
ARTICLE IN PRESS

Robotics and Computer-Integrated Manufacturing 25 (2009) 756–769
Contents lists available at ScienceDirect
Robotics and Computer-Integrated Manufacturing
0736-58

doi:10.1

� Corr

E-m

(L. Baro
journal homepage: www.elsevier.com/locate/rcim
Constrained multi-objective trajectory planning of parallel
kinematic machines
Amar Khoukhi a,�, Luc Baron b, Marek Balazinski b

a Department of Systems Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
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This paper presents a new approach to multi-objective dynamic trajectory planning of parallel

kinematic machines (PKM) under task, workspace and manipulator constraints. The robot kinematic

and dynamic model, (including actuators) is first developed. Then the proposed trajectory planning

system is introduced. It minimizes electrical and kinetic energy, robot traveling time separating two

sampling periods, and maximizes a measure of manipulability allowing singularity avoidance. Several

technological constraints such as actuator, link length and workspace limitations, and some task

requirements, such as passing through imposed poses are simultaneously satisfied. The discrete

augmented Lagrangean technique is used to solve the resulting strong nonlinear constrained optimal

control problem. A decoupled formulation is proposed in order to cope with some difficulties arising

from dynamic parameters computation. A systematic implementation procedure is provided along with

some numerical issues. Simulation results proving the effectiveness of the proposed approach are given

and discussed.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The design of parallel kinematic machines (PKMs) dates back
to the pioneer work by Gough [1], who established the basic
principles of a manipulator in a closed loop structure. The
machine was able to position and orientate an end-effector (EE),
such that to test tire wear and tear. A decade later, Stewart [2]
proposed a platform manipulator for the use as an aircraft
simulator. Since then, extensive research efforts lead to the
realization of several robots and machine tools with parallel
kinematic structures [3]. PKMs have two basic advantages over
conventional machines of serial kinematic structures. First, the
connection between the base and the EE is made with several
kinematic chains. This results in high structural stiffness and
rigidity. Second, with such structure, it is possible to mount all
drives on or near the base. This results in large payloads capability
and low inertia. Indeed, the ratio of payload to the robot load is
usually about 1/10 for serial robots, while only 1/2 for parallel
ones. Despite these advantages, PKMs are still rare in the industry.
Among the major reasons for this gap are the small workspace,
complex transformations between joint and Cartesian space and
ll rights reserved.
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singularities as compared to their serial counterparts. These facts
lead to a tremendous amount of research in PKMs design and
customization [3]. Another reason recently identified is the under
consideration of the dynamics of these machines [4]. The
mentioned architecture-dependent performance associated with
the strong coupled nonlinear dynamics makes the trajectory
planning and control system design for PKMs more difficult, as
compared to serial machines. In fact, for serial robots, there is a
plentiful literature published on the topics of off-line and online
programming, from both stand points: computational geometry
and kinematics, and optimal control including robots dynamics
[5–8]. For PKMs, a relatively large amount of literature is devoted
to the computational kinematics and workspace optimization
issues. The overwhelm criteria considered for PKMs trajectory
planning are essentially design-oriented. These include singular-
ity avoidance and dexterity optimization [9–13]. In Ref. [14], the
authors had developed a clustering scheme to isolate and avoid
singularities and obstacles for a PKM path planning. A kinematic
design and planning method had been described in Ref. [15] for a
four-bar planar manipulator mechanism. Another related work
was considered in Ref. [16], where it had been shown that a
motion planning with singularity-free pose change is possible for
PKMs. A variational approach is reported in Ref. [17] for planning a
singularity-free minimum-energy path between two end-points
for Gough–Stewart platforms. This method is based on a penalty
optimization method. Penalty methods, however, have several
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Nomenclature

B reference frame attached to the center of mass of the
base

A reference frame attached to the center of mass of the
end-effector (EE)

Ai, Bi ith attachment point of leg i on body A and B

p ¼ [x y z]T position vector of the origin of A relative to B in B
_p ¼ ½_x _y _z�T velocity vector of the origin of A relative to B

x1 ¼ q ¼ [pT j y c]T position and orientation of A in B
_qE ¼ ½ _p

T _j _y _c �T time derivatives of x1(t)
x2 ¼ _q ¼ ½pT xT

�T Cartesian and angular velocity of the EE
x ¼ [x1 x2]T continuous-time state of the PKM
xk ¼ [x1k x2k]T discrete-time state of the PKM
s(t) Cartesian force/torques wrench
i ¼ [i1 i2yi6]T vector of electric currents
l ¼ [l1 l2yl6]T vector of the link lengths
J Jacobian matrix of the PKM
Mj(q), Mc(q) inertia matrix expressed in joint and Cartesian

space
N jðq; _qÞ;Ncðq; _qÞ coriolis and centrifugal force/torque in joint

and Cartesian space

Gj(q), Gc(q) gravity force in joint and Cartesian space
Ma, Ma actuator inertia matrix and its component
Va, Va actuator viscous damping coefficient matrix and its

component
Ka, Ka actuator gain matrix and its component
K control law gain matrix
sm joint torque vector produced by the DC motors
p ballscrew pitch
n gear ratio
Js, Jm ballscrew and motor mass moments of inertia
bs, bm ballscrew and motor viscous damping coefficients
k Lagrangian multipliers (or co-states) associated to

state variables
(q, r) Lagrangian multipliers associated to inequality and

equality constraints
(lg, lS) penalty coefficients associated to inequality and

equality constraints
N total number of discretisations of the trajectory
w*, Z*, Z*1 cost minimization, equality and inequality con-

straints optimal tolerances
wt, Zt, Zt1 cost minimization, equality and inequality con-

straints feasible tolerances
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drawbacks [18]. Another major issue for off-line programming and
practical use of PKMs in industry (in a machining process, for
example) is that for a prescribed tool path in the workspace,
the control system should guarantee the prescribed task completion
within the workspace, for a given set up of the EE (i.e., for which
limitations on actuator lengths and physical dimensions are not
violated). This problem has been recently considered in Refs.
[19,20], with design methodologies involving workspace limitations
and actuator forces optimization using optimization techniques.

In this context, we consider a new integrated multi-objective
dynamic trajectory planning system for PKMs. Part of this work has
been presented in Refs. [21–23]. The proposed approach considers
PKM’s dynamics, including actuators models as well as task and
workspace requirements, as a unique entity. It can be encapsulated
into two levels (see Fig. 1): the modeling and approach level and the
simulation and testing level [7,23]. The former consists to select
according to performance targets related to the robot, task and
workspace interactions, the appropriate models and control
approaches in order to optimize an overall performance of the
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Fig. 1. Overall off-line program
robot–task–workspace system. The second level is devoted to
coding, testing and validation. Criteria to be optimized in this study
are time, energy and a measure of manipulability necessary for a
task execution. The optimization procedure is performed within a
proper balance between time and energy minimization, singularity
avoidance, actuators, sampling periods, link lengths and workspace
limitations, and task constraints satisfaction. From a state-space
representation by a system of differential equations in the phase
plane, the trajectory planning is formulated within a variational
calculus framework. The resulting constrained nonlinear program-
ming problem is solved using an augmented Lagrangian (AL) with
decoupling technique. AL algorithms have proven to be robust and
powerful to cope with difficulties related to none strictly convex
constraints [24–27] as compared to optimization methods employ-
ing only penalty. The decoupling technique is introduced in order to
solve some difficult computations in the original nonlinear and
coupled formulation. Another advantage of the proposed method is
that one might introduce several criteria and constraints to satisfy
in the trajectory planning process.
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Section 2 introduces the kinematic and dynamic models using
Euler–Lagrange formulation, and gives the associated discrete-
time state-space model. In Section 3, the constrained nonlinear
optimal control problem is formulated. In Section 4, the AL with
decoupling technique is developed to solve the resulting linear
and decoupled optimal control problem. In Section 5, an
implementation on a case study 2-degrees-of-freedom (DOF)
planar PKM is provided. Finally, Section 6 concludes this work.

2. Modeling

2.1. Kinematic model

The PKM shown in Fig. 2 represents a full 6-DOF motion of
its EE from its articulated motion of its six leg lengths. The pose,
i.e., position and orientation, of the EE, namely, q ¼ [pT j y c]T can
be expressed in B by p the position vector of the origin of A relative
to B, and the set of Euler angles (f, y, c) defining the orientation of
the EE in B, namely, BRA, as used to uniquely determine the EE
orientation noted as RA.

This rotation matrix is given as

BRA ¼ ðRxðjÞ;RyðyÞ; RzðcÞÞ

¼

cccf� cysfsc �sccf� cysfcc sysf

ccsfþ cycfsc �scsfþ cycfcc �sycf

scsf ccsy cy

2
664

3
775, (1)

where c and s stand for the cosine and sine functions, respectively.
Clearly, the orientation of A is described with respect to B by a
rotation matrix BRA ¼ [r1 r2 r3], where r1, r2 and r3 are,
respectively, 3�1 unit vectors along the axes of A.

The velocity of the EE, namely, _q ¼
_p

_x

� �
, can be obtained as a

function of the time derivative of q, i.e.,

_q ¼
_p

x

� �
¼

I3�3 O3�3

O3�3 Rðj;y;cÞ

" #
_q (2)

where the transformation between the angular velocity x and the

time derivatives of the Euler angles _j _y _c is given as [28,29]

Rðj;W;cÞ ¼
0 cj sjcy
0 sj �cjsy
1 0 cy

2
64

3
75 (3)
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Fig. 2. Geometry of a PKM.
There are two basic problems in kinematic modeling; the
forward kinematics is the determination of the EE motion from a
given motion of the leg lengths, while the inverse kinematics is the
determination of the leg lengths motion from a given EE motion.
Below these two kinematic problems are formulated at the
velocity level.
2.1.1. Inverse rate kinematics

The closure of each kinematic loop passing through the origin
of A and B, and through the six attachment points Bi on the base
and the hip attachment points Ai on the EE is given as

ai ¼ pþBRA
Aai; i ¼ 1; . . . ;6, (4)

where Aai is the constant position vector of Ai in A. By
differentiating Eq. (4) with respect to time, projecting along the
joint axis and grouping in a matrix form, one gets the inverse
kinematic model as

_l ¼ J�1 _q (5)

where _l is the actuated leg length velocity, J�1 is the inverse
Jacobian matrix given as

J�1
¼

eT
1 ð

BRA
Aa1 � e1Þ

T

eT
6 ð

BRA
Aa6 � e6Þ

T

0
BB@

1
CCA (6)

and ei is a unit vector along the ith leg axis.
2.1.2. Forward kinematic model

Unlike the inverse kinematic problem, the forward kinematics
is more challenging for general PKMs. The number of solutions
depends on the number of configurations the mechanism can be
assembled into, for a given set of link lengths. Eq. (5) representing
the inverse kinematic solution cannot be inverted to find q for a
given l, because q does not explicitly occur in Eq. (5). Numerical
methods are generally used to solve the forward kinematic
problem [28,29]. In this paper, a Newton method is used [26].
2.2. Dynamic model

Likewise to the kinematic modeling, there are two basic
problems in dynamic modeling [28,29]: the forward and inverse

dynamics. The latter consists to find the joint force/torque from a
given EE motion. While the former is to find the EE motion from a
given joint input force/torque and initial position, velocity and
acceleration conditions. For optimal control and trajectory plan-
ning purposes, the dynamic equations are derived using Euler–
Lagrange formalism. In Cartesian space, the inverse dynamic
model is given a canonical form as

s ¼McðqÞ €qþ Ncðq; _qÞ þ GcðqÞ (7)

where Mc(q) is the inertia matrix, Nc(q, q̇) and Gc(q) are the
Coriolis and centrifugal, and gravitational forces, respectively.
2.2.1. Actuators model

It has been shown that actuator dynamics are significant and
cannot be neglected for simulation and control [28]. The dynamic
equations of actuators yield

Ma
€lþ Va

_lþ KaF ¼ sm (8)
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Where

Ma ¼MaI6�6 ¼
2p
np
ðJs þ n2JmÞI6�6

Va ¼ VaI6�6 ¼
2p
np
ðbs þ n2bmÞI6�6

Ka ¼ KaI6�6 ¼
p

2pn
I6�6 (9)

with the parameters described in the nomenclature.
Since the actuator’s dynamics is written in joint space, it

is necessary to transform the motion Eq. (7) to joint space, using
Eq. (5), in order to include it

MjðqÞ
€lþ N jðq; _qÞ þ GjðqÞ ¼ F (10)

where

MjðqÞ ¼ JTMcðqÞJ,

N jðq; _qÞ ¼ JTNcðq; _qÞ � JTMcðqÞJ
dðJ�1

Þ

dt
_q; and

GjðqÞ ¼ JTGcðqÞ (11)

with J being the Jacobian, and F the six-directional column of the
input forces.

The combination of Eqs. (8) and (10) gives the dynamic model
including the actuators in joint space as

M̄jðqÞ€lþ N̄jðq; _qÞ þ ḠjðqÞ ¼ sm (12)

with

M̄jðqÞ ¼ KaJTMcðqÞJ þMa,

N̄ jðq; _qÞ ¼ KaJTNcðq;qÞ þ Va � KaJTMcðqÞJ
dðJ�1

Þ

dt
J

 !
J�1q,

ḠjðqÞ ¼ KaJTGcðqÞ (13)

The bars over uppercase boldface letters are used to include
both manipulator and actuator elements. Going back to Cartesian
space, the overall PKM dynamic model is given as

M̄cðqÞ €qþ N̄cðq; _qÞ þ ḠcðqÞ ¼ sm (14)

with

M̄cðqÞ ¼ KaJTMcðqÞ þMaJ�1,

N̄cðq;qÞ ¼ KaJTNcðq;qÞ þ VaJ�1
þMT

aðqÞ
dðJ�1

Þ

dt

 !
q,

ḠcðqÞ ¼ KaJTGcðqÞ (15)

It is noteworthy that in the proposed approach one might
include contact effort models. Among such models, there are
friction and other application-specific forces. Such inclusion is
very useful in many practical cases as deflashing and screwing,
as it allows avoiding actuator saturation and improving the
trajectory planning performance.

2.2.2. Discrete-time dynamic model

The approximate state-space discrete-time model of the PKM
is deducted from a state-space form of the continuous-time
dynamic model. Without loss of generality and for the sake of
writing simplicity, the time index and the contact forces are
omitted. So, one might write Eq. (14) as

€q ¼ M̄
�1
c ðqÞsm � M̄

�1
c ðqÞ½N̄cðq; _qÞ _qþ ḠcðqÞ� (16)

By using state x1, and its time derivative x2, i.e., x ¼ [x1
T,x2

T]T

(defined in the nomenclature), Eq. (16) is transformed as

M̄cðx1Þ_x2 þ N̄cðx1; x2Þx2 þ Ḡcðx1Þ ¼ sm (17)
In turns, one might rewrite Eq. (17) as follows:

_x ¼
O6�6 I6�6

O6�6 O6�6

" #
x�

06�1

M̄
�1
c ðx1Þ½N̄cðx1; x2Þx2 þ Ḡcðx1Þ�

2
4

3
5

þ

O6�6

M̄
�1
c ðx1Þ

2
4

3
5sm (18)

with

M̄cðx1Þ ¼ KaJT
ðx1ÞMcðx1Þ þMaJ�1

ðx1Þ

and

N̄cðx1; x2Þ ¼ KaJT
ðx1Þ þ VaJ�1

ðx1Þ þMa
dðJ�1

ðx1ÞÞ

dt

 !
x2

In order to derive the discrete dynamic model of the robot,
Eq. (18) is written in the form

_x ¼ Fx� DðxÞ þ BðxÞs (19)

with

F ¼
O6�6 I6�6

O6�6 O6�6

" #
; DðxÞ ¼

06�1

M̄
�1
c ðxÞ½N̄cðxÞ þ ḠcðxÞ�

2
4

3
5,

and

BðxÞ ¼
O6�6

M̄
�1
c ðxÞ

2
4

3
5 (20)

Now, let us define the sampling period hk, such that hkotohk+1

and
P

k ¼ 1
N hk ¼ T, with T being the total traveling time and the

robot state being defined between two sampling points k and k+1
as

xðtÞ ¼ xðhkÞ; for k ¼ 1;2; . . . ;N. (21)

The equivalent discrete-time model to Eq. (19) is given as [8]

xkþ1 ¼ FdðhkÞxk � Ddðxk;hkÞ þ Bdðxk;hkÞsk (22)

where Fd, Dd, Bd are the discrete equivalents to F, D, B matrices.
The relationships between these pair of matrices are

FdðhkÞ ¼ Fdðkþ 1; kÞ ¼ eFhk ffi
I6�6 hkI6�6

O6�6 I6�6

" #

Ddðxk;hkÞ ¼

Z hk

0
Fdðhk � tÞGðhk � tÞðDðxkÞÞdt

ffi M̄
�1
c ðx1kÞ

h2
k

2
I6�6

hkI6�6

2
64

3
75½N̄cðx1k; x2kÞx2k þ Ḡcðx1kÞ�

Bdðxk;hkÞ ¼

Z hk

0
Fdðhk � tÞBðxkÞdt ¼

h2
k

2
I6�6

hkI6�6

2
64

3
75M̄

�1
c ðx1kÞ (23)

Hence, the discrete-time state-space dynamic model of the PKM
is developed with a second order of accuracy for the position and
one order for the velocity, to finally be written in the following
form:

xkþ1 ¼
I6�6 hkI6�6

O6�6 I6�6

" #
xk

�

h2
k

2
I6�6

hkI6�6

2
64

3
75½M̄�1

c ðx1kÞ½N̄cðx1k; x2kÞx2k þ Ḡcðx1kÞ��

þ

h2
k

2
I6�6

hkI6�6

2
64

3
75M̄

�1
c ðx1kÞsk (24)
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3. Optimal time-energy trajectory planning problem

3.1. Constraints modeling

Simulating a robotics task requires taking into account several
constraints; structural and geometric constraints, kinematic and
dynamic parameter nominal values, such as limits on link lengths,
velocities, accelerations and nominal torques supported by
actuators. Some of these constraints are defined in joint space,
while others are in task space.
Y Passage tolerance
xs

Fig. 3. Illustration of EE passage through imposed poses (positions and orienta-
3.1.1. Robots constraints
�
 Dynamic state equations: Eq. (24) can be rewritten for later
easy use as

xkþ1 ¼ f dk
ðxk; sk;hkÞ (25)
�
 Link intermediate length limits

lMinolkolMax; with k ¼ 0;2; . . . ;N; and lMax ¼ HMaxðxÞ

(26)
�
 Singularity avoidance
Singularities are particular poses in which the robot becomes
uncontrollable. Therefore, they are crucial for a successful
trajectory planning system. The conditions characterizing
singularities are difficult to find analytically for a general
PKM, since an analytical expression for the determinant of J�1 is
not available. Several studies had been dealt with this problem
and many singularity avoidance algorithms were proposed
[9–13,16,17,31–33]. Common kinematic performance index
related singularity avoidance is the manipulability measure
[27]. Accordingly, by defining the manipulability measure as

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðJðx1kÞJ

T
ðx1kÞÞ

q
(27)

The following singularity avoidance function can be used as

$ðx1kÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðJðx1kÞJ
T
ðx1kÞÞ

q (28)
�
 Torque limits
Non violation of control torque limits is another major issue for
trajectory planning. The required leg forces must continuously
be checked for possible violation of the limits as the
manipulator moves close to a singular pose. As soon as any
leg actuator crosses its limit, the optimal planning procedure
has to determine an alternate leg actuation strategy leading to
another path on which the actuator forces would be con-
strained within the limits. In this paper, the robot torques are
assumed to belong to a compact and bounded set CCR6N,
expressed as

C ¼ fsk 2 <
6N ; such that : sminpskpsmax; k ¼ 0; . . . ;N � 1g

(29)
�
 Sampling period limits
If the overall robot traveling time T is too small, there may
be no admissible solution to the optimal control problem,
qsince the torque constraints bound indirectly the path
traversal time. On the other hand, the sampling period hk must
be smaller than the system smallest time constant in order to
prevent the system from being uncontrollable between
two control times. In this paper, a tradeoff is made through
variation of the sampling period within an admissible domain
H defined as

H ¼ fhk 2 <
þ; such that : hminphkphmaxg (30)
3.1.2. Task and workspace constraints

Task and workspace constraints are basically geometric and
kinematic, and allow the determination of the size and shape of
the manipulator workspace, which defines the set of poses that
can be reached by the EE without singularity or link interference
[19,20]. In this paper, these constraints are expressed by imposing
the EE to pass through a set of specified poses (Fig. 3). These poses
are quantified by a set of L pairs (pl, Rl) with pl referring to the
Cartesian position, and Rl to the orientation of the lth imposed
pose on the EE, such that

jjp� pljj � TPassThlp ¼ 0, (31)

and

jjvectðRTRlÞjj � TPassThlR ¼ 0 (32)

where (p,R) describes the current computed pose of the EE, while
vect(.) is the axial vector of its 3�3 matrix argument, and
measures the absolute value of the angle of rotation between R
and Rl. These constraints represent equality constraints and are
written for simplicity as

sl
1ðxÞ ¼ jjp� pljj � TPassThlp ¼ 0,

sl
2ðxÞ ¼ jjvectðRTRlÞjj � TPassThlR ¼ 0; l ¼ 1; . . . ; L (33)

The above inequality constraints are written in the following
simplified forms:

g1ðxÞ ¼ lMin �HðxÞp0; g2ðxÞ ¼ HðxÞ � lMaxp0,

g3ðsÞ ¼ sMin � sp0; g4ðsÞ ¼ s� sMaxp0 (34)

For the sake of development simplicity, all inequality con-
straints will be noted as gj(x,s,h)p0, j ¼ 1,y,4, regardless if they
depend only on state, control variables or both. Hence, we turn
up with J ¼ 24 inequality constraints, 2L equality constraints
(imposed passages) and 12 equality constraints representing state
dynamics equations.

3.2. Performance index

In general, it is possible to optimize any cost function that has a
physical sense. It can be specified according to task and
performance targets. The performance index considered in this
paper, relates energy consumption, traveling time and singularity
avoidance. For energy criterion, both electric and kinetic energies
are optimized. For time criterion, there are two basic ways to
perform optimization: the first one assumes a fixed sampling
period h and searches for a minimum number N of discretisations.
This is equivalent to bring the robot from an initial pose xS to a
final pose xT, within a minimum number N of switching steps. For
the unconstrained case, the time optimal control is basically

tions). —— optimal path, - - - - feasible path, xs Starting pose, xT Target pose
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bang–bang with singularities occurring at the vicinity of the
switching function. In serial robots literature, there are several
publications following this approach [30]. For strongly nonlinear
and coupled mechanical systems (like for the PKM at hand), this is
simply impractical, even by using symbolic calculation. The
second approach fixes the number of discretisations N and varies
the sampling periods hk. This is equivalent to bring the robot from
an initial pose xS to a final pose xT, within a fixed number of steps
N while varying (minimizing) the sampling periods. In this paper,
the number of sampling periods is guessed from an initial feasible
kinematic solution. Then the sampling periods and the actuator
torques are taken as control variables. For singularity avoidance, it
is included through maximization of Eq. (28). In continuous-time,
the constrained optimal control problem can be stated as follows:
among all admissible control sequences (s(t), h)AC�H, that allow
the robot to move from an initial state x(t0) ¼ xS to a final state
x(tf) ¼ xT, find those which minimize the cost function E:

E ¼ Min
sðtÞ2C
t0 ;tT 2H

Z tT

t0

sðtÞUsTðtÞ þ i1 þ
1

2
x2ðtÞQxT

2ðtÞ þ d$ðx1ðtÞÞ

� �
dt

� �

(35)

subject to constraints Eqs. (25), (26), (29)–(32), with C, H U, Q, i1

and d are, respectively, the set of admissible torques, the set of
admissible sampling periods, the electric energy, the kinetic
energy, the time level-headedness, and a weight factor for
singularity avoidance. The corresponding discrete-time optimal
control problem consists of finding the optimal sequences (s1, s2,
y, sN) and (h1, h2, y, hN), allowing the robot to move from an
initial state x0 ¼ xS to a target state xN ¼ xT, while minimizing the
cost Ed

Min
s2C
h2H

Ed ¼
XN

k¼1

½skUsT
k þ i1 þ x2kQxT

2k þ d$ðx1kÞ�hk

( )
(36)

subject to

xkþ1 ¼ f dk
ðxk; sk;hkÞ; k ¼ 0; . . . ;N � 1

gjðxk; sk;hkÞp0; j ¼ 1; . . . ;4; k ¼ 0; . . . ;N � 1

siðxkÞ ¼ 0; i ¼ 1; . . . ;2L; k ¼ 0; . . . ;N
4. Nonlinear programming formulation

4.1. AL approach

In the course of solving the constrained nonlinear multi-
objective optimal control problem Eq. (36), the AL function is used
to transform it into a non-constrained one, where the degree of
penalty for violating the constraints is regulated by penalty
parameters. This method was originated independently by Powell
and Hestens [34,35]. It was subsequently improved by several
authors [24–26]. It basically relies on quadratic penalty methods,
but reduces the possibility of ill conditioning of the sub-problems
that are generated with penalization by introducing explicit
Lagrange multipliers estimates at each step into the function to
be minimized, which results in a super linearly convergence
iterates. Furthermore, while the ordinary Lagrangean is generally
nonconvex (in the presence of nonconvex constraints like for the
considered problem), AL might be convexified to some extent with
a judicious choice of the penalty coefficients [26]. An outline of AL
implementation procedure for the case at hand is given at the end
of Section 5, and a flowchart diagram implementation appears in
the appendix. The AL function transforming the constrained
optimal control problem to an unconstrained one is written as

Llðx; s;h;k;q;rÞ ¼
XN

k¼1

½sT
kUsk þ i1 þ xT

2kQx2k þ d$ðx1kÞ�hk

þ
XN�1

k¼0

fkT
kþ1ðxkþ1 � f dk

ðxk; sk;hkÞg

þ
XN�1

k¼0

hk

XL�1

l¼1

X2

i¼1

WlS
ðri

k; s
l
iðxkÞÞ

"

þ
XJ

j¼1

Ulg
ðqj

k; gjðxk; sk;hkÞÞ

3
5

�
X2

i¼1

hNWlS
ðri

N ; s
L
i ðxNÞÞ (37)

where the function f dk
ðxk; sk;hkÞis defined by the discrete state Eq.

(25) at the sampling time k, N is the sampling number, kAR12N

designates the adjoint (or co-state) obtained from the adjunct
equations associated to state equations, q, r are Lagrange
multipliers with appropriate dimensions, associated to equality
and inequality constraints and lglS are the corresponding penalty
coefficients. The penalty functions adopted here combine penalty
and dual methods. This allows relaxation of the inequality
constraints as soon as they are satisfied. Typically, these penalty
functions are defined by

Cls
ða;bÞ ¼ aþ

ls

2
b

� �T

b and

Ulg
ða;bÞ ¼

1

2lg

fjjMaxð0;aþ lgbÞjj2 � jjajj2g (38)

where a and b refer, respectively, to Lagrange multipliers and the
left hand side of equality and inequality constraints.

The Karush–Kuhn–Tucker first-order optimality necessary
conditions require that for xk, sk, hk, k ¼ 0,y,N to be solution to
the problem, there must exist some positive Lagrange multipliers
(kk,qk), unrestricted sign multipliers rk, and finite positive penalty
coefficients (lg,ls) such that

qLl

qx
¼ 0;

qLl

qs
¼ 0;

qLl

qh
¼ 0;

qLl

qk
¼ 0;

qLl

qq
¼ 0;

qLl

qr
¼ 0; and

qT
kgðx; s;hÞ ¼ 0; rT

ksðxÞ ¼ 0; gðx; s;hÞp0 (39)

The development of these conditions enables us to derive the
iterative formulas to solve the optimal control problem by
adjusting control variables, Lagrange multipliers as well as
penalty coefficients. However, in Eq. (25), f dk

ðxk; sk;hkÞ contains
the inverse of the total inertia matrix M̄c

�1(x) of the PKM,
including struts and actuators, as well as their Coriolis and
centrifugal wrenches N̄c(x1, x2). These might take several pages
long to display. In developing the first necessary optimality
conditions and computing the co-states kk, one has to determine
the inverse of the mentioned inertia matrix and its derivatives
with respect to state variables. This results in an intractable
complexity even by using symbolic calculation.

4.2. Constrained linear-decoupled formulation

The major computational difficulty mentioned earlier cannot
be solved by performing with the original nonlinear formulation.
Instead, it is solved using a linear-decoupled formulation [36].

4.2.1. Theorem

Under the invertibility condition of the inertia matrix, the
control law defined in the Cartesian space as

u ¼ M̄cðx1Þv þ N̄cðx1; x2Þx2 þ Ḡcðx1Þ (40)
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allows the robot to have a linear and decoupled behavior with a
dynamic equation

_x2 ¼ v, (41)

where v is an auxiliary input.

4.2.2. Proof

It follows simply by substituting the proposed control law
Eq. (40) into the dynamic model Eq. (14). One gets

M̄cðx1Þ_x2 ¼ M̄cðx1Þv

Since M̄c(x) is invertible, it follows that ẋ2 ¼ v
This brings the robot to have the decoupled and linear behavior

described by the following linear dynamic equation written in
discrete form as:

xkþ1 ¼ Fdkxk þ BðhkÞðvkÞ ¼ f D
dk
ðxk; vk;hkÞ (42)

with

f D
dk
ðxk; vk;hkÞ ¼

I6�6 hkI6�6

O6�6 I6�6

" #
xk þ

h2
k

2
I6�6

hkI6�6

2
64

3
75vk

Notice that this formulation reduces drastically the computa-
tions, by alleviating us the calculation at each iteration of the
inertia matrix inverse and its derivatives with respect to state
variables, which results in easy calculation of the co-states.
The nonlinearity is, however, transferred to the objective function.

The decoupled formulation transforms the discrete optimal
control problem into finding optimal sequences of sampling
periods and acceleration inputs (h1, h2, y, hN), (v1, v2, y, vN),
allowing the robot to move from an initial state x0 ¼ xS to a final
state xN ¼ xT, while minimizing the cost function

ED
d ¼ Min

v2V
hk2H

XN�1

k¼0

½½M̄cðx1kÞvk þ N̄cðx1k; x2kÞx2k

(

þ Ḡcðx1kÞ�
T U½M̄cðx1kÞvk þ N̄cðx1k; x2kÞx2k

þ Ḡcðx1kÞ� þ i1 þ xT
2kQx2k þ d$ðx1kÞ�hk

)
(43)

and satisfying the above-mentioned constraints, which mainly
remain the same, except for actuator torques, which become

sMinpM̄cðx1kÞvk þ N̄cðx1k; x2kÞx2k þ Ḡcðx1kÞpsMax (44)

Moreover, inequality constraints g3 and g4 can be rewritten as

gD
3 ðxk; vkÞ ¼ sMin � ½M̄cðx1kÞvk þ N̄cðx1k; x2kÞx2k þ Ḡcðx1kÞ�p0

gD
4 ðxk; vkÞ ¼ ½M̄cðx1kÞvk þ N̄cðx1k; x2kÞx2k þ Ḡcðx1kÞ� � sMaxp0 (45)

Similarly to the non decoupled case, the decoupled problem
might be written in the following form:

Min
v2V
h2H

ED
d

subject to

xkþ1 ¼ f D
dk
ðxk; sk;hkÞ; k ¼ 0; . . . ;N � 1

gD
j ðxk; vk;hkÞp0; j 2 f1;2; . . . ; Jg

sD
i ðxkÞ ¼ 0; i 2 f1; . . . ; Ig; k ¼ 0; . . . ;N (P)

4.3. AL for the decoupled formulation

Now, mutatis mutandis, the AL associated to the decoupled
formulation (P) is (after removing bars and c indexes for
writing simplicity)

LD
l ðx; v;h; k;q;rÞ ¼

XN�1

k¼0

f½½½Mðx1kÞvk þ Nðx1k; x2kÞx2k þ Gðx1kÞ�
TU

½Mðx1kÞvk þ Nðx1k; x2kÞx2k þ Gðx1kÞ�� þ i1 þ xT
2kQx2k þ d$ðx1kÞ�hkg

þ
XN�1

k¼0

fkT
kþ1ðxkþ1 � f D

dk
ðxk; vk;hkÞg

XN�1

k¼0

hk

XL�1

l¼1

X2

i¼1

ClS
ðri

k; s
Dl
i ðxkÞÞ þ

XJ

j¼1

Ulg
ðqj

k; g
D
j ðxk; sk;hkÞÞ

2
4

3
5

þ
X2

i¼1

hNWlS
ðri

N ; s
DL
i ðxNÞÞ (46)

where the function f D
dk
ðxk; sk;hkÞ is defined by Eq. (42) at time k, N

is the total sampling number, other parameters appearing in
Eq. (46) are defined above.

Again, the development of the first-order Karush–Kuhn–Tucker
optimality necessary conditions require that for xk, vk, hk,
k ¼ 0,yN to be solution to the problem (P), there must exist
some positive Lagrange multipliers (kk,qk), unrestricted
sign multipliers rk, and finite positive penalty coefficients
l ¼ (lg, ls), such that Eq. (39) are satisfied for the decoupled
formulation.

The co-states kk are determined by backward integration of the
adjunct state equation yielding

kk�1 ¼ � 2hk
q½M̄cðx1kÞvk þ N̄cðx1k; x2kÞx2k þ Ḡcðx1kÞ�

qxk

� U½M̄cðx1kÞvk þ N̄cðx1k; x2kÞx2k þ Ḡcðx1kÞ�

� 2Qx2khk � drx1k
$ðx1kÞ � FT

dkk

� hk

XL�1

l¼1

X2

i¼1

rxk
ClS
ðri

k; s
Dl
i ðxkÞÞ

" #

� hk

Xj

j¼1

rxk
Flg
ðqj

k; g
D
j ðxk; vk;hkÞÞ

2
4

3
5; k ¼ N � 1; . . . ;1 (47)

The gradient of the Lagrangian with respect to sampling period
variables is

rhkLD
l ¼ ½½M̄cðxkÞvk þ N̄cðx1k; x2kÞx2k þ Ḡcðx1kÞ�

T

� U½M̄cðx1kÞvk þ N̄cðx1k; x2kÞx2k þ Ḡcðx1kÞ�

þ xT
2kQx2k þ i1 þ d$ðx1kÞ� þ

XL�1

l¼1

X2

i¼1

WlS
ðri

k; s
Dl
i ðxkÞÞ

þ
Xj

j¼1

Ulg
ðqj

k; g
D
j ðxk; vkÞÞ (48)

The gradient of the Lagrangian with respect to acceleration
variables is

rvkLD
l ¼ 2M̄cðx1kÞU

T
½M̄cðx1kÞvk þ N̄cðx1k; x2kÞx2k þ Ḡcðx1kÞ�hk þ ZT

kkk

þ hk

Xj

j¼1

rvk
Flg
ðqj

k; g
D
j ðxk; vk;hkÞÞ

2
4

3
5 (49)

where

Zk ¼
I6�6 hkI6�6

O6�6 I6�6

" #
½xk� þ

h2
k

2 I6�6

hkI6�6

" #
½vk�; k ¼ 0;2; . . . ;N � 1

The development of various related expressions are quite long
and not given here. They are detailed in Ref. [37].
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Fig. 4. A schematic representation of the planar parallel manipulator.
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4.4. Implementation issues

4.4.1. Initial solution

To fasten convergence of AL–although it converges even if it
starts from an unfeasible solution–a kinematic-feasible solution is
defined. It is based on a velocity profile. This solution is divided
into three zones, acceleration zone with duration T1. In this zone,
the actuators are assumed to supply an initial force to accelerate
the EE until the maximum velocity is reached. Then a constant
velocity zone of duration T2 is achieved. Finally a deceleration
zone of duration T3 ¼ T1 finishes the cycle. The initial time
discretisation is assumed an equidistant grid for convenience, i.e.,

hk ¼ tkþ1 � tk ¼
tf � t0

N
; k ¼ 1;2; . . . ;N � 1 (50)

4.4.2. Search direction update

Because the considered problem is of large scale type, to solve
for the minimization step at the primal level of AL, a limited-
memory Quasi-Newton-like method is used at each iteration of
the optimization process. This method allows the computing of
the approximate Hessian matrix by using only the first derivative
information, and without need to storing of this approximated
Hessian matrix. It performs the second-order BFGS (Broyden–
Fletcher–Goldfarb–Shano) search technique. It is briefly outlined
below. For more details, the reader is referred to Ref. [18]. At the
(k+1)th iteration, set ak ¼ vk+1�vk as the update of the control
variable v, bk ¼ rvLk+1�rvLk the update of the gradient and Hk

�1

the approximation of the inverse of the Hessian. The inverse of the
approximate Hessian Hk

�1 can be obtained using the BFGS update
formula

H�1
k ¼ VkH�1

k VT
k þ

akaT
k

bT
kak

; with Vk ¼ I� ðbka
T
kÞ=ðb

T
kakÞ (51)

The following pseudo-code describes the BFGS two-loop
iterative procedure used to compute the search Hk

�1rvLk

efficiently by using the last m pairs of (ak, bk)

s rvLk

for i ¼ k� 1; k� 2; . . . ; k�m

ci  aT
i s=bT

i ai;

s s� cibi;

End ðforÞ

r ðH0
k Þ
�1s;

For i ¼ k�m; k�m; . . . ; k� 1

di  bT
i r=bT

i ai;

r rþ ðci � diÞai;

End ðforÞ

Stop with result H�1
k rvLk ¼ r (52)

where (Hk
0)�1 is the initial approximation of the inverse of the

Hessian matrix. One can set it as: (Hk
0)�1
¼ 1kI, with I is the

identity matrix of appropriate dimension, and 1k ¼ (ak�1
T bk�1)/

(bk�1
T bk�1).

4.4.3. Overall solution procedure

A systematic procedure flowchart for the AL implementation
appears in the appendix (Fig. A1). In this procedure, after selecting
robot parameters, task definition, (such as starting, intermediate
and final poses), workspace limitations and simulation para-
meters, the kinematic unit defines a feasible solution satisfying
initial and final poses. Then the inner optimization loop solves for
the AL minimization with respect to sampling periods and
actuator torques control variables to give the robot dynamic state.
This state is then tested within a singularity test unit. If singular,
the state is recalculated by going back to the inner optimization
loop. If non-singular, a feasibility test is performed. The feasibility
is done by testing the norms of all equality and inequality
constraints against given tolerances. If the feasibility test fails,
restart inner optimization unit. Otherwise, if the feasibility test
succeeds, i.e., the current values of penalty are good in maintain-
ing feasibility of iterates, a convergence test is made against
optimal tolerances. If convergence holds, display optimal results
and end the program. If non convergence, go further to the dual
part of AL to test for constraints satisfaction and update multi-
pliers, penalty and tolerance parameters. If the constraints are
satisfied with respect to a first tolerance level (judged as good,
though not optimal), then the multipliers are updated without
decreasing penalty. If the constraints are violated with respect to a
second tolerance level, then one keeps unchanged multiplier
values and decreases penalty to ensure that the next sub-problem
will place more emphasis on reducing the constraints violations.
In both cases the tolerances are decreased to force the subsequent
primal iterates to be increasingly accurate solutions of the primal
problem.
5. Simulation case study

5.1. Description of the 2-DOF parallel manipulator case study

A simulation program has been implemented using Matlab
[38] to test the proposed multi-objective trajectory planning
approach on a PKM case study reported in Ref. [39]. Preliminary
results are encouraging. This PKM consists of 2-DOF planar
parallel manipulator. The robot kinematic and dynamic models
considered have been developed in Ref. [37]. A schematic of the
manipulator is depicted in Fig. 4, where the base is labeled 1 and
the EE is labeled 2. The EE is connected to the base by two
identical legs. Each leg consists of a planar four-bar parallelogram:
links 2–5 for the first leg and links 2, 6–8 for the second leg. The
link 3 and 8 are actuated by prismatic actuators, respectively.
Motions of the EE are achieved by combination of movements of
links 3 and 8 that can be transmitted to the EE by the system of
the two parallelograms. Due to its structure, the manipulator can
position a rigid body in a two-dimensional (2D) space with a
constant orientation.

5.2. Kinematic and dynamic analysis

As illustrated in Fig. 4, a reference frame A:(O0, x0, y0) is attached
to the EE, and a reference frame B:(O, x, y) is attached to the robot
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base, where O0 is the origin of frame A and O the origin of B. To
characterize the planar four-bar parallelogram, the chains A1B1

and A2B2 are considered, as shown in Fig. 4. Vectors AiA and AiB

(i ¼ 1, 2) define the positions of points Ai in frames A and B,
respectively. Vectors biB (i ¼ 1, 2) define the position of Bi points in
frame B. The geometric parameters of the manipulator are

AiBi ¼ Lði ¼ 1;2Þ; A1A2 ¼ 2r and B1B2 ¼ 2R (53)

The position of point O0 in the fixed frame B is defined by the
vector (x, y)T. The kinematic equations of this manipulator are
given by

J l

_y1

_y2

" #
¼ Jx

_x

_y

" #
(54)
Table 1
Limits of workspace, actuator torques and sampling periods

Parameter x-coordinate (m) y-coordinate (m) s1 (N) s2 (N) h (s)

Maximum 0.8 �0.720 550 700 0.7

Minimum �0.8 �1.720 �550 �700 0.005

Fig. 5. Initial solution, velocity profile.

Fig. 6. Kinematic simulation results: (a) variations of x, y, coordinates of th
where Jl and Jx are, respectively, the 2�2 inverse and forward
Jacobian matrices of the manipulator, which can be expressed as

J l ¼
y� y1 0

0 y� y2

" #
; Jx ¼

r þ xþ R y� y1

x� r þ R y� y2

" #
(55)

If Jl is non-singular, the Jacobian matrix of the manipulator can
be obtained as

J ¼ J�1
l Jx ¼

ðr þ x� RÞ=ðy� y1Þ 1

ðx� r þ RÞ=ðy� y2Þ 1

" #
¼

J11 J12

J21 J22

" #
(56)

Accordingly, it is clear that singularity occurs when one of the
following cases holds

1st case: |Jl| ¼ 0 and |Jx|a0. This case is known as the first type
singularity, and corresponds to the situation where y ¼ y1 or
y ¼ y2, i.e., the first or the second leg is parallel to the x-axis.

2nd case: |Jl|a0 and |Jx| ¼ 0. This case is known as the second
type singularity. It corresponds to the pose where four bars of the
parallelogram in one of the two legs are parallel to each other. It is
analytically expressed by the equality x+r ¼ R for the first leg
when x is positive and x+R ¼ r for the second leg when x is
negative.

3rd case: |Jl| ¼ 0 and |Jx| ¼ 0. This corresponds to the third type
of singularity for which the two legs are both parallel to the x-axis.
This is mainly a design issue as it is characterized by a geometric
parameters condition given by: L+r ¼ R.

The robot dynamic model in the task space of the PKM is
obtained through Lagrange formalism as follows:

t1

t2

" #
¼

mp þ
4

3
ml

	 

þ 2 ms þ

ml

3

� �
ðJ2

11 þ J2
21Þ ms þ

2

3
ml

	 

ðJ11 þ J21Þ

ms þ
2

3
ml

	 

ðJ11 þ J21Þ mp þ 2ms þ

8

3
ml

2
66664

3
77775

€x

€y

" #

þ L2 _x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2
þ _y2

q ms þ
2

3
ml

	 

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2
þ _y2

q2
64

3
75 J11

ffiffiffiffiffiffi
J11

p
ðxþ r � RÞ3=2

þ
J21

ffiffiffiffiffiffi
J21

p
ðx� r þ RÞ3=2

" #2
64

L2 _x2 ms þ
2

3
ml

	 

þ

_x_yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2
þ _y2

q
2
64

3
75 J11

ffiffiffiffiffiffi
J11

p
ðxþ r � RÞ3=2

þ
J21

ffiffiffiffiffiffi
J21

p
ðx� r þ RÞ3=2

" #375

þ
_yð€x_y� ð_x€yÞ

ð_x2
þ _y2
Þ
3=2
þ g ms þ

ml

2

� �" #
ðJ11 þ J21Þ

"

€y_x2
� €x_y_xÞ

ð_x2
þ _y2
Þ
3=2
ðJ11 þ J21Þ þ gðmp þmlÞ

" ##
(57)

More details on the derivation of the dynamic model might be
found in Ref. [37].
e EE, and sampling periods, (b) variations of torques t1, t2, and energy.



ARTICLE IN PRESS

Fig. 7. Simulation results with the AL (minimum time–energy): (a) variations of x, y, coordinates of the EE, and sampling periods, (b) variations of torques t1, t2, and energy.

Fig. 8. AL (minimum energy): (a) variations of x, y, coordinates of the EE, and sampling periods, (b) variations of torques t1, t2, and energy.

Fig. 9. AL minimum time–energy with imposed passage through Cartesian positions: (a) variations of x, y, coordinates of the EE, and sampling periods, (b) variations of

torques t1, t2, and energy.
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Following the streamline developed in previous sections, a
discrete-time state-space model associated to the state Eq. (57) is:

xkþ1 ¼
I2�2 hkI2�2

O2�2 I2�2

" #
xk

�

h2
k

2
I2�2

hkI2�2

2
64

3
75½M̄�1

c ðx1kÞ½N̄cðx1k; x2kÞx2k þ Ḡcðx1kÞ��

þ

h2
k

2
I2�2

hkI2�2

2
64

3
75M̄

�1
c ðx1kÞsk (58)

The optimal control problem consists to minimize criterion
Eq. (35) subject to dynamic Eq. (58) and equality and inequality
constraints Eqs. (29)–(31), and the following specific constraints.
�

Tab
Con

Ndi

10

20

20

30

Fig
torq
Workspace limitations:

xMinpxkpxMax; yMinpykpyMax for k ¼ 1;2; . . . ;N (59)
�
 Singularity avoidance:
In our considered case study, the first type singularity
constraint might be expressed by:

jðyk � y1kðÞyk � y2kÞjX�1 (60)

whereas the second it is given as

jðxk þ sgnðxkÞðr � RÞÞjX�2 (61)

e1 and e2 represent small positive tolerances.
le 2
vergence history of minimum time–energy planning with AL

sc Nprimal Ndual CPU (s) tT (s) Energy (J) AP

EqPre IneqPre

4 7 12.62 9.50 6874.37 3.10�3 3.10�3

4 7 29.25 8.01 5156.28 10�3 10�3

5 10 35.54 7.31 4910.39 5.10�4 4.10�4

5 10 69.83 6.07 4210.23 2.10�5 3.10�5

. 10. Disturbed AL (minimum tme–energy) (modified mass of EE mEE ¼ 300.0 kg): (

ues t1, t2, and energy.
parameters L, r and R. These parameters are chosen at the

The third singularity type concerns mainly the geometric

design level, such that the equality L+r ¼ R does not hold. The
required passage poses is reduced to positioning ones, insofar a
constant orientation is assumed during task execution. Typically,
one might have

sðxÞ ¼ jjp� pljj � TPassThlp ¼ 0 (62)

The AL and the associated decoupled formulation are obtained
along with various gradients. These calculations are quite long.
The reader is referred to Ref. [37] for further details.

5.3. Simulation data and scenario

The following numeric values are used: the EE mass is
mEE ¼ 200.0 kg that of each leg is ml ¼ 570.5 kg and that of
the slider is ms ¼ 100 kg. The platform radius is r ¼ 0.75 m,
R ¼ 1.2030 m and the strut length L ¼ 1.9725 m. Table 1 shows
the limits of the workspace, actuator torques and sampling
periods. For the AL, the following parameter values had been
taken os ¼ 0.5, Zs ¼ 0.5, aw ¼ aZ ¼ 0.4, bw ¼ bZ ¼ 0.4,
w0 ¼ Z0 ¼ Z10 ¼ 10�2, w* ¼ Z* ¼ Z*1 ¼10�5, g1 ¼ 0.25, g2 ¼ 1.2,
n ¼ 0.01, n̄ ¼ 0:3. The initial Lagrange multipliers q0, r0 compo-
nents are set to zero. The singularity weight is d ¼ 1.
The maximum value for dMax ¼ 1042, and the minimum
value for dMax ¼ 10�42. The scenario consists of a straight line
trajectory from an initial Cartesian state position x0 ¼ �0.7,
y0 ¼ �0.1 to a final position xT ¼ 0.7, yT ¼ �1.6 (in meters).
The initial and final linear and angular velocities are equal
to zero.

The maximum velocity is 0.2 m/s and maximum acceleration is
2 m/s2. The maximum allocated time for this trajectory is 10 s.
In the presented simulations, the focus is on time–energy
constrained trajectory planning by the AL, more kinematic-related
performance evaluation and design for a similar case study
might be found in Refs. [37,39]. Typically, four simulation
objectives are considered: (1)–Compare robot trajectories for
different values of the weights U, Q, i1 and d. (2)–Assess the
effects of the dynamic parameters changes on the AL sensitivity
and on the behavior of the PKM. (3)–At which precision vs.
time consumption, the augmented Lagrangian achieves passage
a) variations of x, y, coordinates of the EE, and sampling periods, (b) variations of
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satisfaction through imposed poses? (4)–To what extent the
number of inner and outer iterations of AL impacts PKM
performance vs. CPU Time?

To start, Fig. 5 shows the velocity profile used to initialize the
AL. Figs. 6 and 7 show the simulation results for both initial
kinematic and AL solutions. In part (a) of these figures, the first
plot from the top shows the displacement along the x-axis of the
EE point of operation. The second plot shows the displacement
along the y-axis of the EE point of operation. The third shows the
instantaneous values of the consumed time to achieve the
trajectory. In part (b), the first and second plots from the top
show the instantaneous variations of joint torques, while the third
one shows the instantaneous values of the consumed energy. It is
noteworthy that although the initial solution is kinematically
feasible, when the corresponding torques is computed considering
the dynamic model and forces, one gets shortly torque values
outside the admissible domain resulting in high values for the
energy cost. With the AL, however, with four inner and seven
outer iterations, the variations of the energy consumption are
increasing smoothly and monotonously. Fig. 8 displays the
simulation outcomes for the only energy criterion (i.e., the time
weight is set to zero, so the sampling period is kept constant). One
gets a 34% faster trajectory with time–energy criterion (Fig. 7), as
compared to a trajectory computed with only minimum-energy
criterion (Fig. 8). As for imposed passages through pre-specified
poses, the same scenario as above is simulated, while constraining
the EE to pass through the following positions: (0.0, �1.4),
(0.4, �1.1) and (0.5, �1.0), all in meters. Fig. 9 shows the trajectory
corresponding to passage through imposed poses. With 10 dual
iterations and 7 primal ones, one gets a precision of 7.10�4, which
confirms the well-known constraints satisfaction performance of
AL for constrained optimization problems, as compared to its
counterparts like penalty methods. Furthermore, we observe that
the proposed variational approach has not only been successful in
finding singularity-free trajectory, but also the obtained trajec-
tories are optimal in time and energy minimization. To analyze
with respect to AL parameters, Table 2 shows comparison of
results for different simulation parameters of AL, where NDisc is
the number of discretisations, NPrimal is the number of inner
optimization loops, NDual is the number of outer optimization
loops, tT ¼

P
k ¼ 1

N hk is the total traveling time, Ener-
gy ¼

P
k ¼ 1

N [skUsk
T+x2kQxT

2k)] is the consumed electric and kinetic
energy, and AP for achieved precision for, respectively, equality
(EqPre) and inequality (IneqPre) constraints satisfaction. The
values shown for the total traveling time tT, Energy, and AP
correspond to those computed for the last outer iteration.
5.4. Sensitivity analysis

The optimal time–energy control considered so far is depen-
dent on the values of the dynamic parameters of the PKM. As
PKMs are strongly nonlinear and coupled mechanical systems,
several of these parameters such as inertial parameters are known
only approximately or may change. So, a sensitivity analysis [40] is
necessary to know how robust the proposed approach to the
parameter changes is.

This is performed through varying the value of the EE mass. On
Fig. 10, it is shown that the AL simulation with modified EE mass
as mEE ¼ 300.0 kg. One notices that the needed actuator torques
and necessary energy and time to achieve the same task are
higher, especially at the beginning.
6. Conclusions and discussions

The basic contribution of this paper is the formulation and
resolution of the trajectory planning problem of PKMs using a
variational calculus framework. This is performed by considering
robot kinematic and dynamic models, while optimizing time and
energy necessary to achieve the trajectory, avoiding singularities
and satisfying several constraints related to the robot, task and
workspace. The robot dynamic model includes the EE, struts and
actuators models. The AL algorithm is used to solve the resulting
nonlinear and nonconvex optimal control problem. This optimiza-
tion technique is used along with a decoupled and linearized
formulation of the original problem, permitting the ultimate
benefit of easing the computation of the co-states and other
variables necessary to perform optimization. Although, it is task
and algorithm parameter settings dependent, the computational
time is drastically reduced when the decoupled and linearized
formulation is used. It has been shown that the proposed
approach performs better in optimizing traveling time and
actuator torques than kinematic only based schemes. Further-
more, the proposed trajectory planning is robust to dynamic
parameters changes. This in fact is due to the ability of the AL to
cope with numerical ill-conditioning problems, as compared to
other optimization techniques like penalty methods. Moreover, a
major advantage of this approach is that one can introduce any
type of constraints related to the robot, task or environment, like
obstacles or link interference avoidance, by deriving the corre-
sponding constraint expressions and adding them naturally in the
Lagrangian in order to have them included in the trajectory
planning system. These issues are now being incorporated in an
ongoing work.
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Appendix A. Augmented Lagrangian algorithm
orithm function and operation.
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