Is the function $\mathrm{f}(\mathrm{x})$ of exponential order?

What is meant by exponential order?

A function $f(x)$ is of exponential order if there exist an exponential function that is greater that $|f(t)|$ as $t \rightarrow \infty$. If a function is piecewise continuous and of exponential order then the Laplace transform of the function exists.
$\mathrm{f}(\mathrm{t})$ is of exponential order if there exist finite constant M, α and T such that $|f(t)|<M e^{\alpha t}$ for $t>t_{0}$

Examples

The following functions are of exponential order
$f(t)=\sin (10 t)$
$\mathrm{M}=2, \mathrm{t}_{0}=0, \alpha=0$
$f(t)=20 t+1$
$\mathrm{M}=20, \mathrm{t}_{0}=1, \alpha=1$
$f(t)=2^{t}$
$\mathrm{M}=1, \mathrm{t}_{0}=0, \alpha=1$
$f(t)=e^{10 t}$
$\mathrm{M}=1.1, \mathrm{t}_{0}=0, \alpha=10$
The following functions are NOT of exponential order
$f(t)=e^{2 t^{2}+1}$
$f(t)=2^{t^{3}+0.5}$

