Chapter 12 – Summary

Definitions

$\vec{\tau} = \vec{r} \times \vec{F}$	torque as a vector		
$\tau = rF\sin\theta = r_{\perp}F = rF_{t}$			
$\vec{l} = \vec{r} \times \vec{p} = m\vec{r} \times \vec{v}$	angular momentum p_t p	$\vec{L} = \sum \vec{l_i}$	Total angular momentum
$l = m r v \sin \phi = m r v_{\perp} = m r_{\perp} v$	- T		
	r_\perp		

Theorems/Laws/Equations

For smooth Rolling			
$v_{com} = r\omega$ $a_{com} = r\alpha$	$a_{com} = \frac{g \sin \theta}{1 + \begin{pmatrix} I_{com} / MR^2 \end{pmatrix}}$ down the incline	$\sum \vec{\tau} = \frac{d\vec{l}}{dt}$ for a single particle	
	$ \begin{pmatrix} I_{com} / MR^2 \end{pmatrix} = \begin{cases} 1 & \text{for ring} \\ 1/2 & \text{for cylinder} \\ 2/5 & \text{for solid sphere} \end{cases} $	$\sum \vec{\tau}_{ext} = \frac{d\vec{L}}{dt}$ for a system of particles	
	$\begin{pmatrix} I_{com} \\ MR^2 \end{pmatrix} = \begin{cases} 1/2 & \text{for cylinder} \end{cases}$	$L_z = I\omega$ (rigid body, fixed axis)	
	2/5 for solid sphere	Conservation of angular momentum	
		$\vec{L}_i = \vec{L}_f$ {isolated system $\sum \tau_{ext} = 0$ }	