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= Basic Definitions
= Huntington Postulates
= Boolean Algebra

s Basic Postulates and Theorems
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Basic Definitions

0 Set: Collection of objects having common properties

0  Binary Operator (on a set S) : a rule that assigns to each pair of
elements of S a unique element from S.

* is binary operator on S if foralla,beS,a*b=c, ceS

Example : S={0,1}, * is binary operator defined as
0*0=0; 0*1=0; 1*0=0; 1*1=1
0 Closure:
A set S1s closed with respect to the binary operator *

if foralla,beS,a*b=c, ceS
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Basic Definitions

Commutative :

The binary operator * 1s commutative
if a*b=b*a forall a,beS

Identity Element :

e € S isidentity element w.r.t.*1f X*e=e*X=X VXe S

Inverse:

A set S having identity element e w.r.t. the binary operator *
1s said to have inverse if for every X e S 3y € S such that x*y =e

Distributive Law :

If *and . are two binary operator on S, * 1s distibutive over. if
x*(y.z2)=(x*y).(x*z)
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———————
Boolean Algebra

Huntington Postulates

+ and e are two binary operator defined on the set B

Huntington Postulates :

1. B 1sclosed w.r.t. +, B 1sclosed w.r.t. e
2. O1sidentity w.r.t+ (x+0=Xx) lisidentity w.rte (xel=X)
3. Commutative x+y=y+X Xey=yeXx

4. Distributive x+(yez)=(X+Yy)e(X+2) xeo(y+zZ)=(Xoy)+(Xe2)
5. For every element X € B there exist an element x' € B such that
x+x' =1 and xex' =0

6. The exist at least two elements x,y € Bsuch that x # y
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—!

Boolean Algebra

To have Boolean Algebra, the set B and the two binary
operators are defined such that the Huntington
postulates are satisfied.

B={0,1}
X |y [XTy [X°y
« |x° 0 (0 [0 0
0 |1 0O (1 |] 0
1 10 1 |0 0
1 |1 1
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—!
Boolean Algebra

Comparison with ordinary algebra

o Huntington Postulates do not include associative law
but it holds for Boolean algebra
o X+(yez)=(X+Y)e(X+2)is valid for Boolean algebra
but not not ordinary algebra
o Boolean algebra do not have additive or multiplicative
inverse (subtraction and division are not defined)
o X' The complementof X isnot defined for ordinary
algebra
o In Boolean algebra B 1s defined as {0,1}
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—!
Boolean Algebra

Verification

o Closure: From tables the result of operationsis 0 or 1

o 0 1sidentity w.r.t + andlisidentity w.r.t e

o Commutative law hold

o Both x+(yez)=(X+Yy)e(Xx+2)and
xe(y+z)=(Xxey)+(xez) are valid

o Conditions on the complement are satisfied

o Bhas two elements {0,1}
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Boolean Algebra

Postulates
X+0=X Xel=X
X+ X =1 XexX =0
X+Y=Vy+X Xey=YyeX

Xe(Yy+Z)=Xoy+XeoZ X+(yez)=(X+Y)o(X+2)
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———————
Boolean Algebra

Duality

0 Dual expressions: are obtained by replacing 0 by 1, 1 by 0 AND
with OR and OR by AND.

0 If an expression is valid then its dual 1s valid

Expression Dual
X+0=X Xe]l=X
X+ X =1 XeX =0
X+y=y+X Xey=YyeX
Xe(Yy+Z)=Xoey+xez| X+(yez)=(X+Yy)o(X+2)
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Proving Theorems

0 Using the Huntington Postulates

0 Using Truth Tables
X XtX
Theorem X+ X=X 0 0
Proof : 1 1
X+X=(X+X)el
, X=Xel
=(X+X)eo(X+X) X' =1

/
=X+ XX'=X+0=X xex =0
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Basic Theorems of Boolean Algebra

X+ X=X
X+1=1

(X') =X iInvolution
X+(Y+2)=(X+Y)+2 associlative
(X+y)=x"Vy DeMorgan

X+ Xy = X Absorption
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Basic Theorems of Boolean Algebra

Dual Theorems

X+ X=X X®X=X
X+1=1 Xe0=0

(X)) =X

X+(Y+2)=(X+Y)+Z Xe(yez)=(Xoy)eoz
(X+y)'=x"Yy’ (Xoy) =Xx+Y’

X+ Xeoy=X Xeo(X+Yy)=X
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Theorem 2

Theorem 2: x+1=1

Proof :

X+1=1e(X+1) X=1eX
= (x+X)o(x+1) = (x+X)
=X+ X' el X=XeX X=X+X
=X+ X'
=1 X x+1

0 1

1 1
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Theorem 6
Theorem 6: X+ Xy =X
Proof :
X+Xey=]lex+Xey X=1eX
=Xeo(1+Y) Xo(l+y)=Xel+Xey
= Xel I1+y=1 X |y |xtxy
- 0 00
0|10
1 10 |1
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T
DeMorgan Law

(x+y) =Xy

x |y (XY |(xty) XY
0 1 1|1 1
0 1 1 0 |0 0
1 0 0 1 |0 0
1 1 0 0 |0 0
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Operator Precedence

0 In evaluating Boolean Expressions

1 Parenthesis

1 NOT
1 AND
1 OR
I x+ty’z
X
Z
Y -
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