<body> <center><b> Intrinsic Local Modes </b></center><br> <center> <applet code="MonatILMApplet.class" width=600 height=440> <param name=minwidthpanel value="300"> <center> <i>Java</i> support is required for this interface. <br> In order to see <i>Intrinsic Local Modes</i> applet<br> you need a <i>Java</i> compatible browser. </center> </applet> </center> <hr> <center><b> Intrinsic Local Modes </b></center> <hr width=75%> Consider a chain of particles of mass <i><b>m</b></i> where the nearest-neighbors are connected by the anharmonic springs. The anharmonic interparticle potential has the following form <br> <center> <img src="images/potential.gif" width="138" height="34"> , </center> where <b><i>K</i><sub>2</sub>>0</b> and <b><i>K</i><sub>4</sub>>0</b> are the harmonic and quartic anharmonic terms, respectively, and <i><b>x</b></i> is the deviation of the spring's length from its equilibrium value. <p> Such lattice supports intrinsic local modes (ILMs) with their frequencies above the phonon band characterized by the maximal harmonic plane waves frequency <img align=middle src="images/wmeql.gif" width="115" height="31">. <br> The eigenvector of the intrinsic local mode can be found within the rotating-wave apporximation (RWA) where the displacement of the <i>n</i>th particle from its equilibrium position <b><i>u<sub>n</sub></i></b> is described by the following ansatz <br> <center><nobr><img src="images/unrwa.gif" width="201" height="26"></nobr></center> <br> where <img align=middle src="images/alpha.gif" width="18" height="16"> is the amplitude of the mode, and <img align=middle src="images/phin.gif" width="25" height="25"> characterizes its ac displacement pattern. Substitution of the above ansatz into the classical equations of motion <br> <center><nobr><img src="images/motioneq.gif" width="399" height="36"></nobr></center> <br> allows one to find the mode eigenvector. The ILM's eigenvector is a wave package which transfers to a lattice envelope soliton in a limit of a weak anharmonicicty. <p> A similar ansatz can give the eigenvector of a moving ILM. <p> A more complete description of the intrinsic local modes you can find in a review article: <br> S. A. Kiselev, S. R. Bickham, and A. J. Sievers, "Properties of Intrinsic Localized Modes in One-Dimensional Lattices", <i>Comments Cond. Mat. Phys</i>, <b>17</b>, 135-173 (1995). <hr width=75%> The above <font color=red><b><i>applet</i></b></font> allows you to watch vibrating ILMs in the lattice of 15 particles with periodic boundaries. The evolution of the chain is calculated by the molecular-dynamics technique. The parameters of the lattice are the following: <nobr> <b><i>m</i>=1, <i>K</i><sub>2</sub>=1, <i>K</i><sub>4</sub>=10</b>. </nobr> <br> You can launch either an <i>Odd-Parity ILM</i> (when a central particle has the highest amplitude) or an <i>Even-Parity ILM</i> (when two central particles have the highest and opposite amplitudes). You can also launch a <i>Moving ILM</i>. <p> The time is shown in units of the shortest period of small amplitude plane wave vibrations, <img align=middle src="images/tmeql.gif" width="115" height="31">. <p> Energy is shown in arbitrary units. The <font color=red><b>kinetic</b></font> energy of the particle and the <font color="ccaa00"><b>potential</b></font> energy of the bond are shown as the <font color=red><b>red</b></font> and the <font color="#ccaa00"><b>yellow</b></font> bars, respectively. <p> If you wait for a while you will see a spectrum of the particles' vibrations. It will be shown in the left panel. As the time of the evolution goes the spectrum resolution improves. The frequency unit is the maximal plane wave frequency, <img align=middle src="images/wmeql.gif" width="115" height="31">. <hr> <font size=-2> Last modified: December 1, 1996<br> <A HREF="http://www.lightlink.com/sergey">Sergey Kiselev</a>, <i><a href="mailto:sergey@lightlink.com">sergey@lightlink.com</a></i><br> </font> </BODY> </HTML>