
Computers & Geosciences 44 (2012) 109–119
Contents lists available at SciVerse ScienceDirect
Computers & Geosciences
0098-30

http://d

n Tel.:

E-m
journal homepage: www.elsevier.com/locate/cageo
Hybrid soft computing systems for reservoir PVT properties prediction
Amar Khoukhi n

Systems Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
a r t i c l e i n f o

Article history:

Received 25 April 2011

Received in revised form

15 March 2012

Accepted 18 March 2012
Available online 1 April 2012

Keywords:

Pressure–Volume–Temperature

Oil formation volume factor

Bubble point pressure

Correlation

Genetically-optimised neural networks

Genetic-adaptive neuro-fuzzy inference

systems
04/$ - see front matter & 2012 Elsevier Ltd. A

x.doi.org/10.1016/j.cageo.2012.03.016

þ966 3 860 7614; fax: þ966 3 860 2965.

ail address: amar@kfupm.edu.sa
a b s t r a c t

In reservoir engineering, the knowledge of Pressure–Volume–Temperature (PVT) properties is of great

importance for many uses, such as well test analyses, reserve estimation, material balance calculations,

inflow performance calculations, fluid flow in porous media and the evaluation of new formations for

the potential development and enhancement oil recovery projects. The determination of these

properties is a complex problem because laboratory-measured properties of rock samples (‘‘cores’’)

are only available from limited and isolated well locations and/or intervals. Several correlation models

have been developed to relate these properties to other measures which are relatively abundant. These

models include empirical correlations, statistical regression and artificial neural networks (ANNs). In

this paper, a comprehensive study is conducted on the prediction of the bubble point pressure and oil

formation volume factor using two hybrid of soft computing techniques; a genetically optimised neural

network and a genetically enhanced subtractive clustering for the parameter identification of an

adaptive neuro-fuzzy inference system. Simulation experiments are provided, showing the perfor-

mance of the proposed techniques as compared with commonly used regression correlations, including

standard artificial neural networks.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Motivation and background

A reservoir is a volume of porous sedimentary rock, which has
been filled with a substantial amount of hydrocarbons, such as
crude oil and natural gas. High-quality rock and fluid data are
critical for reliable modelling, reservoir-engineering calculations,
and performance predictions by use of reservoir simulators and for
subsequent economic analysis (Al-Hussainy and Humphreys, 1996).

Typically, reservoir properties consist of a set of parameters
which are used to characterise the spatially varied geological
information. Fluid characterisation quantifies the reservoir phase
behaviour, fluid compositional changes throughout the reservoir,
and changes in fluid properties as a result of production and
injection processes.

The determination of reservoir properties is however a com-
plex problem, because laboratory-measured properties of rock
samples (‘‘cores’’) are only available from limited and isolated
well locations and/or intervals. There is a great demand for the
development of correlation models to relate these properties to
other, more relatively abundant, measures. One example of such a
kind of measures is ‘‘well logs’’, which are a series of multi-type
ll rights reserved.
digital measurements along the vertical depth of drilled wells.
These models are used to transform the well log data into
reservoir properties at locations where no cores are available.

Pressure–Volume–Temperature (PVT) properties are key para-
meters associated with the characterisation of any hydrocarbon
reservoir. In fact, it is not possible to have accurate solutions to
many petroleum engineering problems without having accurate
estimates of these properties. Furthermore, the control of the
relationship between the surface and reservoir hydrocarbon
volumes and the underground withdrawal is made possible by
knowing the oil PVT parameters.

To overcome the abovementioned problems of expensive
laboratory-based tests and the possible non-availability of the
right samples from the well-bore or well surface, equations of
state models and several empirically derived correlations
between those properties and well data, and eventually artificial
neural networks, have been developed based on available data for
different regions of the world.

In this paper, the capabilities of soft computing techniques are
explored and investigated by gathering their respective power-
fulness in hybrid optimised structures, so as to improve their
performance compared to the use of each technique alone. A case
study of two important PVT properties prediction problem is
considered. These two properties are bubble point pressure (Pb),
and oil formation volume factor (Bob). The former defines the
pressure at which the first gas comes out of solution in oil. It is a
function of temperature, oil gravity, gas gravity and gas/oil ratio,

www.elsevier.com/locate/cageo
www.elsevier.com/locate/cageo
dx.doi.org/10.1016/j.cageo.2012.03.016
mailto:amar@kfupm.edu.sa
dx.doi.org/10.1016/j.cageo.2012.03.016


Nomenclature

EOS Equation-of-state
FVF Formation volume factor
PVT Pressure/Volume/Temperature
API American Petroleum Institute
ANN Artificial neural networks
RBFNN Radial basis feed-forward neural networks
GA Genetic Algorithm
ANFIS Adaptive neuro-fuzzy inference system
GANFIS Genetic adaptive neuro-fuzzy inference system
GONN Genetically optimised neural networks
Er Average percent relative error
Ea Average absolute percent relative error
Emin Minimum root mean square error
Emax Maximum root mean square error
RMSE Root mean square error
SD Standard deviation
R2 Correlation coefficient

Res_Temp Reservoir temperature (1F)
Mol_N2 Mole fraction of N2 (mol%)
Mol_CO2 Mole fraction of CO2 (mol%)
Mol_H2S Mole fraction of H2S (mol%)
p Pressure (psi)
Pb Bubble point pressure (psi)
Pod Pressure at dead oil viscosity (psi)
Bob Oil formation volume factor (RB/STB)
Rs Solution gas/oil ratio, SCF/STB (m3/m3)
Rsb Bubble point solution gas/oil ratio, SCF/STB (m3/m3)
T Temperature (1F)
V Volume (m3)
ma Viscosity above bubble point (cP)
mb Viscosity below bubble point (cP)
mo Oil viscosity (cP)
mob Bubble point/gas-saturated oil viscosity (cP)
mod Dead oil viscosity (cP)
gg Gas relative density (API)
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and it is needed to know when the gas is dissolved from oil. Bob is
a function of pressure and temperature, which represents the
ratio of oil and dissolved gas volume under reservoir conditions to
the oil volume at standard conditions.

1.2. Correlation-based prediction

Since the pioneering work of Katz (1942), who developed five
methods for predicting crude oil shrinkage in 1942, a considerable
volume of literature has accumulated on the study of PVT
correlations for crude oil. Various correlations were proposed by
different researchers from all over the world, with varying
degrees of accuracy in terms of average error, and based on crude
samples from different oil fields (Katz, 1942; Glaso, 1980). Most of
these correlations were developed empirically using graphical or
regression methods. Several efforts were also made to develop a
universal correlation.

In Al-Marhoun (1988), a correlation was published for Bob

using 11,728 experimental values representing samples taken
from 700 reservoirs, mostly from the Middle East and North
America. Other correlations were also developed for the Gulf of
Suez and Malaysian Crude oils by Al-Marhoun (1988), Macary and
El-Batanoney (1992), respectively. In Omar and Todd (1993),
a reliability analysis was conducted for PVT correlations. In
De Ghetto et al. (1995), correlations were published for properties
of UAE crude oils using 62 data sets from UAE reservoirs.
A comprehensive review of various empirical correlations is
reported in Almehaideb (1997) and Sutton (2008).

1.3. Artificial neural networks based prediction

Several artificial neural network (ANN) correlations have also
been proposed. The prediction performance was assessed through
four main criteria. The first is the average percent relative
error (Er), which measures the relative deviation of the results
of the prediction from the experimental data. The second is the
average absolute percent relative error (Ea), which measures
the relative absolute deviation of the prediction results from the
experimental values. The standard deviation (SD) measures the
variability of the obtained results with respect to the average
value. The forth criterion consists of the correlation coefficient R2,
which indicates the degree of success in reducing the standard
deviation by regression analysis.
In Elsharkawy (1998) a two hidden layers radial basis function
neural network model (RBFNM) was proposed to predict PVT
properties for crude oil and gas. The model predicts oil formation
volume factor, solution gas oil ratio, oil viscosity, saturated oil
density, under-saturated oil compressibility, and evolved gas
gravity. The input data to the RBFNM were reservoir pressure,
temperature, stock tank oil gravity and separator gas gravity.
For the oil formation volume factor, the RBFNM resulted in a
better accuracy than as-to-date available PVT correlations. In this
study, the average percent relative error (Er) was estimated for
the training to �0.06% and 0.08% for testing. The average absolute
percent relative error (Ea) was obtained as 0.87% for training and
0.53% for testing. The standard deviation (SD) was found to be
1.28% for training and 0.57% for testing. The correlation coefficient
R2 was determined as 99.46% for the training samples and 98.24%
for testing.

In Varotsis et al. (1999), a novel approach for predicting the
complete PVT behaviour of reservoir oil and gas condensates was
introduced using an ANN. The method used key measurements
that can be performed rapidly, either in a lab or at the well site, as
input to the ANN. The ANN was trained by a PVT database of over
650 reservoir fluids originating from all parts of the world. The
testing of the trained ANN indicated that, for all fluid types, most
of the PVT properties estimates can be obtained with a very low
mean relative error of 0.5–2.5%, with no data set producing a
relative error of more than 5%. This level of error is considered as
better than that provided by tuned equation-of-state (EOS)
models, which are still in common use for the estimation of
reservoir fluid properties.

In Al-Marhoun and Osman (2002), two new models were
presented to predict Pb and Bob at the bubble-point pressure using
a Multi-layer Preceptron (MLP), trained by backpropagation with
early stopping, for Saudi Arabian crudes. Both models were based
on ANNs, and developed using 283 unpublished data sets
collected from different Saudi Arabian fields. Off the 283 data sets,
142 were used to train the Bob and Pb ANNs, 71 to cross-validate the
relationships established during the training process and adjust
the calculated weights, and the remaining 70 were used to test the
model and evaluate its accuracy. The results showed that the
developed Bob model provides better predictions and higher accu-
racy than previously published empirical correlations.

In Goda et al. (2003) another ANN correlation was developed
to predict both Pb and Bob with the aid of two separate networks.
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The data used was a set of 160 measured points collected from
the Middle East, where 120 points were dedicated to training, and
20 for testing. The Bubble point network was constructed of two
hidden layers, with ten neurons for each layer. All hidden neurons
were activated by a log sigmoid function. The four input data
were temperature, API gravity, gas oil ratio and gas relative
density. The output neuron was designed to be activated with
pure linear functions. The results showed that the network gives
higher accuracy in the prediction task than other published
empirical correlations. The network has an average percent
relative error of 0.030704 and correlation coefficient of 0.9981.
Other correlations were introduced in Labedi (1990) and Suttan
and Farshad (1990) for Libyan and Gulf of Mexico crude oils.

In Osman and Al-Marhoun (2005), two new models were
developed to predict different brine properties. The first model
predicted brine density, oil formation volume factor (Bob),
isothermal compressibility as a function of pressure and tem-
perature and salinity. The second model was developed to predict
brine viscosity as a function of temperature and salinity alone.
The models were developed using 1040 published data sets. These
data were divided into three groups: training, cross-validation
and testing. Radial Basis Functions (RBF) and Multi-layer Precep-
tron (MLP) neural networks were utilised in the study. Trend tests
were performed to ensure that the developed model would follow
physical laws. The results showed that the developed models
outperform the published correlations in terms of absolute
average percent relative error, correlation coefficient and stan-
dard deviation.
1.4. Hybrid soft computing based techniques

Soft and mimetic computing techniques other than ANN were
also used (Ouenes, 2000; Jang et al., 1996). In Ouenes (2000),
fuzzy neural networks were used to evaluate the hierarchical
effect of each geologic driver on fractures, in an effort to assist a
geologist or reservoir engineer in being able to identify, locally
and globally, the key geologic drivers affecting fractures. Aulia
et al. (2010) used data mining for smart oilfield reservoir analysis.
In El-Sebakhy (2009), a support vector regression (SVR) was used
for generating correlations for forecasting bubble point pressure
using three different published PVT databases, which was claimed
to outperform empirical correlation and standard neural network
models.

All these studies prove that correlations based on data mining
techniques are more accurate than empirical correlations. How-
ever, most of these correlations were found to be appropriate for
the specific region where the parameters were measured, but not
for other regions. Furthermore, the neural network correlations
developed are often limited, and global correlations are usually
less accurate compared to local correlations. Nevertheless, the
achievements of neural networks opened the door to soft com-
puting techniques to play a major role in the oil and gas industry.
Adaptive neuro-fuzzy inference systems have been proposed as a
new intelligence framework for both prediction and classification
based on fuzzy clustering optimisation criterion and ranking
(Jang et al., 1996).

This paper is an upgraded and extended version of two other
papers (Khoukhi and Albukhitan, 2010, 2011; Khoukhi et al.,
2011) that are concerned with estimating two PVT properties of
crude oil systems; namely bubble point (Pb) and oil formation
volume factor (Bob). The main extension is the performance of
further experiments, including a genetically optimised neural
network (GONN), and a genetic adaptive neuro-fuzzy inference
system (GANFIS), along with comparisons with standard ANN,
ANFIS and state-of-the-art regression based correlations.
In Section II, the problem is formulated and the datasets used
are introduced. Section III presents the proposed approach to the
problem and the implemented techniques. Section IV reports on
the simulation experiments and a comparative study. Section V
concludes this work and offers perspectives and future trends.
2. Problem statement

2.1. Data acquisition and pre-processing

Three distinct databases were used in this study to implement
the proposed techniques, to forecast both bubble point pressure
(Pb) and oil formation volume factor (Bob) based on the same four
input parameters; namely solution gas–oil ratio (Rs), reservoir
temperature (T), oil gravity (API), and gas relative density (gg).
The properties of the three datasets acquired are explained below;
a statistical description of the datasets appears in Appendix I:
–
 The first dataset refers to work conducted by Al-Marhoun, who
published correlation for estimating Pb and Bob for Middle
Eastern oils (Al-Marhoun, 1988). The dataset consists of 160
observations collected from 69 Middle Eastern reservoirs.
–
 The second dataset were retrieved from works conducted by
Al-Marhoun and Osman (2002). The dataset consists of 283
observations collected from different Saudi Arabian oil fields
for the prediction of Pb and Bob at Pb for Saudi crude oils.
–
 The third dataset was obtained from the work conducted by
Osman and Al-Marhoun (2005), this dataset contains 782
observations collected from oil fields in Malaysia, the Middle
East, Gulf of Mexico and Columbia.

2.2. Statistical quality measures

To compare the performance and accuracy of the proposed
framework to other empirical correlations, statistical error ana-
lysis and quality measures are performed. Three main standards
are used in assessing the suggested techniques and their compar-
isons with regression-based models.

The first standard is an assessment through six error criteria;
including the average percent relative error (Er), average absolute
percent relative error (Ea), minimum and maximum absolute
percent error (Emin and Emax), root mean square errors (RMSE),
standard deviation (SD), and correlation coefficient (R2). These
performance indices are detailed in Appendix II.

The second comparison is through graphical representation of the
correlations between the actual and predicted values of Pb and Bob.

The third approach is through graphical representation of
errors as a function of correlations (Al-Marhoun, 1988, 1992;
Al-Marhoun and Osman, 2002). Scatter plots are shown for the
absolute percent relative error (Ea) versus the correlation coeffi-
cient for all computational intelligence forecasting schemes and
the most common empirical correlations. Each modeling scheme
is represented by a symbol; the good forecasting scheme should
appear in the upper left corner of the graph.
3. Proposed approach

3.1. Adaptive neuro-fuzzy inference systems (ANFIS)

Neuro-fuzzy inference systems are hybrid classification/fore-
casting frameworks, which learn the rules and membership
functions from data. It is a network of nodes and directional
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links. Associated with the network is a learning rule, for instance,
back-propagation. These networks are learning a relationship
between inputs and outputs. This type of network covers a
number of different approaches, namely Mamdani type and
Takagi–Sugeno–Kang (TSK) type (see Jang et al., 1996) for more
detail. Unlike the Mamdani method, also referred to as subjective
fuzzy modelling as it builds the fuzzy if-then rules through expert
statements which might involve vagueness and subjectivity,
the TSK fuzzy objective modelling method is a framework for
generating fuzzy if-then rules from input/output numerical data.
A way to construct a TSK fuzzy model from numerical data
proceeds in three steps: fuzzy clustering, setting of the member-
ship functions, and parameter estimation (Nikravesh et al., 2003;
Jang et al., 1996). Fig. 1 shows an ANFIS System with a two-inputs
two-rules one-output arrangement.

The implemented ANFIS in the study at hand is made up of six
layers. The first layer is the input layer, characterising the crisp
inputs. The second layer performs the fuzzification of the crisp
inputs into linguistic variables, through Gaussian transfer func-
tions. The third is the rule layer, which applies the product t-norm
to produce the firing strengths of each rule. This is followed by a
normalisation layer, at which each node calculates the ratio of a
rule’s firing strength to the sum of the firing strengths of all rules.
The fifth layer performs the defuzzification. The last layer con-
ducts the aggregation, where an output is obtained as the
summation of all incoming signals. The training rule option used
is the Levenberg–Marquard version of the gradient back-propaga-
tion algorithm.

3.2. Genetic adaptive neuro-fuzzy inference system (GANFIS)

Genetic Algorithms (GAs) are intelligent search mechanisms
based on the principle of natural selection and population
genetics that are transformed by three genetic operators: selec-
tion, crossover and mutation. Each string (chromosome) is a
possible solution to the problem being optimised, and each bit
(or group of bits) represents a value or of some variable (gene) of
the problem. These solutions are classified by an evaluation
function, giving better values, or fitness, for better solutions
individuals. Each solution must be evaluated by the fitness
function to produce a value. Different crossover and mutation
rates are used for the optimisation using genetic algorithms. The
ability of genetic programming and adaptive neuro-fuzzy infer-
ence system (ANFIS) techniques were considered for ground
water depth forecasting (Shiri and Kis-i, 2010).

To reduce the number of rules that are generated during ANFIS
implementation, different clustering methods have been pro-
posed, e.g., subtractive clustering and fuzzy-C means (Jang et al.,
1996). Subtractive clustering is used in the problem at hand as it
provides a fast one-pass algorithm to take input-output training
data to generate an adaptive fuzzy inference system that is better
tailored to the dataset. The subtractive clustering method
assumes each data point is a potential cluster centre, and
calculates a measure of likelihood that each data point will define
a cluster centre, based on the density of the surrounding data
points. It starts with the normalisation of all values in the dataset
to fit in a hypercube unit (Jang et al., 1996). Each cluster centre
may be translated into a fuzzy rule for identifying a class. The
cluster radius indicates the range of its influence. Specifying a
small cluster radius yields many small clusters in the data, thus
resulting in many rules. Conversely, choosing a large radius will
lead to few rules, misrepresenting therefore the data. Many trials
considering different radii values have led to different prediction
accuracies. A genetic algorithm (GA) is used to fine-tune the
clustering parameter radii (ra), which then leads to the genetic
adaptive neuro-fuzzy inference system (GANFIS). An important
literature had been published recently on genetic fuzzy systems
(GFS). Zanganeh et al., 2006 used a hybrid genetic fuzzy inference
system for wave parameters prediction.

The step-by-step implementation of GANFIS is clearly defined
and given as follows (Fig. 2). For the training data set, each radius
has a value between a lower bound of 0.10 and an upper bound of
0.90. The fitness function used for the genetic search is the least
squared error between the predicted and target value for the
output variable.

A population initialisation of size N and a termination criterion
are first defined. The termination is either the maximum number
of generations or errors. Then the number n of radii are generated
randomly radii¼[r1,r2, y, rn] in the solution space. Note here
radii’s are synonymous with chromosomes, also called indivi-
duals. Therefore each population now has (N�n) chromosomes.

The whole population in the generation is evaluated through
ANFIS, using the root mean squared error of the testing data as a
criterion of best fit. Candidate chromosomes for the new generation
are selected from the population, using a tournament selection
procedure. Then, crossover and mutation operations are performed
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on the selected chromosomes. The N�n best individuals are selected
from the parent and child populations (elitism). These new indivi-
duals will form the parent population for the next generation. The
process is repeated until the termination criterion is met.

Other GA algorithm settings consist of the number of genera-
tions (20), and population size (10). Population type (double),
Selection function: (Stochastic uniform), Crossover function:
(Scattered with crossover rate: 0.80), Mutation function:
(Gaussian with mutation rate: 0.20). The other ‘‘options’’ of ANFIS
are set to Matlab default. The results for GANFIS show a sig-
nificant improvement in both the bubble point pressure (Pb) and
oil formation volume factor (Bob) predictions than when the trial-
and-error selection method was used for the radii.
3.3. Genetically optimized neural networks (GONN)

At this stage we consider a hybrid genetic neural network for
the Pb and Bob (at Pb) prediction problem.

Recently, several hybrids of genetic algorithm with ANNs were
proposed [Balan et al., 1996]. In Oloso et al. (2009) a differential
evolutionary artificial neural network was introduced for predicting
viscosity and gas/oil ratio curves.

For the problem at hand, a Levenberg Marquardt Back Propa-
gation (LMBP) ANN is first considered to predict Bob and Pb with a
two hidden layers feed forward neural network and both linear
and sigmoid activation functions were used. The best network
outputs of 1000 runs were taken in each case. Fig. 3 shows how
the fitness evaluation is performed in the case of neural network
optimisation. A bit-string from the population is decoded into the
description of the network weights. The fitness evaluation of this
neural network is set to measure the prediction performance. This
performance determines the selection probability for the respec-
tive chromosome. Then this chromosome is manipulated by
genetic operators to form the next generation of potential solu-
tions. The genetic operators include mutation, which randomly
changes the bit-positions of an individual, and crossover, which
exchanges sub-strings between the same positions of different
individuals. The GA search stops if performance is not improved
any further after a number of generations, or if the population of
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Fig. 3. Flowchart of the proposed GONN approach.
bit-strings converges to (nearly) identical patterns. Matlab func-
tions were used for building the GONN model.
4. Simulation experiments and comparative studies

4.1. Introduction and experimental set up

The capabilities of GONN and GANFIS for bubble point pres-
sure and oil formation volume factor prediction are investigated
using the above provided datasets in Section 2. The study includes
a comparison with a standalone ANN and ANFIS, along with three
common published empirical correlations, namely Standing
(1947), Glaso (1980), and Al-Marhoun (1992). These correlations
are outlined for quick reference in Appendix III.

To evaluate the performance of each scheme, the entire
database is divided using random selection. Both internal and
external validation processes are repeated 100 times. Therefore,
out of the 782 data points, 382 are used to train the hybrid neural
network models, 200 are used to cross-validate the relationships
established during the training process, and 200 to test the model
by evaluating its accuracy and trend stability. For testing data, a
statistical summary to investigate the different quality measures
corresponding to the genetic neuro-fuzzy system and genetic
neural network are provided.

For the implemented neural network we follow the same
procedures as in Al-Marhoun and Osman (2002), Osman and
Al-Marhoun, (2005), and Khoukhi and Albukhitan (2010, 2011).
The initial weights were generated randomly, and the learning
technique is achieved based on 1000 epochs or 0.001 goal error
and 0.01 learning rate. For both models, the first layer consists of
four neurons representing the input values of the reservoir
temperature, solution gas–oil ratio, gas specific gravity and API
oil gravity. The second (hidden) layer consists of seven neurons
for the Pb model, and eight neurons for the Bob model. The third
layer contains one neuron representing the output values of
either Pb or Bob. Each layer contains neurons that are connected
to all neurons in the neighbouring layers. The connections have
numerical values (weights) associated with them, which will be
adjusted during the training phase. Training is completed when
the network is able to predict the given output. The tangent
sigmoid was chosen as the transfer function to propagate the
signal through the different layers of the network. This gives the
ability to monitor the generalisation performance of the network
and prevents the network to over fit the training data based on
repeating the computations 1000 times and taking the average of
all runs. The architecture of the abovementioned ANN was
retained during the implementation of GONN. The fitness func-
tion used for the genetic search is the least squared error between
the predicted and target values for the output variable.

For GANFIS, the implementation process starts by optimising
the subtractive clustering radii using a genetic algorithm. Then,
the clustering results are used to build the initial neuro-fuzzy
inference system from the available input data sets using a
Sugeno-type FIS system. The ANFIS parameters are then tuned
through several passes in the available training data.

4.2. Simulation results and comparative studies

For the purpose of comparison, we use the same feature
selection criterion and stratified sampling cross-validation
schemes. Based on the results obtained within the external
validation checks (testing and validation), the simulation results
show that the genetic neuro-fuzzy scheme and genetic neural
network, are very competitive, while both outperform standalone
neural network and ANFIS and many common empirical
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correlations methods. In addition, these schemes have a high
accuracy in predicting Pb and Bob values with stable performances
and achieved the lowest absolute percent relative errors, lowest
minimum errors, lowest maximum errors, lowest root mean
square errors, and highest correlation coefficients among the
other correlations for the three distinct databases used. Never-
theless, because the three datasets used are from different
locations and reservoirs, the impact produced on the prediction
performance of each dataset is independent and not significantly
correlated to the other. Henceforth, the results of the present
study are discussed for each data set. Moreover, as noted in the
introduction, most of the empirical correlations developed, or
those developed using graphical or regression methods, are only
applicable to a specific region and data set, effort is still being
made to come up with a universal correlation.

Figs. (4)–(8) illustrate a sample of the scatter plots of the
predicted results versus the experimental data for Pb and Bob
Fig. 4. Correlation coefficient and cross-plot for GONN

Fig. 5. Correlation coefficient and cross-plot
values using the distinct data sets provided at training and testing
stages. These cross-plots indicate the degree of agreement
between the actual (experimental) and the predicted values. For
an ideal model, all points on the plot should appear on a line of
angle of 451 with respect to the x-axis, with equidistant points
from both axes and with a correlation coefficient equal to 1.

Also as it is clear from the Figures, that the regression models
have not good generalization capabilities as compared to soft
computing based models. This fact was also reported in a previous
study by Al-Marhoun (1988, 1992), Al-Marhoun and Osman
(2002). They noticed especially that the developed regression
models using Middle East crude oils data, when tested on new
data from different crudes, they fail to provide with acceptable
performance.

Fig. 9 shows a scatter plot of Ea versus R2 at the training stage
for all modeling schemes that are used to determine Bo based on
the data set used in Osman and Al-Marhoun (2005). We observe
Bob (left) and Pb (right) prediction (1st dataset).

of GANFIS for Bob and Pb (1st dataset).



Fig. 7. Correlation coefficient and cross-plots of ANN for Bob and Pb (1st dataset).

Fig. 8. Bob Correlation coefficient and cross-plot of regression models. (top to bottom: (a) Al-Marhoun (b) Standing, (c) Glaso) (1st dataset).

Fig. 6. Pb Correlation coefficient cross-plot for GANFIS (2nd dataset).
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that the symbol corresponding to the GONN scheme falls in the
upper left corner with Ea¼0.10015% and R2

¼0.9999, while
GANFIS very close to GONN with Ea¼0.1013% and R2

¼0.9998;
whereas standalone ANN got Ea¼1.7886% and R2

¼0.9878.
Empirical correlations indicate higher error values with lower
correlation coefficients, such as, Standing with Ea¼2.1923% and
R2
¼0.9874; Al-Marhoun with Ea¼2.1037% and R2

¼0.9846; and
Glaso Correlation with Ea¼2.8173% and R2

¼0.97813.



Fig. 10. Performance criteria obtained using dataset 2 for the eight methods for

bubble point pressure (Pb).

Fig. 11. Performance criteria obtained using dataset 2 for the eight methods for oil

formation volume factor (Bob).

Table 1
Time complexity of all models for Pb Prediction (1st dataset).

Model Training Testing

Cputime (s)

Standing 34.819 0.0682

Marhoun 15.254 0.0782

Glaso 19.025 0.072

ANN 724.54 0.088

GONN �57600 0.0182

GANFIS �69200 0.0096
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Fig. 9. Performance of different techniques (3rd dataset Correlation coefficient vs.

absolute percent relative error).

A. Khoukhi / Computers & Geosciences 44 (2012) 109–119116
Figs. 10 and 11 show different error criteria obtained using
dataset 2 for the six methods for bubble point pressure (Pb) and
oil formation volume factor (Bob), respectively. The figures show
clearly that the GANFIS and GONN are very competitive and
produce the best performance, as compared to standalone ANN
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and common empirical correlations including the correlations
by Al-Marhoun (1988), Osman and Al-Marhoun (2005), and
Al-Marhoun and Osman (2002)) and multi-layer back-propaga-
tion neural networks. The six considered error criteria, include the
average percent relative error (Er), average absolute percent
relative error (Ea), minimum and maximum absolute percent
error (Emin and Emax), root mean square errors (RMSE), standard
deviation (SD), and correlation coefficient (R2).

Finally, regarding time complexity, Table 1 shows the compu-
tational processing time for all models for the Pb prediction. It is
clear that GANFIS and GONN are very demanding in computa-
tional time, as compared to stand alone ANN and regression based
models. However this does not jeopardize usage as these compu-
tations are performed offline in the development stage, and once
the parameters of GANFIS and GONN are optimized these struc-
tures are then used for online calculations with significantly
lower computational time as compared to ANN, but with better
prediction accuracy.
5. Conclusion and future work

In this paper, a comprehensive study is conducted on the
prediction problem of Pressure–Volume–Temperature (PVT)
properties, namely bubble point pressure and oil formation
volume factor. Several soft computing techniques are explored;
including artificial neural networks, and adaptive neuro-fuzzy
Table A.1
Statistical description of dataset 1 used for PVT models (160 records).

Parameter Min Max Average SD

Input variables
Temperature (Tf), (1F) 74 240 144.43 39.036

Gas–oil ratio (Rs), (SCF/STB) 26 1602 557.66 403.12

Gas relative density (gg) 0.69 1.367 0.96417 0.17103

Api oil gravity, (degrees api) 19.4 44.6 32.388 5.7444

Output variables
Bubble point pressure (Pb), (psi) 130 3573 1731.1 1084.6

Oil FVF at Pb, (RB/STB) 1.032 1.997 1.3036 0.20564

Table A.2
Statistical description of dataset 2 used for PVT models (283 Records).

Parameter Min

Input variables
Temperature (Tf ), (1F) 75

Gas–oil ratio (Rs) (SCF/STB) 24

Gas relative density (gg) 0.7527

API oil gravity (degrees API) 17.5

Output variables
Bubble point pressure (Pb, psi) 90

Oil FVF at Pb, (RB/STB) 1.0308

Table A.3
Statistical description of dataset 3 used for PVT models (782 Records).

Parameter Min

Input variables
Temperature (Tf ), (1F) 58

Gas–oil ratio (Rs) (SCF/STB) 8.61

Gas relative density (gg) 0.511

API oil gravity (degrees API) 11.4

Output variables
Bubble point pressure (Pb), (psi) 107.33

Oil FVF at Pb, (RB/STB) 1.028
inference systems. The paper also presented two hybrids; a
genetically optimised neural network and a genetically enhanced
subtractive clustering technique for parameter identification of
the adaptive neuro-fuzzy inference system.

Three distinct published databases were utilised to investigate the
capabilities of the soft computing techniques. Based on simulations,
and by comparing the results obtained, one can conclude that, the
genetic neural network and the genetic neuro-fuzzy inference system
schemes showed better performance in predicting Pb and Bob values
with stable performance, and achieved the lowest absolute percent
relative error, lowest minimum error, lowest maximum error, lowest
RMSE and the highest correlation coefficient R2 compared to the
many existing empirical correlations used for the three distinct data
sets. The plan is to push this hybrid computing further by incorpor-
ating some recent advances in soft computing, like optimized support
vector regression and extreme learning machines and granular
computing (Khoukhi et al., 2011; Zhu et al., 2005; Xu and Shu,
2006; Schölkopf and Smola, 2002; Yu and Pedrycz, 2009) and other
intelligent search techniques. Some these hybrids are being tested in
ongoing works. The resulting massive computational time required to
implement these hybrids will be tackled using the High Performance
Computing (HPC) facilities available to achieve higher performance
with a reasonable time complexity. Furthermore, the proposed hybrid
evolutionary soft computing techniques are flexible, reliable and can
be implemented for other related oil and gas industry problems,
especially in the prediction of permeability and porosity, history
matching, data management and rock mechanics properties. Some of
these tasks are being undertaken in ongoing works.
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Appendix I. Statistical description of datasets used

See Tables (A.1)–(A.3).
Max Average SD

240 147.35 47.772

1453 432.46 303.58

1.8195 1.008 0.14826

44.6 31.622 5.2518

3331 1390.2 860.66

1.889 1.2504 0.15824

Max Average SD

341.6 181.9 51.984

3617.3 541.75 483.68

1.789 0.88825 0.18556

63.7 34.588 8.7286

7127 2006.1 1291.2

2.887 1.3362 0.27201
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Appendix II. Performance indices

Average percent relative error: Measures the relative devia-
tion from the experimental data, given as:

Er ¼
1

n

Xn

i ¼ 1

Ei ðII:1Þ

where Ei is a relative deviation of an estimated value from an
experimental value.

Ei ¼
ðBobÞexp�ðBobÞ

est

ðBobÞexp

" #
i

� 100 i¼ 1,2,. . .n ðII:2Þ

Average absolute percent relative error: Measures the rela-
tive absolute deviation from the experimental values, defined as:

Ea ¼
1

n

Xn

i ¼ 1

9Ei9 ðII:3Þ

Minimum absolute percent relative error: To define the
range of error for each correlation, the calculated absolute percent
relative error values are scanned to determine the minimum
values. They are defined by:

Emin ¼ min
n

i ¼ 1
9Ei9 ðII:4Þ

Maximum absolute percent relative error: Similarly, the
maximum absolute percent relative error is

defined as : Emax ¼ max
n

i ¼ 1
9Ei9 ðII:5Þ

Root mean squares error: Measures the data dispersion
around zero deviation, defined by:

RMSE¼
1

n

Xn

i ¼ 1

E2
i

" #1=2

ðII:6Þ

The correlation coefficient: Represents the degree of success
in reducing the standard deviation by regression analysis. It is
defined by:

R¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

Xn

i ¼ 1

½ðBobÞexp�ðBobÞest�
2
i =
Xn

i ¼ 1

½ðBobÞexp�Bob�
2
i

vuut ðII:7Þ

where

Bob ¼
1

n

Xn

i ¼ 1

½ðBobÞexp�i ðII:8Þ

Appendix III. Regression models used (Standing, 1947;
Glaso, 1980; Al-Marhoun, 1992)

Standing (1947) proposed the following empirical expressions
for the formation volume factor and bubble point pressure:

Bbob ¼ 0:9759þ0:00012 Rs

gg

go

� �0:5

þ1:25t

" #1:2

ðIII:1Þ

Pb ¼ 18:2½ðRs=ggÞ
0:83
ð10Þa�1:4� ðIII:2Þ

a¼ 0:00091ðTð 0R Þ�460Þ�0:0125ðAPIÞ

Glaso (1980) suggested the following expression:

Bbob ¼ 1þ10A
ðIII:3Þ

where

A¼�6:58511þ2:91329logðBn

obÞ�0:27683ðlogðBn

obÞÞ
2

ðIII:4Þ
With Bn

ob given as:

Bn

ob ¼ Rs
gg

g0

� �0:526

þ0:968ðT�460Þ ðIII:5Þ

With respect to the bubble point pressure, he found:

logðPbÞ ¼ 1:7669þ1:7447logðPn

bÞ�0:30218½logðBn

obÞ�
2 ðIII:6Þ

Pn

b ¼ ðRs=ggÞ
a
ðTÞbðAPIÞc ðIII:7Þ

a¼ 0:816, b¼ 0:172, c¼�0:989

Al-Marhoun, 1992, determined the following empirical corre-
lation of the formation volume factor with respect to the gas/oil
ratio, gas gravity, oil gravity and temperature:

B0 ¼ 0:497069þ0:862963:10�3Tþ0:182594:10�2F

þ0:318099:10�5F2
ðIII:8Þ

with

F ¼ R2
s g

b
gg

c
0 and a¼ 0:74239, b¼ 0:323294, c¼�120204

ðIII:9Þ

He proposed the following for the bubble point pressure:

Pb ¼ aRb
sg

c
gg

d
0Tc

ðIII:10Þ

with a¼5.38088�10�3, b¼0.715082, c¼�1.87784,

d¼ 3:1437 e¼ 1:32657
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