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Abstract

This paper is concerned with studying the problem of scattering of a spherical wave by a

thin hard barrier on a hard plane. This problem is relevant to investigating the e�ect on the
early part of the sound ®eld of a large room, when a simple, thin and hard strip-like element is
set horizontally on a side wall. This scattering element may be a sound reinforcing re¯ector or

an idealisation of a side balcony. Three di�erent calculation models based on ray acoustic
concepts and on solutions to the problem of di�raction by a half plane are dealt with and
compared to each other. For the case of the half plane, one of the models, the Biot±Tolstoy

theory of di�raction, is a treatment in the time domain whereas the two other ones are
approximate and give solutions in the frequency domain (one of them is the Geometrical
Theory of Di�raction). The expression of the di�racted ®eld in the time domain approach is

exact but quite complicated so that, it has not been possible to give its Fourier transform in an
exact form. In an earlier publication on this subject, the problem is overcome by making a
simple analytical approximation of the early part the di�racted ®eld, and then, adding to its
exact Fourier transform the Digital Fourier Transform of the remaining part of the di�racted

®eld. In this paper, an improvement is given to the expression of this early part of the dif-
fracted ®eld and it is shown that for both the time and the frequency domains, this new form
is accurate enough for most engineering purposes. Moreover, the frequency form of this latter

has a very simple expression. As one is interested in covering as large a low frequency range as
possible, multiple di�raction is also implemented in each model to take into account the ®nite
width of the barrier on the plane. Some experimental results are presented also supporting the

theoretical predictions quite favourably. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem of scattering by a thin strip has been studied for a long time. Since
the work of Fresnel, who was the ®rst to be able to give an accurate description of the
di�raction by straight edges, many investigators have contributed to the elaboration
of various solutions to the problem of wave di�raction by screens in the shape of
strips. In fact, the problem of the strip has often been tied to that of the half plane, not
only because the strip geometry is the most simple one in terms of di�raction after
that of the half plane, but also because many of the solutions to the strip problem are
formulated in terms of two half planes in mutual interaction. The equivalence of the
solutions to the complementary problems of the strip and of the slit in a screen is
made possible through the application of the important principle of Babinet. How-
ever, despite numerous e�orts, no one has yet been able to present an elegant closed
form solution to the strip problem like the ones found for the case of the half plane [1].
Moreover, most of these solutions treat the case of plane or cylindrical wave incidence
thus making the problem into to a two dimensional one. Often, the more general
case of spherical wave incidence has been approached only by approximate methods.
In the next section of this paper, the important results of the Biot±Tolstoy theory,

subsequently referred to as the B±T theory, relevant to the case of the half plane are
introduced. Medwin's ®rst approximation of the di�racted ®eld and its new
improvement are then compared with numerical calculations. Section 3 considers
the Geometrical Theory of Di�raction (GTD), which is based on geometrical optics
assumptions. Consequently, it o�ers a high frequency approach. To extend it to
lower frequencies, a new multiple di�raction algorithm, is added to the single dif-
fraction formulation. A third approach to the problem of the wedge, also in the
frequency domain, is that elaborated by Hadden and Pierce, henceforth identi®ed as
H±P model. The double and triple di�raction results for the barrier on the plane are
compared to the previous approaches. Some experiments are also reported with
some discussions on the possibilities for room acoustics applications. In the litera-
ture, there is sometimes some ambiguity regarding the expressions ``di�raction'' and
``scattering''. To avoid the risk of possible confusion, ``di�raction'' is used to
describe the emanation of a wave from the sharp edge of an obstacle whenever a
wave is incident upon it, whereas ``scattering'' is devoted to the contribution to the
total ®eld due to the extra presence of the obstacle.

2. The Biot±Tolstoy di�raction theory

Biot and Tolstoy presented the solution to the problem of di�raction of a pulse
wave by an in®nite ¯uid wedge with rigid boundaries more than 40 years ago [2].
This solution is based on geometrical optics constructions, though valid for all fre-
quencies. As well as the geometrical components of the ®eld, an observer receives a
wave di�racted by the sharp edge of the wedge (Fig. 1).
The amplitude of the di�racted wave, which has further been elaborated by

Medwin for the interesting case of a spherical Dirac pulse, may be expressed in an
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explicit closed form using rather simple mathematics. An important motivation for
the use of transient waves in acoustical studies is the importance of the impulse
response for extracting useful information about the system under investigation.
Another reason is that it is quite common to study noise barrier performance at the
scale model level. At this early stage of the experimental investigation, the use of
short excitation pulses is often preferable due to the small sizes of anechoic spaces,
and also because usually mathematical models are developed for the case of ideally
in®nite geometries, a fact that is surely not always true in reality.
Consider the geometry de®ned in Fig. 1. The wedge is composed of the two half

planes at �=0 and �=�W (for the half plane �W � 2�). The sound source S and the
observation point R have, respectively, for co-ordinates in the cylindrical system
(r0; �0; 0) and (r; �; z).
If S radiates a delta function of pressure u� in the ¯uid of density � (air in our case),

u� � �S

4�R
� tÿ R

c

� �
�1�

where S is the strength of the source, c the velocity of sound propagation and � the
Dirac delta function, then according to the B±T theory, the di�racted wave due to
the tip of the wedge with the pressure ud�t� appears at a time �0:

Fig. 1. Geometry for the problem of di�raction of a spherical wave by a hard wedge of exterior angle �W.

D. Ouis / Applied Acoustics 59 (2000) 19±66 21



�0 � r� r0� �2�z2� �1=2
=c �2�

after the source has emitted its spherically divergent pulse. �0 is called the least time
over the wedge and is the travel time made by the wave in its shortest way from the
point source to the ®eld point via the crest line of the wedge. A practical con-
sequence of this is the well known fact that the sharp straight edge of a metallic sheet
presents a bright portion when illuminated by a small light source and observed
from within the shadowed side. The expression of the di�racted ®eld ud�t� may be
considered as [3]:

ud�t� � ÿS�c
4��W

f�g exp�ÿvy�
rr0 sinh�y� �3�

where:

y � arccosh
c2t2 ÿ r2 � r20 � z2

ÿ �
2rr0

�4�

and:

f�g � sin v �� � � �0� �� �
1ÿ 2 exp ÿvy� � cos v �� � � �0� �� � � exp ÿ2vy� � ; v � �=�W �5�

Actually, the curly bracket {�} is the sum of four terms resulting from the four
possible combinations of the signs in (�� � � �0), and � is the wedge index and
which takes the value 1=2 for the case of the half plane.
Eq. (3) is developed in Appendix A for the important case of the half plane and

for z=0. The ®nal result is given by:

ud�t� � ÿS�
4�2c

���������������
t2� ÿ t2ÿ
t2 ÿ t2�

s
cos � � �0� �=2� �

t2 ÿ t2� � t2� ÿ t2ÿ
ÿ �

cos2 � � �0� �=2� �

( )
�

�6�

where in this case t� � �0 � �r� r0�=c and tÿ � �rÿ r0�=c. For writing convenience,
the symbol { }+ stands for the sum of two terms.
To see what happens in the frequency domain, the Fourier transform of ud�t� is

needed:

ud�f� � FT ud�t�� � �
�1
�0

ud�t�ei!tdt �7�

Evaluating ud�f� exactly, if possible at all, is very cumbersome, and approxima-
tions are necessary for every particular case [4]. If, one notices, from Eq. (6), that the
pressure near the least time �0 represents the main part of the energy [3,4], then for
� � tÿ �0 << �o :
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udi��� � ÿ S�

4�2c

1��������������������������
2t� t2� ÿ t2ÿ

ÿ �q 1

cos � � �0� �=2� �
� �

�

1���
�
p �8�

i.e.:

udi��� � 1���
�
p �9�

a form which is better suited for calculations. The Fourier transform of this last
expression is given as:

FT udi���� � � udi�f� �
�1
0

udi tÿ �0� �ei!tdt �10�

and with the change of variable � � tÿ �0 one obtains

udi�f� � ei!�0
�1
0

udi���ei!�d� �11�

which, when decomposed into two (cos and sin) Fourier transforms leads to [5]:

udi�f� � ÿS�
4�2c

1��������������������������
2t� t2� ÿ t2ÿ

ÿ �q 1

cos � � �0� �=2� �
� �

�
ei!�0

1� i

2
��
f

p �12�

This result enables an approximation of the total Fourier transform of Eq. (6) by
the sum of Eq. (12) and a digital Fourier transform (DFT) of the rest of the time
signal [3], i.e.:

ud�f� � udi�f� �DFT �ud���� �; �ud��� � ud�t� ÿ udi��� �13�

�ud��� is sampled at a frequency 1=�T over a time length T which is for instance
chosen such that �ud�T� is less than 5% of the maximum value of �ud���, and �T is
given a value such that the highest desired frequency component fmax is accounted
for by the FFT analysis i.e.:

1

2�T
> fmax �14�

To smooth the data, the late part of �ud��� may be tapered by a half cosine win-
dow extending for instance over a length of T=10 before applying the DFT [6]. With
the same calculation strategy in mind, a new approximation of the initial short time
range di�racted ®eld is suggested in this paper. Indeed, Eq. (6) may be better
approached by:
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udi;new��� � ÿS�
4�2c

���������������
t2� ÿ t2ÿ
2t�

s
1

2t�

1���
�
p cos � � �0� �=2� �

� � t2� ÿ t2ÿ
2t�

cos2 � � �0� �=2� �

8>><>>:
9>>=>>;
�

�15�

The Fourier transform of (15) leads to the sum of two terms of the form:

ei!�0
�1
0

ei!����
�
p �� � a� d� �16�

which when performed yields [7]:

udi;new�f� � ÿS�
4�2c

�ei!�0

2t�
sgn��� �0 ÿ ��eÿi!a�erfc

��������������
ÿi!a�

p� �n o
�

�17�

where:

a� � t2� ÿ t2ÿ
ÿ �

cos2 � � �0� �=2� �=�2t�� �18�

and erfc is the complementary error function and which is examined in Appendix B
for the case of a complex argument with real and imaginary parts of equal magnitude.
The performances of these two approximations were compared to a numerical

Fourier transform calculation of Eq. (6) using the NAG software package [8].
Keeping the source position constant and varying the frequency of the spherical
wave gives the results in Fig. 2 for two di�erent receiver positions.
One already sees that over a wide frequency range, the new approximation of the

di�racted ®eld follows the numerical integration almost perfectly so that for most
engineering purposes, an extra consideration of the DFT of the remaining part of
the di�raction ®eld seems unnecessary. A further observation is that the dis-
crepancies between the two approximations may be quite appreciable especially in
the regions of space near the geometrical boundaries [see Fig. 2(a)], and that away
from these regions this di�erence shrinks noticeably. This is better illustrated in Fig.
3 where for a constant frequency and for a ®xed position of the point source, the
observation point follows a circle around the edge of the half plane.
Two important properties of the di�racted ®eld are, ®rst, its symmetrical char-

acter about the half plane and second, that its amplitude is of the same order of
magnitude as that of the incident or re¯ected ®eld at the respective geometrical
boundaries.

3. The geometrical theory of di�raction

In the GTD approach, di�raction is considered as a local phenomenon, i.e. it is
a correction to geometrical optics due to the presence of scattering objects or
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Fig. 2. Amplitude in dB of the di�racted ®eld by a half plane normalised to the free ®eld at r� r0.Ð:

numerical Fourier transform of Eq. (6)=&: Eq. (12) �: Eq. (17). r0 � 1 m, r � 0:5 m, �0=60�. (a) �=130�;
(b) �=280�.
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di�racting edges. In wave theory, ray considerations still play a signi®cant role and a
logical extension is to apply this concept to treat of di�raction; The Geometrical
Theory of Di�raction (GTD) is devoted to such a role. Good and extensive accounts
of the GTD are available in Refs. [9] and [10].

Fig. 3. Same legend as for Fig. 2, except that �0=10� and the receiver is moving on a circle around the

edge of the half plane. (a); f=1000 Hz (b); f=5000 Hz.
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The GTD postulates that the ®eld at any point is due to the possible arrival of
three kinds of rays: direct, re¯ected and di�racted. The two ®rst contributions occur,
respectively, whenever the observer ``sees'' the source and its image(s) through the
di�racting surface while the third kind of rays emerge whenever one or both of the
rays of the ®rst kind hit upon an edge [11].
The ®eld ui on a ray is assumed to be given by:

ui�R� � A�R�eÿikr�R� �19�

where A�R� is the amplitude, kr�R� is the phase along the ray at R and k is the
wavenumber. The di�erence in phase between two points R and R0 on the same ray
is given by the product of the wavenumber k times the length di�erence between the
two points:

kr�R0� � kr�R� � kl�R;R0� �20�

and for homogeneous media the rays are straight lines so that l�R;R0� is just the dis-
tance betweenR andR0. The GTD stipulates furthermore that a ray which hits an edge
gives rise to a cone of di�racted rays. The apex of this latter which is the intersection
point of the incident ray with the edge, is called the di�raction point, Q (see left-hand
side of Fig. 4), and the half angle of the cone is equal to the angle made by the incident
ray and the tangent to the edge at Q. This is Keller's law of edge di�raction.
An especially important case is when the incident ray falls normally on the edge.

The cone then degenerates to a plane perpendicular to the edge (see right-hand side
of Fig. 4).
If a di�racted ray hits an edge, then it gives rise to a doubly di�racted ray and if this

latter in its turn hits another edge, it generates a di�racted ray of third order and so on.
Considering the di�raction geometry shown on the left hand side of Fig. 4, the

®eld on a di�racted ray at a point R, a distance r from Q, is given by:

ud�R� � ui�Q�A�r0; r�Ds;he
ÿikr �21�

Fig. 4. Illustration of the cone of di�racted rays. Left: arbitrary incidence; right: normal incidence.
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where ui�Q� is the incident ®eld at Q;A�r0; r� a coe�cient depending on the char-
acteristics of the source of the primary rays, r0 being the distance from the source to
Q in case if it is cylindrical or spherical. Ds;h is another coe�cient depending on the
angles of the incident and di�racted rays and on the di�racting screen, s and h
standing respectively for the soft and hard cases. Ds;h is determined from compar-
ison with the exact solution for the plane wave di�raction by a half plane [12]. At
quite high frequencies, the geometrical optics components may be extracted from
the expression of the total ®eld. An examination of the ®eld in the shadow zone
reveals that a wave of a cylindrical type seems to emanate from the edge of the half
plane. It is the expression of this ®eld that enables the identi®cation of the value of
Ds;h in Eq. (21). However, as formulated in its original form, and for an arbitrary
oblique incidence of the plane wave on the half plane with an angle �, the GTD
assigns to Ds;h the value:

Ds;h � ÿ eÿi�=4

2
��������
2�k
p

sin �
sec

� ÿ �
2

� �
� csc

� � �
2

� �� �
: �22�

This fails to predict the correct value of the di�racted ®eld near to the geometrical
boundaries (i.e. at � � �� �). This has encouraged the elaboration of several
re®nements to this theory in particular the Uniform GTD (UTD) has been shown to
be relatively simple and powerful in many practical situations [13]. According to
this, after de®ning the new angles ' � 3�=2ÿ � and '0 � 3�=2ÿ �, the coe�cients A
and Ds;h in Eq. (21) are given by:

A�r0; r� �
1��
r
p for plane and cylindrical wave incidence����������������

r0

r�r0 � r�
r

for spherical wave incidence

8>><>>: �23�

and:

Ds;h �ÿeÿi�=4

sin �

����
L

�

r
f�kL; '0 ÿ '� exp i2kL cos2

'0 ÿ '
2

� �� �
sgn��� 'ÿ '0��

�f kL; '� '0� � exp i2kL cos2
'� '0

2

� �� �
sgn �ÿ '0 ÿ '� �

8>>><>>>:
9>>>=>>>;

�24�

where L is a distance parameter given by:

L �
r sin2 � for plane wave incidence
rr0

r� r0
for cylindrical wave incidence

rr0

r� r0
sin2 � for spherical wave incidence

8>>><>>>: �25�
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f is a form of Fresnel integral:

f��; 
� �
�1
����
2�
p

cos�
=2�j j
eÿi�

2

d� �26�

and sgn is the signum function:

sgn�x� �
�1 for x > 0
0 for x � 0
ÿ1 for x < 0

8<: �27�

This new expression of the di�racted ®eld ensures that the total ®eld is continuous
throughout all space because the discontinuities in the geometrical ®eld are exactly
compensated by those in the di�racted ®eld.

4. A Green's function solution for the wedge problem

The Green's function solution for the di�raction of a spherical wave by a hard
wedge is inspired by classical theory [14]. Approximations are necessary as a result
of numerical di�culties faced in attempting to give closed form solutions. These
have been presented by Hadden and Pierce [15,16] for the cases where the receiver is
situated in the far-®eld or at the geometrical shadow boundaries. Related work has
reported agreement with carefully-mounted experiments [17]. More recently, this
model has been applied to di�raction of acoustic impulses [18].
The solution to the Helmholtz equation satisfying the hard boundary conditions,

@u=@n � 0 on the sides of the hard wedge � � 0 and � � �W (see Fig. 1) may be
expressed as:

u �
X4
i�1

u��i�H��ÿ �i� � ud��i�� � �28�

where:

�1 � �0 ÿ �j j; �2 � 2�w ÿ �1; �4 � � � �0; �3 � 2�W ÿ �4 �29aÿd�

and H��� is the Heaviside unit step function.
The ®rst three terms of the ®eld are found from pure geometrical considerations

that is for i=1, 3 and 4, u��i�H��ÿ �i� represent, respectively, the direct and the
re¯ected waves from the sides � � 0 and � � �W of the wedge. �2 being always
greater than �, the term u��2�H��ÿ �2� is always zero and is written only for the
tractability of the expression for the ®eld. The u��i� are supposed to be of the form
eikRi=Ri with:

Ri � r2 � r20 � z2 ÿ 2rr0 cos �i
� �1=2 �30�
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The sum on the left-hand side of the expression for the total ®eld [Eq. (28)]P4
i�1ud��i�

� �
may be interpreted as a di�racted wave. For each �i; ud is expressed as

an integral of the form:

ud��i� � ÿ 1

�

�1
0

u��� iw�Q�w; v; �i�dw �31�

where:

Q�w; v; �i� � �v=2� sin v��ÿ �i�� �
cosh�vw� ÿ cos v��ÿ �i�� � �32�

v � �=�w being the wedge index seen earlier, and u��� iw� is the previous eikR=R but
now with � in Eq. (30) replaced by ��� iw�.
Because of the oscillatory character of the integral in (31), its direct numerical

evaluation presents some di�culties, but some useful approximations for the most
practical cases have been presented. Hence, a new form for the integral is presented
with a new parameter A:

A��i� � �v=2��ÿ�w ÿ �� �i� � �H��ÿ �i� �33�

and with this in mind the new expression of ud reads then as:

ud��i� � �ÿ1=��A��i��eikL=L�Fv� Aj j; �; "� �34�

in which:

Fv� Aj j; �; "� �
�1
0

I�q�dq �35�

a � krr0=L; " � rr0=L
2; L � r� r0� �2�z2� �1=2 �36�

I�q� � �L=R�eik�RÿL� �37�

L, the least time path, is the shortest two segment distance from the point source
to the ®eld point via the edge, and is simply equal to the product of the least time �0
in Eq. (2) and the velocity of sound c.
Approximations of ud for di�erent values of A; � and " are presented next. For the

case at hand, the following results are obtained:
Where both the source and the receiver are far from the edge of the wedge, � �

krr0=L >> 1 and Aj j is arbitrary, one has [15]:

Fv� Aj j; �; "� � ����
2
p sin Aj j

Aj j
ei�=4

1� �2"� 1=2�cos2 Aj j=v2� �1=2 AD�P� �38�
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with:

AD�p� � P���
�
p

�1
0

eÿu
2

��=2�P2 � iu2
du � f�P� ÿ ig�P� �39�

and:

P � 4�

�

� �1=2
cos Aj j

v2 � �2"� 1=2� cos2 Aj j� �1=2 �40�

AD�P� is expressed in terms of the Fresnel integrals and is detailed in Appendix C.

5. Model implementations

5.1. Single di�raction

Each of the three models previously presented has been used to predict the scat-
tered ®eld due to a spherical source in the presence of a large hard plane containing
a vertical thin hard strip (see Fig. 5).
The thin hard strip of height h is perpendicular to the x � 0 plane and is parallel

to the z axis. S is the point source with co-ordinates (R0; '0; 0) and R is the ®eld
point with co-ordinates (R; '; 0). S0, R0 and H0 are the images through the plane of,
respectively, S, R and the tip H(0,h,0) of the strip, and S00 is the image of S0 through
the plane containing the strip. One is interested only in the space quadrant contain-
ing S, that is 04'4�=2. The total ®eld at R is composed of:

. a direct wave, S±R

. a re¯ected wave S0-R, and

Fig. 5. The thin hard strip on the re¯ecting plane.

D. Ouis / Applied Acoustics 59 (2000) 19±66 31



. a doubly re¯ected wave, S00-R, in the greyed zone and a di�racted ®eld due to
the edge of the strip and made of the following contributions:

. real source±edge±real point, SHR

. image source±edge±real point, S0HR

. real source±edge±image point, SHR0

. image source±edge±image point, S0HR0

The corner at the origin of co-ordinates 0 does not contribute to the di�raction.
This can be con®rmed theoretically by setting � � 2=3 in Eqs. (3) or (32), and has
been veri®ed experimentally quite a long ago for the case of electromagnetic waves
[19].

5.2. Multiple di�raction

The di�racted rays emerging from the top of the barrier and propagating tangen-
tially to it can give rise to second order di�racted rays. In fact, two rays propagating
along the y axis from H to 0 (�=0 and �=2� in Fig. 1), get re¯ected on the plane,
return back to H (illustrated by arrows in Fig. 5) and thereby generate a new set of
di�racted rays.
For the B±T theory, only the second order di�racted ®eld is formulated. This is

given in detail in Appendix D.
Using GTD, it is relatively easy to calculate the strength of the second order dif-

fracted ®eld and even to derive from it that of the higher order multiply di�racted
ones. This is the result of the relatively simple expression for Ds;h in Eq. (24), and is
detailed in Appendix E.
The asymptotic double di�raction to the Green's function approach [20] has even

been extended to a triple di�raction [21]. For details, see Appendix F.

6. Numerical results

The amplitude of the scattered ®eld at some observation point is evaluated and
presented in either of two ways; the frequency spectrum for a ®xed combination of
the positions of the point source and the ®eld point, or alternatively, its angular
variation, for a ®xed frequency and ®xed position of the source, but a varying posi-
tion of the ®eld point.
The calculations have been performed for R0=1m, R=0.5 m and h=0.1 m, with

di�erent combinations of the pair of angles ('0; ') (see Fig. 5).

6.1. The B±T theory

First, a comparison is made in the time domain between the evaluations of the
scattered ®eld, given by its exact expression, Eq. (6), and by both its short time
approximations [Eq. (8)] and its new improvement [Eq. (15)]. This is shown in Fig. 6
for ('0; ')=(30�, 60�).
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The relative ®eld di�erence �ud ÿ udi�=udj j is plotted for times after the least time.
This is represented in Fig. 7 to compare the behaviour of the wakes of the di�racted
®eld expressed by the crude ®rst approximation [Eq. (8)] and its improvement [Eq.
(15)]. One can conclude that the improved approximation agrees better with the
exact expression for small values of �T (the di�erence between their predictions
tends to zero). For longer times, the improved approximation attenuates faster.
The frequency domain of the scattered ®eld, for the geometrical con®guration of

Fig. 7 includes the contribution of both the Fourier transform of the di�racted ®elds
and that of the image source S0, and results in the curves in Fig. 8.
When one uses the improved approximation of the di�racted ®eld, Eq. (17), and

takes into consideration the double di�raction detailed in Appendix D, then one gets
the curves of Fig. 9.

6.2. The GTD

The results of the calculations using the single di�raction and the multiple dif-
fraction formulations detailed in Appendix E are illustrated in Fig. 10.

6.3. The Green's function approach

The results of calculations based on the Green's function approach are compar-
able to those of the improved approximation to the B±T theory [Eq. (17)] so it is not
necessary to plot the same curves again. However, the improvements to the scattered

Fig. 6. The di�racted ®eld due to the edge of the strip for �'0; '�=(30�,60�). Ð: exact after Eq. (6) ; �:

Eq. (8) ; &: Eq. (15).
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Fig. 7. Prediction of the ®eld di�erence in dB relative to the exact solution [Eq. (6)] after 2 s from the

shortest least path time for ('0; ')=(30�, 60�). Horizontal axis: time in ms; vertical axis: relative sound

pressure, log. �: after Eq. (8); &: after Eq. (15).

Fig. 8. The scattered ®eld corresponding to Fig. 6 in the frequency domain. ±.±.±: using Eq. (12); ÐÐ:

using Eq. (17).
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Fig. 9. As for Fig. 8 using Eq. (17). .-.-.-: single di�raction; ÐÐ: single+double di�raction. Number of

secondary sources NSS=15.

Fig. 10. Sound pressure level of the scattered ®eld using the GTD re. free ®eld in dB. '0=30�; j=60�. ±.±.±:
single di�raction; ÐÐ: multiple di�raction.
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®eld that follow from the inclusion of multiple di�raction amount to less than about
0.5 dB for almost the whole frequency range of interest.

7. Experiment

7.1. Experimental con®guration

The experiment was intended to be as simple as possible consistent with an overall
crude check of the validity of the theoretical predictions. The experimental con®g-
uration is shown in Fig. 11.
The sound source was a high frequency driving unit Dynaudio D28-AF fed by an

ampli®ed square pulse of a short enough time duration to cover as wide a low fre-
quency range as possible and, ampli®ed to achieve a satisfactory signal to noise
ratio. The shape of the pulse both in the time and frequency domains is shown in
Fig. 12.
To avoid problems of calibration and also to give a better quantitative inter-

pretation, the scattered ®eld in the frequency domain was normalised to the free ®eld
pressure as measured for a distance source receiver equal to R� R0 (see Fig. 5).
The measuring and triggering microphones shown in Fig. 11 were a pair of phase

matched half inch B&K units of type 4165. The role of the triggering microphone
was to position the signal recorded by the measuring microphone at a suitable time

Fig. 11. Thin hard barrier set normally on a re¯ecting plane: experimental set-up.
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delay in order to get an idea about the phase behaviour. The signals from these
two microphones were picked up and processed by a computer aided test system
(genrad 2515).

Fig. 12. The pulse signal: (a) in the time domain; (b) in the frequency domain.
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7.2. Experimental results

The numerical results as presented in sec. 6 show relatively good agreement
between the three theoretical models. The measured scattered ®elds, for two di�er-
ent con®gurations of the source and the receiver positions, are compared to their
theoretical predictions in Figs. 13 and 14.
The other experimental procedure was to ®x the frequency and position of the

sound source, and to revolve the ®eld point along a quarter circle in the plane nor-
mal to the strip and containing the source. Fig. 15 shows polar plots for three dif-
ferent frequencies and for '0=45�:

8. Application to a horizontal barrier on a hard wall

This section attempts to predict the ®eld scattered by a thin hard strip which is set
horizontally on a hard wall. Such a set-up could be a simpli®ed representation of
some re¯ector or of a side balcony in an auditorium. It is informative to consider the
strength of the di�erent components of the edge di�racted ®eld contributing to the
®eld scattered by the barrier. As seen earlier, the ®eld di�racted from the sharp
straight edge of a half plane exhibits its strongest amplitude at the passage through
the geometrical boundary zones. The di�racted ®eld at a point revolving around the
edge of a thin half plane is shown in Fig. 16 where the exact form, Eq. (6), has been
used for the numerical calculations.

Fig. 13. Scattered ®eld re. free ®eld in dB. ('0; ')=(30�, 60�). ÐÐ: Theoretical; - - - : experimental.
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Fig. 14. As Fig. 13 but for ('0; ')=(45�, 45�).

Fig. 15. Scattered ®eld for '0=45� and for di�erent frequencies.

D. Ouis / Applied Acoustics 59 (2000) 19±66 39



If the barrier is on a hard plane, the amplitude of the various di�raction compo-
nents have the frequency spectra shown in Fig. 17. Note the quite marked strength
of the SHR' component compared with the other three components. This is due to
the proximity of the ®eld point to one of the geometrical boundary zones. The dif-
fraction component has an amplitude about half that of the double specularly
re¯ected re¯ection, S00R, over almost the whole audio frequency range. The compo-
nent SHR, which could be taken perhaps misleadingly as the only contribution to
the totally di�racted ®eld, has an amplitude about 50 dB less than that of the SHR
component. Hence, when approximations are to be made, it is important to take
account of the location of the receiver, and to check the strength of the various dif-
fracted components, before any of them may be neglected.
For source and receiver positions more relevant to those in an auditorium, Fig. 18

shows the ®eld scattered by the barrier as a function of the frequency. The typical
pattern of the ®lter comb is due to the interference of the edge di�racted waves
and the wave that is double-specularly re¯ected at the corner made by the wall and
the barrier. This e�ect is seen to diminish in signi®cance at higher frequencies
where, according to Fig. 17, the amplitude of the edge di�racted ®eld reduces
appreciably.
Fig. 19 illustrates the variation of the scattered ®eld with distance for a ®xed

position of the sound source as the receiver moves away from the wall, on a line
normal to it.

Fig. 16. Amplitude in dB of the di�racted ®eld at a point moving around the edge of a half plane.
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9. Discussion and conclusions

The pressure ®eld from a point source and scattered by a thin hard barrier on a
hard plane has been evaluated by means of three di�erent approaches, originally
developed for the di�raction by a half plane. Of these approaches, two are approx-
imate and in the frequency domain while the third one is exact and in the time

Fig. 17. (a) geometry for a horizontal thin barrier on a wall; (b) amplitude of the four di�erent compo-

nents of the di�racted ®eld as normalised to the free ®eld at the distance S0 0R.
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domain. The scattered ®eld is de®ned in this context as the contribution of the barrier
to the total ®eld, i.e. it is given as the di�erence between the ®elds with and without
the barrier on the plane. With the help of geometrical constructions, the scattered
®eld may be considered to result from specular re¯ection at the plane-barrier corner

Fig. 18. Frequency dependence of the spectrum of the ®eld scattered by a barrier on a wall.
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and the contribution of the ®elds di�racted by the edge of the barrier. To give a more
qualitative and quantitative assessment of the contribution of the barrier to the pres-
sure ®eld, the scattered pressure has been normalised to the free ®eld. The source-
receiver distance in free ®eld is taken as being equal to the sum of the normal distances
of the source and of the receiver to the intersection of the barrier and the plane.

Fig. 19. Field scattered by a barrier on a wall: variation with distance from wall.
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An improvement of high frequency results towards lower frequencies was made by
taking the multiple di�raction at the edge of the barrier into consideration. As a
consequence, it is expected that the theoretical predictions lose of their reliability
somewhere in the low frequency range. This limit is however di�cult to predict, in
the absence of exact solutions. Researchers in this ®eld resort most often to the use
of numerical techniques or approximate calculation models for practical engineering
purposes; for example the control of tra�c noise by noise screens. The Green's
function model is accurate enough and seems su�cient for the treatment of this kind
of problems in the frequency domain. On the other hand, the improved approx-
imation to the B±T theory applies almost for all frequencies and for all positions of
the receiver point except at the immediate vicinity of the geometrical boundaries.
Moreover, the B±T approach was originally developed for impulse excitations so has
the important advantage in the prediction and the processing of impulse responses.
The GTD has also been successfully used in solving electromagnetic di�raction
problems, but in that case the wavelengths are several orders of magnitude smaller
than their acoustical counterparts. So, to the best of our knowledge, only careful
experiments can decide to what extent a given theoretical approach gives better
predictions.
In those cases, where only the waves di�racted by the top of the barrier contribute

to the scattered ®eld, the spectrum of this ®eld is seen to present some dips (e.g. Figs.
8 and 9). For various combinations of source and receiver positions (cf. Fig. 5, tra-
jectories SHR, S0HR, S0HR and S0HR0), the impulse response exhibits four peaks of
di�erent strengths. In the frequency domain this represents a sort of comb ®lter
e�ect. It is important, particularly in room acoustical applications, to know which
components of the di�racted ®eld have comparable strengths in order to avoid
strong interference phenomena causing tone coloration e�ects. When multiple dif-
fraction is taken into account, the response at these dips is less severe and this is well
noticed at the ®rst dips in Figs. 9 and 10. Improvements to the Green's function
approach, whose single di�raction performance is already quite satisfactory, allow-
ing for double and triple di�raction amount to about 0.5 dB at the lowest kh values
and diminish as expected for higher kh values.
Two main observations may be made from the polar diagrams in Fig. 15. The ®rst

is that the scattered ®eld exhibits a main lobe centred about the line joining the
corner plane-screen and the point source with a relative level of around ÿ3 dB. The
second feature is that as the frequency increases, this main lobe becomes narrower,
its peak increases and there appear other sidelobes of smaller magnitude. Hence, the
idea of assimilating the scattered ®eld as though it results from a ®ctive directional
source at the double image source S00 seems to be reasonable.
For applications in room acoustics, the foregoing discussion elements may be

summarised as follows. The scattered ®eld of a barrier on a wall exhibits its largest
contribution in the positions aligned with the source and the corner. For other
positions, there is an enhancement of the low frequency components (e.g. Fig. 13).
This may be used to some advantage in room acoustics. Indeed, some earlier study
has shown that for a high pass band limited white noise, spaciousness (sometimes
referred to also as source broadening or Raumlichkeit) increases as the lower cut-o�
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frequency of the noise decreases below 510 Hz [22]. This increase is especially
noticeable for the frequency components around 100 to 200 Hz. In our 1/16th scale
model study, 510 Hz corresponds to kh=15 and 100±200 Hz to kh � 3±6 (see Figs.
8±10, 13, and 14). Spaciousness which is a highly praised e�ect and a subjective
measure of decisive quality ranking of halls is induced by early lateral re¯ections
[23±25] and is monitored by the arrival time and the level of these early re¯ections
relative to that of the direct signal (see Fig. 20).
To support the claim that the scattered ®eld contributes to the impression of spa-

ciousness, refer to Fig. 20. The sound pressure level of the scattered ®eld relative to
that of the direct ®eld has been calculated for practical situations. Both the time
delay and the level of the scattered ®eld relative to the direct signal have been found
to lie well within the range of validity.
The point source for which the theoretical calculations were made, is di�cult to

realise experimentally. Considerable disagreements have been found between mea-
sured and calculated values of the scattered ®eld. This is caused by among others the
fact that at large values of the measurement angle, ' in Fig. 5, the scattered pulse
could not easily be separated from the direct and the re¯ected pulses. Therefore, the
impulse responses with and without the screen have been measured and the FFT
applied to the result of their subtraction. Some traces from the direct and the
re¯ected pulses still persisted, but were eliminated by multiplying by a suitable
tapering window, leading to values of the normalised scattered ®eld that lie within
an error margin of 2 to 8 dB. The time window in question was a double sided half
cosine one and this window was also used to eliminate the e�ect of wave di�raction
at the far edges of the re¯ecting plane.

Fig. 20. Region of existence of desirable spaciousness. Direct sound plus one asymmetric echo (from [26]).
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At very low frequencies, the disagreements between theoretical predictions and
measurements could be attributed to several reasons. The GTD, for instance, treats
the di�raction as if it were a local phenomenon. The di�racted ®eld by a sharp edged
object is the same regardless of its size with respect to the wavelength. However, this
assumption is not always true for the reason that around the geometrical boundaries
there exist transition zones where the GTD becomes completely unreliable and the
angular breadth of these regions is proportional to the wavelength [9]. Hence, one
should expect, at very low frequencies, that the receiver is situated in at least one of
these very zones. Consideration of multiple di�raction is helpful but still o�ers
limited success. On the other hand, the B±T theory is exact only for the case of the
hard half plane. Its use for a ®nite sized barrier is not well-founded although taking
into account the multiple di�raction improves the predicted value of the scattered
®eld.
The re¯ecting plane used in the experiments was ®nite in size and not ideally hard.

The poor performance of the loudspeaker at low frequencies is another source of
eventual measurement errors. The apparently anomalous behaviour of the scattered
®eld with the quite substantial disagreements with its theoretical prediction at the
lowest frequencies could be due to the onset of vibrations in the structural elements
used in the experiments, especially in the thin barrier (this was a band cut from a 1
mm thick aluminium plate corresponding to a surface weight of 2.7 kg/m2). In fact,
a wave impinging obliquely on an elastic panel may interact strongly with it
depending on its surface mass and its radiation characteristics, to name only the
most important factors.
Lastly, at an incidence angle that is not too far from the normal, it may be safely

assumed that a ®nite hard plane is large enough for geometrical re¯ections to occur
at it only when at least the ®rst half Fresnel-zone can be fully contained in it [27].
One can then conclude that for a wave falling not too obliquely on the scattering
barrier set on the wall, and for a source and receiver at distances not too far from it,
the theoretical models developed for the di�raction by half planes may be used to
predict the scattered ®eld for wavelengths up to about half the width of the barrier.
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Appendix A. Expression of the di�racted ®eld according to the B±T theory for the
case of a half plane and z=0 [Eq. (6)]

This case is of the most usual occurrence in experimentation and a simpli®cation
of the complicated expression is often desired. With �W � 2�, Eq. (3) becomes
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ud�t� � ÿS�c
8�2
f�g 1

rr0 sinh y
eÿy=2 �A1�

Where � as given in Eq. (5) may be expressed again as:

f�g � sin ��� � � �0�=2� �
1ÿ 2eÿy=2 cos ��� � � �0�=2� � � eÿy

� sin ��� � � �0�=2� �
2eÿy=2 cosh�y=2� ÿ cos ��� � � �0�=2� �� 	 �A2�

with (Ref. [5] f. 1.622.6, p. 47):

y � arccosh a � log a�
�������������
a2 ÿ 1
ph i

; a � c2t2 ÿ r2 � r20
ÿ �
2rr0

�A3�
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�����������������������������
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sinh y � ey ÿ eÿy
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�����������������������
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�������������
a2 ÿ 1
p
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For the di�erent sign combinations in the argument of sin and cos of
��� � � �0�=2 one gets:

++ +ÿ ÿ+ ±

sin ��� � � �0�=2� � cos+ cosÿ cosÿ cos+
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Hence,
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x� sin��
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x� sinÿ�

cosÿ
xÿ sinÿ�

cos�
xÿ sinÿ

� �
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where x=cosh�y=2� �
�������������������
�a� 1�=2

p
: � then becomes:

f�g � x
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� cosÿ
x2 ÿ sinÿ2

� �
�A7�

and ud�t� takes then the form:
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8�2

x
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rr0
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Next:
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p
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with:

t� � �r� r0�=c �A10�

and because:

rr0 �
c2 t2� ÿ t2ÿ
ÿ �

4
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x may then be expressed this time in terms of t� and tÿ, namely:
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p
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Then, inserting (A9) and (A11) in (A8) leads to:

ud�t� � ÿS�
4�2c

���������������
t2� ÿ t2ÿ
t2 ÿ t2�

s (
cos �� � �0�=2� �
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� cos �� ÿ �0�=2� �
t2 ÿ t2ÿ ÿ t2� ÿ t2ÿ

ÿ �
sin2 �� ÿ �0�=2� �

�A13�

which when using sin2=1ÿcos2 gives Eq. (6).
The expression for the short time range after the least time �0 � t� � �r� r0�=c, is

given as an expressin of � � tÿ t0 with the following considerations:
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and the approximation for (A13) becomes then:
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which is the expression of Eq. (8).

Appendix B. Expression of erfc
�������������ÿi!a
pÿ �

in terms of the Fresnel integrals for a
real positive argument

For the complex argument z � �����������ÿi!apÿ �
=(lÿi) �������

�fa
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f � !=2� is the frequency� �
the function defined by:

erfc�z� � 2���
�
p

�1
z

eÿu
2

du �B1�

is sometimes not available in calculation software and reformulation using available
functions is desirable. Starting from the following expressions (Ref. [28] f. 7.1.3 p.
299, and f. 7.3.22 p. 301):
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where the Fresnel cosine and sine integrals are de®ned by:
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2
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and after setting z � �1� i� ��������fa
p

in (B1), and rearranging (B3) one gets ®nally:
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Appendix C. Development of AD(P)=f(P)ÿig(P) in Eq. (39)
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and w�z� de®ned by [28]:
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(C2) becomes then:
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Hence, using (B3), (C5) reads then as:
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with:

f; g�P� � sgn�P�ei�P2=2 1

2
ÿ S;C� Pj j�

� �
�C7�

Appendix D. The double di�raction for the B±T theory applied to the hard thin
strip on the re¯ecting plane

With reference to Fig. D1, the pulse emitted by the source S travels along the least
path via the edge of the wedge towards R contributing there to a large amount of
the di�racted energy. Later arrival of the remaining energy comes from points situ-
ated on the edge on both sides of the least time point and this is due to the delayed
arrival of the front of the initial pulse to these points. Hence, the idea would be to
discretise these contributions by considering the edge as containing an in®nite set of
secondary sources, SSs, having di�erent strengths and emitting at discrete lapses of
time [29].
If one chooses the time interval as �T, then one de®nes new source-edge-receiver

paths lagging behind the least time path by discrete values n�T and the contribution
of the nth SS to the received pressure is de®ned as the mean of ud��� centred at n�T
and of duration �T i.e.:

< ud�n�T� >� 1

�T

��n� 1=2��T

�nÿ 1=2��T
ud���d� �D1�

If the ®eld point is not near the shadow boundary, that is near the plane contain-
ing the edge of the wedge and the point source (in which case the discrete di�racted
pulse becomes a delta function), then for n=0, and taking the lower limit in the
integral to be zero, Eq. (D1) becomes:

< ud��0� >� 1=��T�1=2 �D2�

For n51, one can safely take the instantaneous values ud�n�T� instead of the
average values; the committed error being max 3.5% (for n � 1) as long as one is far
from the geometrical shadow boundaries (usually a few degrees su�ce) [29]. For
every n51, the SSs occur in pairs, the strengths of which being:

SSSn � FnS �D3�

where S is the strength of the original source entering in Eq. (1) and:

Fn � 1

2
< ud�n�T� > =u� �D4�
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with:

u� � S�=�2�R�T� Receiver on plane of wedge
u� � S�=�4�R�T� Receiver not on plane wedge

�D5�

and where R is the distance from the secondary source to the receiver. For the more
general case and with reference to Fig. D1, the secondary source fractions Fn and Fn0

are given by the following expressions:

Fn � < ud�n�T� >
u�

� r0nrn
r0nrn � r00nr0n

;F0n �
< ud�n�T� >

u�
� r00nr

0
n

r0nrn � r00nr0n
�D6�

The application of these preliminary results to the double di�raction by the bar-
rier on the plane is illustracted in Fig. D2 where Hn�0; h; zn� is the position of the nth
SS and Hin(0,ÿ h; zn) its image through the plane. After re¯ection on the plane, the
pulse of the nth SS returns to the edge where a second order di�racted wave ema-
nates. Thus one can consider as if the nth SS's pulse originates at Hin.
In its original presentation [29], the Hns are de®ned in a way such that:

SHn � least path of �Hin ÿ edgeÿR� ÿ SHR � c�n��T

or using the geometry of Fig. D2:

Fig. D1. Interpretation of the di�raction by a wedge as the contribution of discrete secondary sources on

the wedge.
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��������������
r20 � z2n

q
� �2h� r�2 � z2n
� �1=2ÿ�r� r0� � c�n��T �D7�

the solution of which is given by:

zn � R02=2
ÿ �2ÿ r0�2h� r�� �2
n o

= r20 � �2h� r�2 � R02
� �n o1=2

�D8�

with:

R02 � cn�T� r� r0� �� �2ÿr20 ÿ 2h� r� �2 �D9�

and subject to the constraints:

z2n4�cn�T�2=2ÿ cn�T r� r0� � � rr0 ÿ 2h�h� r� �D10�

cn�T� �r� r0�� �25r20 � �2h� r�2 �D11�

The solution to Eq. (D7) may also be obtained numerically. From Fig. D2, mak-
ing the distance HinÿedgeÿR shortest leads to an equation of the second order in z0n

z02n �4h2 ÿ r2� � 2znz
0
nr

2 ÿ z2nr
2 � 0 �D12�

For which the solution leads to a simple relation between z0n and zn given by:

Fig. D2. Geometry of the double di�raction for a barrier on a plane.
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z0n � zn
r

r� 2h
�D13�

The strengths of the SS0s are calculated through using Eq. (A16) for n � 0 and Eq.
(A13) for n51. Important temporal quantities to be considered are ®rst the time of
emission of the diverse SSs.

T0n �
��������������
r20 � z20

q
=c �D14�

after the arrival of the original pulse's wavefront from S, and the time of arrival of
the doubly di�racted pulse:

T0n � �0n

with:

�0n �
����������������������������
�r� 2h�2 � z2n

q
=c �D15�

which means that considering for a ®rst approximation that the SSs are not too far
from the y axis (through choosing small values of �T and n), t and � in (A16) and
(A13) are to be respectively replaced by:

tn � tÿ T0n �D16�

and:

�n � tn ÿ �0n �D17�

The pressure radiated by the nth SS in this case may be than expressed as:

uSSn � �SSSn

4�Rn
��tn ÿ Rn=c� �D18�

with Rn, the distance range to the ®eld point, being given by:

Rn �
��������������
r2 � z2n

q
�D19�

and:

SSSn � FnS � 1

2

< ud�n�t� >
u�

S � < ud�n�T� > �Rn�T

�
�D20�
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For n=0 the 1=2 in (D20) is omitted and using Eq. (A16), after some mathema-
tical operations gives:

USS0 � �SSS0

4�c
� t0 ÿ R0=c� �;SSS0 � ÿSR0

�c

�������������������������
�T

t�� t2� ÿ t2ÿ
ÿ �s

1

cos�

� �
�

�D21�

i.e.:

uSS0 � �S

4�R0

R0

R00
��t0 ÿ R0=c� �D22�

where R00 is a distance parameter given by:

R
0ÿ1
0 � ÿ

1

�c

�������������������������
�T

t�� t2� ÿ t2ÿ
ÿ �s

1

cos�
� �

�
�D23�

and for simplicity, as before, the book, the hook {}+ represents the sum of two
terms. Then, applying the primary results of the di�racted ®eld to this new source,
that is writing (A13) and (A16) for the new source described by Eq. (D22).

ud0�t0� � 2
ÿS�
4�2c

2h

R00

�������������������
t2�0 ÿ t2ÿ0
t20 ÿ t2�0

s
�2 cos��=2�
t20 ÿ t2ÿ0 ÿ t2�0 ÿ t20

ÿ �
sin2 ��=2� �D24�

and:

udi0��0� � 2
ÿS�
4�2c

2h

R00

1���������������������������������
2t�0 � t2�0 ÿ t2ÿ0

ÿ �q �2� 1

cos��=2��
1����
�0
p �D25�

because r0 � 2h and �0 � 0, and the multiplicative factor 2 is owing to the parity of
the SSs.
For n51, one cannot in general use Eq. (A16) because one does not have in

advance an idea on how much the approximate short time expression departs from
the exact one. Reformulating the exact expression of the di�racted ®eld in Eq. (A13)
as:

ud�t� � ÿS�
4�2c

2c�
��������������
rr0

t2 ÿ �20

r
cos�

4rr0 cos2�� c2 t2 ÿ �20
ÿ �( )

�
�D26�

and of its approximation in Eq. (A16):

udi��� � ÿS�
4�2c

c�
���������
rr0
2�0�

r
cos�

2rr0 cos2�� c2�0�

� �
�

�D27�
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then, one uses for the SSSn the expression of the instantaneous pressure rather than
its mean in the form given in Eq. (D20). Hence, setting t equal to �0 � n�T in Eq.
(D26) gives:

< ud�n�T� > � ÿS�
4�2c

2c

n�T

���������������������������
rr0

1� 2�0=n�T

r
� cos�
4rr0 cos2�� �cn�T�2�1� 2�0=n�T�

� �
�

�D28�

From this last expression, it is well noticed that < u�n�T� > becomes smaller the
larger is n. Inserting Eq. (D28) in Eq. (D18), the pulse radiated by the nth SS may
then be expressed as:

uSSn � �S

4�Rn
�Rn

R0n
��tn ÿ Rn=c� �D29�

where:

R
0ÿ1
n � ÿ

1

�n

���������������������������
rr0

1� 2�0=n�T

r
cos�

4rr0 cos2� ��cn�T�2�1� 2�0=n�T�

( )
�

�D30�

Then, using Eqs. (D26) and (D27) for this expression of the unit pulse one gets:

udn�tn� � 2
ÿS�
4�2c

Rn

R0n
2c

���������������
r2h

t2n ÿ �20n

s
�2� cos��=2�

4r2h cos2 ��=2� � c2 t2n ÿ �20n
ÿ � �D31�

and:

udin��n� � 2
ÿS�
4�2c

Rn

R0n
c

���������
r2h

2�0n

s
�2� cos��=2�

2r2h cos2 ��=2� � c2�0n�n
� 1����
�n
p �D32�

The factor 2 in front of the expression comes as before from the parity occurrence
of the SSs.
In the case of the new short range time approximation of the di�racted ®eld, one

uses Eq. (15) instead of Eq. (A16) to evaluate the partial strength of the SSs.
For n � 0, the form corresponding to (D22) is:

SSS0 � ÿSR0

�c

���������������
t2� ÿ t2ÿ
2t�

s
1

t�

cos�������
a�
p arctan

���������������������
�T=2

a�
ÿ �

4

r( )
�

�D33�
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whereas for n51, the relative SS's strength becomes:

SSSn � ÿSRn

2�c

���������������
t2� ÿ t2ÿ
2t�

s
1

t�

cos�������
a�
p arctan

��������������������������
�n� 1=2��T

a�

r
ÿ arctan

��������������������������
�n� 1=2��T

a�

r !( )
�

�D34�

with a� � t2�ÿt2ÿ
2t�
�cos2�. These last two expressions result from an integration of the

form:

�
1���
�
p � 1

� � a
d� � 2���

a
p arctan

���
�

a

r
; a > 0 �D35�

The numerical treatment of our problem by the double di�raction approach is
handled in the optimal way. The SS0s strengths are calculated by means of the new
udi��� [Eqs. (D33) and (D34)] because of the more realistic conditions than those
taking the values of the pressure rather than its mean at n�T in (D28), and giving
more reliable values than when using the primary form of udi in (A16) or (D27).
Then for the oth SS, Eqs. (A13) and (A16) are, respectively, used for the exact and
for the initial doubly di�racted pressure. For the nth SS (n51) these correspond
respectively to (D26) and (D25).
The calculations done at this stage consider the case of one pair of a point source

and a ®eld point. In the problem we are treating, we have to extend these results to
the three other combinations of the real points and their images. In the following
theses are taken into account by adding an integer 14m44 as a superscript in the
®eld quantities in (D24), (D25), and (D32), and the corresponding quantities result-
ing from using (D33) and (D34) should not be forgotten due to the possibility of the
di�racted ®elds to propagate also behind the thin screen.
All what is left now is to translate these results in the frequency domain. The sin-

gle di�racted ®elds are expressed in forms given by Eqs. (A13) and (A16). Then the
total di�racted ®eld udtot is given by:

udtot�t� �
X4
m�1

umd �t�H�tÿ tm�� �
Xn
n�0

umdn�tmn �H tm ÿ �Tm
n0 � �m0n

� �( #
�D36�

where H�t� is the unit step Heaviside function:

H�t� � 0 t40
1 t > 0

�
�D37�

The Fourier transform (FT) of (D36) reads then as:
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udtot�f� � FT udtot�t�� � �
��1
ÿ1

udtot�t�ei!tdt �D38�

and by using the same arguments as those which led to Eq. (13) we divide the total
FT into an analytical part of the initial di�racted pressures umdi��� and umdin��n� and a
digital FT of the left part �udtot�t� with a suitable smoothing window. Practically, a
length of one or two seconds is su�cient to include most of the information to the
FFT analysis. This is so because for the geometry of the study examples, the diverse
�0 are in the order of the millisecond and the maxima in the �ud�t� occur near �0, so
at a time of 1 s after �0 the requirement �ud (1 s)=5% �ud�t�max is largely satis®ed.
Moreover, in practice a maximal frequency of some kiloHertz is su�cient. One can
then choose safely a time interval sampling of 50 ms (or a sampling frequency of 20
KHz).
The time window w�t� is shown in Fig. D3 and the expression of which is:

w�t� �
1 04t < T

1

2
1� cos

��tÿ T�
T=10

� �
T4t411T=10

0 t > 11T=10

8><>: �D39�

Before giving the ®nal FT one should represent the analytical FT of Eq. (D32), a
form similar to that met earlier in (D16) and which can be expressed (with a con-
stant factor omitted) as:

Fig. D3. The half cosine taper window.
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��1
ÿ1

1��������������������
�n�a� �n�

p H�tn ÿ �0n�ei!tndtn �
�1
�0n

1����
�n
p �a� �n� e

i!tndtn �D40�

and with �n � tn ÿ �0n ) tn � �n � �on; dtn � d�n

FT udin��n�� � � ei!0n

�1
0

1����
�n
p �a� �n� e

i!�nd�n � ei!�0n
����
a
p eÿi!aerfc�

�����������
ÿi!a
p

� �D41�

where erfc(x) is the error complementary function which was seen in Appendix B
for the complex argument

�����������ÿi!ap � �1ÿ i� ��������fa
p

.

Appendix E. Multiple di�raction by the barrier on the plane using the GTD
approach

In this appendix, use is made of e�j!t for the time dependence to following the
same guidelines of the UTD in the original text [13]. This will not a�ect the ®nal
results if they are presented relative to some reference. Consider Fig. E1.
If we call u0d�'; r� the di�racted ®eld of order zero at R due to the source S, then

u0d�'; s� is expressed as:

u0d�'; r� �
eÿikr

0

r0
Dh�'0; r0; '; r�Asphe

ÿikr �E1�

with:

Fig. E1. Showing the parameters for the multiple di�raction.
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Dh�'0; r0; '; r� � ÿei�=4
��������������
L�r0; r�
�

r
�
n
f kL�r0; r�; '0 ÿ '� �e2ikL�r0;r� cos2 �'0 ÿ '�=2� �

sgn��� 'ÿ '0�

� f kL�r�0; r�; �'� '0�� �e2ikL�r0;r� cos2 �'�'0�=2� �sgn��ÿ '0 ÿ '�
o �E2�

and:

Asph �
����������������

r0

r�r� r0�

s
�E3�

f is the function as de®ned in Eq. (26) and is considered in some more detail later.
This di�racted ®eld gives rise to a di�racted ®eld of ®rst order u1d, the ®rst element

of the series of the multiple ®eld, due to the propagation of the ray u0d along both
sides of the strip and its return back to the top H of the strip. Thus, by considering
the origin of this ®eld at the image of H through the plane, and by supposing it
having a conical character, u1d can be expressed as:

u1d�'; r� � u0d�0; 2h�Dh�0; 2h; '; r�Aconeÿikr

� u0d�2�; 2h�Dh�0; 2h; 2�ÿ '; r�Aconeÿikr
�E4�

where:

Acon � 1��
r
p �E5�

In Eq. (E4), the second term has taken this form because the incident ray should
have an angle if incidence less than or equal to � and if one looks at Fig. E1 from the
other side of the page, i.e. towards the opposite direction of the z axis, then the
incidence angle becomes 0 and R is at the angle (2�ÿ ').
By using the de®nition Eq. (E2) one ®nds that:

Dh�0; 2h; '; r� � ÿDh�0; 2h; 2�ÿ '; r� �
� ÿ2ei�=4

���������������������
L�2h; r�=�

p
f kL�2h; r�; '� �ei2kL�2h;r� cos2 �'=2�sgn��ÿ '�

�E6�

with f��; 
� de®ned by:

f��; 
� �
�1
x

eÿi�
2

d� x �
������
2�
p

cos�
=2��� �� �E7�

and developed as:
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f��; 
� �
�1
0

ÿ
�x
0

cos��2� ÿ i sin��2�� �
d�

�
��������
�=2

p 1

2
ÿ C�

��������
2=�

p
�x�

� �
ÿ i

1

2
ÿ S�

��������
2=�

p
�x�

� �� �
�E8�

where again C and S are, respectively, the cosine and since Fresnel integrals de®ned
in (B4). Hence, Eq. (E4) takes the new form:

u1d�'; r� � 2u0d�0; 2h�Dh�0; 2h; '; r� e
ÿikr��
r
p �E9�

because:

u0d�2�; 2h� � ÿu0d�0; 2h� �E10�

which can be proved through developing Eqs. (E1) and Eqs. (E2) after setting
respectively, 2� and 0 for ' in Eq. (E2). Actually, this is an important symmetry
property of the di�racted ®eld stating that at two points on the opposite sides of the
di�racting half plane, the di�racted ®eld has equal amplitudes but the phases are
opposite. This can also be veri®ed in the exact time domain expression as given by
Eq. (6) in the text.
The di�racted ®eld of the second order is derived in a similar way, namely:

u2d�'; r� � u1d�0; 2h�Dh�0; 2h; '; r� e
ÿikr��
r
p

� u1d�2�; 2h�Dh�0; 2h; 2�ÿ '; r� e
ÿikr��
r
p

�E11�

with:

u1d�0; 2h� � ÿu1d�2�; 2h� � 2u0dDh�0; 2h; 0; 2h� e
ÿik2h�����
2h
p �E12�

u2d�'; r� is expressed again as:

u2d�'; r� � 2u1d�0; 2h�Dh�0; 2h; '; r� e
ÿikr��
r
p

� 2�2u0d�0; 2h�Dh�0; 2h; 0; 2h� e
ÿik2h�����
2h
p Dh�0; 2h; '; r� e

ÿikr��
r
p

� u1d�'; r�Dh�0; 2h; 0; 2h�
��������
2=h

p
eÿikh � u1d�'; r��x

x � Dh�0; 2h; 0; 2h�
��������
2=h

p
�eÿik2h

�E13�
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And by the same process one can show by induction that the di�racted ®eld of
order n� 1 may be expressed in terms of the ®rst order one in:

un�1d �'; r� � und�'; r�x � u1d�'; r�xn�1; n51 �E14�

The sun of all these multiply di�racted ®elds yields:

u0d � u1d 1� x� x2 � . . . ::� xn � ::� � �E15�

a series which could converge only if xj j41.
By using Eq. (E6) one can show that:

Dh�0; 2h; 0; 2h� � ÿ2ei�=4
��������
h=�

p
f�kh; 0�ei2kh �E16�

and consequently the term x of the geometrical series is written again as:

x � Dh�0; 2h; 0; 2h��
��������
2=h

p
eÿik2h � ÿ2

����������
2=�e

p i�=4
f�kh; 0� �E17�

with the expression of f given in Eq. (E8), x takes the form:

x � ÿei�=4 1ÿ 2C 2
�����������
kh=�

p� i
ÿ i 1ÿ 2S 2

�����������
kh=�

p� �h ih on
�E18�

and ®nally the inequality.

xj j � 1ÿ 2C 2
�����������
kh=�

p� �h i2
� 1ÿ 2S 2

�����������
kh=�

p� �h i2� �1=2

41 �E19�

is largely satis®ed when the argument of the Fresnel functions C and S exceeds 3.5,
i.e.:

2
�����������
kh=�

p
53:5 or kh510 �E20�

Appendix F. The inclusion of double and triple di�raction in the Green's function
model

This appendix is a completion of Section 5.2 where it was considered only the case
of sharp edges. However, one should not exclude the possibility of noise shielding by
thick barriers or many sided pillars. A simple example is drawn in Fig. F1.
Basically, the multiple di�raction is considered in the same way as with the GTD

or the B±T theory, that it is an extension of the single di�raction ocurring when
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singly di�racted rays have the ability to touch upon other edges. Considering Fig.
F1, one could develop the expression of the di�racted wave given by the GTD in the
form (E1) in a new form which reads as [21]

ud��; r� � eik�r0�r�

r0 � r
Vd

r0r

r0 � r
; � ÿ �0

� �
� Vd

r0r

r0 � r
; 2�� � � �0

� �� �
�F1�

with:

Vd�BA; �� � Vd��BA; �� � Vdÿ�BA��

Vd��BA; �� � ei�=4����������
2�kl
p �

2�
cot

�� �
2�=�

� �
F BX��� � �F2�

and here:

F�x� � ÿ2i ���
x
p

eÿix
�1��

x
p ei�

2

d� �F3a�

X���� � 2kA cos2
2N��ÿ �

2

� �
�F3b�

Fig. F1. Geometry of a three wedged barrier.
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N� � 0 �4�ÿ �
1 � > �ÿ � Nÿ �

ÿ1 � < �ÿ �
0 �ÿ �4�4�� �
�1 � > �� �

8<:
8<: �F3c�

With these de®nitions, the double di�racted ®eld [20] (by considering for example
in Fig. F1 the wedges 1 and 2 a distance w12 apart) is given the new expression [21]:

ud12 � 2 exp ik r01 � w12 � r�2� �� �=�r01 � w12 � r2�

�Vd B�r01; r2;w12� r01�w12 � r2�
�r01 � w12 � r12� ; �01

� �
Vd

r01 � w12� �r2
r01 � w12 � r2� � ; �2 ÿ �2

� �

forXÿ��01�4Xÿ��2 ÿ �2�

�Vd
r01�w12 � r2�
�r01 � w12 � r2� ; �01
� �

Vd B�r01; r2;w12� �r01 � w12�r2
�r01 � w12 � r2� ; �2 ÿ �2

� �

forXÿ��01� > Xÿ��2 ÿ �2�
�F4�

where:

B�r0; r;w� � w�w� r0 � r�=�w� r0��w� r� �F5�
This last expression is given under the conditions:

kr; kr0; kw >> 1; k � �2�f=c� �F6�

that is in the high frequency range where at any rate the assumptions of geometric
optics should be satis®ed.
Similary, by considering the wedges 1, 2 and 3, the possibility of a triple di�racted

ray could not be avoided if one considers fro instance the previous double di�racted
ray to get di�racted for instance the previous double di�racted ray to get di�racted
at the wedge 3. The expression for this ®eld is:

ud123 � 2 exp ik�r01 � w12 � w23 � r3�� �=�r01 � w12 � w23 � r3��

�Vd B�r01;w23 � r3;w12� r01�w12 � w23 � r3�
r01 � w12 � w23 � r3

; �01

� �
�

�Vd B�r01;w12 � r3;w23� �r01 � w12��w23 � r3�
r01 � w12 � w23 � r3

; �2

� �
�

�Vd
�r01 � w12 � w23�r3
r01 � w12 � w23 � r3

; �3 ÿ �3
� �

for Xÿ��01�
�� ��4 Xÿ��2�

�� ��; Xÿ��2�
�� ��4 Xÿ��3 ÿ �3�

�� ��

�F7�
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and in case Xÿ��01�j j > Xÿ��2�j j;B�r01;w23 � r3;w12� is inserted into the secon Vd,
while for Xÿ��2�j j > Xÿ��3 ÿ �3�j j;B�r01 � w12; r3;w23� is inserted into the third Vd.
To apply these results to our problem of interest, the strip may be considered as

the degeneration of a double wedge when its exterior angles extend to 2�. The angles
sustaining the source or the ®eld point rays can simply be decided from geometrical
considerations in the drawings.
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