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Good morning, everyone. Welcome back to Phys 608. 

I'm Distinguished Professor Dr M A Gondal, and in our last lecture, we 

established the foundations of saturation spectroscopy, a powerful method 

for overcoming the Doppler broadening that so often masks the true 

structure of atomic and molecular transitions. 

Today, we are going to dive into a related, but in many ways superior, 

technique. As you can see from the title slide, we'll be covering Chapter 2, 

Section 4: Polarization Spectroscopy. 

This method is not just an incremental improvement; it represents a 

significant leap in sensitivity and offers some wonderfully elegant features 

that make it an indispensable tool in the modern laser spectroscopy 

laboratory. 

So, let’s begin. 
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So, let's start with the core motivation. Why do we need another Doppler-

free technique? What is the fundamental idea behind "Polarization" 

Spectroscopy? 

The central goal, as stated here, is to detect Doppler-free changes in the 

populations of sub-levels... and this is a key term we'll unpack shortly... by 

monitoring a change in the polarization of a probe beam, rather than simply 

a change in its transmitted intensity. 

This immediately sets up a critical contrast with the saturation spectroscopy 

we've already discussed. Let's recall the principle of saturation 



spectroscopy. We use a strong pump beam to saturate a transition for a 

specific velocity class of atoms, effectively "bleaching" the sample for that 

group. A weak, counter-propagating probe beam then experiences reduced 

absorption when it is tuned to interact with that same velocity class. The 

signal we measure is that small reduction in absorption, or equivalently, a 

small increase in transmission. Therefore, the signal in saturation 

spectroscopy is proportional to the change in the absorption coefficient, 

which we denote as  Δ α 𝛥𝛼. 

The problem is that this small change, this  Δ α 𝛥𝛼, is detected on top of 

the large, transmitted intensity of the probe beam itself. You are looking for 

a small bump on a large background. Any fluctuation or noise in the laser's 

intensity directly translates into noise in your signal, fundamentally limiting 

the achievable signal-to-noise ratio. Polarization spectroscopy offers a 

clever and elegant way to circumvent this very problem. 
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So, how does it accomplish this? As the first point here states, the 

polarization technique measures the rotation and/or the induced ellipticity of 

the probe beam's polarization state. This means our signal is proportional 

to simultaneous changes in both the absorption coefficient, Delta alpha, 

and, crucially, the refractive index, Delta en. The interplay between these 

two is the heart of the technique. 

This different approach brings with it some immense practical advantages, 

which we will detail mathematically later, but let's introduce them 

conceptually now. 



First, and most importantly, it offers a much higher intrinsic signal-to-noise 

ratio. This is because, in its ideal form, polarization spectroscopy is a "zero-

background" technique. We set up our polarizers in a crossed 

configuration, so that without any interaction in the sample, no probe light 

reaches the detector. The signal is the small amount of light that leaks 

through the second polarizer because its polarization has been altered by 

the sample. So, instead of looking for a small change on a large 

background, we are looking for a small signal on a nearly zero background. 

This is a monumental advantage for achieving high sensitivity. 

Second, the technique can be configured to directly produce a dispersion-

shaped line profile. As we'll see, this kind of antisymmetric signal, with a 

steep, linear slope at the line center, is incredibly convenient for locking the 

frequency of a laser to an atomic transition. It provides a perfect error 

signal without needing any extra frequency modulation on the laser itself, 

which simplifies the experimental setup considerably. 

Now for a bit of historical context... 
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This technique was truly brought to prominence in the mid-1970s by Carl 

Wieman and Theodor Hänsch, as noted here by the references. 

Their work demonstrated its power and simplicity, and since then, 

polarization spectroscopy has become a standard, go-to tool for high-

resolution, Doppler-free measurements. It proudly stands alongside 

saturated absorption and two-photon spectroscopy as one of the pillars of 

modern laser spectroscopy. 



It's a technique that every student in this field should not only know about 

but deeply understand. 
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To make the contrast absolutely clear, let's look at these two block 

diagrams side-by-side. 

On the left, in panel (a), we have the familiar setup for Saturation 

Spectroscopy. A laser beam is split. The weaker probe beam passes 

through the sample cell and onto a detector. The stronger pump beam is 

sent in the opposite direction, counter-propagating through the cell. The 

detector simply measures the total intensity of the probe beam. The signal, 

as we've discussed, is a small change in absorption,  Δ α 𝛥𝛼, appearing as 

a small peak on top of the transmitted probe beam's intensity. 

Now, look to the right, at panel (b), Polarization Spectroscopy. The setup 

starts similarly, with a laser and a beam splitter creating a pump and probe. 

But notice the crucial differences. First, the probe beam passes through a 

linear polarizer, which we'll call P1, before it enters the sample cell. This 

prepares the probe in a well-defined state of linear polarization. Second, 

look at the pump beam. After the mirror, it passes through a quarter-wave 

plate, labeled  λ / 4 𝜆/4. This converts the linearly polarized pump into 

circularly polarized light. This is key, as we will see. Finally, and most 

importantly, after the sample cell and before the detector, the probe beam 

must pass through a second polarizer, the analyzer, which we'll call P2. 

This analyzer is oriented to be "crossed" with the first polarizer, P1, 

meaning its transmission axis is rotated by 90 degrees relative to P1. 



In this crossed configuration, if the sample had no effect, the linearly 

polarized probe from P1 would be completely blocked by P2, and the 

detector would see nothing. The signal arises only when the pump beam 

alters the sample, making it optically active, which in turn rotates or 

changes the probe's polarization, allowing some of it to leak through P2. 

The signal is therefore directly dependent on both the change in 

absorption,  Δ α 𝛥𝛼, and the change in refractive index,  Δ n 𝛥𝑛, induced by 

the pump. This is a fundamentally different, and as we will prove, a far 

more sensitive detection scheme. 
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Alright, let’s break down the core experimental layout in more detail, 

building on the diagram we just saw. 

First, the Optical Path Split. We begin with a single laser source. Critically, 

this laser must be both monochromatic—meaning it has a very narrow 

frequency distribution—and tunable, so we can scan its frequency across 

the atomic or molecular resonance. The output of this laser is divided by a 

beam splitter into two distinct paths. 

The first path becomes Beam 1, which we call the probe beam. As its name 

implies, its job is to probe the state of the sample. It is essential that the 

probe beam has a weak intensity, which we'll denote as  I 1 𝐼1. We need it 

to be weak so that it doesn't significantly alter the atomic populations itself. 

It should act as a passive observer. 

The second path is Beam 2, the pump beam. Its job is to actively change 

the sample. Therefore, it must have a strong intensity, denoted  I 2 𝐼2. This 



strong intensity is what allows us to saturate the transition for a specific 

group of atoms, which is the first step in creating the conditions for our 

signal. 
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Next, let's consider the Polarization Elements, which are the heart of this 

technique. 

The weak probe beam, on its way to the sample, passes through a high-

quality linear polarizer, which we've labeled  P 1 𝑃1. The function of  P 1 𝑃1 

is to define a clean, initial polarization axis for the probe. We can think of 

this as our reference. 

The strong pump beam, on its path, passes through a quarter-wave plate, 

often denoted as  λ / 4 𝜆/4. Assuming the pump is linearly polarized to 

begin with, and its axis is at 45 degrees to the wave plate's axes, this 

optical element converts the pump beam from linear to circular polarization. 

For our discussion, we'll assume it's converted to right-hand circular 

polarization, which in spectroscopic notation is represented by  σ + 𝜎+. 

We'll see very shortly why having a circularly polarized pump is so 

important. 

Now, for the Sample and Detection phase. Both the probe and the 

circularly polarized pump traverse the same vapor cell containing our 

atomic or molecular sample. And, just as in saturation spectroscopy, they 

do so in opposite directions. This counter-propagating geometry is 

absolutely essential for selecting the zero-velocity class of atoms and 

achieving a Doppler-free signal. 
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Finally, what happens after the probe beam has traversed the sample? 

It exits the cell and immediately encounters a second linear polarizer,  P 2 

𝑃2, which we call the analyzer. As mentioned before, this analyzer is 

"crossed" with the first polarizer,  P 1 𝑃1. This means its transmission axis 

is set at a  90 ∘  90∘ angle to the initial polarization of the probe. 

So, if nothing had happened to the probe's polarization inside the cell, it 

would be completely extinguished by  P 2 𝑃2. The detector, labeled  D 𝐷, 

sits right after the analyzer  P 2 𝑃2. Its job is to measure any light that 

manages to "leak" through. This leaked light is our signal. The very 

existence of a signal tells us that the sample, under the influence of the 

pump beam, has altered the probe's polarization. Our entire measurement, 

then, consists of detecting this faint light against a dark background. 
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This slide provides a more detailed schematic of the core experimental 

layout, summarizing everything we've just discussed. Let's trace the paths 

one more time to solidify our understanding. 

We start with the tunable laser on the far left. Its output hits a beam splitter. 

Let's follow the probe beam first—the one that goes straight through. It 

passes through the initial polarizer,  P 1 𝑃1, which defines its polarization as 

linear, let's say vertical for the sake of this diagram. It then travels through 

the sample cell, where it interacts with the atoms. After the cell, it 



encounters the crossed analyzer,  P 2 𝑃2, which has a horizontal 

transmission axis in this picture. Finally, any light that gets through  P 2 𝑃2 

hits the detector,  D 𝐷. 

Now, let's trace the pump beam—the one that's reflected downwards by 

the beam splitter. It reflects off mirror  M 1 𝑀1, then passes through a 

quarter-wave plate, which converts its polarization to circular, let's say  σ + 

𝜎+. It's then directed by mirror  M 2 𝑀2 to enter the sample cell from the 

right, traveling in the opposite direction to the probe. Inside the cell, this 

strong, circularly polarized pump beam interacts with the atoms. As the text 

box explains, it saturates the transition and, as we'll see, induces an 

anisotropy in the sample. 

This pump-induced anisotropy is what affects the probe beam. It causes 

the probe's plane of polarization to rotate slightly. As you can see in the 

diagram, the polarization vector of the probe, which was initially vertical, is 

now slightly tilted as it emerges from the cell. This small rotated component 

can now pass through the horizontal analyzer  P 2 𝑃2, generating our signal 

at the detector. This entire diagram beautifully illustrates the cause-and-

effect chain of the experiment. 
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Now we arrive at the physics at the heart of the technique. How, exactly, 

does the pump beam create this anisotropy in the sample? The answer lies 

in the Angular Momentum Selection Rules. This slide focuses on the 

pump's job. 



Let's consider a generic electric-dipole transition in an atom or molecule. 

The transition is between a lower state and an upper state. Each state is 

characterized by a total angular momentum quantum number, which we'll 

call  J 𝐽. Let's denote the lower state by  J ″ 𝐽″ and the upper state by  J ′ 𝐽′. 

Furthermore, these energy levels are degenerate. In the absence of 

external fields, the orientation of the angular momentum vector  J 𝐽 in 

space is not specified. However, the propagation direction of our light beam 

provides a natural quantization axis, which we'll call the  z 𝑧-axis. The 

projection of the total angular momentum  J 𝐽 onto this  z 𝑧-axis is given by 

the magnetic quantum number,  M 𝑀. So our transition is more completely 

described as going from a specific sub-level  | J ″ , M ″ ⟩  |𝐽″, 𝑀″⟩ to an 

upper sub-level  | J ′ , M ′ ⟩  |𝐽′, 𝑀′⟩. 

Now, here is the crucial point. The light itself carries angular momentum, 

and for a transition to occur, angular momentum must be conserved. For 

our circularly polarized pump beam—which we've assumed to be  σ + 𝜎+—

the photon carries one unit of angular momentum along the direction of 

propagation. The strict selection rule for such a transition is that the 

magnetic quantum number  M 𝑀 must change by  + 1 +1. That is,  Δ M 

𝛥𝑀, which is  M ′ − M ″ 𝑀′ − 𝑀″, must equal  + 1 +1. 
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What is the consequence of this strict selection rule,  Δ M = + 1 𝛥𝑀 = +1? 

The first consequence is profound: Not every  M ″ 𝑀″ sub-level in the lower 

state is addressable by our  σ + 𝜎+ pump beam. The pump cannot interact 

with all the atoms in the ground state equally. 



Let's take a concrete example, as shown in point 2. Consider a P-branch 

transition, which by definition is a transition where  Δ J = − 1 𝛥𝐽 = −1. So,  

J ′ = J ″ − 1 𝐽′ = 𝐽″ − 1. 

Now, think about the sub-level in the lower state that has the maximum 

possible projection of angular momentum along the z-axis, which is  M ″ = + 

J ″ 𝑀″ = +𝐽″. For this atom to be excited by a  σ + 𝜎+ photon, it would need 

to transition to an upper state with  M ′ = M ″ + 1 𝑀′ = 𝑀″ + 1, which would 

be  J ″ + 1 𝐽″ + 1. But the upper state manifold, with total angular 

momentum  J ′ 𝐽′, only has  M ′ 𝑀′ sub-levels up to a maximum value of  J ′ 

𝐽′, which is  J ″ − 1 𝐽″ − 1! There is no available state for the atom to go to. 

Therefore, the sub-level  M ″ = + J ″ 𝑀″ = +𝐽″ is completely immune to the 

pump beam. It cannot participate in a  σ + 𝜎+ transition. 

The result of this selective interaction is an unequal depletion of the ground 

state sub-levels. The pump beam removes population from some  M ″ 𝑀″ 

states, but not others. This creates a non-uniform, or anisotropic, sub-level 

population distribution. The gas is no longer isotropic; it now has a 

preferred orientation in space, imprinted upon it by the pump beam's 

polarization. 
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This diagram provides a perfect visual illustration of the selection rules at 

work. Let's analyze it carefully. 

The title says we are looking at a P-branch transition, where  Δ J = − 1 𝛥𝐽 =

−1, with  σ + 𝜎+ polarized light, which means  Δ M = + 1 𝛥𝑀 = +1. The 



specific example shown is a transition from a lower state with  J ″ = 2 𝐽″ = 2 

to an upper state with  J ′ = 1 𝐽′ = 1. 

At the bottom, we see the energy sub-levels of the lower  J ″ = 2 𝐽″ = 2 

state. The magnetic quantum number,  M ″ 𝑀″, can take values from  − J 

−𝐽 to  + J +𝐽, so we have levels for  M ″ = − 2 , − 1 , 0 , + 1 , 𝑀″ =

−2, −1,0,+1, and  + 2 +2. 

At the top, we see the sub-levels for the upper  J ′ = 1 𝐽′ = 1 state. Here,  M 

′ 𝑀′ can be  − 1 , 0 , −1,0, or  + 1 +1. 

Now, let's apply our  σ + 𝜎+ selection rule:  M ′ = M ″ + 1 𝑀′ = 𝑀″ + 1. 

- An atom in the  M ″ = − 2 𝑀″ = −2 state can be pumped to the  M ′ = − 1 

𝑀′ = −1 state. This is allowed, and we see a blue arrow for this transition. - 

An atom in the  M ″ = − 1 𝑀″ = −1 state can be pumped to the  M ′ = 0 

𝑀′ = 0 state. This is also allowed, shown by the second arrow. - An atom in 

the  M ″ = 0 𝑀″ = 0 state can be pumped to the  M ′ = + 1 𝑀′ = +1 state. 

This transition is also allowed, and is the third arrow shown. 

Now, consider the  M ″ = + 1 𝑀″ = +1 state. A transition would require an  

M ′ = + 2 𝑀′ = +2 state. But look at the upper manifold! There is no  M ′ = + 

2 𝑀′ = +2 sub-level. So, this transition is forbidden. 

Similarly, for the  M ″ = + 2 𝑀″ = +2 state, a transition would require an  M ′ 

= + 3 𝑀′ = +3 state, which also does not exist. 

The clear result is that the strong pump beam depletes the populations of 

the  M ″ = − 2 , − 1 , 𝑀″ = −2,−1, and  0 0 sub-levels, while leaving the 

populations of the  M ″ = + 1 𝑀″ = +1 and  + 2 +2 sub-levels completely 



untouched. This is the very definition of creating an anisotropic population 

distribution. 
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So, we've established that the pump creates an unequal  M 𝑀-population. 

What does this mean macroscopically? It means we've induced a preferred 

orientation of the molecular or atomic angular momentum,  J 𝐽. Before the 

pump, these vectors pointed in all directions randomly. Now, there is a net 

alignment or orientation. 

This leads to the crucial consequence: the medium itself becomes optically 

anisotropic. An isotropic medium responds the same way to light, 

regardless of the light's polarization or direction. Our pumped medium is no 

longer isotropic. Specifically, it will now respond differently to right-hand 

circularly polarized light,  σ + 𝜎+, versus left-hand circularly polarized light,  

σ − 𝜎−. 

This optical anisotropy manifests in two distinct, measurable ways. 

First, we get a difference in the absorption coefficients for the two circular 

polarizations. The absorption coefficient for  σ + 𝜎+ light, which we call  α + 

𝛼+, will not be equal to the absorption coefficient for  σ − 𝜎− light,  α − 𝛼−. 

This phenomenon is known as circular dichroism. 

Page 14: 

The second macroscopic consequence is a difference in the refractive 

indices. The refractive index experienced by  σ + 𝜎+ light,  n + 𝑛+, will not 



be equal to the refractive index experienced by  σ − 𝜎− light,  n − 𝑛−. This 

phenomenon is known as circular birefringence, which is analogous to the 

birefringence you may have studied in crystals, but here it's induced in a 

gas by our pump beam. 

Now, let's bring the probe beam back into the picture. Remember, our 

probe beam is linearly polarized. A key insight from classical optics is that 

any linearly polarized light can be mathematically described as a perfect, 

equal-amplitude superposition of right-hand ( σ + 𝜎+) and left-hand ( σ − 

𝜎−) circularly polarized light. 

So, when this linearly polarized probe enters our now-anisotropic medium, 

its two circular components are treated differently. The difference in 

refractive indices,  n + ≠ n − 𝑛+ ≠ 𝑛−, means one component travels slightly 

slower than the other. This introduces a relative phase shift between them. 

When they recombine upon exiting the sample, this phase shift results in a 

small rotation of the plane of linear polarization. We denote this rotation by  

Δ θ 𝛥𝜃. 

Simultaneously, the difference in absorption coefficients,  α + ≠ α − 𝛼+ ≠

𝛼−, means one component is absorbed more strongly than the other. When 

they recombine, they no longer have equal amplitudes. This imbalance 

transforms the originally linear polarization into a slightly elliptical 

polarization. 

A useful analogy here is the Faraday effect, where an external magnetic 

field aligns the atomic angular momenta,  J 𝐽, causing a polarization 

rotation. The beautiful thing about polarization spectroscopy is that we 



achieve this alignment optically with the pump beam. No external magnetic 

field is required. 
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This pair of diagrams provides an excellent visual summary of the transition 

from an isotropic to an anisotropic medium. 

On the left, in panel (a), we see a depiction of an Isotropic Gas. We have a 

collection of molecules, and the red arrows represent the orientation of their 

individual angular momentum vectors,  J 𝐽. As you can see, these arrows 

point in random directions. There is no preferred orientation. 

Macroscopically, this means the refractive index for  σ + 𝜎+ light,  n + 𝑛+, is 

exactly equal to the refractive index for  σ − 𝜎− light,  n − 𝑛−. The medium 

is optically uniform. 

Now, look at panel (b), the Optically Pumped Anisotropic Gas. A strong, 

circularly polarized pump beam, represented by the thick green arrow, 

passes through the gas. Due to the selection rules we just discussed, this 

pump beam preferentially depletes certain  M 𝑀-sublevels. The result is 

that the angular momentum vectors are no longer randomly oriented; they 

now have a preferred orientation, aligned with respect to the pump beam's 

propagation axis. 

The lower part of panel (b) shows the consequence for our probe beam. 

The probe beam, composed of its  σ + 𝜎+ (red wave) and  σ − 𝜎− (blue 

wave) components, enters this anisotropic medium. Because  n + 𝑛+ is not 

equal to  n − 𝑛−, the two components travel at different speeds. The 

diagram beautifully illustrates that one wave gets phase-shifted relative to 



the other. When these two components recombine, the resulting 

polarization is rotated. This is the essence of birefringence, and it's the 

physical origin of our signal. The result is clear:  n + 𝑛+ is not equal to  n − 

𝑛−. 
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Up to now, we've focused on the polarization aspect. But this is a Doppler-

free technique. So, let's re-introduce the velocity of the atoms and see how 

the Doppler effect plays a crucial role. 

As we've established, the pump and probe beams are counter-propagating. 

This means their wave vectors are equal and opposite: the  k 𝑘-vector for 

the pump is equal to minus the  k 𝑘-vector for the probe. 

Now, consider an atom moving with a velocity component  v z 𝑣z along the 

laser beam axis. Due to the Doppler effect, this atom does not see the 

laser's lab-frame frequency,  ω 𝜔. It sees a shifted frequency. For the pump 

beam, this would be  ω − k v z 𝜔 − 𝑘 𝑣z. For the probe, it would be  ω + k v 

z 𝜔 + 𝑘 𝑣z. The atom will only interact resonantly with the light if this 

Doppler-shifted frequency matches its natural transition frequency,  ω 0 𝜔0. 

So, if we set our laser to a frequency  ω 𝜔, which is slightly detuned from 

the line center  ω 0 𝜔0, the resonance condition will only be met for 

molecules with a specific axial velocity  v z 𝑣z. Rearranging the Doppler 

shift formula gives us, to first order, that the selected velocity is 

 v z ≈ ω 0 − ω k .  



𝑣z ≈
𝜔0 − 𝜔

𝑘
. 

This means that the pump beam doesn't interact with all the atoms. At a 

given frequency, it selectively interacts with, and "burns a hole" in the 

population of, a very specific velocity class. 
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Let's be precise about the velocity classes for each beam. 

The pump beam propagates, let's say, in the plus-z direction. The 

resonance condition for an atom with velocity  v z 𝑣z is that the atomic 

resonance frequency,  ω 0 𝜔0, must equal the Doppler-shifted laser 

frequency,  ω − k v z 𝜔 − 𝑘 𝑣z. Solving for  v z 𝑣z, we find that the pump 

interacts with molecules having an axial velocity of  v z = ( ω − ω 0 ) / k 

𝑣z = (𝜔 − 𝜔0)/𝑘. The slide has a minus sign, so let's be consistent and 

define detuning as  ω 0 − ω 𝜔0 − 𝜔. So, the pump interacts with  v z 𝑣z 

equals plus  ( ω 0 − ω ) / k (𝜔0 − 𝜔)/𝑘. The small  γ / k 𝛾/𝑘 term 

represents the small range of velocities within the natural linewidth. 

Now, what about the probe? It's counter-propagating, so its wave vector is  

− k −𝑘. The resonance condition for the probe is  ω 0 = ω − ( − k ) v z 𝜔0 =

𝜔 − (−𝑘) 𝑣z, which is  ω + k v z 𝜔 + 𝑘 𝑣z. Solving for  v z 𝑣z, we find the 

probe interacts with molecules having  v z 𝑣z equals minus  ( ω 0 − ω ) / k 

(𝜔0 − 𝜔)/𝑘. 

So, you see, when the laser is detuned from resonance (when  ω 𝜔 is not 

equal to  ω 0 𝜔0), the pump and probe beams interact with two completely 

different, distinct velocity classes, symmetric about  v z = 0 𝑣z = 0. The 



probe beam never encounters the atoms that have been polarized by the 

pump. 

The crucial exception is when we tune the laser frequency,  ω 𝜔, to be 

exactly on resonance with the atomic transition, so that  ω 𝜔 is 

approximately equal to  ω 0 𝜔0. 

In this special case, the detuning is zero. The pump interacts with the  v z 

𝑣z approximately equal to zero velocity class, and the probe also interacts 

with the  v z 𝑣z approximately equal to zero velocity class. 

This is the key to the Doppler-free nature of the signal. It is only when both 

beams interact with the same molecules—the stationary or near-stationary 

ones—that the probe can "see" the anisotropy created by the pump. It is 

only then that the medium becomes birefringent for the probe, and we get a 

signal. 
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The direct and powerful consequence of this condition is that the technique 

produces a sharp, Doppler-free peak exactly at the line center, where  ω = 

ω 0 𝜔 = 𝜔0. When we scan the laser frequency across the entire Doppler-

broadened profile, we will see a signal only at the precise moment we pass 

through the true, natural resonance frequency of the stationary atoms. 

This allows us to measure transition frequencies with extremely high 

precision, free from the limitations of thermal motion. 

Page 19: 



This slide offers a fantastic graphical representation of the velocity 

selection mechanism. Let’s walk through it. 

In both panels, the blue curve represents the Maxwell–Boltzmann 

distribution of axial velocities,  v z 𝑣z, in our gas sample. The peak is at  v z 

= 0 𝑣z = 0, and the width represents the thermal spread of velocities that 

leads to Doppler broadening. 

First, let’s examine the left panel, the “Off-Resonance Condition”, where the 

laser frequency,  ω 𝜔, is not equal to the atomic resonance,  ω 0 𝜔0. The 

laser detuning,  ( ω 0 − ω ) / k (𝜔0 − 𝜔)/𝑘, is non-zero. As we derived, the 

pump beam interacts with a specific velocity class, shown as the red slice, 

at a positive  v z 𝑣z. The counter-propagating probe beam interacts with a 

different velocity class, shown as the blue slice, at a negative  v z 𝑣z. They 

are interacting with completely separate populations of atoms. The atoms 

that the probe sees have not been affected by the pump. Therefore, no 

polarization signal is generated. All we would measure is the standard, 

broad Doppler-broadened absorption. 

Now, turn your attention to the right panel, the “On-Resonance Condition”. 

Here, we have tuned the laser so that  ω 𝜔 is approximately equal to  ω 0 

𝜔0. The detuning is now essentially zero. 

Both the pump and the probe beams interact with the same class of 

molecules: those with near-zero axial velocity, right at the center of the 

distribution. This region of overlap is shown in purple. 

In this case, the intense pump beam aligns the molecules in this  v z ≈ 0 

𝑣z ≈ 0 group, creating birefringence and dichroism. The probe beam then 



passes through this aligned group, its polarization gets rotated, and it 

generates a sharp, Doppler-free signal. 

The slider at the bottom conceptually represents tuning the laser frequency, 

showing how the two selected velocity packets move symmetrically until 

they merge at the center. 
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Having established the physical principles, let's now build a more rigorous 

mathematical description of the signal. This will be a mathematical prelude 

to our final signal expression. 

We begin by decomposing the probe field. Let's assume for concreteness 

that our initial probe beam, after passing through the first polarizer  P 1 𝑃1, 

is linearly polarized along the  x 𝑥-axis. We can write its electric field as a 

plane wave: 

 E → ( z , t ) = E 0 x ^ e i ( ω t − k z ) .  

𝐸⃗ (𝑧, 𝑡) = 𝐸0 𝑥̂ 𝑒𝑖(𝜔𝑡−𝑘𝑧). 

Now, here is the essential mathematical step we discussed conceptually 

earlier. We will express this single linearly-polarized field as the sum of two 

equal-amplitude, counter-rotating circular components. We write: 

 E → = E → + + E → − .  

𝐸⃗ = 𝐸⃗ + + 𝐸⃗ −. 

Where  E → + 𝐸⃗ + represents the right-hand circularly polarized component, 

and  E → − 𝐸⃗ − represents the left-hand circularly polarized component. 
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Here we see the explicit expressions for these circular components. 

E-plus is equal to  E 0 2 
𝐸0

2
, times the complex vector  ( x ^ + i y ^ ) (𝑥̂ + 𝑖𝑦̂), 

all multiplied by the same plane wave factor,  e i ( ω t − k z ) 𝑒𝑖(𝜔𝑡−𝑘𝑧). The 

vector part,  ( x ^ + i y ^ ) (𝑥̂ + 𝑖𝑦̂), describes a vector that rotates in the x-y 

plane and corresponds to right-hand circular or  σ + 𝜎+ polarization. 

Similarly, E-minus is equal to  E 0 2 
𝐸0

2
, times the complex vector  ( x ^ − i y 

^ ) (𝑥̂ − 𝑖𝑦̂), times the same plane wave factor. The  ( x ^ − i y ^ ) (𝑥̂ − 𝑖𝑦̂) 

term corresponds to left-hand circular or  σ − 𝜎− polarization. 

You can easily verify that if you add  E + 𝐸+ and  E − 𝐸−, the  i y ^ 𝑖𝑦̂ terms 

cancel, and you are left with the original x-polarized field. 

The profound advantage of this decomposition is that we can now analyze 

the interaction of our probe with the anisotropic medium by considering the 

two circular modes,  σ + 𝜎+ and  σ − 𝜎−, completely independently. The 

medium, having been prepared by the  σ + 𝜎+ pump beam, has different 

properties—a different refractive index and a different absorption 

coefficient—for each of these two components. 

So, all of our further calculations will be performed for each component 

separately. We'll calculate how  E + 𝐸+ propagates and how  E − 𝐸− 

propagates. Then, at the end, we will recombine them to find the final state 

of the field. 
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Let's now consider the propagation of our probe beam's components 

through the anisotropic sample. We will follow the logic of Slide 7. 

Let's say the probe travels through a length  L 𝐿 of the pumped medium. 

We'll focus first on the  σ + 𝜎+ component of the probe. As it propagates, 

two things happen: its phase evolves and its amplitude is attenuated. The 

refractive index for this component is  n + 𝑛+, which corresponds to a wave 

vector  k + 𝑘+. The absorption coefficient is  α + 𝛼+. 

So, the field of the  σ + 𝜎+ component after traveling a distance  L 𝐿, which 

we write as  E + ( L ) 𝐸+(𝐿), is given by the following expression: 

 E + ( L ) = E 0 2 ( x ^ + i y ^ ) exp ( i ω t − i k + L − α + L 2 ) .  

𝐸+(𝐿) =
𝐸0

2
(𝑥̂ + 𝑖𝑦̂)exp(𝑖𝜔𝑡 − 𝑖𝑘+𝐿 − 𝛼+𝐿 2⁄ ). 

 E + ( L ) 𝐸+(𝐿) is equal to its initial amplitude,  E 0 2 
𝐸0

2
 times  ( x ^ + i y ^ ) 

(𝑥̂ + 𝑖𝑦̂), multiplied by an exponential term. Inside the exponential, we have  

exp exp of the quantity:  i ω t 𝑖𝜔𝑡 which is just the time oscillation, minus  i k 

+ L 𝑖𝑘+𝐿, which is the phase accumulated due to propagation, minus  α + L 

2 𝛼+𝐿 2⁄ , which is the amplitude attenuation. Note that the absorption 

coefficient  α 𝛼 appears in the field expression as  α / 2 𝛼/2. 

An exactly analogous expression can be written for the  E − 𝐸− component,  

E − ( L ) 𝐸−(𝐿), but it will involve the wave vector  k − 𝑘− and the absorption 

coefficient  α − 𝛼−. 

Now, we will define some terms to simplify our upcoming algebra. 
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The crucial physical quantities are the differences in how the medium treats 

the two circular polarizations. We define these on this slide. 

First, the difference in refractive indices, which causes birefringence: 

 Δ n = n + − n − .  

𝛥𝑛 = 𝑛+ − 𝑛−. 

Second, the difference in absorption coefficients, which causes circular 

dichroism: 

 Δ α = α + − α − .  

𝛥𝛼 = 𝛼+ − 𝛼−. 

As the probe's two circular components propagate through the length  L 𝐿 

of the sample, they accumulate a relative phase difference. This resulting 

phase difference,  Δ ϕ 𝛥𝜙, is given by: 

 Δ ϕ = ( k + − k − ) L .  

𝛥𝜙 = (𝑘+ − 𝑘−) 𝐿. 

Since the wavevector  k 𝑘 is related to the refractive index  n 𝑛 by  k = ω n / 

c 𝑘 = 𝜔𝑛/𝑐, this becomes: 

 Δ ϕ = ω L c Δ n .  

𝛥𝜙 =
𝜔𝐿

𝑐
 𝛥𝑛. 

This phase difference is what causes the polarization plane to rotate. 



Simultaneously, the two components accumulate a resulting amplitude 

difference due to differential absorption. The difference in field amplitude,  

Δ E 𝛥𝐸, after the sample is: 

 Δ E = E naught 2 ( e − α + L / 2 − e − α − L / 2 ) .  

𝛥𝐸 =
𝐸naught

2
(𝑒−𝛼+𝐿/2 − 𝑒−𝛼−𝐿/2). 

This amplitude difference is what makes the polarization elliptical. 

It is clear from this that both  Δ ϕ 𝛥𝜙 and  Δ E 𝛥𝐸, which depend on  Δ n 𝛥𝑛 

and  Δ α 𝛥𝛼 respectively, encode the information about the interaction. This 

is our spectroscopy signal. 
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Now we must address an important, and often unavoidable, experimental 

reality: the effect of the windows of the sample cell. This is not just a trivial 

detail; it can significantly impact the signal. 

The cell windows, typically made of glass or quartz and having a thickness 

we'll call ‘d’, can themselves contribute extra, or “parasitic,” birefringence 

and absorption. This usually arises from mechanical stress induced during 

manufacturing or from the pressure difference when the cell is evacuated. 

To handle this, we introduce a complex refractive index to describe the 

properties of the windows. We'll denote it by a tilde over the n. For the two 

circular polarizations, we have: 

 n ~ w ± = b r ± + i b i ± .  



𝑛̃𝑤± = 𝑏𝑟± + 𝑖 𝑏𝑖±. 

Here,  b r 𝑏𝑟 is the real part of the window’s refractive index, and  b i 𝑏𝑖 is 

the imaginary part. 

The imaginary part,  b i 𝑏𝑖, is directly related to absorption. We can relate it 

to an absorption coefficient for the windows, as we'll see next. 
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The relationship between the imaginary part of the refractive index of the 

window,  b i 𝑏i, and the window's absorption coefficient,  α w 𝛼w, is given 

by: 

 α w ± = 2 ω c b i ± .  

𝛼w
± =

2𝜔

𝑐
 𝑏i

±. 

We can then define a total absorption for the windows, which we'll call ' a w 

𝑎w', that accounts for the fact that the probe passes through two windows 

(at the entrance and exit of the cell). If each window has thickness ' d 𝑑', 

the total path length in the glass is  2 d 2 𝑑. So: 

 a w ± = 2 d α w ± .  

𝑎w
± = 2 𝑑 𝛼w

±. 

Just as we did for the gas sample, we are interested in the differences for 

the two circular polarizations. We define: 

 Δ b r = b r + − b r − .  



𝛥𝑏r = 𝑏r
+ − 𝑏r

−. 

This is the parasitic birefringence of the windows. 

 Δ a w = a w + − a w − .  

𝛥𝑎w = 𝑎w
+ − 𝑎w

−. 

This is the parasitic dichroism of the windows. 

The crucial takeaway here is that these parasitic terms can distort, or 

worse, even mimic a real signal from the atoms. They introduce their own 

rotation and ellipticity. Therefore, for a high-quality experiment, the 

windows must be made from high-quality, strain-free material, and they 

must be carefully characterized or their effects compensated. 
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This diagram provides a clear illustration of how parasitic birefringence 

arises in the vapor cell windows. 

On the left, we see the vapor or gas sample, and attached to it is the cell 

window, a cylinder of glass with thickness  d 𝑑. Due to mechanical stress 

from how the window is manufactured or mounted, the glass is often not 

perfectly isotropic. It can develop privileged axes, known as the "fast axis" 

and the "slow axis," indicated by the red arrows. This means the refractive 

index is different for light polarized along these two directions. 

As the text box below explains, this stress-induced anisotropy means that 

when the probe beam passes through, its two circular polarization 

components,  σ + 𝜎+ and  σ − 𝜎−, experience different complex refractive 



indices. This results in a parasitic phase difference, related to  Δ b 𝛥𝑏 that 

we just defined, and a parasitic differential absorption, related to  Δ a 𝛥𝑎. 

This unwanted effect from the windows will add to the real signal from the 

gas. It's a source of systematic error that must be carefully managed in any 

precision polarization spectroscopy experiment. 
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### Slide 9: Recombination & Emergent Elliptically Polarised Field 

Alright, let's bring our mathematical description to its climax. We've 

calculated how the E-plus and E-minus components of the probe field 

propagate through both the pumped gas and the cell windows. Now it's 

time to recombine them and see what the final emergent field looks like. 

This is Slide 9, "Recombination & Emergent Elliptically Polarised Field". 

After passing through the cell of length L, the total field, E-out, is simply the 

vector sum of the two components: 

 E o u t = E + ( L ) + E − ( L )  

𝐸out = 𝐸+(𝐿) + 𝐸−(𝐿) 

The algebra to combine the expressions from Slide 7, including the window 

effects, is a bit tedious, but the result is beautifully compact. The 

recombination yields a field that is, in general, elliptically polarized. It can 

be described by the following equation: 

 E o u t = E 0 2 e i ω t e − i Φ 0 ( x ^ + i y ^ e − i δ )  



𝐸out =
𝐸0

2
 𝑒  𝑖𝜔𝑡 𝑒− 𝑖𝛷0  (𝑥̂ + 𝑖 𝑦̂ 𝑒− 𝑖𝛿) 

Let's look at this.  Φ 0 𝛷0 (capital Phi sub zero) is a common phase factor 

that affects the whole field. The interesting part is the vector term. It is no 

longer  x ^ + i y ^ 𝑥̂ + 𝑖𝑦̂, which would be circular, or a simple real vector, 

which would be linear. The presence of the complex phase factor  e − i δ 

𝑒−𝑖𝛿 on the y-component is what describes the new elliptical polarization 

state. The complex phase  δ 𝛿 (lowercase delta) contains all the physics of 

the interaction. 
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So what are these phase terms, Phi-naught and delta? Let's define them. 

The common phase, capital Phi-naught, is given by: 

 Φ 0 = ω c n L + ω c b r d − i ( α L 2 + a w 2 ) .  

𝛷0 =
𝜔

𝑐
 𝑛𝐿  + 

𝜔

𝑐
 𝑏𝑟𝑑  −  𝑖 (

𝛼𝐿

2
+

𝑎𝑤

2
). 

This term represents the average phase shift and average absorption from 

both the gas (terms with  n 𝑛 and  α 𝛼) and the windows (terms with  b r 𝑏𝑟 

and  a w 𝑎𝑤). This is generally not what we're interested in. 

The crucial term is the complex phase difference, lowercase delta: 

 δ = ω L c Δ n + ω d c Δ b r − i ( L Δ α 2 + Δ a w 2 ) .  

𝛿 =
𝜔𝐿

𝑐
 𝛥𝑛  + 

𝜔𝑑

𝑐
 𝛥𝑏𝑟  −  𝑖 (

𝐿 𝛥𝛼

2
+

𝛥𝑎𝑤

2
). 



This term contains all the differential effects—the differences in refractive 

index and absorption for both the gas sample and the windows. This is our 

signal. 

Let's break down  δ 𝛿. 

The real part of  δ 𝛿, which comes from  Δ n 𝛥𝑛 and  Δ b r 𝛥𝑏𝑟, is directly 

related to the rotation of the polarization axis. The rotation angle is 

approximately the real part of  δ 𝛿, divided by 2. 

The imaginary part of  δ 𝛿, which comes from  Δ α 𝛥𝛼 and  Δ a w 𝛥𝑎𝑤, is 

responsible for the differential attenuation between the  σ + 𝜎+ and  σ − 𝜎− 

components. This is what causes the probe to become elliptical. 

So, by measuring the final polarization state, which is fully characterized by 

this complex number  δ 𝛿, we can measure the underlying physics of the 

light-matter interaction. 
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### Slide 10: 

We're now at the final step of the optical path: the analyzer. This is Slide 

10. After the probe field emerges from the cell in its new, elliptically 

polarized state,  E o u t 𝐸out, it must pass through the second polarizer,  P 

2 𝑃2, before reaching the detector. 

Ideally,  P 2 𝑃2 is crossed with the initial polarizer  P 1 𝑃1. If  P 1 𝑃1 defines 

the x-axis, then  P 2 𝑃2 would define the y-axis. However, for reasons that 

will become clear, it's often useful to deliberately "uncross" the analyzer by 

a small angle. Let's call this small uncrossing angle  θ 𝜃 (theta). So, the 



transmission axis of  P 2 𝑃2 is tilted by a small angle  θ 𝜃 away from the y-

axis. 

The detector only measures the component of the  E o u t 𝐸out field that is 

projected onto the transmission axis of  P 2 𝑃2. The transmitted field 

amplitude, which we'll call  E t 𝐸t, is given by simple vector projection. 

Using the small angle approximation where  sin ⁡ ( θ ) sin(𝜃) is about  θ 𝜃 

and  cos ⁡ ( θ ) cos(𝜃) is about 1, and given the analyzer is mostly along y, 

the transmitted field is: 

 E t = E x sin ⁡ ( θ ) + E y cos ⁡ ( θ ) .  

𝐸t = 𝐸xsin(𝜃) + 𝐸ycos(𝜃). 

Where  E x 𝐸x and  E y 𝐸y are the x and y components of our  E o u t 𝐸out 

field from the previous slide. This projection is what we will use to calculate 

our final signal. 
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To arrive at a clear and interpretable expression for our signal, we will now 

make the small-signal approximation. This is a very reasonable assumption 

in most experimental conditions, where the changes induced by the pump 

beam are indeed small perturbations. 

We assume that all the differential quantities are much less than 1. 

Specifically: - The differential absorption in the gas,  L Δ α 𝐿𝛥𝛼, is much, 

much less than 1. - The differential phase shift in the gas,  ω L Δ n c 
𝜔𝐿𝛥𝑛

𝑐
, 

is much, much less than 1. - And similarly, the window birefringence  Δ b r 

𝛥𝑏r and dichroism  Δ a w 𝛥𝑎w are also much, much less than 1. 



Under this assumption, the complex phase  δ 𝛿 we defined is a small 

quantity. This allows us to perform a Taylor series expansion of the 

exponential  exp ⁡ ( − i δ ) exp(−𝑖𝛿) that appeared in our expression for 

the output field. We expand it as:  exp ⁡ ( − i δ ) ≈ 1 − i δ exp(−𝑖𝛿) ≈ 1 −

𝑖𝛿. 

We will keep terms only through the first order in all of these small 

quantities. This linearizes the problem and will give us a very clean final 

result for the transmitted field. 
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Applying the small-signal approximation to our expression for the 

transmitted field  E t 𝐸t gives us this wonderfully simple and insightful result: 

 E t 𝐸t is approximately equal to  E 0 𝐸0 times a complex phase factor  e i ω 

t − i Φ 0 𝑒𝑖𝜔𝑡−𝑖𝛷0, all multiplied by the simple sum  ( θ + δ ) (𝜃 + 𝛿). 

Let's pause and appreciate this equation. It tells us that the amplitude of 

the light reaching the detector is proportional to the sum of two independent 

terms, our two "control knobs." 

1. The first term is  θ 𝜃, the deliberate, mechanical uncrossing angle of the 

analyzer. This is a static, controllable parameter that we can set in the lab. 

2. The second term is  δ 𝛿, the complex phase which contains all the 

interesting, pump-induced physics: the rotation and dichroism from our 

atomic sample,  Δ n 𝛥𝑛 and  Δ α 𝛥𝛼, as well as the parasitic window 

effects. 



The final signal will arise from the interplay and interference of these two 

terms. 
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Now we can finally calculate the signal that our detector measures. 

Detectors like photodiodes are square-law detectors; they measure 

intensity, which is proportional to the electric field amplitude squared. 

### Slide 11: the general expression for the Detector Intensity 

This brings us to Slide 11, the general expression for the Detector Intensity. 

The intensity,  I T 𝐼T, is given by a constant times the permittivity of free 

space,  ϵ 0 𝜖0, times the modulus squared of the transmitted field 

amplitude,  E t 𝐸t. Using our result from the last slide, this means the 

intensity is proportional to the modulus squared of the quantity  ( θ + δ ) 

(𝜃 + 𝛿). So,  I T 𝐼T is proportional to  | θ + δ | 2 |𝜃 + 𝛿|2. 

But we have one more piece of experimental reality to include. Even the 

best polarizers are not perfect. When they are ideally crossed, they don't 

block 100% of the light. There is always a small "residual transmission" or 

"leakage." We characterize this by the extinction ratio,  ξ 𝜉 (the Greek letter 

xi), which is defined as the ratio of the residual intensity transmitted through 

crossed polarizers,  I r e s 𝐼res, to the incident intensity,  I 0 𝐼0. Typically, for 

good polarizers,  ξ 𝜉 is a very small number, on the order of  10 − 6 10−6 to  

10 − 8 10−8. This  ξ 𝜉 term will act as a fundamental background floor in our 

measurement. 



Finally, to simplify the final expression, it's convenient to define a "shifted 

angle,"  θ ′ 𝜃′ (theta-prime), which absorbs the static window birefringence 

term. We define: 

 θ ′ = θ + ω 2 c Δ b r .  

𝜃′ = 𝜃 +
𝜔

2 𝑐
 𝛥𝑏r. 

This combines the mechanical uncrossing angle with the static window 

rotation into a single parameter. 
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Putting all of these pieces together—the squared amplitude, the finite 

extinction ratio  ξ 𝜉, and the parasitic window effects—we arrive at the final 

expression for the total detected signal,  I T ( ω ) 𝐼T(𝜔), as a function of the 

laser frequency omega. The equation looks a bit complex, but we can 

break it down: 

 I T ( ω ) = I 0 e − α L − a w [ ξ + θ ′ 2 + ( 1 2 Δ a w ) 2 + 1 2 θ ′ L Δ α ( ω ) + 

ω 2 c θ ′ L Δ n ( ω ) + … ]  

𝐼T(𝜔) = 𝐼0𝑒
−𝛼𝐿−𝑎w [𝜉 + 𝜃′2 + (

1

2
𝛥𝑎w)

2

+
1

2
𝜃′𝐿𝛥𝛼(𝜔) +

𝜔

2 𝑐
𝜃′𝐿𝛥𝑛(𝜔) + ⋯ ] 

Let's dissect this. 

- The  I 0 e − α L − a w 𝐼0𝑒
−𝛼𝐿−𝑎w term out front is just the overall 

transmitted intensity, accounting for the average absorption in the gas and 

windows. - Inside the brackets, the first three terms ( ξ 𝜉,  θ ′ 2 𝜃′2, and the  

Δ a w 𝛥𝑎w squared term) are all independent of the laser frequency 



detuning. They form a constant DC background. - The last two terms are 

the ones we care about. They are the frequency-dependent contributions 

that constitute our spectroscopic signal. 

Let's highlight these two contributions of interest: 

1. A "Dispersion-type term," which is proportional to  θ ′ 𝜃′ times  Δ n ( ω ) 

𝛥𝑛(𝜔). But through the Kramers-Kronig relations, this is also related to  Δ α 

( ω ) 𝛥𝛼(𝜔). This term's shape will be dispersive, or anti-symmetric. 2. A 

"Lorentzian-type term," which arises from the cross-term between the gas 

signal  Δ α ( ω ) 𝛥𝛼(𝜔) and the window dichroism  Δ a w 𝛥𝑎w. Its shape will 

be Lorentzian, or symmetric. 

The relative strength of these two terms can be controlled by our 

experimental parameters,  θ ′ 𝜃′ and  Δ a w 𝛥𝑎w. 
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To understand the shape of our signal, we need a model for the frequency 

dependence of the differential absorption,  Δ α ( ω ) 𝛥𝛼(𝜔). This is the 

subject of Slide 12. 

The key physical insight is that the signal is generated only by those 

molecules that are simultaneously in resonance with both the pump and the 

probe beams. As we established, this only happens for the  v z ≈ 0 𝑣z ≈ 0 

velocity class, when the laser is tuned near the line center  ω 0 𝜔0. 

Therefore, the lineshape of our signal is not the Doppler-broadened 

Gaussian profile. Instead, it's the natural, homogeneous lineshape of the 

transition, which is a Lorentzian. The width of this Lorentzian is the 



homogeneous half-width,  γ s 𝛾s (gamma-sub-s). This width includes 

natural broadening, collisional broadening, and, importantly, power 

broadening from the strong pump beam. 

To describe the lineshape mathematically, it's convenient to define a 

dimensionless detuning parameter, which we'll call  x 𝑥. 

 x 𝑥 is defined as the frequency detuning from line center,  ( ω 0 − ω ) 

(𝜔0 − 𝜔), normalized by the homogeneous half-width at half-maximum, 

which is  γ s / 2 𝛾s/2. 

 x = ω 0 − ω γ s / 2  

𝑥 =
𝜔0 − 𝜔

𝛾s/2
 

When  x = 0 𝑥 = 0, we are at the exact line center.  x = 1 𝑥 = 1 means we 

are detuned by one half-width. 

With this definition, the Lorentzian change in the absorption coefficient has 

a very simple form. 
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The frequency-dependent differential absorption coefficient,  Δ α ( ω ) 

𝛥𝛼(𝜔), is given by a classic Lorentzian profile: 

 Δ α ( ω ) = Δ α 0 1 + x 2  

𝛥𝛼(𝜔) =
𝛥𝛼0

1 + 𝑥2 



Let's define the terms here: -  Δ α 0 𝛥𝛼0 (Delta alpha naught) is the peak 

differential absorption that occurs at the line center, where  x = 0 𝑥 = 0. It 

represents the maximum change in absorption induced by the pump. - Its 

units are typically inverse centimeters, or wavenumbers. - And  x 𝑥 is the 

dimensionless detuning we just defined. 

This symmetric, bell-shaped Lorentzian function describes how the 

absorption part of our signal varies as we scan the laser frequency across 

the resonance. 
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Now we move to the other crucial component of our signal: the dispersion 

part, which arises from the differential refractive index,  Δ n ( ω ) 𝛥𝑛(𝜔). 

This is the topic of Slide 13. 

One of the most beautiful and fundamental principles in physics is 

causality, which leads to the Kramers–Kronig relations. These relations 

state that the real and imaginary parts of the linear response function of a 

system—in our case, the susceptibility,  χ 𝜒 (chi)—are not independent. 

The real part of  χ 𝜒 gives the refractive index, and the imaginary part gives 

the absorption. If you know one of them over all frequencies, you can, in 

principle, calculate the other. 

We don't need to perform the full integral here. Using the standard 

dispersion integral for a single Lorentzian absorption profile, we can directly 

write down the corresponding change in refractive index,  Δ n ( ω ) 𝛥𝑛(𝜔). 

The result is: 



 Δ n ( ω ) = c ω 0 Δ α 0 x 1 + x 2 .  

𝛥𝑛(𝜔)  =  
𝑐

𝜔0
 𝛥𝛼0  

𝑥

1 + 𝑥2. 

Let's examine the important features of this dispersion profile: 

1. Notice the factor of  x 𝑥 in the numerator. This makes the function odd in  

x 𝑥. It's an antisymmetric profile. It's positive on one side of the resonance 

and negative on the other. 2. Because it's an odd function, it has a zero-

crossing exactly at the line center, where  x = 0 𝑥 = 0, which corresponds 

to  ω = ω 0 𝜔 = 𝜔0. 

This zero-crossing is what makes the dispersion signal so incredibly useful 

for laser frequency locking, as it provides a perfect, unambiguous lock 

point. 
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We now have all the ingredients in hand. We have the general expression 

for the detector intensity from Slide 11, and we have the specific functional 

forms for the Lorentzian absorption  Δ α ( ω ) 𝛥𝛼(𝜔) and the dispersive 

refractive index  Δ n ( ω ) 𝛥𝑛(𝜔) from the last two slides. 

The task now, as outlined in Slide 14, is to substitute these results back 

into our intensity expression to get the complete, final signal shape for the 

case of a circularly polarized pump. This will give us a comprehensive 

formula that describes what we actually measure in the experiment as we 

scan the laser frequency. 
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Here it is, the complete expression for the signal,  S c p ( ω ) 𝑆𝑐𝑝(𝜔), where 

'cp' stands for circularly polarized pump. It looks a bit formidable, but we 

will break it down term by term. 

 S^{cp}(\omega) = I_0 \cdot e^{-\alpha L - a_\text{w}} \left\{ 

\left[\xi + \theta'^2 + \tfrac{1}{4}\,\Delta a_\text{w}^{2\right]} 

+ \tfrac{1}{2}\,\theta'\,\Delta\alpha_0 L \cdot \left[\frac{x}{1 + x^2}\right] 

+ \left[\tfrac{1}{4}\,\Delta a_\text{w}\,\Delta\alpha_0 L + \left(\tfrac{\Delta\alp

ha_0 L}{4}\right)^2\right] \cdot \left[\frac{1}{1 + x^2}\right] 

+ \tfrac{3}{4} \cdot \left[\frac{\Delta\alpha_0 x}{1 + x^2}\right]^2 \right\}  

$$S^{cp}(\omega) = I_0 \cdot e^{-\alpha L - a_\text{w}} \left\{     \left[\xi + 

\theta'^2 + \tfrac{1}{4}\,\Delta a_\text{w}^{2\right]}     + 

\tfrac{1}{2}\,\theta'\,\Delta\alpha_0 L \cdot \left[\frac{x}{1 + x^2}\right]     + 

\left[\tfrac{1}{4}\,\Delta a_\text{w}\,\Delta\alpha_0 L + 

\left(\tfrac{\Delta\alpha_0 L}{4}\right)^2\right] \cdot \left[\frac{1}{1 + 

x^2}\right]     + \tfrac{3}{4} \cdot \left[\frac{\Delta\alpha_0 x}{1 + x^2}\right]^2     

\right\}$$ 

Let's analyze the behavior of each term, as suggested by the slide. 

The first line, inside the curly braces, contains  ξ 𝜉,  θ ′ 2 𝜃′2, and the  Δ a w 

2 𝛥𝑎w
2  term. None of these depend on the laser frequency detuning  x 𝑥. 

This is our static, DC background signal. 
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Let's continue dissecting our signal equation. 

The second line contains the term proportional to  x 1 + x 2 
𝑥

1+𝑥2
. As we saw 

from the Kramers–Kronig relations, this is the pure dispersion shape. It is 

antisymmetric about the line center. This part of the signal is primarily 

controlled by the uncrossing angle,  θ ′ 𝜃′. 

The third line has terms proportional to  1 1 + x 2 
1

1+𝑥2
. This is the pure 

Lorentzian shape, which is symmetric about the line center. This part of 

the signal is primarily driven by the window dichroism,  Δ a w 𝛥𝑎w, and also 

by a term quadratic in the sample absorption itself. 

The fourth line is proportional to the square of the dispersion shape. This is 

a higher-order term. In the typical small-signal limit where  Δ α 0 L 𝛥𝛼0𝐿 is 

much less than 1, this term is usually negligible and can be ignored. 

So, our total signal is a sum of a constant background, a dispersion 

component, and a Lorentzian component. 
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In many applications, particularly for laser locking, the goal is to obtain a 

clean, pure dispersion signal. So, how can we achieve that? Slide 15 tells 

us how to set up the experiment to isolate the dispersion term. 

Looking back at our signal equation, the dispersion term is multiplied by  θ ′ 

𝜃′, and the main Lorentzian term is multiplied by  Δ a w 𝛥𝑎w, the window 

dichroism. To isolate the dispersion term, we need to make its pre-factor 

large and the Lorentzian's pre-factor small. 



Therefore, the condition is to set  Δ a w 𝛥𝑎w approximately to zero, and  θ ′ 

𝜃′ to be non-zero. 

Practically, how do we do this? 

1. To make  Δ a w 𝛥𝑎w near zero, we must minimize the stress in the cell 

windows. This can be done by using high-quality, strain-free glass, and by 

carefully mounting the windows. Sometimes, experimenters will even gently 

squeeze the cell with a clamp to actively compensate for the birefringence 

caused by the pressure difference between the inside and outside of the 

cell. 

2. To make  θ ′ 𝜃′ non-zero, we simply need to deliberately uncross the 

polarizers P1 and P2 by a small angle,  θ 𝜃. The optimal angle, as we will 

see when we discuss signal-to-noise, is typically chosen to be on the order 

of the square root of the extinction ratio,  ξ 𝜉. 
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What is the outcome of setting up the experiment this way? 

The outcome is that the term proportional to  θ ′ Δ α 0 𝜃′𝛥𝛼0 becomes the 

dominant frequency-dependent part of the signal. This yields a nearly pure 

dispersion peak, with its characteristic anti-symmetric shape and zero-

crossing at the line center. 

And why is this so useful? As I've mentioned, it's perfect for laser-frequency 

locking. The steep, linear slope of the dispersion signal as it passes 

through zero acts as an ideal error signal. If the laser frequency drifts 

slightly off resonance, a positive or negative voltage is generated. This 



voltage can be fed back into the laser's control electronics to push the 

frequency back to the exact line center. This provides a robust and stable 

lock without the need for additional frequency modulation, a technique 

known as frequency dithering, which can introduce its own complications. 
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### Slide 16 

Now let's consider a variation of the experiment. What happens if we use a 

linearly polarized pump beam instead of a circular one? This is the topic of 

Slide 16. 

When the pump beam is linearly polarized (let's say oriented at 45 degrees 

to the probe's x-axis for maximum effect), the angular momentum selection 

rule changes. For a pump polarized along the quantization axis, the 

selection rule is  Δ M = 0 𝛥𝑀 = 0. This creates a different kind of anisotropy 

in the medium, known as alignment rather than orientation. 

We can perform an analogous derivation, starting with this new selection 

rule. I won't go through all the steps, but the result is a modified signal 

expression. The signal for a linearly polarized pump,  S L P ( ω ) 𝑆𝐿𝑃(𝜔), is 

given by: 

 S L P ( ω ) = I 0 e − α L − a w { [ ξ + 1 4 θ 2 Δ a w 2 + ( ω 2 c Δ b r ) 2 ] + Δ 

b r 4 ω c Δ α 0 L [ x 1 + x 2 ] + [ − 1 4 θ Δ a w Δ α 0 L + ( Δ α 0 L 4 ) 2 ] [ 1 

1 + x 2 ] } .  



𝑆𝐿𝑃(𝜔) = 𝐼0 𝑒
−𝛼𝐿−𝑎𝑤{[𝜉 + 1 4⁄ 𝜃2 𝛥𝑎𝑤

2 + (𝜔 2 𝑐⁄  𝛥𝑏𝑟)
2]

 +
𝛥𝑏𝑟

4
 
𝜔

𝑐
 𝛥𝛼0𝐿 [𝑥 1 + 𝑥2⁄ ]

 +[− 1 4⁄ 𝜃 𝛥𝑎𝑤  𝛥𝛼0𝐿 + (𝛥𝛼0𝐿 4⁄ )2] [1 1 + 𝑥2⁄ ]}.
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Let's compare this new signal expression for a linear pump with the one we 

derived for a circular pump. 

The most striking feature is an interchange of roles between the 

experimental parameters. 

- In the circular pump case, the dispersion term was proportional to the 

analyzer uncrossing angle  θ 𝜃. - Now, in this linear pump case, look at the 

dispersion term (the one with  x / ( 1 + x 2 ) 𝑥/(1 + 𝑥2)). Its coefficient is 

proportional to  Δ b r 𝛥𝑏r, the window birefringence. - Conversely, the 

Lorentzian term (the one with  1 / ( 1 + x 2 ) 1/(1 + 𝑥2)) is now proportional 

to the analyzer angle  θ 𝜃 and the window dichroism  Δ a w 𝛥𝑎w. 

This is a fascinating and important result. The choice of pump polarization 

fundamentally changes how different experimental imperfections and 

parameters contribute to the final lineshape. Understanding this is key to 

correctly interpreting your data and designing your experiment. 
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So far, we have implicitly assumed a simple two-level system, where the 

pump and probe lasers are one and the same, driving a single transition 

between a lower level (which might have degenerate sublevels) and an 



upper level. However, the technique is more versatile than that. This brings 

us to pump-probe level schemes beyond two levels. 

By using two independent, tunable lasers—one for the pump and one for 

the probe—we gain enormous flexibility. We can explore a variety of level 

schemes. 

1. The Two-level scheme is the standard one we've been discussing. The 

pump and probe have the same frequency and interact with a common 

lower and upper level, including their degenerate M-sublevels. 

2. A V-type scheme involves one common lower level and two different 

upper levels. The pump laser drives the transition to one upper level, while 

the probe laser drives the transition from the same lower level to a different 

upper level. 

3. A Lambda-type scheme, denoted by the Greek letter Lambda, involves 

two different lower levels and one common upper level. Here, the pump 

might excite atoms from one lower level to the common upper level, and 

the probe would measure a transition from a different lower level to that 

same upper level. 
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The key takeaway from these different schemes is this: Polarization 

spectroscopy can be used to probe any transition that shares either the 

lower or the upper state with the pumped transition. 

Why does this work? Let's think about it. In a V-type scheme, the pump 

creates an anisotropic population distribution in the shared lower state. The 



probe, being resonant with a transition out of that same lower state, will 

"see" this anisotropy and generate a signal. 

In a Lambda-type scheme, the pump depletes the population of a lower 

state by moving atoms to the shared upper state. This can create an 

oriented population in the upper state. If the probe is resonant with a 

transition into that same upper state, it will also experience a modified, 

anisotropic environment and generate a signal. 

This flexibility makes polarization spectroscopy a powerful tool for exploring 

connections and interactions between different energy levels in complex 

atoms and molecules. 
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This slide provides simple energy level diagrams to visualize the schemes 

we just discussed. 

On the left, we have the Two-Level System. A single lower level and a 

single upper level are shown. Both the pump (pink arrow) and the probe 

(blue arrow) are resonant with this same transition. 

In the center is the V-Type System. It looks like the letter 'V'. There is one 

common lower level. The pump excites the system to one upper level, 

while the probe beam monitors a transition to a second, different upper 

level. 

On the right is the Lambda-Type System, which looks like an inverted 'V'. 

Here we have two distinct lower levels and one common upper level. The 

pump excites the system from one of the lower levels, and the probe 



examines a transition from the other lower level up to that same common 

upper level. This scheme is particularly important in fields like coherent 

population trapping and electromagnetically induced transparency. 
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### Slide 18: Saturation Parameter 

Let's now dig deeper into the quantitative aspects of the interaction. Slide 

18 introduces the Saturation Parameter,  S 𝑆, which quantifies the strength 

of the pump beam's interaction with the atoms. 

The dimensionless saturation parameter,  S 𝑆, is defined as: 

 S = 8 σ J J 1 M I 2 γ s R ∗  ℏ  ω .  

𝑆 =
8 𝜎𝐽𝐽1𝑀  𝐼2

𝛾s  𝑅
∗ ℏ 𝜔

 . 

Let's break down these terms: -  σ J J 1 M 𝜎𝐽𝐽1𝑀 is the absorption cross-

section for the specific pump transition out of the sublevel  | J , M ⟩  |𝐽, 𝑀⟩. It 

has units of area, like centimeters squared. -  I 2 𝐼2 is the intensity of the 

pump beam, in units like Watts per square centimeter. -  γ s 𝛾s is the 

saturated homogeneous linewidth, which we've encountered before. It has 

units of inverse seconds. -  R ∗  𝑅∗ is the population-relaxation rate out of 

the level, accounting for all decay channels. -  ℏ  ω ℏ𝜔 is, of course, the 

energy of a single photon. 

When  S 𝑆 is much less than 1, we are in the weak-pumping regime. When  

S 𝑆 is on the order of 1 or greater, the pump is strong enough to 



significantly deplete the ground state population, and we say the transition 

is saturated. 
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The saturation parameter  S 𝑆 directly tells us how the population in a given 

sub-level is affected by the pump beam. After the pump has been applied, 

the new, saturated population, which we'll call  N M S 𝑁𝑀
𝑆 , is related to the 

initial population,  N M 0 𝑁𝑀0, by this simple formula: 

 N M S = N M 0 1 + S .  

𝑁𝑀
𝑆 =

𝑁𝑀0

1 + 𝑆
. 

So, if  S = 1 𝑆 = 1, the population is cut in half. If  S 𝑆 is very large, the 

population approaches zero. 

This allows us to write a more fundamental expression for the peak 

differential absorption,  Δ α 0 𝛥𝛼0, that we introduced earlier. It can be 

shown that  Δ α 0 𝛥𝛼0 is equal to the unsaturated absorption coefficient,  α 

0 𝛼0, times the on-resonance saturation parameter,  S 0 𝑆0, times a purely 

geometric factor, which we denote as  Δ C J J 1 ∗  𝛥𝐶𝐽𝐽1
∗ . 

 Δ α 0 = α 0 S 0 Δ C J J 1 ∗  .  

𝛥𝛼0 = 𝛼0 𝑆0 𝛥𝐶𝐽𝐽1
∗ . 

This expression is very powerful. It separates the physics into three parts:  

α 0 𝛼0, which depends on the total number of atoms;  S 0 𝑆0, which 

depends on the laser power and intrinsic atomic properties; and  Δ C 𝛥𝐶, 



which depends only on the angular momentum quantum numbers of the 

transition. 
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To be clear about the terms in our new expression for  Δ α 0 𝛥𝛼0: 

-  S 0 𝑆0 is the saturation parameter evaluated at the line center, where the 

interaction is strongest. -  Δ C J J 1 ∗  𝛥𝐶𝐽𝐽1
∗  (Delta C star sub J J one) is a 

purely geometric factor that encapsulates all the angular momentum 

algebra. It depends on the  J 𝐽 values of the levels, the type of transition ( P 

𝑃,  Q 𝑄, or  R 𝑅 branch), and the polarization of the pump beam. We will 

calculate this factor next. It’s what determines the relative strengths of the 

signals for different transitions. 
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This brings us to the core of the geometric factor: the Clebsch–Gordan 

weighted cross-sections, as described on Slide 19. 

The absorption cross-section for a probe photon with a specific circular 

polarization ( σ + 𝜎+ or  σ − 𝜎−) on a transition from a specific  M 𝑀 sub-

level is not uniform. We can write the differential absorption per sub-level,  

σ J J 1 M ± 𝜎𝐽𝐽1𝑀
± , as: 

 σ J J 1 M ± = σ J J 1 × C ( J , J 1 , M , M ± 1 ) .  

𝜎𝐽𝐽1𝑀
± = 𝜎𝐽𝐽1

× 𝐶(𝐽, 𝐽1, 𝑀, 𝑀 ± 1). 

Let’s break this down: 



-  σ J J 1 𝜎𝐽𝐽1
 is the orientation-averaged cross-section for the transition. 

This is the value you would measure if the sample were isotropic. 

-  C 𝐶 is the square of the appropriate Clebsch–Gordan coefficient for the 

specific transition from sub-level  M 𝑀 to sub-level  M ± 1 𝑀 ± 1. Clebsch–

Gordan coefficients are the mathematical tools from quantum mechanics 

that tell us how to add angular momenta. They determine the relative 

probabilities of transitions between different  M 𝑀 sub-levels. They are, in 

essence, the "rules" of angular momentum conservation made quantitative. 
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To find the total macroscopic differential absorption,  Δ α 𝛥𝛼, we need to 

sum the contributions from all the M sub-levels, taking into account the 

population changes induced by the pump. 

The total differential absorption for a transition from a manifold J to a 

manifold J1 is given by the sum over all M of: The population in state M,  N 

M 𝑁M, times the difference in cross-sections,  σ J J 1 M + − σ J J 1 M − 

𝜎𝐽𝐽1𝑀
+ − 𝜎𝐽𝐽1𝑀

− . 

This involves a lengthy summation of Clebsch–Gordan coefficients. 

Fortunately, this algebra has been worked out, and the result can be 

encapsulated in that single numerical factor, \(\Delta C^_{J J_1}\), that we 

introduced. This factor essentially performs the weighted sum for us. The 

values of \(\Delta C^\) have been tabulated and plotted for various cases, 

which we’ll see on the next slide. This saves us from having to re-calculate 

these sums for every new experiment. 
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So, let's look at what this geometric factor,  Δ C J J 1 ∗  𝛥𝐶𝐽𝐽1
∗ , depends on. 

This is outlined on Slide 20. 

There are two separate cases to consider, based on the pump polarization, 

as this determines the selection rules. 

1. Linear pump: This corresponds to the selection rule  Δ M = 0 𝛥𝑀 = 0. 2. 

Circular pump: This corresponds to the selection rule  Δ M = ± 1 𝛥𝑀 =

±1. 

Within each of these cases, the value of  Δ C ∗  𝛥𝐶∗ also depends heavily 

on the type of rotational branch the transition belongs to. This is determined 

by the change in the J quantum number,  Δ J 𝛥𝐽: 

- P-branch:  Δ J = − 1 𝛥𝐽 = −1. - Q-branch:  Δ J = 0 𝛥𝐽 = 0. - R-branch:  

Δ J = + 1 𝛥𝐽 = +1. 

So, for any given transition, we can look up or calculate the value of  Δ C ∗  

𝛥𝐶∗ based on the pump polarization we choose and the branch type of the 

transition. 
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There is one more physical parameter that the geometric factor  Δ C ∗  𝛥𝐶∗ 

depends on, and that is the ratio of the population relaxation rates of the 

upper and lower levels. This is characterized by the parameter  r 𝑟, defined 

as: 



 r = γ J − γ J 1 γ J + γ J 1  

𝑟 =
𝛾J − 𝛾𝐽1

𝛾J + 𝛾𝐽1

 

where  γ J 𝛾J and  γ J 1 𝛾𝐽1
 are the relaxation rates of the two levels 

involved. 

However, for our purposes, the most important information is the qualitative 

take-away, which is immensely powerful for practical spectroscopy. 

1. A linear pump configuration strongly favors and enhances signals from 

Q-branch transitions. 2. A circular pump configuration strongly favors and 

enhances signals from P-branch and R-branch transitions. 

This provides an incredibly powerful diagnostic tool. If you have a complex, 

congested spectrum with many overlapping lines and you don't know which 

transition is which, you can simply record the spectrum twice: once with a 

linear pump and once with a circular pump. The lines that are strong in the 

first spectrum are Q-lines. The lines that are strong in the second are P or 

R lines. This selectivity is one of the most celebrated features of 

polarization spectroscopy. 
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These graphs beautifully illustrate the selectivity we just discussed. They 

plot the calculated relative signal strength, which is proportional to our  Δ C 

∗  𝛥𝐶∗ factor, as a function of the rotational quantum number  J 𝐽. 

Let's look at the top graph, for Linear Pump Polarization. The vertical axis 

is the relative signal, and the horizontal axis is  J 𝐽. The blue line represents 



the signal for a Q-branch ( Δ J = 0 𝛥𝐽 = 0). Notice that it is large and 

relatively constant for all but the very lowest  J 𝐽 values. Now look at the red 

and green lines for the P- and R-branches. Their signals are much, much 

smaller. This plot visually confirms that a linear pump dramatically 

enhances Q-branch signals. 

Now, let's examine the bottom graph, for Circular Pump Polarization. The 

situation is completely reversed. The red line (P-branch,  Δ J = − 1 𝛥𝐽 =

−1) and the green line (R-branch,  Δ J = + 1 𝛥𝐽 = +1) show large signals 

that grow with increasing  J 𝐽. In contrast, the blue line for the Q-branch is 

much smaller in magnitude. This confirms that a circular pump is the right 

choice for observing P- and R-branch transitions. These plots are the 

theoretical basis for the powerful spectral assignment capability of the 

technique. 
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Let's look at a real-world application of this principle. Slide 21 shows an 

example from the spectrum of the Cesium dimer molecule, Cs₂ , recorded 

around a wavelength of 627.8 nanometers. 

Two spectra were recorded of the exact same spectral region. 

- The upper trace was taken using a linear pump. The result is exactly as 

the theory predicts: the Q-lines, which are transitions with  Δ J = 0 𝛥𝐽 = 0, 

dominate the spectrum, while the P and R lines are very weak. - The lower 

trace was taken using a circular pump. Again, in perfect agreement with 

theory, the P and R lines are now strongly enhanced, while the Q-lines 



have all but disappeared, appearing only as small, residual dispersive 

features. 

This is a stunning demonstration of the selectivity of polarization 

spectroscopy. It allows an experimenter to effectively "turn on" and "turn 

off" different types of transitions simply by rotating a half-wave plate to 

change the pump's polarization from linear to circular. This is an invaluable 

technique for assigning and understanding complex molecular spectra. 
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Here we see the actual data from the Cesium dimer example. The plot 

shows signal intensity in arbitrary units versus wavelength in nanometers. 

The Upper Trace, for linear pump polarization, is shown in blue. You can 

see a very strong, sharp feature right in the middle, which is clearly labeled 

as the dominant Q-lines. To the sides, where the P and R lines would be, 

the signal is essentially flat and weak. 

The Lower Trace, for circular pump polarization, is shown in red. The 

change is dramatic. The central Q-line signal is now suppressed, appearing 

as just a small residual wiggle. Instead, two massive signals have 

appeared on either side, labeled as "P/R Lines Enhanced." These 

correspond to the P- and R-branch transitions. 

This figure is a perfect textbook illustration of how the choice of pump 

polarization acts as a powerful filter, allowing us to disentangle different 

components of a complex spectrum. 
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Having thoroughly explored the physics and applications, let's return to one 

of the technique's key advantages: the signal-to-noise ratio. Let's analyze 

the case for a dispersion signal, which is often the most useful. 

The dominant source of noise in our measurement is typically fluctuations 

in the detector background. The background intensity,  I b g 𝐼bg, comes 

from the residual transmission of the polarizers,  ξ 𝜉, and the deliberate 

uncrossing,  θ 𝜃. So, the background is: 

 I b g = I 0 ⋅  e − α L − a w ⋅  ( ξ + θ 2 )  

𝐼bg = 𝐼0 ⋅ 𝑒−𝛼𝐿−𝑎w ⋅ (𝜉 + 𝜃2) 

. 

The signal we want to measure is the peak-to-peak dispersion amplitude, 

which we'll call  Δ S max 𝛥𝑆max. From our previous formulas, this is given 

by: 

 Δ S max = I 0 ⋅  e − α L − a w ⋅  θ ⋅  Δ α 0 ⋅  L  

𝛥𝑆max = 𝐼0 ⋅ 𝑒−𝛼𝐿−𝑎w ⋅ 𝜃 ⋅ 𝛥𝛼0 ⋅ 𝐿 

. 

To quantify the noise, we can define an intensity-noise coefficient, 'a', such 

that the noise on our incident laser beam is  I 0 / a 𝐼0/𝑎. For example, if the 

laser has 1% intensity noise, then 'a' would be 100. This noise will 

propagate through to our background measurement. 
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Now we can write down the signal-to-noise ratio,  S / N 𝑆/𝑁. The signal is  

Δ S max 𝛥𝑆max and the noise is the background  I b g 𝐼𝑏𝑔 divided by our 

noise coefficient  a 𝑎. Hence, after canceling common terms, we get: 

 S N = a θ Δ α 0 L ξ + θ 2 .  

𝑆

𝑁
= 𝑎 

𝜃 𝛥𝛼0𝐿

𝜉 + 𝜃2 . 

Now, we can optimize this! The angle  θ 𝜃 is a parameter we can control. 

To find the maximum possible signal-to-noise ratio, we take the derivative 

of this expression with respect to  θ 𝜃 and set it to zero. A quick calculation 

shows that the optimum occurs when  θ 2 = ξ 𝜃2 = 𝜉, or when the 

uncrossing angle  θ 𝜃 is equal to the square root of the polarizer extinction 

ratio. This is a very important experimental rule of thumb. 

Plugging this optimal  θ 𝜃 back into the expression gives the maximum 

achievable signal-to-noise ratio: 

 ( S / N ) max = a Δ α 0 L 2 ξ .  

(𝑆/𝑁)max = 𝑎 
𝛥𝛼0𝐿

2 √𝜉
. 

Let's compare this to the S/N for saturation spectroscopy, which can be 

shown to be  ( S / N ) sat = 1 2 a α 0 L (𝑆/𝑁)sat = 1 2⁄  𝑎 𝛼0𝐿. The ratio of 

these two gives us the gain factor of our technique. 
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After accounting for the geometric factors, the final expression for the gain 

in sensitivity of polarization spectroscopy over saturation spectroscopy is: 

 Gain = Δ C J J 1 ∗  2 ξ .  

Gain =
𝛥𝐶𝐽𝐽1

∗

2√𝜉
. 

Let's look at this beautiful result. The gain depends on two things: 1.  Δ C ∗  

𝛥𝐶∗, the geometric factor, which is typically on the order of 1. 2.  ξ 𝜉, the 

extinction ratio of our polarizers. 

Since  ξ 𝜉 is a very small number, like  10 − 6 10−6 or  10 − 8 10−8, the 

square root of  ξ 𝜉 is also small ( 10 − 3 10−3 or  10 − 4 10−4). This means 

the gain factor can be enormous. If  ξ 𝜉 is  10 − 6 10−6, the gain is on the 

order of  1 2 × 10 − 3 1 2 × 10−3⁄ , which is 500. This is where the huge 

sensitivity improvement comes from. 
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### Slide 23 

Let's briefly consider the signal-to-noise ratio for the other case: generating 

Lorentzian signals. This is Slide 23. 

In this case, we keep the polarizers perfectly crossed, so our effective 

angle  θ ′ 𝜃′ is zero, but we assume we have a finite window dichroism,  Δ a 

w 𝛥𝑎w. It's also possible to generate Lorentzian signals by carefully tuning 

this window birefringence, for example by squeezing the cell. 



From our general signal formula, the maximum signal amplitude in this 

case,  Δ S max 𝛥𝑆max, is: 

 Δ S max = I 0 ⋅  e − α L − a w ⋅  Δ α 0 L 4 ⋅  ( Δ a w + 1 4 Δ α 0 L ) .  

𝛥𝑆max = 𝐼0 ⋅ 𝑒−𝛼𝐿−𝑎w ⋅
𝛥𝛼0𝐿

4
⋅ (𝛥𝑎w + 1 4⁄  𝛥𝛼0𝐿). 

The background intensity,  I b g 𝐼bg, is now: 

 I b g = I 0 ⋅  e − α L − a w ⋅  ( ξ + 1 4 Δ a w 2 ) .  

𝐼bg = 𝐼0 ⋅ 𝑒−𝛼𝐿−𝑎w ⋅ (𝜉 + 1 4⁄  𝛥𝑎w
2).

 

We can again form the ratio of signal to noise. 
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We can now optimize the signal-to-noise ratio for the Lorentzian case, this 

time by varying the window dichroism,  Δ a w 𝛥𝑎w. The optimal value for 

the window dichroism,  Δ a w , opt 𝛥𝑎𝑤,opt, is found to be approximately  4 ξ 

/ ( Δ α 0 L ) 4𝜉/(𝛥𝛼0𝐿), for the case where  ξ 𝜉 is much smaller than the 

absorption. 

If we insert this optimal value back into the  S / N S/N expression, we get a 

lengthy formula, but the most important feature is how it scales. The 

maximum  S / N S/N is proportional to  ( Δ α 0 L ) / ξ (𝛥𝛼0𝐿)/𝜉. Notice that 

this scales as one over  ξ 𝜉, not one over the square root of  ξ 𝜉 as in the 

dispersion case. This suggests that even larger enhancements are 

possible. 



The practical takeaway is that with good quality windows, where the 

intrinsic extinction  ξ 𝜉 is less than or equal to  10 − 8 10−8, and with proper 

tuning of the window birefringence, it is possible to achieve sensitivity 

improvement factors of 1,000 to 10,000 over conventional saturation 

spectroscopy. This is truly remarkable. 
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Let's make this concrete with a worked example using some realistic 

numbers. 

### Slide 24: 

Let's assume the following parameters for our experiment: 1. The 

geometric factor,  Δ C ∗  𝛥𝐶∗, is 0.5. A typical value. 2. The polarizer 

extinction ratio,  ξ 𝜉, is  10 − 6 10−6. This corresponds to reasonably good, 

but not exceptionally expensive, polarizers. 3. The unsaturated line-center 

absorption,  α 0 L 𝛼0𝐿, is  10 − 2 10−2, or 1%. This is a fairly weak 

transition. 4. The on-resonance saturation parameter,  S 0 𝑆0, is 0.1. We 

are weakly saturating the transition. 5. The laser intensity noise coefficient,  

a 𝑎, is  10 2 102, or 100, which corresponds to 1% intensity noise. 
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Now let's calculate the expected signal-to-noise ratios. 

First, for our dispersion signal in polarization spectroscopy, we use the 

formula  ( S / N ) p o l = a α 0 L S 0 Δ C ∗  2 ξ (𝑆/𝑁)𝑝𝑜𝑙 =
𝑎 𝛼0𝐿𝑆0𝛥𝐶∗

2√𝜉
. 

Plugging in the numbers... we have  100 × 10 − 2 × 0.1 × 0.5 2 10 − 6 



100×10−2×0.1×0.5

2√10−6
, which simplifies to  0.05 2 × 10 − 3 = 25 

0.05

2×10−3
= 25. So, we 

expect a signal-to-noise ratio of 25. That's a very clean signal. The slide 

shows an alternate calculation using  Δ α 0 𝛥𝛼0, leading to the same result. 

Now, for the standard saturation spectroscopy signal, the formula is  ( S 

/ N ) s a t = 1 2 a α 0 L S 0 (𝑆/𝑁)𝑠𝑎𝑡 =
1

2
 𝑎 𝛼0𝐿𝑆0. Plugging in the numbers:  

0.5 × 100 × 10 − 2 × 0.1 0.5 × 100 × 10−2 × 0.1, which equals 0.05. A 

signal-to-noise ratio of 0.05 means the signal is buried deep in the noise. It 

would be essentially impossible to see. 

The improvement factor is the ratio of the two,  25 0.05 
25

0.05
, which is 500. 

This numerical example powerfully demonstrates the orders-of-magnitude 

sensitivity gain that polarization spectroscopy provides under realistic 

laboratory conditions. It can turn an undetectable signal into a very clear 

one. 
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Let's discuss one final, but very important, practical consideration: noise 

mitigation. Specifically, a type of noise that arises from interference. This is 

Slide 25. 

A common problem in these experiments is that a small amount of the 

strong pump light can be back-scattered from the cell windows or other 

optical surfaces. This scattered pump light can travel back along the probe 

beam's path and interfere with the probe beam at the detector. 



Because the path length of this scattered light is sensitive to tiny vibrations 

and fluctuations in air density along the beam path, the phase of the 

interference term,  ϕ ( t ) 𝜙(𝑡), will fluctuate randomly. This creates a low-

frequency, drifting noise component that can be very difficult to deal with. 

The remedy is an elegant technique called rapid phase modulation or 

phase dithering. The idea is to intentionally modulate the phase of the 

pump beam at a high frequency. This is typically done by mounting the 

pump beam's retro-reflecting mirror, M2, on a piezoelectric transducer, or 

PZT. 

By applying a sinusoidal voltage to the PZT, we can make the mirror 

oscillate back and forth. If we make the amplitude of this oscillation large 

enough, such that the optical path length changes by more than a 

wavelength of the light, we are rapidly sweeping the phase of the pump 

beam through many cycles of  2 π 2𝜋. 
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How does this rapid phase modulation help? 

The key is in how we detect our signal. We use a lock-in amplifier, and we 

set its integration time constant to be very long, which corresponds to a 

detection frequency that is much, much lower than the rapid modulation 

rate,  f 𝑓, of the piezo. 

The coherent interference noise term now oscillates at this high frequency  

f 𝑓. By averaging or integrating the signal over a time period much longer 

than  1 / f 1/𝑓, this rapidly oscillating interference term averages to zero. 



However, the real polarization spectroscopy signal, which arises from the 

pump-induced birefringence, is an incoherent process with respect to this 

phase modulation. The population changes induced by the pump depend 

on its intensity, not its phase. Therefore, the real signal is not affected by 

the phase dither. 

The result is that the averaging process suppresses the unwanted coherent 

interference terms, while retaining our desired signal. 
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This diagram provides a schematic of the phase dithering technique. 

Panel A, on the top left, shows the setup. The pump beam hits mirror M2, 

which is mounted on a Piezo Transducer (PZT). A function generator drives 

the PZT with a fast sinusoidal signal,  f m o d 𝑓mod, causing the mirror 

position, and thus the pump path length  Δ L ( t ) 𝛥𝐿(𝑡), to oscillate rapidly. 

Panel B shows the sinusoidal drive voltage applied to the PZT as a function 

of time. 

Panel C illustrates the timing and averaging principle. The rapid phase 

modulation signal,  f m o d 𝑓mod, represents the fast-oscillating interference 

noise. The lock-in amplifier effectively integrates the total signal over a long 

time window, shown as the orange box. The key condition is that the lock-

in’s detection frequency,  f 𝑓, is much slower than the modulation 

frequency,  f m o d 𝑓mod. 

As the mechanism box explains, the fast-oscillating cosine term from the 

interference noise averages to zero over the long integration window, 



effectively eliminating this source of noise from our measurement. This is a 

common and essential trick for achieving the highest sensitivity in many 

optical experiments. 
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summary of the numerous 

advantages of Polarization 

Spectroscopy 

First, High resolution. Like other Doppler-free techniques, the resolution is 

not limited by thermal motion. In practice, the primary limitation on 

resolution is often the small residual angle between the pump and probe 

beams. Any non-zero angle re-introduces a small amount of Doppler 

broadening, known as the residual Doppler width. With careful alignment, 

this can be made extremely small, allowing for exceptionally high-resolution 

measurements. 

Second, Superior sensitivity. This is the key advantage we have 

emphasized throughout. Typically, polarization spectroscopy offers a 

sensitivity that is 100 to 1000 times greater than that of standard saturation 

spectroscopy. The ultimate limit on this sensitivity is determined by the 

quality of the polarizers (the extinction ratio,  ξ 𝜉) and the quality of the cell 

windows (the residual window birefringence). 
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Continuing with the advantages: 

Branch selectivity. As we demonstrated with the Cesium dimer example, 

we can choose the pump polarization—linear or circular—to selectively 

emphasize either P and R lines, or Q lines. This makes polarization 

spectroscopy a powerful diagnostic tool for making unambiguous 

assignments in complex, congested spectra. 

Intrinsic dispersion output. By simply uncrossing the polarizers by a tiny 

amount, the technique naturally produces a dispersion-shaped signal. This 

provides an ideal error signal for laser frequency stabilization, without the 

need for any extra frequency dithering of the laser itself. This simplifies the 

experimental setup and avoids adding unwanted modulation sidebands to 

the laser. 

Broad applicability. The principles we've discussed are very general. 

Polarization spectroscopy has been successfully demonstrated and widely 

used on a vast range of systems, including many different atoms and 

molecules, such as Iodine (I₂ ), Cesium dimer (Cs₂ ), and even more exotic 

species like rare-gas excimers. 
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Finally, to put everything together, here is a concluding roadmap for 

implementing polarization spectroscopy successfully in the laboratory. This 

is a practical checklist for any student setting out to build such an 

experiment. 



1. First, procure the best polarizers you can afford. Ensure you are using 

high extinction-ratio polarizers, with  ξ 𝜉 value of less than  10 − 7 10−7, 

if possible. This is the foundation of the technique's sensitivity. 

2. Next, characterize and, if necessary, compensate for the window 

birefringence. This might involve testing the empty cell for any polarization 

rotation or even building a mechanical clamp to apply a compensating 

stress to the windows. 

3. Align your beams carefully. Set the angle between the probe and 

pump beams to be as small as your optics will permit. This is crucial to 

minimize the residual Doppler broadening and achieve the highest possible 

spectral resolution. 

4. Finally, to eliminate noise from back-scattered light, use piezo 

modulation on the pump beam's retro-reflector to implement the phase 

dithering technique we discussed. 
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And the final step on our roadmap: 

Choose your pump polarization—circular versus linear—strategically, 

according to the desired transition branch you wish to study. If you are 

trying to identify Q-branch transitions in a molecule, use a linear pump. If 

you are interested in the P and R branches, or if you are working with an 

atomic transition that behaves like a P or R branch, use a circular pump. 

This deliberate choice is one of the most powerful features at your disposal. 



By following these steps, you can harness the full power of this elegant and 

sensitive spectroscopic method. 

That concludes our lecture on Polarization Spectroscopy. Thank you. 


