

Chapter 16 (Waves-I)

1- The equation for a standing wave is given by: $y = 4.00 \times 10^{-3} \sin(2.09 x) \cos(60.0 t)$ (SI units). What is the distance between two consecutive antinodes? (A: 1.50 m)

2- A string under a tension of 15 N, is set into vibration to produce a wave of speed 20 m/s, and a maximum transverse speed of 8 m/s. For this wave, the average power is: (A: 24 W)

3- Standing waves are produced in a string at the two consecutive resonant frequencies 155 and 195 Hz. If the mass of the string is 5.00 g and its length is 0.80 m, then the tension applied to the string should be: (A: 25.6 N)

4- A transverse wave in a 3.0 m long string is given by the harmonic wave equation: $y = 0.4 \cos[\pi \times (x/4 + 6t)]$ (SI units). If the string is kept under a constant tension of 70 N, find the power transmitted to the wave. (A: 83 W)

5- A sinusoidal wave traveling in the positive x -direction has an amplitude of 10 cm, a wavelength of 20 cm, and a frequency of 5.0 Hz. A particle at $x = 0$ and $t = 0$ has a displacement of 10 cm. Write the equation of the displacement of the particles as a function of x and t . (A: $y = (0.1 \text{ m}) \sin[\pi \times (10x - 10t - 3/2)]$)

6- A harmonic wave is described by $y = 0.2 \times \sin(25x - 10t)$ (SI units). How far does a wave crest move in 20 sec? (A: 8 m)

7- The equation of a wave traveling along a string, under a tension of 10 N, is given by: $y = (6.0 \text{ cm}) \sin(0.02 \times \pi x + 40.0 \times \pi t)$, where x is in centimeters and t is in seconds.

Determine the mass per unit length of the string. (A: 25 g/m)

8- A transverse sinusoidal wave traveling in the negative x direction has an amplitude of 10.0 cm, a wavelength of 20.0 cm, and a frequency of 8.00 Hz. Write the expression for y as a function of x (in meters) and t (in seconds) if $y(0,0) = 10.0 \text{ cm}$. (A: $y = (0.1 \text{ m}) \sin[31.4x + 50.3t + (\pi/2)]$)

9- A sinusoidal wave is described as: $y = (0.1 \text{ m}) \sin[10 \times \pi (x/5 + t - 3/2)]$, where x is in meters and t is in seconds. What are the values of its frequency (f), and its velocity (v)? (A: $f = 5 \text{ Hz}$, $v = 5 \text{ m/s}$ moving in $-x$ -direction)

10- A 100-Hz oscillator is used to generate a sinusoidal wave, on a string, of wavelength 10 cm. When the tension in the string is doubled, the oscillator produces a wave with a frequency and wavelength of: (A: 100 Hz and 14 cm)

11- The lowest resonant frequency, in a certain string clamped at both ends, is 50 Hz. When the string is clamped at its midpoint, the lowest resonant frequency is: (A: 100 Hz)