SE311: Design of Digital Systems

Lecture 1: Introduction to Digital Systems

Dr. Samir Al-Amer (Term 041)

Design of Digital Systems

- Grading policy
- Course Outlines
- Introduction to digital Systems
- Numbering systems

Grading Policy

Major Exam	25
Quizzes	17
Lab and projects	20
HW& Attendance	8
Final	30

Quizzes:

- Pop quizzes: Short (0.5 % each)
- Regular (three 5% each) Announced
- Attendance: -1 % for each unexcused absence.
- HW:
 - submit in class
 - Late submissions are not accepted
- Major Exam: Date will be announced

Course Outlines

- Number Systems
- Binary Logic
- Gate-Level Minimization
- Combinatorial Logic
- Synchronous Sequential logic
- Registers and Counters
- Memory and programming Logic

Classification of Signals

Classification of Signals Digital Signals

Digital Signal: is a discrete-time, quantized signal

Binary Signal: It is a digital signal with two possible values (1 / 0, ON/OFF)

Classification of Signals Binary Signals

Binary Signals: They have two possible values

Classification of Signals Binary Signals

The signals in a typical electronic circuit are *analog signals* but they are coded in order to use them as *binary signals*:

$$f = 1 (ON)$$
 if voltage > 3

$$f = 0$$
 (OFF) if voltage < 1

Examples of Analog and Digital systems

Digital Watch

Digital Systems

A digital system is a system that manipulates discrete elements of information that are represented internally in binary form

Examples:

- Computers
- Calculators
- Digital cammera

Example of Digital System

The computer

- Memory Unit: stores the programs and data
- Central Processing unit (CPU): Performs the operations specified by the program
- Input/output Unit (I/O unit): communicate with the external devices.

Advantages of Digital System

- Digital systems are easier to design
- Information storage is easy
- Accuracy and precision are greater
- Flexibility (operations can be programmed)
- Low cost
- Reliability (error detection and correction is easy)

Example

Problem: Design a binary adder that adds two 8-bit numbers

To be able to solve this problem you should be able to do:

- Add two Binary numbers
- Develop the logic that produces the result
- Simplify the resulted logic
- Select the required Hardware
- Implement and verify the circuit

Numbering System

Four Numbering system

- Decimal
- Binary
- Octal
- Hexadecimal

Numbering System

Decimal

Base 10

Digits: 0,1,2,3,4,5,6,7,8,9

Binary

Base 2

Digits: 0,1

Octal

Base 8

Digits: 0,1,2,3,4,5,6,7

Hexadecimal

Base 16

Digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Decimal Numbering System

Base =10

Digits: {0,1,2,3,4,5,6,7,8,9}

$$X = (3 \ 5 \ 6.7 \ 2)_{10} = 3x10^2 + 5x10^1 + 6x10^0 + 7 \ x10^{-1} + 2x10^{-2}$$

Digits	3	5	6	7	2
Weight	100	10	1	0.1	0.01
Value	300	50	6	0.7	0.02

SE311_Lec1 (c) 2004 AL-AMER

Binary Numbering System

Base =2

Digits: {0,1}

$$Y = (1 \ 0 \ 1.1 \ 1)_2 = 1x \ 2^2 + 0x \ 2^1 + 1x \ 2^0 + 1 \ x \ 2^{-1} + 1x \ 2^{-2}$$

$$= 5.75$$

Digits	1	0	1	1	1
Weight	4	2	1	0.5	0.25
Value	4	0	1	0.5	0.25

SE311_Lec1 (c) 2004 AL-AMER

Octal Numbering System

Base =8

Digits: {0,1,2,3,4,5,6,7}

$$X = (2 \ 4 \ 6.3)_8 = 2x8^2 + 4x8^1 + 6x8^0 + 3x8^{-1} = 166.375$$

Digits	2	4	6 .	3
Weight	64	8	1	0.125
Value	128	32	6	0.375

Hexadecimal Numbering System

Base =16

Digits: {0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F}

$$X = (2 \text{ A } 6.\text{E})_{16} = 2x16^2 + 10x16^1 + 6x16^0 + 14x16^{-1}$$

Digits	2	A	6 .	Е
Weight	256	16	1	0.0625
Value	512	160	6	0.875

19

r - Numbering System

Base = r

Digits: $\{0,1,...,r-1\}$

$$X = (2 \ 1 \ 0.1)_r = 2x \ r^2 + 1x \ r^1 + 0x \ r^0 + 1 \ x \ r^{-1}$$

$$(b_m \ b_{m-1} b_{m-2} \ \dots b_0 \dots b_{-1} \ b_{-2} \dots b_{-n})_r = \sum_{k=-n}^m b_k \ r^k$$

SE311 Lec1

Notation

Bit: a binary digit

Byte: a group of eight bits

K Byte (kilo bytes) $= 2^{10}$ bytes = 1024 byte

M Byte (mega bytes) = 2^{20} bytes \approx Million bytes

G Byte (gega bytes) = 2^{30} bytes \approx Billion bytes

Converting (Binary, octal, hexadecimal) to decimal

$$(b_{m} b_{m-1} b_{m-2} \dots b_{0} \dots b_{-1} b_{-2} \dots b_{-n})_{r} = \sum_{k=-n}^{m} b_{k} r^{k}$$

$$r = 2 \quad (Binary)$$

$$r = 8 \quad (Octal)$$

$$r = 16 (Hexadecimal)$$