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CISE302: Linear Control Systems

4. Inverse Laplace Transform

Outlines: Learning Objectives:
= Introduction o To be able to obtain inverse Laplace
s Partial Fraction Expansion transform of rational functions

Simple poles case
Complex poles case
Repeated pole case
= Inverse transform of non-strictly
proper functions

4.1 Introduction

If F(s) is the Laplace transform of f(t) then we can say that f(t) is the inverse
Laplace transform of F(S). The following notation is used

FEO=L{f0} o fO=L"{F@)}
We have seen in Chapter 3 that

L{efzt }:i N eZt:Ll{i}

S+2 S+2

The inverse transform of F(S) can be obtained using the formula

1 a+ jo
f(O) =LHF@E)=-—=]  F(s)e'ds
27 Y i
Where « is a real number that is greater than the real part of any singularity of F(s).
The complex integral above is usually difficult to evaluate. Instead the approach that is
considered here is to express F(S) as the sum of simple terms that are usually available
in the Laplace transform Table. Before discussing the way to do this, the following
property of inverse Laplace transform are listed. These properties can be derived from
the properties of Laplace transform listed in Chapter 1 and therefore no proof for these
properties will be given here.

The Laplace transform is a linear transformation

L*{aF(s)+bG(s) }=aL™{F(s) }+ bL*{G(s) }
This is simple to prove from the definition of the inverse transform but it has a major
impact. It allows us to simplify the computation of the inverse transform. If we can
express F(S) as the sum of simple functions that can be inverted easily then the

inverse transform is simply the sum of the individual inverses.

Example 4.1

Obtain the inverse Laplace transform of ————
s(s+1)
Simple algebraic manipulation allows us to write
1 1 1

s(s+1) s s+l
The linearity property allows us to




e
s(s+1) S s+1

Details of the procedure to do this are illustrated in the next section.

4.2 Partial Fraction Expansion

When the function F(s) is a rational function then it can be expanded as the sum of
simple terms whose inverse Laplace transform is easy to obtain. Three special cases are
discussed in this section. The following definitions are essential to the remaining part of
this chapter.

Definition
A complex function F(S) is said to be a rational function if can be expressed as a ratio

W)

of two polynomials. F(s) = where N(s) and D(s) are polynomials in the complex

variable s.

Definition
A complex function F(S) is said to be a rational function if can be expressed as a ratio

W)

of two polynomials. F(s) = where N(s) and D(s) are polynomials in the complex

variable s.

Definition
The function F(s) is said to be proper if it is rational and degree of N(s) < degree of
D(s). It is strictly proper if degree of N(s) is strictly less than degree of D(s).

Definition
A complex valued function F(S) is said to have a singularity at a point in the s-plane if
the function or some of its derivatives does not exist at that point.

The most common type of singularity is the pole which is defined next.

Definition

A complex valued function F(S) = is said to have a pole of orderrat s = p if

N (s)
(s
Iim((s— p)rF(s)) Has a finite non-zero value. If r is one then the pole is called a simple

s=p

pole if r >1 then it is a repeated pole.




Example 4.2
F(s)

S J—
=———— has a simple pole at s =-1 and double (repeated) pole as s=0.
s°(s+1)
s—3
F(s)=—>
s(s” +1)
An important step in partial fraction expansion is to factor the denominator of F(s) into
factors. See Appendix B for review of factoring polynomials.

has three simple poles (at s=0, V-1, —+/-1).

4.2.1 Distinct Pole Case

In this subsection we consider the case when all the poles of the system are simple.
Assume F(s) is strictly proper with n simple poles ( real or complex)
N(s
F(s)= ()
(5= p)(s—Py)--(S— Py)

then F(s) can be expressed as
N (s a a a
F(s)= () LS.
(s=P)(s=Py)-i(s—Py) (s—P;) (s—py) (s—p.)
The coefficients a can obtained in different ways. A simple and convenient way is
a, =lim (s—p,)F(s)
S=p;

a, = lim (s p,)F ()

a, =lim (s—p,)F(s)
S=p,
Once the coefficients are obtained, the inverse Laplace transform is given by

E(s) = N(s)

=ae™ +a,e™ +..+a.e"
(8= p)(s—Py)--(s—Py)

Example 4.3
2
s(s+1)

Obtain the inverse Laplace transform of F(S) =

Solution:
F(s) has two simple poles (at s=0,s=-1)
Fs)=—2 =1, &
s(s+1) s s+1
2 2
s(s+1)|,, (s+1)
2 | _2
s(s+1)|_, s
F(s) = 2 = 2,.-2
s(s+1) s s+1
f(t)=2e"-2e"'=2-2¢"

a,=s

s=0

=2

s=—1

a, =(s+1)




Example 4.4
1

Obtain the inverse Laplace transform of F(s) =————
S +5s+4

Solution:
The first step is to factor s® +5s5+4 =(s+4)(s+1) which means that F(s) has two simple

poles.

F(s) = 1 a a,

(s+4)(s+1)_s+4+s+1
1 1 1
(s+4)(s+D)|_, (s+1)|_, -3
1 1 1
(s+4)(s+Y|_, (s+4)_, 3
1 1
_ 1 __3 .3
(s+4)(s+1) s+4 s+1
1 1

ft)=—Ze™ +>Ze"
(t) 3 3

a, =(s+4)

a, =(s+1)

F(s)

Example 4.5

1
Obtain the inverse Laplace transform of F(s) = ————
s(s” +4)

Solution:
F(s) has three simple poles (s=0,+2i and —2i).

F(s) =t 22 g 2o
S Ss+21 s-2i
! s(s? +4)

_ 1 21
e (P+4) ., 4
1 B 1 B __1
s(s+2i)(s—2i)|_, —2i(-4) 8
a; =(s—2i) _l . :__1_ _-1
s(s+2i)(s—2i)|_, 2i(4i) 8
0.25 -0.125 -0.125
+ — + -
S S+ 2i S —2i
f(t) =0.25-0.125e 2" —0.125¢*"

ej(ut +e—jwt
Using Euler identity cos(wt) = — the expression of f(t) is simplified as

a, =(s+2i)

F(s) =

f(t) =0.25-0.125e %" —0.125¢*" = 0.25—0.25c0s(2t) .



4.2.2 Complex Poles Case

When F(s) has distinct poles that are complex, the same technique discussed in the
previous section can be applied. In this section we consider an alternative approach for
distinct complex poles that are more convenient to compute.

It is a fact that if the coefficients of a polynomial are real then the complex roots occur
as pairs of complex conjugate roots. Keeping the factors that correspond to complex
conjugate pairs as second order factor allows us to avoid using complex arithmetic and
the resulted inverse transform is easy to obtain. The previous Example 5.4 is solved
using the alternative approach.

Example 4.6
1
Obtain the inverse Laplace transform of F(S) = ————
s(s” +4)
Solution:
F(s) has three simple poles (s =0,+2i and —2i).
a a,sS+a
F(s)=2+ —2Y 73
%) s  s°+4
1 1 1
Q=S —=—5| Tl —a
s(s"+4)|,, (s°+4)_, 4
1 025 a,s+a, 0.25(s’+4)+5(a,5+ay)
s(s’+4) s s +4 s(s® +4)
Matching the coefficients of equal powers of s we have the following equations
1 025 @a,5+a, 0.25(s*+4)+s(a,s+a,)
s(s>+4) s s +4 s(s® +4)

0.25s* +a,s* =0=>a, =-0.25
a,s=0=>a,=0
0.25 -0.25s
F(s)=——+
) s  s°+4
f(t) =0.25-0.25cos(2t)

It may be convenient to use completing the square. This is an easy way to find the real
and imaginary parts of the roots. A second order polynomial in the form

s?+cs+d =0
Can be expressed as
s?+2as+a’+w*=0

(s+a)’+w* =0

The roots are —a+ jw

Example 4.7
s+1

Obtain the inverse Laplace transform of F(s) = —5————
s +4s+13

Solution:
F(s) has complex conjugate poles. We apply completing the square to denominator



s+1 s+1 s+1 S+2 -1
F(s)= 2 =72 = 2 2 = 2 7t 2 2
S°+4s+13 (s“+4s+4)+9 (s+2)°+3° (s+2)°+3° (s+2)°+3
F(s) = S+2 -1 3

—+_—
(s+2)°+3* 3 (s+2)°+3

f(t) =e* cos(3t) - %e‘” sin(3t)

4.2.3 Repeated Poles Case

In this section we consider the case when some of the poles occur at multiplicity more
than one. The coefficients corresponding to simple poles will be obtained in the same
way discussed earlier. If p is a pole of F(s) with multiplicity m then the partial

expansion of F(s) will contain terms like
a‘m am—1 aZ a1
— + ...+ +
(s-p" (s-p" (s-p)° (s-p)

The coefficients are obtained as follows
a, =(s—p)" F(s)

S=p

d \
2, E((S‘ p) F(s)j

s=p

1 g2 )

an, =3 F((S_ p) F(S)Lp
1 d? m

&y 5 = 2 @((S -p) F(S)Lp

and so on. Note that the derivative is obtained before substituting the value s=p.

Example 4.8

, : 1
Obtain the inverse Laplace transform of F(S) = ———

s(s+1)

1 A B C
i = 7 T
s(s+1) s (s+1)° s+1

— 1 —
s(s+1)%|_,
B:(s+1)2% N
s(s+1) oot Sls=1

=1

_i(ij
. ds! s s

C-= i((s +1)° ;ZJ
ds s(s+1)

f)y=1-te™" —e™

S=—



Example 4.9
Obtain the inverse Laplace transform of F(S) :;3
(s+1(s+2)
Solution:
1 A B C D
= + + +
(s+1)(s+2)° s+1 (s+2)° (s+2)*> s+2
A=(s+)— T | =
(s+D(s+2)° |_,
B:(s+2)3;3 :L =1
(s+1(s+2)° |_, s+1_,
d( 1 j -1
= |- = =1
ds\s+1)_, ( 17 |,
1 d2 1 1 d -1
21 ds?\s+1 _, 20 ds|(s+1) L
1 1 -1 -1 -1

5= + 7+ =+
(s+D(s+2)° s+1 (s+2)° (s+2)° s+2
f(t) — e—t _t2e—2t _te—2t _ e—2t

4.2.4 Inverse of Non-Strictly Proper Functions

So far we considered finding the inverse Laplace transform of rational functions that are
N(s
strictly proper F(S) = # with degree of D(s)> degree of N(s). In this section we
S

consider the case when degree of D(s) is the same as the degree of N(s). Two steps are
done. First F(s) is expressed as the sum of a constant number and a strictly proper
function. The inverse of a constant is the same constant multiplied by a Dirac impulse
function and inverse of a strictly proper function is done as usual.

Example 4.10
2s* +s5+5
Obtain the inverse Laplace transform of F(s) = ———
s(s+1)

Solution:

2s’ +s+5
Using long division one can express F(s)=———

s(s+1)

2s® + 5+ —s+
F(s)=25F8¥5_, —S¥5
s(s+1) s(s+1)
The strictly proper part has two distinct poles and F(s) can be expressed as




s(s+1) - s s+1
The inverse Laplace transform is f(t) = 25(t) +5—6e™

Fs)=2+—t2_p,2, =6

Solved Problems

Problem SP4.1

Obtain the inverse Laplace transform of le
s(s+3)
Solution:
s+1 A B C
— o =—+ >+
s(s+3) s (s+3)° s+3
B s+1 _1
s(s+3)*|, 9
B:(5+3)2L12 _s+y 2
s(s+3)" |_, S |3 3
C:i (S+3)2L12 :i(s_ﬂj :_1
ds s(s+3)° ), dsU s J_,; 9
12 -
s+l o9, 8 9
s(s+3) s (s+3)° s+3
f(t)= 1+§te‘3t —le‘3t
9 3 9
Problem SP4.2
Obtain the inverse Laplace transform of S—+1
s(s+3)(s+2)
Solution:
s+1 _A B C
s(s+3)(s+2) s (s+3) s+2
_s s+1 1
s(s+3)(s+2)_, 6
Bo(s+3) S+t | . S+lp 2
s(s+3)(s+2) |_, s(s+2)|_, 3
Co(s+2)—3*t | s+ ) 1
s(s+3)(s+2) |, s(s+3)|_, 2
f(t):1 2eaylen

6 3 2



Problem SP4.3

Obtain the inverse Laplace transform of 2;
s°+4s+3.91
Solution:
3 A N B
s +4s+391 s+23 s+17
A=(s+2.3) 3 =-5
(s+23)(s+1.7)|_,,
3
B=(s+1.7) =5
(s+23)(s+1.7)|_,,
3 -5 5

= +
s?+4s+391 s+23 s+17
f(t) = -5 + 5"

Summary

In this chapter, the inverse Laplace transform was considered. Inverse Laplace
transform is simply obtaining the time domain function f(t) that corresponds to the given
frequency domain function F(s). Computing f(t) using the definition directly is not
simple. An easier approach is to use partial fraction expansion in which the function is
expressed as the sum of simple function for which the inverse Laplace transforms are
known. Three special cases were considered: simple poles, repeated poles and complex
poles. Inverse Laplace transform of proper functions that are not strictly proper was also
considered.

Simple poles Repeated poles multiplicity residue
Partial fraction Completing the
square

Review Questions

Problems

4.1 Find the inverse Laplace transform of the following functions

a) F(9)= i T ANS: f (t) = cos(4t)

b) F(s) =ﬁ. ANS: f(t)=te™

Q) F(s)= ﬁ ANS: f (t) = —0.4851e~5% 1 0.4851e 04
d) F(s)= s-1 ANS: f(t):_—l—ie““+ge‘I

s® +55% +4s 4 12 3
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1
e) F(s)=——
) Fes) 4s -3
_ 1 1 _ _ a3t g2
f) F(S)=——%-— ANS: f(t)=e" -t
s-3 s
s*+4s—4
F(S)=—7%——
9) F&)=—a—45

4.2 Find the inverse Laplace transform of the following functions

2
a) F(&) ==
(57 -s)
2s
b) F(s)=15—
(S +1)
2s
o F@6)=7——
%) (s+1Y +4
4.3 Find the inverse Laplace transform of the following functions
2 —
a) F(s)=— >
(s+4)(s+2)
2 —
b) F(s)= 452 2
S°—S

4.4 The Laplace transform of a signal is given by X(S) = . Obtain the signal x(t).

2s2 +s



