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Effect of structural defects on the strength and damping properties
of a solid material
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Abstract

In material sciences solid materials are known to be more or less dispersive, i.e., the Modulus of Elasticity, MOE, and the loss
factorη are frequency dependent. Furthermore, these two parameters are not totally independent of each other as their frequency
variations exhibit some interrelationship. Early studies have revealed that the elasticity and damping properties of wood, unlike
many of other solid materials, start to show some frequency dependence already at a few KHz and that these variations depend
among others on the species, the drying process, and the size of the specimen. In the present study the variations of the MOE
and the loss factor are studied in terms of the number of defects in a wooden element. To this end an increasing number of
holes is drilled in a wooden beam, and the major resonance frequencies for the longitudinal mode of vibration are localised on
the frequency response curve permitting the determination of the MOE andη. The loss factor is evaluated by means of a room
acoustical technique using the concept of reverberation time. A refined procedure permits to evaluate in an efficient manner the
reverberation time from a single measurement of the impulse response. This latter is also shown to be easily assessed through the
use of a cross-correlation operation between the response signal of the system and the input signal to it, this latter being taken as
a random broadband noise. As an application, these concepts are used for the study of a wooden beam, and the results obtained
for the longitudinal mode of vibration are presented and discussed. It is found that the MOE andη values are dependent on
the number of defects present in the test sample, and that for an increasing number of these defects the MOE’s value decreases
steadily whereas the loss factor increases, although to a lesser degree. Some possible explanations of the phenomena underlying
such behaviour are addressed and discussed.
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1. Introduction

It is well known that all solid materials may be characterised by both elastic and damping properties. The elasticity of a
material is exhibited by the fact that the action of a stress is accompanied by a strain in a sample of the material. In the limit of
linear behaviour, elasticity is defined in terms of stressσ and strainε which are related to each other through Hooke’s law by
means of the modulus of elasticity, MOE, denoted byE.

σ =Eε. (1)

Damping on the other hand is the ability of a material to dissipate vibration energy into heat. Usually, damping is
characterised by the loss factor, often denoted byη, and which is defined as the ratio of lost energy to the vibratory reversible
energy during one cycle of vibration, i.e.:

η= 1

2π

Wl

WR
, (2)
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whereWl andWR are the lost (heat) and the mechanical energies respectively (Cremer and Heckl, 1988). Due to its importance
in noise and vibration control, and in the prevention of fatigue in structural elements, the study of damping in materials has been
given some attention, and several mathematical models have been proposed to describe it (Bert, 1973; Crandall, 1973; Lazan,
1968; Nashif et al., 1985). For some solid materials, like polymers, the dynamic properties are frequency and temperature
dependent, and experimental studies reveal moreover that the variation with frequency of the MOE andη are in fact dependent
on each other. For other solid materials like for instance steel, concrete and plexiglass, the frequency variation of the MOE
andη is not very obvious, for the simple reason that the changes in the dynamical properties of these materials start to exhibit
themselves rather in the ultrasonic frequency range as compared to the audio frequencies for polymers (von Nöll, 1971).

2. Theoretical background

Both the elastic and the damping properties of all solid materials are to some extent dependent on frequency, and a common
feature of the dynamic MOE is that its value increases with frequency. Moreover, experimental data on organic polymeric
materials show that the curve of the frequency variation of the MOE passes through an inflection point at about the same
frequency when the loss factor goes through a maximum (Ferry, 1980). These frequency dependencies are not specific to only
organic viscoelastic materials but are in general valid for any solid real material, regardless of the actual damping mechanism.
The linear dynamic elastic and damping properties of materials can be together characterised in the notion of complex MOE.
Hence ifEd andEl are respectively the real and imaginary parts of the complex modulus of elasticity, andω is the angular
frequency, then:

E = σ(ω)

ε(ω)
=Ed(ω)+ jEl(ω)=Ed(ω)

(
1+ jη(ω)) and η(ω)= El(ω)

Ed(ω)
. (3)

Solid materials are also known to satisfy the causality principle, which states that no response can be expected before the
application of any excitation. It follows then from linear system theory that the real and imaginary parts of the frequency
response function of a system are interrelated (Papoulis, 1962), and these interrelations are often referred to as the Kramers–
Kronig dispersion relations (Kramers, 1927; Kronig, 1926). Mathematically speaking, for a causal functionh(t) having a
frequency formH(ω)=R(ω)+jX(ω), and with no singularities at the origin,R(ω) andX(ω) are interrelated through a Hilbert
transform operation (Papoulis, 1962, p. 198). Hence, considering a material specimen subject to an excitation represented by
the stressσ and responding with a strainε, the MOE according to Fig. 1 and Eq. (3) may then be considered as the frequency
response of the material specimen. Therefore, any change in the value of either the MOE orη parameters resulting from some
treatment of the material is expected to lead necessarily to a change of the other parameter.

In the mathematical context, the dispersion relations are formulated with the help of Hilbert transforms, and are of general
nature, finding applications in several branches of physics, including acoustics, electromagnetism and optics. Several forms of
such pairs of relations have been formulated for viscoelastic materials, and for instance a simplified form of such a set which
includes the static modulusE0 is (Tshoegl, 1989; Pritz, 1998):

Ed(ω)=E0 + 2ω2

π
P

∞∫
0

El(x)/x

ω2 − x2
dx, El(ω)= −2ω

π
P

∞∫
0

Ed(x)

ω2 − x2
dx, (4)

Fig. 1. Representation of the MOE of a material as the frequency response of a sample of this material.
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Fig. 2. The Zener model, also known as the standard viscoelastic body.

wherex is an integration variable and P stands for the principal value of the integrals. These last formulas express the fact that
the knowledge of the frequency behaviour of one of the moduli permits the determination of the other modulus at any frequency.

The investigation of viscoelastic materials often necessitates efficient modeling for describing viscoelastic behaviour, and
the relatively simple model developed by Zener (1948), has sometimes been referred to in the literature. Zener’s model, also
known as the viscoelastic standard body, consists of a spring coupled in parallel with a Maxwell element, Fig. 2.

However, this model has been known to be limited in its performance, and lately, Pritz (1999) proposed a slight modification
of it through making appeal to the concept of fractional derivates (Pritz, 1996; Torvik and Bagley, 1984).

Hence, let theαth fractional derivative of a functionf (t) of the timet be defined by:

dα

dtα
f (t)= 1

�(1− α)
d

dt

t∫
0

f (τ)

(t − τ)α dτ, (5)

� being the gamma function, andτ a dummy variable. With reference to Fig. 2, the complex elastic modulus becomes then:

E(ω)= E0 +E∞(jωτr )α
1+ (jωτr )α , (6)

E∞ being the value taken by the MOE in the limit of infinite frequency. An identification of the real and imaginary parts as
respectively the dynamic and loss moduli gives in normalised form:

Ed(ω)

E0
= 1+ (c+ 1)cos(απ/2)ωαn + cω2α

n

1+ 2cos(απ/2)ωαn + ω2α
n

, (7a)

El(ω)

E0
= (c− 1)sin(απ/2)ωαn

1+ 2cos(απ/2)ωαn + ω2α
n

. (7b)

The loss factor is simply the ratio of these two expressions, and is therefore given by:

η(ω)= (c− 1)sin(απ/2)ωαn
1+ (c+ 1)cos(απ/2)ωαn + cω2α

n

, (8)

wherec = E∞/E0. The quantityωn = ωτr is the normalised frequency withτr being the relaxation time. It may be noted
that the application of fractional calculus to viscoelasticity is not in itself a novelty, but dates back in time to about a century
ago with early contributions due to Volterra. The fractional calculus models are used to describe the viscoelasticity of materials
for the reasons that they are in harmony with the molecular theories describing these materials, that they fit better with the
experimental and further that they permit a material modeling using fewer parameters than those based on classical differential
calculus (Beyer and Kempfle, 1995; Koeller, 1984).

3. Acquisition of the impulse response of a system

The study of any system in acoustics, mechanics or electromagnetism requires often the knowledge of its impulse response
which in a way is the signature of the system, and from which the transfer function may be processed through a usual Fourier
transform. Ideally, the impulse response would be obtained through submitting the system to a Dirac pulse excitation. However,
due to technical difficulties, it is in practice impossible to realise a signal having the time and frequency characteristics of such
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Fig. 3. Measurement of the impulse response of a system by a method based on a cross-correlation principle.

a pulse. Instead, one can resort to a technique consisting of performing a cross-correlation operation of the input signal and the
response of the system to it, Fig. 3. The result approximates the true impulse response if the signal is random.

Nowadays, use is often made of Maximum-Length Sequences, MLS, signals which are periodic signals though having
properties similar to those of random signals (Kuttruff, 1991).

4. Determination of the loss factor from the Impulse Response via the Reverberation Time

The Reverberation Time, RT, and denotedT60, is a room acoustical quantity used to assess the amount of sound absorption
in a room. It is defined as the time in seconds made by the sound level to drop by 60 dB from the time a sound source in the
room has been switched off. The use of the concept ofT60 may be used to any vibrating system for evaluating the amount of
damping present in its material. Hence, the relationship betweenη andT60 is given by (see, for instance, Cremer and Heckl,
1988):

η= ln 106

ωT60
≈ 2.2

fT60
, ω= 2πf. (9)

However, the classical way of determining the RT presents difficulties in finding the best fit for the curve of sound level decay
with time. These difficulties are nowadays circumvented through using Schroeder’s elegant “Method of Integrated Impulse
Response” where the impulse response is first squared and then integrated backwards to yield the Energy Decay Curve from
which the RT can easily be calculated (Schroeder, 1965).

A schematic representation of all the steps included in the measurement procedure is summarised in Fig. 4. It may be noted
that there is available on the market a measurement package, the MLSSA Acoustical Measurement System from the DRA
Laboratories, and which consists of a card to be slotted in a PC with the accompanying software (MLSSA, 2001).

5. Study on a wood bar with artificial defects

As an application, a study is made of the variation of the loss factor in a piece of wood resulting from the introduction of
artificial defects. The experiment consisted of drilling holes in the bar of Norway spruce with size 70× 7 × 7 cm3, and to
follow the variation of the MOE and the loss factor for an increasing number of holes. The holes had all the same size, 10 mm
in diameter, drilled across the bar in its transversal direction. These were evenly distributed on the body of the bar, which was
resting on soft supports. A schematic representation of the experimental set-up for the longitudinal mode of vibration is shown
in Fig. 5.

For a bar with lengthl, resonance occurs at frequencies such that the round-trip of the wave down the bar (distance from
excitation driver to the other extremity of the bar and back to the driver, admitting ideal elastic reflections at the extremities)
is equal to a multiple of the wavelengthλ, that is 2l = nλ wheren is an integer. The wavelength is calculated according to
λ= c/f, c being the speed of longitudinal wave propagation andf the frequency of the excitation. Furthermore, the propagation
speedc for longitudinal waves in a material with a MOEE and a material densityρ is given by:c = √

E/ρ. Hence, the
expression of the resonance frequencies is formulated according to:

fn = n

2l

√
E

ρ
. (10)

An example of a measured frequency response of the wood bar is shown in Fig. 6. The frequency peaks are quite well
distinguished in this curve with their typical harmonic pattern.
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Fig. 4. Left: representation of a procedure for the measurement of the loss factor of a material specimen. Right: a typical energy decay curve
resulting from the application of the integrated impulse response method.

Fig. 5. Schematic representation of the experimental set-up for assessing the vibration impulse response of a test specimen in the longitudinal
mode of vibration.
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Fig. 6. Frequency response of the wooden bar submitted to a longitudinal vibration excitation.

Fig. 7. Variation of the MOE as function of the number of holes drilled in the wooden bar.

The variation of the MOE as function of the number of defects introduced in the wooden bar is shown in Fig. 7.
The loss factor was determined as explained in the theory above at the fundamental frequency of vibration corresponding

in the longitudinal mode of vibration to the frequency at which the length of the bar equals half a wavelength. A further
consideration in the determination of the loss factor is to select a suitable bandwidth of the frequency filter. This latter being
centred at the frequency of interest is due to have a frequency range broad enough in order that the half power bandwidth to be
totally included in the frequency analysis (according to Eq. (9) f ∼ 1/T60). This is presented in Fig. 8.

The curve of Fig. 7 shows a clear monotonical decrease of the value of the longitudinal MOE with the number of holes bored
in the bar of wood. The peculiar behaviour of the curve at the lowest number of defects may be due to the periodical pattern of
the holes in the wood bar setting more resonances in its vibration and where the distance between consecutive holes is between
one quarter and one half a wavelength. At the same time, the loss factor is seen to increase to some degree with the introduction
of an increasing number of defects. It may be pointed out the RT from which the loss factor has been determined was notT60
as formulated in Eq. (9). Instead, another variant, the Early Decay Time, EDT, was used for the calculations ofη. With the use
of weak excitation signals or in highly damped systems (e.g., a sample of wood at an advanced stage of rot), it may happen that
the dynamics of the decay curve has not the required 60 dBs for evaluatingT60. Hence, acousticians refer instead to the EDT
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Fig. 8. Variation of the loss factor with the number of defects in the wooden bar.

which is defined as the RT but evaluated from the interval[0 dB,−10 dB] of the energy decay curve. In fact, the EDT has been
found to be a better room acoustical descriptor of the human subjective sensation of reverberation than the classicalT60.

The holes in the wood bar were intended to simulate rot pockets in the body of the bar and which weakens considerably
the strength of the affected parts. Wood being a highly anisotropic material, its properties are affected differently in different
directions relative to the grain. At the frequencies of some kHz, the loss of energy in wood is predominantly due to fluid friction,
and this phenomenon is somehow enhanced in the present experiments by the loss of energy accompanying the reflection of
elastic waves along the fibres and at the boundaries of the holes. The attack of wood by rot results in a destruction of the lignin
which serves as a cement binding the wood cells together, the result being a substance of granular-like consistency. In this
respect, rot has some similarity with sand which is quite often used as an efficient means for increasing damping in building
structures. The holes introduced in the mass of the test wood beam are equivalent to a substance presenting a much lower value
of the MOE. The present experimental results support hereby earlier qualitative findings stating that rot increases the damping
properties of wood and lowers its strength (Dunlop, 1981, 1983).

It is also important to differentiate between different kinds of damping arising when waves propagate in beams. The most
important form of damping with which the present study is concerned is of course material damping. However, energy can also
dissipate at various boundaries of the beam, either within it at reflection on inhomogeneities or through sound radiation at the
outer surfaces. For longitudinal wave propagation, the latter form of energy loss is proportional to the radiating area which in
the case of the beam is its the cross-section. The radiative energy loss is therefore considerably small as compared to the case
of bending mode excitation. It is thus sometimes more attractive to evaluate the damping properties of materials by means of
longitudinal wave excitations. Regarding wave reflections during propagation in a beam, these are never ideally elastic, and
there always occurs some loss of energy whenever the wave bounces at the interface between two different media. In fact,
numerous and extensive metallurgical and solid state studies have shown the advantages of the loss factor for investigating
relatively small structural changes due to some treatment of a material or following the introduction of foreign objects in it
(Cremer and Heckl, 1988, p. 233). Note the fundamental difference here that the loss factor in metals is much lower than in
wood (about two orders of magnitude).

Viewed from another perspective, some similarity may be drawn between the propagation of longitudinal elastic waves in the
beam and the propagation of sound waves within a room containing obstacles. The process of reverberation in room acoustics
can be described in terms of the average loss of energy at the boundaries and the mean free path, denoted respectively byα

and lm. The mean free path is defined as the average distance between two successive reflections within the room, and it is
roughly equal to four times the quote between the volume of the room and its total area. Hence, according to Norris–Eyring
theory, the reverberation time in the room may be evaluated using the formula (Kuttruff, 1991):

T60 = −6 ln 10

c
· lm

ln(1− α) , (11)

wherec is the speed of wave propagation. According to this last equation the reverberation time, which is inversely proportional
to the loss factor, decreases for shorterlm (more intervening obstacles in the wave path) and/or higher values ofα (though not
exceeding 1). However, this simple interpretation may be considered only as a qualitative description of the phenomenon of
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wave attenuation in the bar containing hollow defects. This is due to the fact that the derivation of Eq. (11) is made under
statistical assumptions, and this usually applies best to large rooms whose sizes are substantially larger than the wavelength.
A more realistic insight would be to consider the phenomenon of wave reflection at the boundary of two different media of
being not ideally elastic and that unavoidable losses are always to be expected. A further technical precautionary measure to be
taken into consideration when using the Reverberation Time for evaluating the loss factor is that for highly damped systems the
productB · T60 must be larger than 16, withB being the bandwidth of the filter in Hz (Jacobsen, 1986).

6. Conclusions

This work presented the results of an experimental study on the effects of structural defects on the MOE and loss factor of
a solid material. The example of a wooden beam has been taken for experimental practicality. The defects consisted of holes
drilled in the beam which was set into longitudinal vibration through excitation along the grain. The longitudinal excitation was
considered instead of for instance the bending mode of vibration for the reason that the experimental results may be affected by
some coupling between the different modes of vibration due to the high anisotropy of wood.

The MOE and loss factor were evaluated at the fundamental resonance frequency, i.e., the frequency at which the length
of the bar corresponds to half a wavelength. The loss factor was evaluated by means of an acoustical technique conceived
originally for making measurements of sound absorption in room acoustical applications. The technique is attractive in that
the measurements are perfectly repeatable and that there are available affordable measurement packages for conducting
measurements in the audio frequency range. This however does not prevent the technique to be applied at the ultrasonic
frequency range. The results from the present study reveal that the MOE decreases steadily with an increasing number of
defects in the wood element and that at the same time the loss factor increases, though at a somehow slower rate.

References

Bert, C.W., 1973. Material damping: an introductory review of mathematical models. J. Sound Vib. 29, 129–153.
Beyer, H., Kempfle, S., 1995. Definition of physically consistent damping laws with fractional derivatives. Z. Angew. Math. Mech. 75, 623–635.
Crandall, S.H., 1973. The role of damping in vibration theory. J. Sound Vib. 11, 3–18.
Cremer, L., Heckl, M., 1988. Structure Borne Sound. Springer-Verlag, Berlin.
Dunlop, J.I., 1981. Testing of poles by using acoustic pulse method. Wood Sci. Techn. 15, 301–310.
Dunlop, J.I., 1983. Testing of poles by acoustic resonance. Wood Sci. Techn. 17, 31–38.
Ferry, J.D., 1980. Viscoelastic Properties of Polymers. Wiley, New York.
Jacobsen, F., 1986. A note on acoustic decay measurements. J. Sound Vib. 115, 163–170.
Koeller, R.C., 1984. Applications of the fractional calculus for the theory of viscoelasticity. ASME J. Appl. Mech. 51, 299–307.
Kramers, H.A., 1927. La Diffusion de la Lumiere par les Atomes. In: Atti del Congresso Internazionale dei Fisici, Como 2, pp. 545–557.
Kronig, R.L., 1926. On the theory of dispersion of X-rays. J. Opt. Soc. Amer. 12, 547–557.
Kuttruff, H., 1991. Room Acoustics. Elsevier Applied Science, London.
Lazan, B.J., 1968. Damping of Materials and Members in Structural Mechanics. Pergamon Press, Oxford.
MLSSA, 2001. See the website http://www.mlssa.com for more information on the MLSSA measurement system and related topics.
Nashif, A.D., Jones, D.I.J., Henderson, J.P., 1985. Vibration Damping. Wiley, New York.
von Nöll, G.G., 1971. Frequency dependence of complex elastic constants of some building materials between approximately 5 and 100 kHz.

Acustica 24, 93–100.
Papoulis, A., 1962. The Fourier Integral and its Applications. McGraw-Hill, New York.
Pritz, T., 1996. Analysis of four-parameter fractional derivate model of real solid materials. J. Sound Vib. 195, 103–115.
Pritz, T., 1998. Frequency dependences of complex moduli and complex Poisson ratio of real solid materials. J. Sound Vib. 214, 83–104.
Pritz, T., 1999. Verification of local Kramers–Kronig relations for complex modulus by means of fractional derivative model. J. Sound Vib. 249,

1145–1165.
Schroeder, M.R., 1965. New method of determining reverberation time. J. Acoust. Soc. Amer. 37, 409–412.
Torvik, P.J., Bagley, R.L., 1984. On the appearance of the fractional derivate in the behaviour of real materials. ASME J. Appl. Mech. 51,

294–298.
Tshoegl, N.W., 1989. The Phenomenological Theory of Linear Viscoelastic Behavior, an Introduction. Springer-Verlag, Berlin.
Zener, C., 1948. Elasticity and Anelasticity of Metals. The University of Chicago Press, Chicago.


