SE311 Digital Systems Design Lecture 6: Logic Functions

Dr. Samir Al-Amer (Term 041)

Conversion between Canonical Forms

Two binary variables x,y

$$F = \sum (0,3) \qquad \qquad = \qquad \prod (1,2)$$

Three variables x,y,z

$$F = \sum (1,2,4) = \prod (0,3,5,6,7)$$

all terms missing in one form appears in the other form.

SE311_Lec6

(c) 2004 AL-AMER

Other Logic Functions

AND F(x, y) = xyF(x, y) = x + yORComplement F(x, y) = x'F(x, y) = y'Null F(x, y) = 0Identity F(x, y) = 1

Logic Functions

With two binary variables $2^{2n} = 16$ possible functions

* Two constants :

NullF(x, y) = 0IdentityF(x, y) = 1*Four unary functions (functions of one variable)ComplementF(x, y) = x'F(x, y) = y'TransferF(x, y) = xF(x, y) = y

* Ten binary functions

AND F(x, y) = xy

OR F(x, y) = x + y

Logic Functions

- * Ten binary functions
- AND F(x, y) = xyF(x, y) = x + yORInhabitation F(x, y) = xy'F(x, y) = x' yF(x, y) = x + y'Implications F(x, y) = x' + y $F(x, y) = x \oplus y = xy' + x'y$ XOR $F(x, y) = x \downarrow y = (x + y)'$ NOR $F(x, y) = x \uparrow y = (xy)'$ NAND Equivalence F(x, y) = xy + x'y'

Digital Logic Gates

XOR & Equivalence

XOR
$$F(x, y) = x \oplus y$$
Equivalence $F(x, y) = xy + x'y'$

X	У	XOR(x,y)	XNOR(x,y)
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

NOR & NAND

NOR

NOR(x,y) NAND(x,y) Х У

NAND

NOR & NAND

Commutative but not associative

NOR $x \uparrow y = y \uparrow x$ NOR $(x \uparrow y) \uparrow z \neq x \uparrow (y \uparrow z)$ NAND $x \downarrow y = y \downarrow x$ NAND $(x \downarrow y) \downarrow z \neq x \downarrow (y \downarrow z)$

Extensions to Multiple Inputs

Some of the functions are not commutative or not associative which create some difficulties or become impractical

NOR and NAND are commutative but not associative To overcome the difficulty NAND and NOR are redefined

$$x \downarrow y \downarrow z = (x + y + z)'$$
$$x \uparrow y \uparrow z = (xyz)'$$

Extensions to Multiple Inputs

XOR and equivalence are commutative and associative but XOR and equivalence with more than two inputs are not common logic gates.

For two inputs, the output of XOR =1 if the inputs are different

For two inputs or more:

the output of XOR = 1 if the number of 1's in the input is odd

Positive and Negative Logic

Two logic values 0 and 1

Two signal levels High (H) : the high level of the signal

Low (L) : the low level of the signal

Positive Logic	HIGH corresponds to	1
	LOW corresponds to	0
Negative Logic	HIGH corresponds to	0
	LOW corresponds to	1

Digital Logic Gates

OR Gate

Negative Logic OR Gate

Physical gates can work in both positive or negative logic

The symbol _____ is known as polarity indicator and is used to indicate that negative logic is used

Digital Logic Gates

Positive and Negative Logic

Integrated Circuits

Level of integration

	Family	Remark
SSI	Small Scale Integration	Less than 10 gates per chip Simple logic circuits
MSI	Medium Scale Integration	10-100 gates per chip Elementary digital operations: Adder, decoder
LSI	Large Scale Integration	Thousands of gates per chip Processors, memory chips,
VLSI	Very Large Scale Integration	Hundreds of thousands of gates per chip Large memory arrays, microcomputer chips

Digital Logic Families

Digital Logic Family:

A collection of different integrated circuits that do different functions but <u>they have similar input</u>, <u>output and internal circuit characteristics</u>.

ICs from the same family can be easily used together.

Examples: TTL family, CMOS family

Within each family there are "series" of IC with similar features

Digital Logic Families Examples

Standard TTL family:

Voltage range [0 to 5]

Input

ON voltage >2 V OFF voltage <0.8 V

CMOS family(4000series): Voltage range [0 to 10] Input voltage >7 V ON OFF voltage <3 V

Digital Logic Families

	Family	Remark
TTL	Transistor-Transistor Logic	Has been in operation for long time Almost obsolete
ECL	Emitter –Coupled Logic	High speed
MOS	Metal Oxide Semiconductor	Low power consumption , Low speed Used for high component density
CMOS	Complementary Metal Oxide Semiconductor	Low power consumption More dominant

Important Chip Characteristics

Fan-in	The number of inputs available to the gate
Fan-out	The number of standard load that the output of a gate can derive without affecting the normal operations
Power dissipation	The amount of power consumed by the gate.
Propagation delay	Average transition delay for the signal to travel between the input and the output
Noise Margin	Maximum external noise that can be added to the input signal without affecting the output.

Design and Implementation

- In the design phase of a logic one can delay consideration of issues on the characteristic of integrated circuits or the selection of a logic family to a later stage.
- In the implementation phase these issues will be significant and some refinements to the design may be needed.