Chapter 11 – Summary

Definitions

$\theta = \frac{s}{r}$	Angular position – θ in rad	$K = \frac{1}{2}I\omega^2$	Rotational	Kinetic Energy		
$\Delta\theta = \theta_2 - \theta_1$	Angular displacement	$I = \sum m_i r_i^2 \text{ or } \int r^2 dm$		Inertia or Moment perpendicular dis		e axis of rotation
$\Delta\theta$ $d\theta$	Angular velocity	Some useful results for	object	thin hoop (ring)	disk	sphere
$\omega_{avg} = \frac{\Delta \theta}{\Delta t}; \ \omega = \frac{d\theta}{dt}$		I_{com}	I_{com}/mR^2	1	1/2	2/5
$\alpha_{avg} = \frac{\Delta \omega}{\Delta t}; \ \alpha = \frac{d\omega}{dt}$	Angular acceleration	$\tau = rF\sin\phi = r_{\perp}F = rF_{t}$	r Frotational axis out of the paper			
ω and α are vectors: +ve - counterclockwise -ve - clockwise		$W=\int\limits_{ heta_{i}}^{ heta_{f}} au d heta$	Work done by a torque as the object is rotating from θ_1 to θ_2			
$P = \frac{dW}{dt} = \tau \omega$ Power delivered by the torque		$W = \tau \Delta \theta$	For constant torque			

Theorems/Laws/Equations

Kinematic Equation for constant α	Linear ←→ Angular relationship	Parallel Axis Theorem
$\omega = \omega_o + \alpha t$	$s = \theta r$	$I = I_{com} + Mh^2$
$\theta - \theta_o = \omega_o t + \frac{1}{2} \alpha t^2$	$v = \omega r$	Newton's 2 nd Law for rotational motion
<u> </u>	$a_t = \alpha r \cdots (tangential acceleration)$	$\sum au_{ m ext} = I lpha$
$\omega^2 = \omega_o^2 + 2\alpha(\theta - \theta_o)$	$a_r = \frac{v^2}{v} = \omega^2 r \cdots$ (radial acceleration)	Work-Kinetic Energy theorem for rotational motion
$\theta - \theta_o = \frac{1}{2}(\omega + \omega_o)t$	r	work Kinetic Energy theorem for foldational motion
2	$T = \frac{2\pi r}{2\pi} = \frac{2\pi}{2\pi}$	$\Delta K = K_f - K_i = \frac{1}{2}I(\omega_f^2 - \omega_i^2) = W$
$\theta - \theta_o = \omega t - \frac{1}{2} \alpha t^2$	ν ω	
<u> </u>		