# King Fahd University of Petroleum and Minerals 

Prep-Year Math Program
Math 002 - Term 142
Recitation (7.4 Reduction Identity)
$a \sin x+b \cos x=k \sin (x+\alpha)$
where $k=\sqrt{a^{2}+b^{2}}$ and $\alpha$ is determined by: $\cos \alpha=\frac{a}{\sqrt{a^{2}+b^{2}}}$ and $\sin \alpha=\frac{b}{\sqrt{a^{2}+b^{2}}}$
Or $\tan \alpha=\frac{b}{a}$ where $\alpha$ can be detrmined from the quadrant that contains the point $(a, b)$

## Question 1:

Given the function $f(x)=2 \sin \frac{x}{3}-2 \sqrt{3} \cos \frac{x}{3}$
a) Rewrite $f(x)$ in the form $f(x)=k \sin (b x+\alpha)$
b) Find the amplitude, the phase shift, the period, and the range for the graph of $f(x)$.

Answer:
(a): $f(x)=4 \sin \left(\frac{x}{3}-\frac{\pi}{3}\right)$ OR $f(x)=4 \sin \left(\frac{x}{3}+\frac{5 \pi}{3}\right)$
(b):

Amplitude $=4$
Phase shift $=\pi$ units to the right. OR Phase shift $=-5 \pi \quad|-5 \pi|$ units to the left.
Period $=6 \pi$
Range $=[-4,4]$
Question 2: If $\sin 20^{\circ}-\sqrt{3} \cos 20^{\circ}=k \sin \theta, 0^{\circ}<\theta<90^{\circ}$. Then $k$ and $\theta$ are equal to
a) $-2,40^{\circ}$
b) $2,20^{\circ}$
c) $1-\sqrt{3}, 20^{\circ}$
d) $-2,20^{\circ}$
e) $-2,30^{\circ}$

Answer: $-2,40^{\circ}$

