- low -ve charge

2. <u>Halloysite:</u> • si

- similar to Kao
- more randomly packed
- may be separated by a single molecular layer of water
- $\bullet \ \ \text{with water} \ \rightarrow \ \ \text{Tube} \ / \ \text{rod}$
- no water \rightarrow plate

B. Three-layer lattice

1. Montmorillonite: • 2T + 1O

O: - al, Fe, Mg, or comb.

T: some \underline{Si} (< 15%) may be replaced by Al

 \Rightarrow isomorphous substitution

 \Rightarrow (-ve) charge

Cations in the water (Na⁺, Ca⁺⁺, K⁺): attracted to satisfy the charge

- particle: stack of units
- bond: vander Waals forces mutual attraction for the exchangeable cations
- ⇒ weak → water can enter between sheets → expansion * swelling & shrinkage (wetting) (drying) --- seasonal rainfall
- Engineering properties → size, shape, surface area, -ve charge
 Particle orientation Flocculated (edge-to-face) Natural
 Dispersed (face-to-face)

$F \rightarrow D$ by sodium <u>hexametaphosphate</u>.

- * plasticity of clay-water mixture --- clay type
- * cohesion : internal tension (interparticle attractive forces) at low

* Plasticity Index (PI)

* Activity = $A_c = \frac{PI}{clay \ content} \implies colloidal \ behavior$ (% of clay < 2 μ)

size $\downarrow\,$, $\,$ surface forces $\uparrow\,\,$ (specific) surface area $\uparrow\,\,$

* specific surface = $\frac{\text{surface}}{\text{unit mass}}$ (SS)

 $\begin{array}{cc} \text{Mont.} & \text{SS} \\ & 800 \text{ m}^2/\text{g} \end{array}$

$\gamma_w \!= 9.81 \ kN/m^3$

$$= 62.4 \text{ Lb/ft}^3 \text{ (pcf)}$$

- $g = 9.81 \text{ m/sec}^2$ gravitational acceleration
 - $= 32.2 \text{ ft/sec}^2$

- 1.3 Soil profile
- <u>Def</u>: Soil profile: vertical section through a soil deposit, showing thickness and sequence of individual soil strata.

1.3.1 Terminology

- granular (cohesion)	ils - gravel - sand	
- fine-grained soils	-	silt clay - cohesive
- organic soils	- - -	peat muck organic silt organic clay

Basic Soil Names:

	75 mm Gravel 4.75 mm Sand	
AASH	ТО	0.075
	Silt	
.002	silty clay	can't be seen by unaided eye
	Clay	plasticity
	Particle: <u>Coarse</u> o Size range o Color o Homogeneity	
	 <u>Fine</u> Plasticity Consistency 	

o Sensitivity

o w

- Fills : man-made deposits
 - proper placement
 - random

1.3.2 Soil Profile from Site Exploration

- physical properties
- soil profile (idealized)
- soil exploration reconnaissance
 - boring lab tests
 - field tests
- soil investigation program Depth
 - #
 - Location
 - Sample
- groundwater level

void ratio =
$$e = \frac{V_v}{V_s}$$

porosity,
$$n = \frac{V_v}{V} * 100\%$$

degree of saturation,
$$S_r = \frac{V_w}{V_v} * 100\%$$

water content = w =
$$\frac{W_w}{W_s} * 100\%$$

specific gravity =
$$\gamma_s / \gamma_w$$

3.4 Consistency Limits (clay)

LL PL SL	
 LI P±	
А	

3.5 Organic

3.6 Soil classification

- 1. USCS
- 2. AASHTO

CH. 3

Index Properties of Soils

- water content $w = \frac{M_w}{M_s} * 100$
- capillarity
- 3.2 Size, shape & packing of soil particles
- 3.3 Phase relationships

 $g_{w} = \frac{W_{w}}{V_{w}} \quad \text{unit weight} = \text{density } * \text{ gravitational acceleration}$ $= 9.81 \text{ m/sec}^{2}$ $= 32.2 \text{ ft/sec}^{2}$ $g_{\text{solid}} = \frac{W_{s}}{V_{s}}$ $\gamma = W/V$ $\gamma_{\text{sat}} = W/V \quad , \qquad V_{a} = 0$ $\gamma_{\text{dry}} = W_{s}/V \qquad W_{w} = 0$

$$\gamma' = \gamma_{sat} - \gamma_w$$

 $\rho = \text{density} = \gamma/g$