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8.6 Thin-Walled Pressure Vessels. A pressure vessel can be
thought of as a closed surface in three-dimensional space with a’ finite
thickness . Customarily, the closed surface is a surface of revolution; that
is, it is a surface obtained by rotating a plane curve called the generating

- curve about a fixed axis called the symmetry axis. For example, a right- y
circular cylinder is obtained by rotating the straight line x = a of Figure

8-18a about the y axis. A spherical surface is obtained by rotating the ’
circular arc of Figure 8-18b about the y axis. Ve
When the ratio of the wall thickness to the radius of a cylindrical or - a x
spherical pressure vessel is less than about 1/10, the pressure vessel is said
to be thin. The stress distribution over the thickness of such a thin-walled *

pressure vessel is essentially uniform. Conseguently, a spherical or cylindri-
cal pressure vessel behaves like a thin membrane with a small thickness;
that is, no bending - of the walls occurs. fFigure 8-18

Thin-walled cylinders. Figure 8-19a shows a right-circular cylin-
der of thickness  and internal radius R subjected to an internal pressure p.

Figure 8-19b shows a free-body diagram of a finite length of the
cylinder. From equilibrium of forces,

0 = 204t
where
Q = p(2RE)
Thus
’ R H
o= (-9

Note that the force Q developed by the internal pressure is simply the
pressure times the projected area of the cylindrical segment onto the dia-
metric plane. Equation (8-9) permits the calculation of the‘circumferential
or the so-called hooE stress in a thin-walled cylinder. S—

(b) Free-body diagram
required to determine the

Figure 8-19c shows a free-body diagram that can be used to calculate circumferential normal stress
the Jongitudinal normal stress in a thin-walled cylinder. Axial force equilib-
rium gives

(2@Rto, = Q
where

- 2
0 = aRp (c) Free-body diagram
required to determine the

Thus longitudinal normal stress

o= (8-10)

figure 8-19

Observe that, for cylindrical pressure vessels,

‘o, = 200 - (8-11)



The circumferential and longitudinal stresses are shown on a differ-
ential element on the surface of the cylinder in Figure 8-19a. Note that,
because of the symmetry of the pressure distribution, there is no angular
distortion of the element, and consequently the shearing stresses on this
element are zero. Consequently, o, and o, are principal stresses.

Thin-walled spheres. Thin-walled spherical pressure vessels can be

analyzed in a manner analogous to that used to analyze thin-walled cylin- -

drical pressure vessels.

Figure 8-20 shows the portion of a spherical pressure véssel that has
been obtained by cutting the sphere along a great circle. Denote the radius
and thickness of the sphere by R and ¢, respectively.

Equilibrium of forces yields

QmRtyo. = Q
where
Q = mRp

Thus

(8-12)

Here again, the concept of projected area has been used. Now, cutting the
spherical surface along any other great circle leads to the same free-body
diagram which, in turn, leads to Eq. (8-12). We conclude that the normal
stress in a spherical pressure vessel is the same in all directions. This
situation is shown on a differential element of material at the surface of the
spherical vessel shown in Figure 8-20.

The analysis given here shows that a sphere is an optimum shape for
an internally pressurized closed vessel. The maximum normal stress in a
cylindrical vessel is twice that of a spherical vessel for the same internal
pressure and the same R/t ratio.
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EXAMPLE

A cylindrical tank 5 ft in diameter is made from steel plate ¥-in. thick and is
used to store a certain gas under pressure. Determine the maximum pressure the
tank can resist if the allowable stress is 20,000 psi in tension.

SOWUTION The maximum normal stress in the cylindrical pressure vessel
is given by the formula
o, = 28 (a)
t
Because ¢, is the maximum normal stress in the cylinder, it cannot exceed 20,000
psi. Consequently,

30
20,000 = 222
3
4
or
Pmax = 500 psi (b)

Of course, the cylindrical tank has ends. They can be flat, hemispherical,
or some other shape. Flat ends are apparently the least desirable because incom-
patible geometric deformations at the juncture are most pronounced in this case.
This incompatibility is present for other ends also. Thus there will always be
additional local stresses developed at the juncture. In the simple example given
here, these local stresses were not taken into consideration.

Figure 8—20



