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Polymeric materials are known to be more or less dispersive and absorptive.
Dispersion has a consequence that the dynamic modulus is frequency dependent,
and absorption is exhibited by the fact that these materials have the ability to
absorb energy under vibratory motion. The phenomenon of dispersion in
conjunction with the powerful notion of complex Modulus of Elasticity (MOE),
permits to establish the relation between the real and the imaginary components of
the MOE, that is, respectively the Storage and loss moduli. The loss factor is
simply determined through taking the Ratio of these two MOE components. The
theoretical background for the interrelations between the Storage modulus and
the loss modulus is found in the Kramers-Kronig relations. However, due to the
mathematical difficulties encountered in using the exact expressions of these
relations, approximations are necessary for applications in practical situations.
On the other hand, several simple models have been proposed to explain the
viscoelastic behavior of materials, but all fail in giving a full account of the
phenomenon. Among these models, the standard viscoelastic model, better known
as the Zener model, is perhaps the most attractive. To improve the performance of
this model, the concept of fractional derivates has been incorporated into it, which
results in a four-parameter model. Applications have also shown the superiority
of this model when theoretical predictions are compared to experimental data of
different polymeric materials. The aim of this article is to present the results of
applying this model to rubber, both natural and filled, and to some other selected
more general polymer.
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INTRODUCTION

Polymers constitute the raw material of several industries, and plastic
and rubber products are used in various applications. In order to
ensure an optimal use of these materials, a knowledge of their
properties is of primary concern. Considering a simple example,
rubber-like materials are often used in structural mechanics and in
building technology to reduce the vibrations and sound radiation from
structural members [1]. This may be achieved either through coating
extended vibrating areas by rubber-like materials to dampen
their vibration amplitude, or through interposing discrete rubber
components between connecting elements to reduce the vibration
transmission path between them [2].

From a scientific point of view, the two major material properties
characterizing polymeric materials, or more generally any solid
material, are the strength as formulated by the Modulus of Elasticity
(MOE) and the damping capability of the material as quantified by the
loss factor. However, these two properties are not completely inde-
pendent of one another. For solid materials, like steel and concrete, it
is often, erroneously, made mention of their ‘‘constant’’ MOE and loss
factor, Z, but in reality this is, to some extent, true only within a
certain frequency range. There is always some variation of these
quantities with the frequency, although the variation is too slow in the
case of most building materials to have a crucial effect in practical
applications. Things are noticeably different for polymeric materials.
The dependence on the frequency of the two material properties of
concern is usually so strong that it can no longer be neglected when
dealing with these materials. Furthermore, the range of frequency
where the dependence is strongest may sometimes extend over several
decades. On the other hand, some engineering applications require, for
instance, to process damping materials that are tuned to operate with
maximum efficiency at well-defined frequencies or frequency ranges.
Thus, to ensure an optimal use of these materials for such applications
a knowledge of the mechanisms behind such frequency dependency
may help to establish simple predictive models.

THEORETICAL BACKGROUND

Definition of the Modulus of Elasticity and its Analogy
in Linear Systems Theory

An important parameter for characterizing a solid material is its
Modulus of Elasticity. If s(t) is the time history of the stress applied to a
sample of the material, and e(t) the resulting strain time history, the
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relation between these two functions may be expressed in terms of the
memory function m(t), [3�4]

sðtÞ ¼
Z t

�1

mðt� tÞeðtÞdt ð1Þ

In the frequency domain, the Fourier transform of m(t) is defined by:

MðoÞ ¼ 1

2p

Z1

�1

mðtÞe�jotdt ð2Þ

and transforming Equation (1) gives:

sðoÞ ¼ MðoÞ � eðoÞ ð3Þ

where s(o) and e(o) are respectively the frequency forms of s(t) and e(t)
(use of the symbol M is made here for the MOE simply for the reason
that the following results may in a broad sense be generalized to any
modulus, be it shear or bulk). This last equation is nothing more than
Hooke’s law, where M(o) may be recognized as the MOE.

A close analogy between the MOE and the frequency response of
a linear system may then be drawn, and this is schematically repre-
sented in the illustration of Figure 1.

The Loss Factor

The frequency-dependent quantities entering in Eq. 3 are usually
complex. It follows then that the complex MOE may be written as the
sum of a real part, denoted as the Storage modulus, and an imaginary
part, denoted as the loss modulus, i.e.

MðoÞ ¼ sðoÞ
eðoÞ ¼ MdðoÞ þ jMlðoÞ ¼ MdðoÞð1 þ jZðoÞÞ ð4Þ

with

ZðoÞ ¼ MlðoÞ
MdðoÞ

ð5Þ

a coefficient used for assessing the amount of loss in the material,
called the loss factor. The notion of complex MOE is a powerful means
for studying the viscoelastic properties of materials. If under the
regime of harmonic vibrations, the available, reversible, vibratory
energy per period of vibration is WR, and the amount of energy lost
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during the same period is Wl, then the loss factor may alternatively be
defined by:

ZðoÞ ¼ 1

2p
Wl

Wr
ð6Þ

For solid materials, and in the audio frequency range, typical values
observed for Z lie in the range between approximately 0.001 and 0.01,
whereas for polymers they may be up to three orders of magnitude
larger.

Dispersion of Materials and Response of Linear Systems

The notion of dispersion is brought from optics to refer to the
phenomenon by which waves with different frequencies propagate
with different speeds within a medium. The speed of wave propagation
in solids is a dynamic property that is formulated in terms of the
MOE, and as this latter is dependent on the frequency of operation,
dispersion then follows.

The concept of dispersion relations is attributed to Kronig [5] and
Kramers [6] who were the first to introduce it in the field of material

FIGURE 1 Analogy between the Modulus of Elasticity of a sample of solid
material and the frequency response of a linear system.
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sciences. However, a generalization of this label lies in the consi-
deration of any pair of equations that express the real part of a function
as an integral of its imaginary part, and vice versa. A real solid
material, or more generally any physically realizable system satisfies
the principle of causality by which it is meant that no response is
expected from the system prior to the application of an excitation. The
principle of causality has as a main consequence that the real and
imaginary parts of the frequency response function are interrelated
(see for instance Reference 7, p. 286 or Reference 8, p. 198).

Mathematically speaking, the dispersion relations are formulated
with the help of Hilbert transforms, and are of general nature, finding
applications in several branches of physics, including acoustics, elec-
tromagnetism, and optics. Several forms of such pairs of relations have
been formulated for viscoelastic materials, and for instance a simpli-
fied form of such a set which includes the static Modulus M0 is [4]:

MdðoÞ ¼ M0 þ
2o2

p
P

Z1

0

MlðxÞ=x
o2 � x2

dx; MlðoÞ ¼ �2o
p

P

Z1

0

MdðxÞ
o2 � x2

dx ð7Þ

where x is an integration variable and P stands for the principal value
of the integrals. These last formulas express the fact that the knowl-
edge of the frequency behavior of one of the moduli permits the
determination of the other modulus at any frequency. It may be shown
that the value of the dynamic modulus at zero frequency is equal to
that of the static modulus.

Usually, the study of a material sample requires, in the ideal
situation, the knowledge of its response to a Dirac impulse-like exci-
tation. However, the response to a step excitation is also a good
alternative (actually, the step excitation is more easily realizable in
practical experimental situations, and the two types of excitation are
related to each other through Fourier transforms [9]).

The Zener Model and its New Improvement

A simple model, namely the one developed by Zener [10], has quite
often been referred to in dealing with modeling the viscoelastic
behavior of materials. The model is built on the parallel coupling of a
linear spring and a Maxwell element (a serial coupling of a linear
spring and a viscous damper; see Figure 2) Knowing that this model
fails to describe adequately the problem of viscoelastic behavior, Pritz
[11] proposed a slight modification of it through making appeal to the
concept of fractional derivates [12�13].
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Thus, let the fractional derivative of order a of a function f (t) of time
t be defined by:

da

dta
f ðtÞ ¼ 1

Gð1 � aÞ
d

dt

Z t

0

f ðtÞ
ðt� tÞa dt ð8Þ

G being the Gamma function, and t a dummy variable. Referring to
Figure 2, the complex elastic modulus becomes then:

MðoÞ ¼ M0 þM1ðjotrÞa

1 þ ðjotrÞa
ð9Þ

and an identification of the real and imaginary parts as respectively
the storage and loss moduli gives, after normalizing:

MdðoÞ
M0

¼ 1 þ ðcþ 1Þ cosðap=2Þoa
n þ co2a

n

1 þ 2 cosðap=2Þoa
n þ o2a

n

;

MlðoÞ
M0

¼ ðc� 1Þ sinðap=2Þoa
n

1 þ 2 cosðap=2Þoa
n þ o2a

n

ð10a; bÞ

The loss factor is simply taken as the ratio of these two expressions,
and is therefore given by:

ZðoÞ ¼ ðc� 1Þ sinðap=2Þoa
n

1 þ ðcþ 1Þ cosðap=2Þoa
n þ co2a

n

ð11Þ

where c ¼ M1=M0;M1 being the value taken by the MOE in the limit
of infinite frequency. The quatity on ¼ otr is the normalized frequency

FIGURE 2 The Zener model, also known as the standard viscoelastic body.
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with tr being the relaxation time. It may be noted that the application
of fractional calculus to viscoelasticity is not a novelty in itself, but
dates back to about a century ago with early contributions due to
Volterra. The fractional calculus models are used to describe the vis-
coelastic properties of materials for the reasons that they are in har-
mony with the molecular theories describing these materials, that
their predictions fit reasonably well with the experimental data and
further that they permit a material modeling using fewer parameters
than those based on classical differential calculus [14�15].

VERIFICATION OF THE MODEL ON AVAILABLE DATA
ON RUBBER

As a direct application, comparison is made between experimental
data on the viscoelastic properties of rubber and theory as predicted
by use of the fractional Zener model proposed here. The results are

FIGURE 3 Comparison between model prediction and experimental data
of natural rubber. a) Storage modulus: —, and loss modulus: ���. b) loss
factor. �: experimental data.
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presented in Figures 3 and 4, respectively, for natural and filled rubber
in the audio frequency range.

With reference to Equations 10 and 11, the corresponding relaxa-
tion times were of about 9.1077s and 6.1078s for the respective
materials, values that are not totally unexpected for polymeric
materials (a crude estimate of the relaxation time is tr ¼ Z=Md. One
may see that the curves of frequency variation as predicted by the
present model are in a quite satisfactory agreement with the experi-
mentally determined values.

Some discrepancies are, however, to be noticed at higher
frequencies that may be attributed to limitations of the proposed
model. Indeed, the best fits of the fractional Zener model with the
exact K�K theory are expected for materials with a < 0.3, to be
compared with the value a� 0.5, found for rubber in this study, and
which is the over limit for acceptable performance of the approximate
model. The parameter a is an indicator of the rate of frequency
dependence of the dynamic properties, and the choice of its value is
crucial for the accuracy of the approximate model. Smaller values of

FIGURE 3 (Continued).
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FIGURE 4 Same as Figure 3, but for filled rubber.
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this parameter have been found to correspond to foam-like polymers
and PVC with low mass density [11], but a generalization of this claim
requires further in-depth investigations.

VERIFICATION OF THE MODEL ON AVAILABLE DATA
ON OTHER POLYMERS

Figure 5 summarizes the results of comparison between experimental
data and theoretical predictions on a polymer, namely polyisobutylene,
PIB2. The experimental curves taken for this comparison were those
corresponding to a temperature of 50 +F. The theoretical curves were
obtained for a relaxation time tr ¼ 10�6s and a constant c¼ 420. The
order of the fractional derivate was a¼ 0.7, and the static value of the
MOE was taken as M0 ¼ 1:9 �102 psi.

The agreement between experimental data and theoretical predic-
tions is also found here to be satisfactory, and the determined values

FIGURE 5 Comparison between model prediction and experimental data of
PIB. a) Storage modulus. b) loss factor.���: experimental curves and —: theory.
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of the parameters adequately describing the Zener fractional derivate
model may be used as specific to characterize this polymer.

CONCLUSIONS

In this article a novel model has been presented for characterizing the
dynamic mechanical properties of polymeric materials. The model is
based on the classical model as proposed by Zener, in which slight
modifications have been incorporated through introducing the concept
of fractional derivates. The model is sometimes also known as the
four-parameter fractional derivative model, after the number of
parameters involved in it (M0, M1 , tr and a), and was baptized by its
author [11] as the fractional Zener model.

Under some assumptions, namely for the order of the fractional
derivative a satisfying a� 0.3, the model gives excellent agreement
with the exact theory as formulated by the Kramers�Kronig relations.
For many polymers, this condition is fulfilled, as demonstrated in the

FIGURE 5 (Continued).
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examples where the approximate model has originally been-presented
[11]. The present study extends the validity of this model at even
higher values of a exceeding 0.6.

Applications made to rubber show an overall satisfactory perfor-
mance. Moreover, considering the specific engineering purpose of
using rubber elements as vibration dampers, it may be concluded that
the present model achieves excellent performance in the important
low audio frequency range, and up to around 2 KHz. Furthermore, the
model gives better correlation with experimental data when applied to
carbon black filled rubber, the manufacture of which has more inter-
esting engineering implications than natural rubber. For the less
interesting range of higher frequencies, the fractional derivate Zener
model seems to suffer some shortcomings, which may be attributed
to the fact that other kinds of damping than viscous damping, like
friction, take place.

For more general applications on polymers, the fractional Zener
model shows reasonably acceptable achievements when applied to
PIB. It is however not a limitation that application was specifically
made to this polymer, because other polymers may as well have been
considered. Although the model proposed in this study is expected to
have its best achievements for materials with a-values not exceeding
0.3, good agreement has been found for the present polymer whose
a-value has been found to be more than twice as high.
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