Questions from old Exams

1 Section 8.1

- 1. Find the equation of the parabola in standard form with focus at (2, -3), and directrix x = 10.
- 2. Write the equation in standard form of the parabola that has vertex (-4, 1), axis of symmetry parallel to the y-axis and passing through the point (-2, 2).
- 3. Find the vertex, focus, and directrix of the parabola given by the equation $6y 3x^2 12x + 4 = 0$.
- 4. Find the equation in standard form of the parabola with directrix x = 4 and focus (0, -3).
- 5. The graph of the parabola $x = -y^2 + 6y 5$:
 - (a) has vertex at (4,3) and opens to the left.
 - (b) has vertex at (31, 6) and opens to the left.
 - (c) has vertex at (3, 4) and opens to the left.
 - (d) has vertex at (31, 6) and opens to the right.
 - (e) has vertex at (4,3) and opens downward.
- 6. If the distance between the center of the circle $x^2 + y^2 2y = 5$ and the vertex of the parabola $x = -5y^2 + m$ is $\sqrt{10}$, then find the value of m.

2 section 8.2

- 1. Find the center, vertices, and foci of the ellipse $8x^2 + 25y^2 48x + 50y + 47 = 0$. Sketch the graph.
- 2. Find the vertices of an ellipse with center at (2,0) and major axis of length 6 on the x-axis.
- 3. Consider the ellipse given by the equation $9x^2 + y^2 + 18x 6y + 9 = 0$.
 - (a) Find its vertices and foci.
 - (b) Sketch the graph of the ellipse.
- 4. Find the standard form of the equation of the ellipse that has foci at (-3, 0) and (-3, 6) and vertices at (-3, -2) and (-3, 8).
- 5. Find the equation in standard form of the ellipse with eccentricity $\frac{2}{5}$ and foci (-1,3) and (3,3).
- 6. Graph the equation $x = \frac{\sqrt{25-16y^2}}{2}$
- 7. Find the equation of the ellipse with center (3, 1), minor axis of length 6 units, and a horizontal major axis of length 9 units.
- 8. Find the lengths of the major and minor axes and the eccentricity of the ellipse $4(x-1)^2 + 9(y+1)^2 = 36$.

- 9. Find the lengths of the major and minor axes of the ellipse $4x^2 + 9y^2 36 = 0$.
- 10. The equation of $x^2 6x + 4y^2 40y + 45 = 0$ is
 - (a) an ellipse with center at (-3, 5).
 - (b) an ellipse with major axis of length 64.
 - (c) a circle with center (3, -5).
 - (d) a hyperbola with center (3, -5).
 - (e) an ellipse with major axis of length 8.

11. The graph of $x = -\frac{\sqrt{16-9y^2}}{2}$ is

- (a) half a hyperbola.
- (b) a parabola.
- (c) half an ellipse.
- (d) two intersecting lines.
- (e) a circle.

3 Section 8.3

- 1. Find the coordinates of the foci of the hyperbola $9(y-1)^2 16(x+1)^2 = 144$.
- 2. Find the equations of the asymptotes of the hyperbola $4x^2 y^2 8x 2y 13 = 0$.
- 3. Find the vertices and the equations of the asymptotes of the hyperbola $4x^2 9y^2 = 36$.
- 4. The graph of the equation $12x^2 + 72x + 72 = 9y^2 + 72y$ represents:
 - (a) an ellipse with center (3, 4).
 - (b) an ellipse with center (-3, -4).
 - (c) a hyperbola with center (-3, -4).
 - (d) a hyperbola with center (3, 4).
 - (e) a parabola with vertex (3, 4).
- 5. Find the center and the vertices of the hyperbola $25(y+2)^2 9(x+3)^2 = 225$.
- 6. Find the asymptotes of the hyperbola $4x^2 8x 9y^2 + 36y 68 = 0$.
- 7. Find the slopes of the asymptotes of the hyperbola with center (1, -2), one focus at (6, -2) and eccentricity $\frac{5}{3}$.
- 8. Find the foci of the hyperbola $\frac{9(x-1)^2}{64} \frac{9(y-2)^2}{80} = 1.$