King Fahd University of Petroleum and Minerals

Prep-Year Math Program

Math 002 - Term 142

Recitation (7.4 Reduction Identity)

 $a\sin x + b\cos x = k\sin(x + \alpha)$

where $k = \sqrt{a^2 + b^2}$ and α is determined by: $\cos \alpha = \frac{a}{\sqrt{a^2 + b^2}}$ and $\sin \alpha = \frac{b}{\sqrt{a^2 + b^2}}$

Or $\tan \alpha = \frac{b}{a}$ where α can be detrmined from the quadrant that contains the point (a,b)

Question 1:

Given the function $f(x) = 2\sin\frac{x}{3} - 2\sqrt{3}\cos\frac{x}{3}$

- a) Rewrite f(x) in the form $f(x) = k \sin(bx + \alpha)$
- b) Find the amplitude, the phase shift, the period, and the range for the graph of f(x).

Answer:

(a):
$$f(x) = 4\sin\left(\frac{x}{3} - \frac{\pi}{3}\right)$$
 OR $f(x) = 4\sin\left(\frac{x}{3} + \frac{5\pi}{3}\right)$

(b):

Amplitude = 4

Phase shift = π units to the right. OR Phase shift = -5π units to the left.

Period = 6π

Range = [-4,4]

Question 2: If $\sin 20^\circ - \sqrt{3}\cos 20^\circ = k\sin\theta$, $0^\circ < \theta < 90^\circ$. Then k and θ are equal to

- a) $-2, 40^{\circ}$
- b) $2,20^{\circ}$
- c) $1-\sqrt{3}$, 20°
- d) $-2, 20^{\circ}$
- e) $-2,30^{\circ}$

Answer: $-2, 40^{\circ}$