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Data-Driven Multi-Stage Motion Planning of Parallel Kinematic Machines
Amar Khoukhi

Abstract—A multistage data-driven neuro-fuzzy system is
considered for the multiobjective trajectory planning of Parallel
Kinematic Machines (PKMs). This system is developed in two
major steps. First, an offline planning based on robot kinematic
and dynamic models, including actuators, is performed to gen-
erate a large dataset of trajectories, covering most of the robot
workspace and minimizing time and energy, while avoiding
singularities and limits on joint angles, rates, accelerations, and
torques. An augmented Lagrangian technique is implemented on
a decoupled form of the PKM dynamics in order to solve the re-
sulting nonlinear constrained optimal control problem. Then, the
outcomes of the offline-planning are used to build a data-driven
neuro-fuzzy inference system to learn and capture the desired
dynamic behavior of the PKM. Once this system is optimized, it
is used to achieve near-optimal online planning with a reasonable
time complexity. Simulations proving the effectiveness of this
approach on a 2-degrees-of-freedom planar PKM are given and
discussed.

Index Terms—Augmented Lagrangian, data-driven neuro-fuzzy
systems, decoupling, multiobjective trajectory planning, parallel
kinematic machines, subtractive clustering.

I. INTRODUCTION

S INCE the pioneering work of Gough [1] on manipulators
with closed-loop structures, extensive research efforts

have led to the realization of several robots and machine tools
with parallel kinematic structures, with a significant diversity
in design, specification, and personalization [2]–[5]. Parallel
kinematic machines (PKMs) have two basic advantages over
conventional machines of serial kinematic structures. First,
with PKM structures, it is possible to mount all drives on or
near the base. This yields to large payloads capability and low
inertia. Indeed, the ratio of payload to the robot load is usually
about 1/10 for serial robots, while only 1/2 for parallel ones.
Second, the connection between the base and the end-effector
(EE) is made with several kinematic chains. This results in
high structural stiffness and rigidity. However, the PKM archi-
tecture-dependent performance associated with strong-coupled
nonlinear dynamics makes the trajectory planning and control
system design for PKMs more difficult compared to serial
machines [2]–[4]. Another major issue for practical use of
PKMs in industry is that for a prescribed tool path in the
workspace, the control system should guarantee the prescribed
task completion within the workspace, for a given set up of

Manuscript received May 21, 2009; revised August 11, 2009. Manuscript re-
ceived in final form November 05, 2009. First published December 22, 2009;
current version published October 22, 2010. Recommended by Associate Editor
C.-Y. Su. This work was supported by King Fahd University of Petroleum and
Minerals.

The author is with the Department of System Engineering, King Fahd
University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia (e-mail:
amar@kfupm.edu.sa).

Color versions of one or more of the figures in this brief are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCST.2009.2036600

the EE (i.e., for which limitations on actuator lengths and
physical dimensions are not violated). In [5] a particle swarm
optimization technique was used to plan a singularity-free
minimum-effort trajectory of a PKM. In [6], methodologies
involving workspace and actuator force limitations were pro-
posed, using iterative optimization techniques. However, these
methods did not include multiobjective nature of the problem
and EE passing through imposed positions and orientation con-
straints. An integrated multiobjective dynamic offline trajectory
planning system for PKMs is given in [7] and it had shown very
good results. One of the major online motion planning algo-
rithm problems is that a desired trajectory may cause saturation
of the speed and/or torques delivered by the joint actuators
in the vicinity of singularities or in any other region of the
workspace due to nonlinear kinematic transformations between
task and joint spaces. Moreover, if the planned trajectory was
calculated on a minimum-time basis, it had been shown that
the resulting tracked trajectory will be instable and may lead
to saturation of the speed and/or torques. As a matter of fact,
conventional fixed gain, linear feedback controllers are not
capable of effectively controlling the movements of multijoint
robot manipulators under different distance, velocity and load
requirements. Nonlinear feedback approaches like computed
torque and provide better compensation for the dynamic
interactions present in various robot motions [8]. However,
these approaches require complete nonlinear dynamic models,
which are difficult to be accurately implemented in real-time.
Recently, soft computing had been seen as an attractive al-
ternative and several methods were developed for trajectory
design and robot motion control using neuro-fuzzy techniques
[9]–[13]. They are computationally efficient after training and
had shown very good learning and generalization capabilities
if a large enough dataset points representing the system’s be-
havior is given. In this context, this brief develops a data-driven
multistage multiobjective motion planning for PKMs. The
best trajectories can be obtained by a constrained optimal
control based on non linear kinematic and dynamic models
and constraints relating robot, workspace, and task interactions
(see Fig. 1). An offline multiobjective planning is performed
using an augmented Lagrangian technique implemented on a
decoupled form of the PKM dynamics. This step is done as
many times as possible to cover mostly of the robot workspace.
The generated trajectories are gathered into an input/output
dataset. The inputs are the EE positions and velocities, and the
outputs are the joint actuator torques and sampling periods.
Then an adaptive neuro-fuzzy system, named neuro-fuzzy
multiobjective planning (NeFuMOP) is built. It starts with a
subtractive clustering, allowing initialization of membership
function parameters and number of rules of the neuro-fuzzy
system. Then, NeFuMOP is optimized in order to learn and
capture the dynamic multiobjective behavior of the PKM.
Once the neuro-fuzzy structure (rules number and premise and
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Fig. 1. Overall diagram of the proposed approach.

Fig. 2. Geometric representation of the PKM.

consequence membership function parameters) is identified
and optimized, it is used in a generalization phase to achieve
near-optimal online planning with a reasonable computational
complexity. Near-optimality steams from the fact that at the
generalization level, NeFuMOP interpolates within the parts
of the domain that are not covered by offline planning dataset.
Section II is devoted to offline data set building. In Section III,
we introduce NeFuMOP. In Section IV, an implementation on
a 2-DOF planar PKM is provided and Section V concludes this
work.

II. OFFLINE PLANNING AND DATASET BUILDING

A. Kinematic Model

The kinematic model is briefed in this section. More details
on the modeling and augmented Lagrangian technique are pro-
vided in [7] and [14]. The planar PKM shown in Fig. 2 repre-
sents a 2-DOF motion of its EE through articulated motion of
its two leg lengths. In this PKM, the base is labeled 1 and the
EE is labeled 2. The EE is connected to the base by two iden-
tical legs. Each leg consists of a planar four-bar parallelogram:
links 2, 3, 4, and 5 for the first leg and links 2, 6, 7, and 8 for

Fig. 3. Type-1 and Type-2 singularities of the PKM.

the second leg. Prismatic actuators actuate the links 3 and 8, re-
spectively. Motions of the EE are achieved by combination of
movements of links 3 and 8 that can be transmitted to the EE
by the system of the two parallelograms. Due to its structure,
the manipulator can position a rigid body in 2-D space with a
constant orientation. To characterize the planar four-bar paral-
lelogram, the chains and are considered as shown
in Fig. 2. Vectors and ( 1, 2) define the positions
of points in frames and , respectively. Vectors (
1, 2) define the position of points in frame . The geometric
parameters are

(1)

(2)

The closure of each kinematic loop passing through the origin
of frame and frame , and through attachment points on
the base and the hip attachment points on the EE is given as

(3)

where is the position vector of actuated points and
, defines the position of point in the fixed frame ,
and are the 2 2 inverse and forward Jacobian; If is

nonsingular, the PKM’s Jacobian is

(4)

Hence, it is clear that singularity occurs in the following cases.
First Case: and . This corresponds to
a type-1 singularity and the situation where or

, i.e., the first or the second leg is parallel to the
-axis (see Fig. 3).

Second Case: and . This is a type-2
singularity where a pose for four bars of the parallelogram
in one of the two legs are parallel to each other, (e.g.,

for the first leg for , and for the
second leg for ).
Third Case: and . This is a type-3 singu-
larity for which the two legs are both parallel to the -axis.
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This is characterized by a geometric parameter condition
given by

(5)

These parameters are designed, such that (5) never holds.

B. Dynamic Model

In the offline planning system, one can include contact ef-
forts. Among such models, there are friction and other applica-
tion-specific forces. This can increase task achievement success
in many practical applications like grinding, or screwing. It al-
lows avoiding actuator saturation and improving the trajectory
planning performance. One way to do so is by adding these ef-
forts as disturbance inputs to the dynamic equations. The joint
space inverse dynamic model including contact forces is given
as [2]–[5], [7]

(6)

where is the torques vector produced by joint actuators,
are joint positions, rates, and accelerations, is the inertia
matrix, and are the Coriolis and centrifugal, and
gravitational forces, respectively, is the PKM Jacobian and
is the contact force. The model in (6) is represented as follows:

(7)

By defining , (7) is rewritten as

(8)

where and denote the 2-D joint positions and velocities,
describes the dynamics of the PKM.

C. Constraints Modeling

In addition to (8), one has the following constraints.
• Sampling Period Limits:

(9)

• Boundary Conditions:

(10)

• Actuator Torque Limits:

(11)

• Workspace Limitations:

(12)
• Singularity Avoidance: Because the robot Jacobian allows

motion and force transformation from actuated legs to the
EE, the leg forces demand at a given point on the trajec-
tory must be continuously checked for possible violation

of the preset limits as the manipulator moves close to sin-
gularity. The condition number of the Jacobian was sug-
gested and used as a local performance index for evalu-
ating the velocity, accuracy, and rigidity mapping charac-
teristics between the joint variables and the moving plat-
form [2]–[7], [15]

(13)

where and correspond, respectively, to the min-
imum and maximum values for the tolerances on the con-
dition number. Appendix A provides an expression of the
condition number for the PKM at hand.

• Imposed Passages: These constraints are quantified by a set
of poses with referring to the imposed Cartesian
position on the EE

(14)

where is the passage tolerance
For writing simplicity, all equality constraints are given as

(15)

and all inequality constraints are noted as

(16)

regardless whether they depend only on the state, control
variables, or both.

D. Performance Index

The discrete-time optimal control problem can be stated as:
among all admissible control sequences

and , that allow the robot to move from an initial state
to a final state , find those that minimize the

cost function :

(17)

Subject to constraints (8)–(14), where and represent the
sets of admissible torques and sampling periods and , and
are, the weight factors of the electric energy, kinetic energy, and
travel time.

E. Augmented Lagrangian With Decoupling (ALD)

There are two basic approaches to solve the stated multiob-
jective nonlinear optimal control problem (17); the dynamic
programming through global optimal control and variational
calculus through the maximum principle. With the former
approach, an optimal feedback control , can be char-
acterized by solving for a so-called value function through
Hamilton–Jacobi–Bellman partial differential equations [16].
For a general system however, the PDE can be solved nu-
merically for very small state dimension only. If inequality
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constraints on state and control variables are added, this makes
the problem even harder. We propose to use the second ap-
proach [17]. An augmented Lagrangian (AL) technique is
implemented to solve the multiobjective nonlinear optimal con-
trol problem (17). This technique transforms the constrained
problem into a nonconstrained one, where the degree of penalty
for violating the constraints is regulated by penalty parameters
[17]. Moreover, while ordinary Lagrangian methods are used
when the objective function and the constraints are convex,
for the case at hand, we cannot tell whether these are convex
or not, but they are most likely not. The AL technique relies
on quadratic penalty methods but reduces the possibility of ill
conditioning of the sub-problems that are generated with penal-
ization by introducing explicit Lagrange multipliers estimates
at each step into the function to be minimized. However, in
developing the first order optimality conditions enabling one
to derive the iterative formulas to solve the optimal control
problem, in (8), contains the inverse of the
total inertia matrix of the PKM, including struts and
actuators, as well as their Coriolis and centrifugal wrenches

. These would take several pages long to display.
In computing the adjoin states , one has to determine the
inverse of the mentioned inertia matrix and its derivatives with
respect to state variables, resulting in an intractable complexity.
This major computational difficulty is solved using a linear-de-
coupled formulation [18].

Theorem 1: Under the invisibility condition of the inertia ma-
trix, the control law defined in the Cartesian space as

(18)

allows the robot to have a linear and decoupled behavior with
the following dynamic equation, given in the task space:

(19)

Proof: See Appendix B.
For writing convenience, the second-order system of the de-

coupled dynamics (19) will be rewritten as

(20)

Because the ordinary differential equation dynamic governing
the robot behavior is of a stiff type [19], a multistep Adams
predictive-corrective technique is used to approximate the dis-
crete dynamic model. This is initialized with a fourth order
Runge–Kutta [19]. The resulting approximated discrete decou-
pled dynamics will be written as

(21)

Remark: It is note worthy that the decoupled technique alle-
viates the need of calculating the inertia matrix inverse and its
derivatives with respect to state variables at each iteration. How-
ever, the nonlinearity of the initial problem is not removed nei-

ther reduced. It is only transferred to the objective function. The
decoupling transforms the discrete optimal control problem into
finding optimal sequences of sampling periods and acceleration
inputs , allowing the robot to move from
an initial state to a final state , while min-
imizing the cost function and satisfying the above mentioned
constraints. The augmented Lagrangian with decoupling (ALD)
is

(22)

where is defined by the decoupled state (21),
is the total sampling number, designates the costates,

and are Lagrange multipliers, associated to equality and in-
equality constraints and and are the penalty coefficients.
The used penalty functions allow relaxation of inequality con-
straints as soon as they are satisfied. These functions are [17]

(23)

The Karush–Kuhn–Tucker first-order optimality conditions
state that for a trajectory , to
be optimal solution to the problem, there must exists some posi-
tive Lagrange multipliers , unrestricted sign multipliers

and finite positive penalty coefficients such
that

(24)

One notices that the final state constraint does not
appear in the ALD function (22). This implies that the backward
adjoin states integration will starts off with .

Because we seek to satisfy this constraint at each iteration to
enhance the task execution precision, we treat it through a gra-
dient projection. A readjustment is performed with an orthog-
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onal projection on the tangent space of this constraint, through
the application of a descent direction given as:

Theorem 2: The descent direction is expressed as

(25)

With being defined as

(26)

where is an identity matrix with appropriate dimension and
is the projection matrix on the tangent space of the final state

constraint. The re-adjustment process allows satisfying target
attainability with any given -precision [17]. After initialization
through a trapezoidal velocity profile [7], an inner optimization
loop solves for the ALD minimization with respect to sampling
periods and acceleration variables. The adjoin states are com-
puted backwardly and the control inputs and the states are up-
dated. All equality and inequality constraints are tested against
feasibility tolerances. If nonfeasibility holds, the inner optimiza-
tion unit is started over. If feasibility occurs, i.e., the current
penalty values maintain good near-feasibility, a convergence test
is made against optimal tolerances. If convergence holds, the op-
timal results are displayed and the program stops. If nonconver-
gence occurs, we go further into the dual part of ALD to update
Lagrange multipliers, penalty, step size, and tolerances in order
to force the subsequent iterates to generate increasingly accu-
rate solutions to the primal problem.

III. NEURO-FUZZY MULTIOBJECTIVE PLANNING

A. NeFuMOP Structure

The outcomes of the so-developed offline trajectory planning
system are used to generate an input/output dataset on which to
build a neuro-fuzzy multiobjective planner. This neuro-fuzzy
system was implemented on serial manipulator and mobile
robots [20] and gave very good results. It is described briefly
hereafter. NeFuMOP is a data-driven neuro-fuzzy system based
on Tsukamoto fuzzy inference mechanism. In this mode of
reasoning, the consequence linguistic terms are assumed to
have a continuous strong monotone membership function [21].
The inputs of the MIMO (multiple input multiple output) fuzzy
model are the discrete Cartesian 2-D positions and velocities;

. The outputs are the joint
torques and sampling periods given as ,

, with being the vector of joint torques and
the sampling period. Consider the following input/output

entries . The fuzzy rules are built as
follows:

Fig. 4. NeFuMOP architecture.

where is the input associated to node , is the associ-
ated linguistic term. The membership functions defining

the fuzzy sets

(27)

where and are the mean and standard deviation of the
membership function of the input variable , and are fuzzy
sets defining the consequence of the rule, such that

(28)
being a continuous strong monotone function defined as

(29)

where and are real numbers affecting the position and slope
of the inflection point of .

B. NeFuMOP Architecture and Learning

NeFuMOP is made of six layers (see Fig. 4). The first layer is
a four-input layer, characterizing the crisp EE position and ve-
locity. The second layer performs the fuzzification of the crisp
inputs into linguistic variables, through Gaussian transfer func-
tions. The third one is the rule layer, which applies the product
t-norm to produce the firing strengths of each rule. This is fol-
lowed by a normalization layer, at which each node calculates
the ratio of a rule’s firing strength to the sum of all rules firing
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Fig. 5. NeFuMOP function and operation.

TABLE I
WORKSPACE, ACTUATOR TORQUES, AND SAMPLING PERIODS LIMITS

Fig. 6. Initial and ALD trajectories.

strengths. The fifth layer performs the inversion. The last layer
is for aggregation and defuzification. The output is obtained as
the sum of all incoming signals.

The learning scheme of NeFuMOP is composed of two
steps: structure identification where the network parameters
of the premise membership function parameters , , and
the consequent parameters of a fuzzy rule are ini-
tialized by partitioning the input/output dataset into clusters.
The purpose of clustering is to identify natural grouping of
data from the generated large data set to produce a concise
representation of the PKM’s behavior, resulting in initial rules
that are more tailored to the input data. One assumes that it is
not clear how many clusters there should be for the generated
offline planning dataset. The subtractive clustering technique
[21], [22] is applied to find the number of clusters and their
centers. This technique provides a fast one-pass algorithm to
take input/output training data to generate a fuzzy inference
system that captures the robot dynamic behavior. Each cluster
center may be translated into a fuzzy rule for identifying a
class. The Matlab function subclust is used to initialize and
identify these parameters. The structure optimization consists
of fine-tuning the so-initialized parameters (see Fig. 5) using a
Levenberg–Marquard version of the gradient back-propagation
combined with a least square estimate (LSE). The cost function

is the error between network outputs and the desired outputs
relating the PKM dynamic behavior

(30)

where is the computed output from the fuzzy system the
desired output associated with the training and dataset

entry and the number of rules.

IV. SIMULATION RESULTS

A. Training Protocol

In order for the neuro-fuzzy system to learn mostly of the
robot workspace, the training protocol is achieved as follows.

1) Because the order in which the points are presented to
the network affects the speed and quality of convergence
and since the robot interpolates between sampling points
to build the entire path from a start to end points, the
trajectory generation is achieved while ensuring singu-
larity and torque limits avoidance and satisfaction of
other constraints.

2) Two hundred ALD trajectories for different initial and
final EE Cartesian positions are generated. Each trajec-
tory is sampled in 20 discretization points, leading to
4000 data points to perform NeFuMOP training. 80%
are used for training, 10% for testing, and 10% for
checking.

B. Offline Planning and Dataset Generation

For offline planning, the focus is on time-energy constrained
trajectory planning with the following objectives.

1) Minimize traveling time and kinetic and electric energy
while avoiding singularity during the motion.

2) Satisfy several constraints related to limits on joint po-
sitions, rates, accelerations and torques. More kinematic
related analysis for a similar case study may be found in
[7], [14]. Viscous and dry frictions are considered. The
function is used to approximate the sign function.
The program is coded in Matlab. A unity value is used
for each weight factor in the cost function. The following
numeric values are used: The EE mass is 200.0
kg, that of each leg is 570.5 kg, and that of the
slider is 70 kg.

The simulated platform is described in details in [7], [14].
The platform radius is 0.75 m the distance 1.2030 m
and the strut length 1.9725 m. Table I shows the limits of
the robot workspace, actuator torques and sampling periods. As
for the ALD parameters, the following values had been taken

, , , ,
, ,

, , . The initial Lagrange multi-
pliers are set to zero. A sample trajectory starts from
an initial Cartesian state position , to
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Fig. 7. Initial and ALD torques and energy.

Fig. 8. Fixed versus optimized sampling periods.

a final position , (in meters). The ini-
tial and final linear and angular velocities are set to zero. The
maximum velocity is 0.2 m/s and maximum acceleration is 2
m/s . The maximum allocated time for this trajectory is 10 s.
Fig. 6 shows simulation results for both initial kinematic and
augmented Lagrangian solutions. The first plot from the top
shows the displacement along -axis of the EE point of opera-
tion. The second plot shows the displacement along -axis of the
EE point of operation. The third shows the instantaneous values
of consumed time to achieve the trajectory. In Fig. 7, the first
and second plots from the top show the instantaneous variations
of joint torques, while the third one shows the instantaneous
values of the consumed energy. It is noteworthy that although
the initial solution is kinematically feasible, when the corre-
sponding torques is computed considering the dynamic model
and forces one obtains torque values that quickly get outside the
admissible domain resulting in high values for energy cost. With
the augmented Lagrangian however, with four inner and seven
outer iterations, the variations of the energy consumption in-
crease smoothly and monotonously. Fig. 8 displays the simula-
tion outcomes for only the energy criterion (i.e., the time weight
is set to zero, so the sampling period is kept constant), one gets
a 21% faster trajectory with time-energy criterion compared to
a trajectory computed with only the minimum-energy criterion
(dotted line). The multiobjective trajectories are smoother than
minimum time and faster than only minimum energy trajec-
tories. This allows very good reference trajectories for online

TABLE II
CONVERGENCE HISTORY OF MINIMUM TIME-ENERGY PLANNING

Fig. 9. ALD torques and energy with imposed passages.

planning. To analyze with respect to ALD parameters, Table II
shows comparison of results for different simulation parameters
of ALD, where NDisc stands for the number of discretisations,
NPrimal is the number of inner optimization loops, NDual is the
number of outer optimization loops, is the total
traveling time, is the
consumed electric and kinetic energy, and APEq and APIneq
for achieved precision for equality and inequality constraints,
respectively. The values shown for the total traveling time ,
Energy, and AP correspond to those computed for the last outer
iteration. As for imposed passages through prespecified poses,
the same scenario is simulated, while constraining the EE to pass
through the following positions: (0.0, 1.4), (0.4, 1.1), (0.5,

1.0), all in meters. Fig. 9 shows the torques corresponding to
ALD trajectory with imposed passages. With seven primal itera-
tions and nine dual iterations we obtained a precision of 7.10 ,
which confirms the well known performance of ALD in con-
straints satisfaction. A detailed study on the impact of each cri-
terion on PKM performance, as provided in [7] shows that the
multiobjective trajectory is smoother than minimum time and
faster than minimum energy trajectories, making it very suitable
for online planning. Another important issue is sensitivity anal-
ysis [23], as PKMs are strongly nonlinear and coupled mechan-
ical systems, several of these parameters such as inertial param-
eters are known only approximately or may change. To assess
how robust the proposed approach to the parameter changes is a
first test is performed with a modified value of the EE mass.
Fig. 10 shows the ALD simulation by varying the EE mass
to 250 kg. Several scenarios had been implemented
and 200 multiobjective trajectories with different starting and
ending points are generated within the admissible domain.
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Fig. 10. ALD torques and energy for varied EE mass.

Fig. 11. Optimized membership functions for �, ��, �, ��, ��� , ��� .

C. NeFuMOP Performance

A subtractive clustering algorithm partitions the so-generated
input/output dataset [22]. The subtractive clustering parameters
had been set after several trials to the following: The upper
acceptance threshold for a data point to be a cluster center is
1.0. The lower rejection ratio is 0.7. The cluster radius is 0.9,
and the squash parameter is 0.5. Fig. 11 shows the optimized
membership functions of the inputs and outputs
noted and . The learning results show very good perfor-
mance with an error for of order 0,0381 and 0.029 for
in 40 training epochs as illustrated in Figs. 12 and Table III.
NeFuMOP required 283 seconds to learn from the overall
4000 data points and capture the PKM dynamic behavior. To
test the learning, and generalization abilities of NeFuMOP, a
preliminary test is performed with small modifications (5%) of
each of the 10% testing data points. Table IV shows the learning
performance achieved by NeFuMOP with the modified data
reaching an error of order 10 after 40 training epochs, which

Fig. 12. NeFuMOP learning performance for ��� .

TABLE III
PERFORMANCE OF NEFUMOP

TABLE IV
PERFORMANCE OF NEFUMOP (WITH DISTURBED TESTING DATA)

Fig. 13. Test trajectory, NeFuMOP, and ALD.

highlights very good performance. Another test is performed to
assess the generalization capabilities of the proposed system.
It is made on a trajectory that had been learned using the ALD
offline technique, which consisted of moving the PKM-EE
along a circle, with a radius (0, 1.4) (m). The ALD technique
was used to offline plan this trajectory. The actuator torques
and sampling period variations are obtained from the outcomes

of NeFuMOP. The trajectory and consumed energy are
shown in Fig. 13. It shows very good generalization capabilities
of NeFuMOP. At this stage, we point out that because Ne-
fuMOP interpolates within the provided trajectories in training
dataset, the optimality generated with NeFuMOP. Nonetheless,
this constitutes a great advantage as compared to as to date
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approaches using neuro-fuzzy techniques, which provide tra-
jectories based on pure feasible if/then rules, without optimality
or near optimality with respect to given criteria nor constraints
satisfaction. This approach had been implemented on serial
manipulators and mobile robots and it gives very satisfactory
results. In an ongoing work, it is being implemented on a
6-DOF Stewart–Gough platform.

V. CONCLUSION AND DISCUSSION

The basic contribution of this brief is a systematic design of a
multiobjective trajectory planning system for parallel kinematic
machines. This system is built upon the outcomes of an offline
planning optimizing traveling time and electric and kinetic en-
ergy and based on PKMs kinematics and dynamics as well as
velocity, accelerations, actuator torques and workspace limits
while avoiding singularities. The augmented Lagrangian algo-
rithm is implemented on a decoupled dynamics of the PKM. Ac-
cording to simulation results, the offline planning technique pro-
duced very good results with singularity-free smoother trajecto-
ries compared to minimum time, kinematic-based control tech-
niques or other optimization techniques like penalty methods.
This makes it very suitable for training data generation to use to
achieve online motion planning. The neuro-fuzzy model built
upon the previous offline generated dataset to achieve online
multi-objective motion planning had shown very satisfactory re-
sults as well. The high problem conditioning abilities of ALD
associated with the modeling and learning capabilities of neuro-
fuzzy networks had been proved effective to cope with diffi-
cult nonlinear dynamics and kinematics of the system, making
it possible for the development of an online multiobjective mo-
tion planning for parallel robots.

APPENDIX A

The condition number is defined as
, where and are the minimum and maximum singular

values of the Jacobian associated with a given posture.
For the parallel robot under study, one has

, with

and

APPENDIX B

With the defined control law by (18) and from (6), one has
(after removing function arguments):

being an 2 2 diagonal matrix, and since is invertible

This gives

which yields, using the forward kinematics to
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