
On the frequency dependence of the
modulus of elasticity of wood

D. Ouis

Abstract This short note reviews the reasons for the frequency dependence of the
Modulus of Elasticity, MOE, of wood. It has in fact been reported in several
publications on wood that depending on the technique used in the test
experiment, the value of the MOE depends to some degree on the frequency at
which it is evaluated. The frequency ranges used are namely zero frequency in the
case of static bending, audio frequencies when using mechanical vibrations or
sound radiation and finally ultrasonics. The results from implementing these
three different techniques show that the lowest value that may be obtained for the
MOE occurs when using the static mode, and thereafter increases with increasing
frequency. This property of increasing dynamic MOE with frequency is shared by
all solid materials, and finds its theoretical explanation in the Kramers-Kronig
relations. Dispersion in conjunction with the notion of complex MOE permit to
establish the relation between the real and the imaginary components of the MOE,
i.e. respectively the dynamic and loss moduli. Due to the mathematical difficulties
encountered in using the exact expressions, approximations are necessary for
applications in practical situations. Hence, an improved version of the Zener
model for viscoelasticity, which has lately been proposed by Pritz (1999), is
presented. With some assumptions, and under which excellent agreement has
been obtained with the exact theory, this model is used for predicting the
viscoelastic properties of wood.

Introduction
The outstanding properties of wood make this natural material the subject of
interest of many researchers. Not only that its physical characteristics, like in-
homogeneity and anisotropy interest engineers and material scientists, but wood-
related industries are also concerned about other properties of this material,
especially its strength. Regarding this latter property, it has frequently been re-
ported in the literature that the mechanical properties of wood as assessed by
means of dynamical testing techniques are to some extend dependent on the
frequency of operation. As mentioned by Hearmon (1966), the choice of the
method for determining the Modulus of Elasticity is often a matter of conve-
nience, but he points out at the same time that the correlation between the static
MOE and the dynamic one is not always perfect, and refers to the results of Jayne
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(1959). These conclusions have also been shared by other researchers (Burmester
1965; Marra et al. 1966) and are supported by more recent investigations (Haines
et al. 1996, and references therein; Olsson and Perstorper 1992) although others,
for known or unknown reasons have observed no noticeable variations of the
value of the MOE with frequency (Fukada 1950). Regarding the use of ultrasound
as a means for assessing the properties of wood, the values of the MOE as
measured from the speed of propagation of the ultrasonic signal have also been
found to exceed those of the static MOE (Bucur 1983; Bucur and Feeney 1992;
Halabe et al. 1996). This trend of increasing value of the MOE with the frequency
is indeed a property found in all solid materials, and is a consequence of applying
simple, but not widely known, mathematical concepts to the study of linear causal
systems. It is henceforth the goal of this note to shed some light on the causes
underlying such frequency-dependent behavior.

The notion of complex modulus of elasticity
In general, solid materials are known to have both elastic and damping proper-
ties. Solid materials are not ideally elastic, and consequently, for a time varying
stress, the stress and strain are not always in phase. Solid materials need in a way
some time to react fully to some action, and therefore exhibit a memory-like
behavior; the response to some action does not only depend on time, but also on
past history. Instead of pure elasticity, one would rather talk about the visco-
elasticity of these materials.

If r(x) and e(x) are, respectively, the stress and strain spectra of a material
sample, then according to Hooke’s law, the Modulus of Elasticity, MOE and
symbolised by M(x), is defined by:

rðxÞ ¼ MðxÞ � eðxÞ ð1Þ

A powerful means to studying the properties of materials is the notion of
complex MOE, where the MOE may be written as the sum of a real part, often
denoted as the dynamical modulus, and an imaginary part, the loss modulus, i.e.

MðxÞ ¼ rðxÞ
eðxÞ ¼ MdðxÞ þ jMlðxÞ ¼ MdðxÞð1 þ jgðxÞÞ ð2Þ

with the real part Md(x) denoting the dynamical modulus, and the imaginary part
Ml(x), denoting the loss modulus and

gðxÞ ¼ MlðxÞ
MdðxÞ ð3Þ

a coefficient used for assessing the amount of loss in the material and by way
called the loss factor.

Dispersion of materials and response of linear systems
The name of dispersion is taken from the phenomenon of optical dispersion. It is
known that the index of refraction n of a transparent medium is dependent on the
frequency of the light falling on it. This results in the common observation that
light rays of different colours, i.e. of different wavelengths or frequencies, are
deviated at different angles at their passage through a transparent glass prism.
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This may be explained by the fact that n is expressed by a real part determined by
the phase velocity of light through the medium, and an imaginary part taking into
account the absorption of light in it. Therefore, a similarity may be drawn from
comparing the index of refraction in optics and the MOE in mechanics, and
consequently solid materials are also said to be dispersive in that they may
respond differently toward excitations with different frequencies. It goes back to
Kronig (1926) and Kramers (1927) who were the first to introduce the concept of
dispersion relations when they were able to show that the real part of (n2)1)
could be expressed as an integral of the imaginary part of the same quantity. But a
general label of dispersion relations would be to consider any pair of equations
expressing the real part of a function as an integral of its imaginary part and vice
versa.

Another important feature about real solid materials, or more generally all real
physical systems, is that they are causal, i.e. no response is expected from the
sample of material or the system under test prior to the application of any ex-
citation. This leads to the fact that the so-called Impulse Response, and likewise
the frequency response function, which is simply the frequency form of the im-
pulse response of the material sample or of the system, are one-sided functions,
and are therefore zero at times earlier than that of application of the excitation. In
linear systems theory, the principle of causality has for main consequence that the
real and imaginary parts of the frequency response function are interrelated (see
for instance Hahn 1996, p. 286 or Papoulis 1962 p. 198). It is important to note at
this point that from theoretical considerations nothing remarkable may be said
about the frequency dependencies, except perhaps that in the case of the MOE the
loss modulus is zero at zero frequency; i.e. no motion, no energy loss (Pritz 1998).
Henceforth, the dispersion relations may be taken as a consequence of causality,
and are therefore independent of the details of the particular interaction de-
scribed by the Impulse Response or the frequency response function; the dis-
persion relations are derivable by means of application of the Cauchy integral
formula for the Modulus of Elasticity which is a complex frequency function
(Arfken 1985; Booij and Thoone 1982).

Mathematical formulations of material dispersion and consequences
In the mathematical context, the dispersion relations are formulated with the help
of Hilbert transforms, and are of general nature, finding applications in several
branches of physics, including acoustics, electromagnetism and optics. Several
forms of such pairs of relations have been formulated for viscoelastic materials,
and, for instance, a simplified form of such a set which includes the static
Modulus M0 is (Tschoegel 1989):

MdðxÞ ¼ M0 þ
2x2

p
P

Z1

0

MlðxÞ=x

x2 � x2
dx; MlðxÞ ¼ � 2x

p
P

Z1

0

MdðxÞ
x2 � x2

dx ð4Þ

where x is an integration variable and P stands for the principal value of the
integrals. These last formulas express the fact that the knowledge of the frequency
behavior of one of the moduli permits the determination of the other modulus at
any frequency. Usually, the study of a material sample requires ideally the
knowledge of its response to a Dirac impulse-like excitation, but the response to a
step excitation is also a good alternative. Actually, the step excitation is more
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easily realisable in practical experimental situations, and the Dirac delta and the
unit step functions are not completely unrelated as a Fourier transform exists
between the two, see for instance (Arfken 1985). A further requirement for de-
riving the dispersion relations is that the response has no singularities at the
origin of time. The mathematical consequence of this condition is that the fre-
quency functions of the moduli satisfy some simple properties regarding parity,
namely that:

MdðxÞ ¼ Mdð�xÞ and MlðxÞ ¼ �Mlð�xÞ ð5Þ

meaning that the dynamic modulus is an even function whereas the loss modulus
is an odd function of frequency. The curve of the loss modulus must therefore go
through zero at zero frequency. For the dynamic modulus, its frequency depen-
dency being symmetric may suggest that the curve has a zero slope at zero
frequency, this is however true only on a log-log scale, and the slope may be
different from zero on a lin-lin scale. The value of the dynamic modulus at zero
frequency is equal to that of the static modulus.

To study in some more detail the overall frequency dependence of the moduli,
and also for practical applications, one needs to reformulate the general disper-
sion relations in simpler and more suitable forms. Hence, for moduli not be-
having in a resonance-like manner, a restriction to limited frequency ranges
sometimes permits to obtain a satisfactory estimation of one modulus from
knowledge of the local slope of the other modulus, for instance that (O’Donell
et al. 1981):

MlðxÞ � p
2

x
dMdðxÞ

dx
or MlðxÞ � p

4:6
x

dMdðxÞ
d½log x
 and gðxÞ � p

2

d½log MdðxÞ

d½log x

ð6a; b; cÞ

Focusing our interest on the behavior of the dynamic modulus with frequency,
one needs first to express the loss modulus in a general form that may help us
draw some important conclusions from Eqs. (6). An alternative expression of the
loss modulus may be given by (Cremer and Heckl 1988):

MlðxÞ ¼ WlðxÞ
pge2

ð7Þ

where e is the strain amplitude and Wl the energy lost during one period of
vibration. For physical real materials, all these quantities are positive. Therefore,
Ml, and thus the slope of the dynamic modulus, must, according to the expression
in (6a), also be positive. We reach then to the important conclusion that the
dynamic modulus is an increasing function of the frequency. The slope of the
frequency curve may vary with the frequency, but this variation diminishes with
increasing frequencies, and in the limit of infinite frequency the dynamic mod-
ulus tends to a finite value which may be denote by M¥. Note also from the
approximate expression in (6a) that the loss modulus, and thereby the amount of
damping, is proportional to both the frequency and the slope of the frequency
curve of the dynamic modulus at the corresponding frequency. The steeper the
curve of the dynamic modulus the more pronounced will be the damping. This
characteristic may be used to differentiate between materials with different
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damping capacities. For wood, wood based materials and cork, the values of the
loss factor lie typically in the range between around 0.01 and 0.1.

So far, the analysis was mostly of a qualitative character. To get a quantitative
view of these implications, and due to mathematical difficulties, one must resort
to approximations of the exact formulas. The Kramers-Kronig relations are then
substituted by local versions, which permit, for instance, to estimate the damping
properties at a single frequency from knowledge of the frequency variation of the
dynamic modulus. These approximations are however valid only under the as-
sumption that the dynamic modulus is a slowly varying function of the frequency,
a property found in several solid materials, but not necessarily in wood.
Nevertheless, Pritz used a new approach to solving viscoelastic problems. The
starting point is from the simplest model, namely the Zener model, also known as
the standard viscoelastic body (Zener 1948), and which is known to fail to
describe adequately viscoelastic problems. Hence, an improvement was suggested
to this model through using it in conjunction with the concept of fractional
derivates (Pritz 1996; Torvik and Bagley 1984). The model was consequently
named by its author as the fractional Zener model and, accordingly, the MOE
is expressed as:

MðxÞ ¼ M0 þ M1ðjxsrÞa

1 þ ðjxsrÞa
ð8Þ

and an identification of the real and imaginary parts as respectively the dynamic
and loss moduli gives in the normalised form:

MdðxÞ
M0

¼ 1 þ ðc þ 1Þ cosðap=2Þxa
n þ cx2a

n

1 þ 2 cosðap=2Þxa
n þ x2a

n

ð9aÞ

MlðxÞ
M0

¼ ðc � 1Þ sinðap=2Þxa
n

1 þ 2 cosðap=2Þxa
n þ x2a

n

ð9bÞ

The loss factor is then simply the ratio of these two expressions, i.e.

gðxÞ ¼ ðc � 1Þ sinðap=2Þxa
n

1 þ ðc þ 1Þ cosðap=2Þxa
n þ cx2a

n

ð10Þ

In these last equations, a is the order of the fractional derivative and is such
that 0 < a <1, c ¼ M¥/M0, and xn ¼ xsr is the normalised frequency, sr being the
relaxation time. Further approximations may be processed at very low frequen-
cies. The model just described is also known sometimes as the four-parameter
fractional derivative model, after the number of parameters involved (M0, M¥, sr

and a).

Application: hypothetical model for wood
For wood, and due to the different species, drying processes and modes of vi-
bration, no collection of data is up to date available to permit a fair choice of the a
and c parameters. Most of the experiments that were conducted on wood were
rather limited to definite frequencies or frequency bands, either in the audio
spectrum or in the ultrasonic range. Moreover, the largest part of the published
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material deals with investigations on the dynamic modulus, and very few publi-
cations were devoted to studying the loss factor.

The first difficulty in an attempt to present a model for wood stems from
choosing an appropriate value of the relaxation time. For wood this value ought to
be somewhere between the values taken by metals and those by polymeric ma-
terials. For many solid materials damping is caused by various mechanisms which
are often intricate to formulate. However, heat conduction is often considered as
one of the main causes of material damping, and this phenomenon has been
studied so thoroughly that its interpretation may be considered as being well at
hand. As far as wood is concerned, different damping mechanisms operate at
different frequency ranges. Other causes of damping have also been identified
when dealing with materials, namely those due to plastic flow, as well as damping
due to sound radiation or to the flow of vibrational energy in the system sup-
porting the test sample. In what follows all these types of damping are discarded
and only losses due to heat conduction are considered. Hence, incorporating heat
conduction into the stress-strain relations leads to a relatively simple form of the
loss factor due to heat conduction, namely, see for instance (Cremer and Heckl
1988, p. 235):

gðxÞ / xsr

1 þ x2s2
r

ð17Þ

The frequency curve of this function is symmetrical on a log-log coordinate
system. The curve has a low frequency asymptote increasing with 6 dB per octave
(doubling of frequency), reaches a maximum at xsr ¼ 1, and then decreases by
6 dB/octave in the high frequency limit. At very high frequencies, that is for
xsr >> 1, the period of vibration is so short as compared to the relaxation time
that heat can flow within the material permitting thus a temperature equalisation
to be reached. The process is in this case said to be isothermal, and the loss factor
becomes very small. In the other limiting case, for xsr, too, the losses due to heat
conduction are very small. In between these two extreme cases there exists a
frequency region where the loss factor exhibits large values, the maximum of
which is for xsr ¼ 1. For metals, and in the longitudinal mode of vibration, this
happens at very high frequencies, around 1011 Hz, and the corresponding value
for polymers lies often somewhere in the audio frequency range. Note here that
the relaxation time depends strongly on the kind of excitation. For bending
vibrations the regions of different temperatures are very close to each other. For a
beam or a plate, the upper side, for instance, heated and compressed, and the
lower side, extended and cooled, are at a distance equal to the thickness of the
beam or the plate. It follows then that the frequency at which the maximum of
damping occurs is very low, often at a value several orders of magnitude smaller
than that for longitudinal motion, for test samples of usual sizes (Cremer and
Heckl 1988). For bending vibrations, the value of the loss factor may then be
higher and at the same time may rise more quickly as function of frequency than
for the case of longitudinal vibrations (in the case of wood see for instance the
figures in (Skudrzyk 1968, p. 111) where curves of the loss factor are plotted
against frequency for different MC contents of wood).

Nonetheless, taking the plausible value of the frequency at which maximum
longitudinal attenuation occurs in wood to be around 1.5 MHz, as taken from
measurements conducted on the maximum attenuation of ultrasound in solid
wood (Bucur and Böhnke 1994), then a value would be found for the relaxation
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time corresponding to approximately sr ¼ 10)7 s. This value being shorter than
that of polymers and longer than that of metals lies well within the range of the
values expected.

The next step is to find appropriate values for a and c in the theory in the
foregoing section. One method which possibly allows one to make a confident
choice of these quantities would be to make some curve fitting on plots of ex-
perimental data. However, in lack of such data covering a broad enough range of
frequencies, one can only rely on common sense to make acceptable choices.
Comparison of the obtained frequency curves with available data permits then to
validate or reject the model. Figure 1 shows the frequency curves of the dynamic
modulus and the loss factor for a ¼ 0.3 and five different values of c ranging from
c ¼ 1.5 to c ¼ 3.5. The static value of the Modulus of Elasticity was taken as
M0 ¼ 1010 Pa, a value typical for spruce. Considering the loss factor, one sees that
the curve for c ¼ 1.5 fits best to the experimental data available on wood, see for
instance (Skudrzyk 1968, p. 487).

For higher values of c, the curves predict higher values of the loss factor,
although the differences between the curves become less pronounced for in-
creasing values of c. Similar curves are plotted in Fig. 2 for c ¼ 1.5 and
0.1 < a < 0.5.

In this last set of curves a value of a ¼ 0.3 seems most appropriate since for
this value the frequency dependence of the dynamic modulus is about what is
found in literature. Lower values of a give too steep curves in the low frequencies
range, and a too weak frequency dependence thereafter. In this case, the loss
factor does not show appreciable variation within a broad frequency range; for
a ¼ 0.1, for instance, the relative variation of the loss factor is only about 2%
within 5 frequency decades. On the other hand, larger values of a predict too steep
frequency curves at around the maximum loss factor after a too weak frequency
dependence at lower frequencies. Hence, from both sets of figures, and at ex-
amining simultaneously the behavior of both the dynamic modulus and the loss
factor, the values of c ¼ 1.5 and a ¼ 0.3 may be considered as a satisfactory
choice for modelling dispersion in wood. Note that the range of values a £ 0.3 is
the range where excellent agreement is found between the exact theory, the
Kramers-Kronig relations, and its approximation, the fractional Zener model
(Pritz 1999).

A closer look at the final frequency curves in the audio frequency range is given
in Fig. 3, where the exact curves for the dynamic modulus and the loss factor are
compared to the corresponding approximate ones.

The curve of the dynamic modulus exhibits a frequency dependence that is not
linear, and moreover, is relatively strong at low frequencies (note the log-scale on
the frequency axis). The relative increment of the value of Md is about 5% at
1.3 kHz and increases to around 10% at 20 kHz. The relative error committed
when using the approximate expression for Md, amounts to 5% only at a fre-
quency as low as 100 Hz. The error is intolerable, 24% at 20 kHz. This is not so
surprising since the approximate formulae are given under the assumption that
c >> 1, whereas our value is only 1.5. For the loss factor, Fig. 3-right, things get
even worse since the approximate formulae predict values that are on the average
2.5 times those given by the exact theory along almost the whole frequency range.

Conclusions
In this paper a review has been made of the causes of dispersion in wood. This
phenomenon is found in all real solid materials and is a consequence of their non-
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ideal elasticity. An introduction has first been made to the necessary and useful
concept of the complex Modulus of Elasticity, MOE, which is composed of a real
component, the dynamic modulus, and an imaginary component, the loss mod-
ulus. The loss factor may then be calculated simply from taking the ratio of these
two quantities. Dispersion finds its explanation in interpreting the exact formu-
lation as given by the Kramers-Kronig relations when applied to the complex
MOE. The exact formulae are, however, awkward to handle mathematically, and
an approximation, namely the fractional Zener model, has been presented in this
paper. This approximate model, having been successfully tested on viscoelastic
materials, has also been applied to wood to build a model with fairly reasonable
results. The main conclusion drawn from theory, is which also supported by
experiments, is that the dynamic modulus is an increasing function of the fre-
quency; the lowest possible value taken by the dynamic MOE being the static one.
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