Term 081

CISE302: Linear Control Systems

Dr. Samir Al-Amer

Chapter 7: Root locus

CISE302_ch 7 Al-Amer2008

Learning Objectives

- +Understand the concept of root locus and its role in control system design
- → Be able to sketch root locus and use MATLAB to plot the root locus
- → Recognize the role of root locus in parameter design and sensitivity analysis
- → Be able to design controllers using root locus

CISE302_ch 7

Outlines

+ The concept of root locus

CISE302_ch 7

Al-Amer2008

Root locus

- → The location of the roots of the characteristic equation determines the systems response.
- +Modifying one or more of the system's parameter cause the roots of the characteristic equation to change.
- → Root locus is a graphical method that determines the location of the roots as one parameter change.

CISE302_ch 7

Al-Amer2008

2

 Can be used to study sensitivity of the pole location w.r.t changes in the parameter.

CISE302_ch 7

Mathematics of root locus

$$1 + KG(s) = 0$$

$$|KG| \angle KG(s) = -1 + j0$$

$$\Rightarrow |KG| = 1; \ \angle KG(s) = 180 \pm k360$$

k:integer

CISE302_ch 7

Al-Amer2008

С

С

Question

How does the roots of the characteristic equation 1+KG(s)=0 change as K varies between 0 and ∞ ?

CISE302_ch 7

$$|KG(s)| = \frac{K}{|s(s+2)|} = 1$$

When $K = 0 \rightarrow s(s+2) = 0 \rightarrow s = 0$ or s = -2

The locus of the roots of 1+KG(s)=0 starts at the poles of G(s)

CISE302_ch 7 Al-Amer2008

Root Locus Procedure

+ Initial Step:

Express the characteristic equation in the form

$$1+K P(s)= 0$$

Factor P(s) and rewrite the equation in the form

$$1 + K \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{i=1}^{n} (s - p_i)} = 0$$

CISE302_ch 7

Root Locus Procedure

Locate the open loop poles and zeros of P(s)

- + Locate the poles and zeros of P(s) on the s-plane.
- + Use X for poles and O for zeros

$$1 + K \frac{(s-1)}{s(s+2)} = 0$$

CISE302_ch 7

→ The root locus starts at the poles of P(s) and terminates at the zeros of P(s) or at infinity

Al-Amer2008

CISE302_ch 7

+ Step 2: Segments of real axis that are parts of the root locus

$$1 + K \frac{1}{s(s+1)(s+2)} = 0$$

CISE302_ch 7

Al-Amer2008

Asymptotes

If n > m
of poles of P(s) ># of zeros

The root locus approaches infinity at n-m directions.

CISE302_ch 7

Asymptotes

+ Step 3: # of asymptotes = n - m = 3

$$centroid = \frac{\sum poles - \sum zeros}{n - m} = \frac{\{0 - 1 - 2\} - \{0\}}{3 - 0} = -1$$

$$\Phi_A = \frac{2q+1}{n-m} 180 \qquad q = 0,1,2$$

$$q = 0,1,2$$

$$\Phi_A = 60, 180, 300$$

CISE302_ch 7

Al-Amer2008

Example

+ How many asymptotes?

$$1 + K \frac{1}{s(s+1)} = 0$$

n=2, m=0, n-m=2

2 asymptotes

Centroid =(0+(-1))/2

=-0.5

CISE302_ch 7

Intersection with Imaginary axis

To find intersection with imaginary axis use Routh Hurwitz method

Characteristic equation
$$1+K\frac{1}{s^3+3s^2+2s}=0$$
 $s^3+3s^2+2s+K=0$
 s^3
 1
 2
 s^2
 3
 K

Intersection $K=6$

CISE302_ch 7

Al-Amer2008

Breakaway points

- + Breakaway points are points at which the root loci breakaway from real axis or the root loci return to real axis.
- + At breakaway points

$$\frac{dP(s)}{ds} = 0$$

→ Solve the above equation to determine the breakaway point. Select solution that are in segments of real axis that is part of root locus

CISE302_ch 7

Breakaway points $\frac{d}{ds} \left(\frac{1}{s^3 + 3s^2 + 2s} \right) = 0$ $\frac{0 - 1(3s^2 + 6s + 2)}{(s^3 + 3s^2 + 2s)^2} = 0$ break away points -1.5774 and -0.4226Select -0.4226

Al-Amer2008

CISE302_ch 7

Angle of departure

- → Sum of angle contributions of poles and zeros (measured with standard reference) = 180+360k
- → In the example all poles/zeros are real
 No need to do this

CISE302_ch 7 Al-Amer2008

Angle criteria

→At all points of the root loci: Sum of angle contributions of poles and zeros (measured with standard reference) = 180+360k

CISE302_ch 7 Al-Amer2008 7 £

Example 8

The Draw root locus for the following system

$$\frac{K(s+1)}{s+2}$$
Characteristic Equation:
$$1+K\frac{s+1}{s+2}=0$$

$$P(s)=\frac{s+1}{s+2}, \quad n=m=1$$
CISE302_ch 7

Al-Amer2008

+ Draw root locus for the following system

Characteristic Equation:

$$1 + K \frac{s+5}{(s+1)(s+2)(s+3)} = 0$$

$$P(s) = \frac{s+5}{(s+1)(s+2)(s+3)}, \quad n = 3, m = 1$$

CISE302_ch 7

Al-Amer2008

Example 9

$$P(s) = \frac{s+5}{(s+1)(s+2)(s+3)}, \quad n = 3, m = 1$$

Poles: -1, -2, -3, Zeros: -5

#of symptotes = 3 - 1 = 2

Angle 90, 270

Centroid =
$$\frac{-1-2-3-(-5)}{3-1} = \frac{-1}{2}$$

CISE302_ch 7

+ How do we draw root locus for this system?

Initial Step: Express the characteristics as

$$1 + K P(s) = 0$$

What is P(s)?

CISE302_ch 7

Al-Amer2008

Example 10

Initial Step: Express the characteristics as

Characteristic Equation:
$$1 + \frac{1}{s^3 + 3s^2 + 2s + K} = 0$$

$$s^3 + 3s^2 + 2s + K + 1 = 0 = (s^3 + 3s^2 + 2s + 1) + K$$

$$1 + K \frac{1}{s^3 + 3s^2 + 2s + 1} = 0$$

$$\Rightarrow P(s) = \frac{1}{s^3 + 3s^2 + 2s + 1}$$

Continue the Root Locus Procedure

CISE302_ch 7

Al-Amer2008

٤٢

Initial Step: Express the characteristics as

Characteristic Equation:
$$1 + \frac{s+2}{s(s^2 + 2s + K)} = 0$$

$$s(s^2 + 2s + K) + s + 2 = 0 = s^3 + 2s^2 + Ks + s + 2$$

 $(s^3 + 2s^2 + s + 2) + Ks$

$$1 + K \frac{s}{s^3 + 2s^2 + s + 2} = 0$$

$$\Rightarrow P(s) = \frac{s}{s^3 + 2s^2 + s + 2}$$

Continue the Root Locus Procedure

CISE302_ch 7 Al-Amer2

Controller Design Based on Root Locus

Desired region

→ The idea here is to select the parameter K so that all the poles in the desired location.

CISE302_ch 7 Al-Amer2008

- → The desired region is obtained to satisfy the given specifications
- → Draw the desired region on the root locus
- → Select the gain K such that all poles of the closed loop system are in the desired region

CISE302_ch 7

Keywords

- **Root locus**
- + Breakaway points
- +Asymptotes
- ← Centroid
- +Angle of departure
- +Angle of arrival

CISE302_ch 7 Al-Amer2008

٥٣