SE311: Design of Digital Systems Lecture 3: Complements and Binary arithmetic

Dr. Samir Al-Amer (Term 041)

Outlines

- Complements
- Signed Numbers
 - Representations
 - Arithmetic
- Binary Codes
- Binary Storage
- Binary logic

Complements

- Complements are used to represent negative numbers
- **They make subtraction easier**
- Image: Subtraction is replaced by addition of a number to the
complement of the secondA B = A+ (- B)
- $\square X = The complement of (complement of X) \qquad X = -(-X)$
- Two types of complement
 - (r-1)'s complement (Diminished radix complement)
 - r's complement (Radix complement)
- Complements of numbers with fractions:
 remove the radix point, obtain the complement and return the radix point to its position.

Complements

(r-1)'s complement

(Diminished radix complement)

BINARY:1's complementDECIMAL:9's complement

 $Complement(X) = (r^n - 1) - X$

1's $Complement(X) = (2^{n} - 1) - X$

r's complement (Radix complement)

BINARY : 2's complement DECIMAL: 10's complement

 $Complement(X) = r^n - X$

2's Complement(X) = $2^n - X$

n : the number of digits used in the representationr : the baser's complement of X =1+(r-1)'s complement of X2's complement of X = 1+1's complement of X

Complement

1's complement

n digits are used in the representationTo obtain the 1's complement:Replace 0 by 1 and 1 by 0

2's complement

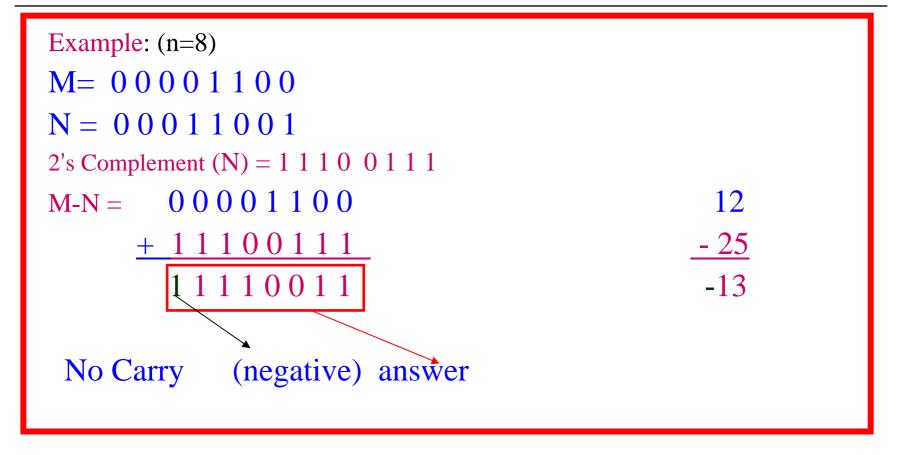
n digits are used in the representationTo obtain the 2's complement:Add one to the 1's complement

Example: 8 digits are used (n=8) X = 000010011's Complement (X) = 1111010 2's Complement (X) = 11110111

9

-9 in 1's complement

-9 in 2's complement


Subtraction with Complement

M-N=M+ 2's complement (N)

- Discard the carry
- **MSB** indicates the sign
 - \square 1 : Negative M<N
 - 0 : Positive M > N
- Negative numbers are represented in 2's complement

Example: (n=8) $M=\ 0\ 0\ 0\ 0\ 1\ 1\ 0\ 0$ $\mathbf{N} = \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1$ 2's Complement $(N) = 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1$ 00001100 M-N = $0 \ 0 \ 0 \ 0 \ 0 \ 1$ (positive) answer Carry

Subtraction with Complement

Binary Codes

Binary Codes

A binary code is a rule used to assign a binary number for each discrete element.

- I With n-bit code we can represent up to 2^n discrete elements
- Important Binary Codes
 - BCD (Binary Coded Decimal)
 - ASCII (American Standard code for information interchange)
 - Gray code
 - Excess 3 code

Binary Coded Decimal

Each decimal digit is represented by four-digit binary code.

Decimal	BCD	Decimal	BCD
0	0000	5	0101
1	0001	6	0110
2	0010	7	0111
3	0011	8	1000
4	0100	9	1001

- □ (125)D □ (0001 0010 0101)BCD
- one needs 8-bits to represent the binary equivalent of 125 and 12-bits to represent the BCD equivalent.

Gray Code

- Useful in applications like analog to digital conversion.
- The code of a number differ from the code of the next number in exactly one bit

Decimal	Gray code	Decimal	Gray code
0	0000	5	0111
1	0001	6	0101
2	0011	7	0100
3	0010	8	1100
4	0110	9	1101

ASCII Code

American Standard Code for Information Interchange

- Used in communicating information between a computer and its peripherals or other computers.
- Each letter, digit or character is represented by 7-bit code

Character	ASCII	Character	ASCII
А	100 0001	0	011 0000
a	110 0001	1	011 0001
ESC	0011010	BS	000 1000

 ASCII code (128 discrete elements: 94 printable characters and 34 control characters)

Binary Storage and Registers

Binary Cell

- a device that has two possible states.
- can be used to store a single bit
- **Registers**: a group of binary cells
- **n-bit registers**: can store n-bit binary numbers

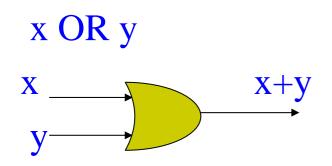
Question:

How many different possible states can n-bit registers have?

Binary Logic

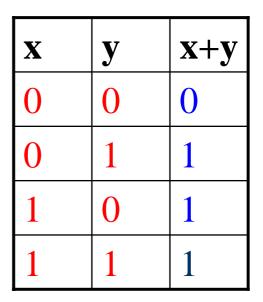
Binary Logic

Binary Logic involves binary variables and Logic operations

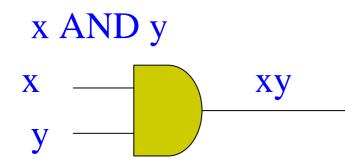

Binary variables

- Can take one of two possible values (0 or 1).
- Designated by letters A, B,C, x, y, z

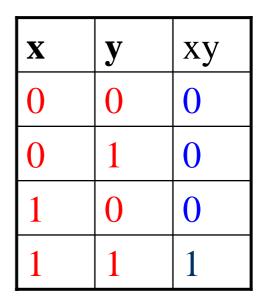
Logic Operations


Three basic operations AND, OR, NOT.

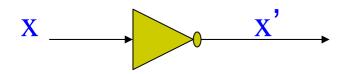
OR



The number of possible combinations of n binary inputs is 2^n


Truth Table

AND



NOT

NOT x

Truth Table

X	Х'
0	1
1	0

Summary

- Complements
 - r's complement
 - (r-1)'s complement
- Signed Numbers
 - Representations
 - Arithmetic
- Binary Codes
- Binary Storage
- Binary logic

2's complement (Binary) 1's complement (Binary)

(BCD, Gray, ASCII) (Binary cell, register) (binary variables, logic operations)

Learning Objectives

- Be able to calculate the 2's complement of a given n-bit binary number.
- Be able to explain the differences between signed-magnitude, signed-1's complement and signed-2's complement representations of negative binary numbers.
- Be able to perform subtraction problems in base 2 using the 2's complement method.
- Be able to determine the minimum number of bits needed to represent a given set of items.
- Be able to name and compare binary codes.
- Be able to explain the purpose and special feature of Gray codes.
- Be able to translate a message from ASCII code into standard English characters. (assuming that an ASCII code table is available)
- **Know the definition of a** *binary cell.*
- **Know the definition of a** *register*.
- **Know the AND, OR and NOT truth tables.**
- **Know the logic gate and operator symbols for the AND, OR and NOT.**