


Good morning, everyone. Welcome back to Phys 608.

I'm Distinguished Professor Dr M A Gondal, and in our last lecture, we
established the foundations of saturation spectroscopy, a powerful method
for overcoming the Doppler broadening that so often masks the true

structure of atomic and molecular transitions.

Today, we are going to dive into a related, but in many ways superior,
technique. As you can see from the title slide, we'll be covering Chapter 2,

Section 4: Polarization Spectroscopy.

This method is not just an incremental improvement; it represents a
significant leap in sensitivity and offers some wonderfully elegant features
that make it an indispensable tool in the modern laser spectroscopy

laboratory.

So, let’s begin.
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So, let's start with the core motivation. Why do we need another Doppler-
free technique? What is the fundamental idea behind "Polarization”

Spectroscopy?

The central goal, as stated here, is to detect Doppler-free changes in the
populations of sub-levels... and this is a key term we'll unpack shortly... by
monitoring a change in the polarization of a probe beam, rather than simply

a change in its transmitted intensity.

This immediately sets up a critical contrast with the saturation spectroscopy

we've already discussed. Let's recall the principle of saturation



spectroscopy. We use a strong pump beam to saturate a transition for a
specific velocity class of atoms, effectively "bleaching” the sample for that
group. A weak, counter-propagating probe beam then experiences reduced
absorption when it is tuned to interact with that same velocity class. The
signal we measure is that small reduction in absorption, or equivalently, a
small increase in transmission. Therefore, the signal in saturation
spectroscopy is proportional to the change in the absorption coefficient,

which we denote as A a A«.

The problem is that this small change, this A a A4a, is detected on top of
the large, transmitted intensity of the probe beam itself. You are looking for
a small bump on a large background. Any fluctuation or noise in the laser's
intensity directly translates into noise in your signal, fundamentally limiting
the achievable signal-to-noise ratio. Polarization spectroscopy offers a

clever and elegant way to circumvent this very problem.
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So, how does it accomplish this? As the first point here states, the
polarization technique measures the rotation and/or the induced ellipticity of
the probe beam's polarization state. This means our signal is proportional
to simultaneous changes in both the absorption coefficient, Delta alpha,
and, crucially, the refractive index, Delta en. The interplay between these

two is the heart of the technique.

This different approach brings with it some immense practical advantages,
which we will detaill mathematically later, but let's introduce them

conceptually now.



First, and most importantly, it offers a much higher intrinsic signal-to-noise
ratio. This is because, in its ideal form, polarization spectroscopy is a “zero-
background" technique. We set up our polarizers in a crossed
configuration, so that without any interaction in the sample, no probe light
reaches the detector. The signal is the small amount of light that leaks
through the second polarizer because its polarization has been altered by
the sample. So, instead of looking for a small change on a large
background, we are looking for a small signal on a nearly zero background.

This is a monumental advantage for achieving high sensitivity.

Second, the technique can be configured to directly produce a dispersion-
shaped line profile. As we'll see, this kind of antisymmetric signal, with a
steep, linear slope at the line center, is incredibly convenient for locking the
frequency of a laser to an atomic transition. It provides a perfect error
signal without needing any extra frequency modulation on the laser itself,

which simplifies the experimental setup considerably.

Now for a bit of historical context...
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This technique was truly brought to prominence in the mid-1970s by Carl

Wieman and Theodor Hansch, as noted here by the references.

Their work demonstrated its power and simplicity, and since then,
polarization spectroscopy has become a standard, go-to tool for high-
resolution, Doppler-free measurements. It proudly stands alongside
saturated absorption and two-photon spectroscopy as one of the pillars of

modern laser spectroscopy.



It's a technique that every student in this field should not only know about

but deeply understand.
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To make the contrast absolutely clear, let's look at these two block

diagrams side-by-side.

On the left, in panel (a), we have the familiar setup for Saturation
Spectroscopy. A laser beam is split. The weaker probe beam passes
through the sample cell and onto a detector. The stronger pump beam is
sent in the opposite direction, counter-propagating through the cell. The
detector simply measures the total intensity of the probe beam. The signal,
as we've discussed, is a small change in absorption, A a Aa, appearing as

a small peak on top of the transmitted probe beam's intensity.

Now, look to the right, at panel (b), Polarization Spectroscopy. The setup
starts similarly, with a laser and a beam splitter creating a pump and probe.
But notice the crucial differences. First, the probe beam passes through a
linear polarizer, which we'll call P1, before it enters the sample cell. This
prepares the probe in a well-defined state of linear polarization. Second,
look at the pump beam. After the mirror, it passes through a quarter-wave
plate, labeled A / 4 A/4. This converts the linearly polarized pump into
circularly polarized light. This is key, as we will see. Finally, and most
importantly, after the sample cell and before the detector, the probe beam
must pass through a second polarizer, the analyzer, which we'll call P2.
This analyzer is oriented to be "crossed" with the first polarizer, P1,

meaning its transmission axis is rotated by 90 degrees relative to P1.



In this crossed configuration, if the sample had no effect, the linearly
polarized probe from P1 would be completely blocked by P2, and the
detector would see nothing. The signal arises only when the pump beam
alters the sample, making it optically active, which in turn rotates or
changes the probe's polarization, allowing some of it to leak through P2.
The signal is therefore directly dependent on both the change in
absorption, A a Aa, and the change in refractive index, A n 4n, induced by
the pump. This is a fundamentally different, and as we will prove, a far

more sensitive detection scheme.
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Alright, let's break down the core experimental layout in more detail,

building on the diagram we just saw.

First, the Optical Path Split. We begin with a single laser source. Critically,
this laser must be both monochromatic—meaning it has a very narrow
frequency distribution—and tunable, so we can scan its frequency across
the atomic or molecular resonance. The output of this laser is divided by a

beam splitter into two distinct paths.

The first path becomes Beam 1, which we call the probe beam. As its name
implies, its job is to probe the state of the sample. It is essential that the
probe beam has a weak intensity, which we'll denote as |1 I;. We need it
to be weak so that it doesn't significantly alter the atomic populations itself.

It should act as a passive observer.

The second path is Beam 2, the pump beam. Its job is to actively change

the sample. Therefore, it must have a strong intensity, denoted | 2 I,. This



strong intensity is what allows us to saturate the transition for a specific
group of atoms, which is the first step in creating the conditions for our

signal.
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Next, let's consider the Polarization Elements, which are the heart of this

technique.

The weak probe beam, on its way to the sample, passes through a high-
quality linear polarizer, which we've labeled P 1 P;. The function of P 1 P,
Is to define a clean, initial polarization axis for the probe. We can think of

this as our reference.

The strong pump beam, on its path, passes through a quarter-wave plate,
often denoted as A / 4 A/4. Assuming the pump is linearly polarized to
begin with, and its axis is at 45 degrees to the wave plate's axes, this
optical element converts the pump beam from linear to circular polarization.
For our discussion, we'll assume it's converted to right-hand circular
polarization, which in spectroscopic notation is represented by o + o*.
We'll see very shortly why having a circularly polarized pump is so

important.

Now, for the Sample and Detection phase. Both the probe and the
circularly polarized pump traverse the same vapor cell containing our
atomic or molecular sample. And, just as in saturation spectroscopy, they
do so in opposite directions. This counter-propagating geometry is
absolutely essential for selecting the zero-velocity class of atoms and

achieving a Doppler-free signal.
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Finally, what happens after the probe beam has traversed the sample?

It exits the cell and immediately encounters a second linear polarizer, P 2
P,, which we call the analyzer. As mentioned before, this analyzer is
"crossed" with the first polarizer, P 1 P;. This means its transmission axis

issetata 90 o 90° angle to the initial polarization of the probe.

So, if nothing had happened to the probe's polarization inside the cell, it
would be completely extinguished by P 2 P,. The detector, labeled D D,
sits right after the analyzer P 2 P,. Its job is to measure any light that
manages to "leak" through. This leaked light is our signal. The very
existence of a signal tells us that the sample, under the influence of the
pump beam, has altered the probe's polarization. Our entire measurement,

then, consists of detecting this faint light against a dark background.
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This slide provides a more detailed schematic of the core experimental
layout, summarizing everything we've just discussed. Let's trace the paths

one more time to solidify our understanding.
We start with the tunable laser on the far left. Its output hits a beam splitter.

Let's follow the probe beam first—the one that goes straight through. It
passes through the initial polarizer, P 1 P;, which defines its polarization as
linear, let's say vertical for the sake of this diagram. It then travels through

the sample cell, where it interacts with the atoms. After the cell, it



encounters the crossed analyzer, P 2 P,, which has a horizontal
transmission axis in this picture. Finally, any light that gets through P 2 P,
hits the detector, D D.

Now, let's trace the pump beam—the one that's reflected downwards by
the beam splitter. It reflects off mirror M 1 M,, then passes through a
quarter-wave plate, which converts its polarization to circular, let's say o +
o*. It's then directed by mirror M 2 M, to enter the sample cell from the
right, traveling in the opposite direction to the probe. Inside the cell, this
strong, circularly polarized pump beam interacts with the atoms. As the text
box explains, it saturates the transition and, as we'll see, induces an

anisotropy in the sample.

This pump-induced anisotropy is what affects the probe beam. It causes
the probe's plane of polarization to rotate slightly. As you can see in the
diagram, the polarization vector of the probe, which was initially vertical, is
now slightly tilted as it emerges from the cell. This small rotated component
can now pass through the horizontal analyzer P 2 P,, generating our signal
at the detector. This entire diagram beautifully illustrates the cause-and-

effect chain of the experiment.

Page 10:

Now we arrive at the physics at the heart of the technique. How, exactly,
does the pump beam create this anisotropy in the sample? The answer lies
in the Angular Momentum Selection Rules. This slide focuses on the

pump's job.



Let's consider a generic electric-dipole transition in an atom or molecule.
The transition is between a lower state and an upper state. Each state is
characterized by a total angular momentum gquantum number, which we'll

call JJ. Let's denote the lower state by J " J” and the upper state by J']J'.

Furthermore, these energy levels are degenerate. In the absence of
external fields, the orientation of the angular momentum vector J J in
space is not specified. However, the propagation direction of our light beam
provides a natural quantization axis, which we'll call the =z z-axis. The
projection of the total angular momentum J J onto this z z-axis is given by
the magnetic quantum number, M M. So our transition is more completely
described as going from a specific sub-level |J ", M ") |J',M") to an
upper sub-level |J', M") |J',M').

Now, here is the crucial point. The light itself carries angular momentum,
and for a transition to occur, angular momentum must be conserved. For
our circularly polarized pump beam—which we've assumed to be o + 07—
the photon carries one unit of angular momentum along the direction of
propagation. The strict selection rule for such a transition is that the
magnetic quantum number M M must change by + 1 +1. Thatis, A M
AM, whichis M'-M"M' — M", must equal + 1 +1.
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What is the consequence of this strict selection rule, AM=+ 1AM = +1?

The first consequence is profound: Not every M " M" sub-level in the lower
state is addressable by our o + ¢ pump beam. The pump cannot interact

with all the atoms in the ground state equally.



Let's take a concrete example, as shown in point 2. Consider a P-branch
transition, which by definition is a transition where A J =-1 4] = —1. So,
J'=J"_1]’=]"—1_

Now, think about the sub-level in the lower state that has the maximum
possible projection of angular momentum along the z-axis, whichis M " =+
J" M" = +]". For this atom to be excited by a o + a* photon, it would need
to transition to an upper state with M'=M"+1 M' = M" + 1, which would
be J " + 1 J"+ 1. But the upper state manifold, with total angular
momentum J ' J’, only has M ' M’ sub-levels up to a maximum value of J'
J', whichiis J" =1 J"— 1! There is no available state for the atom to go to.
Therefore, the sub-level M" =+ J " M" = +]" is completely immune to the

pump beam. It cannot participate in a o + ¢ transition.

The result of this selective interaction is an unequal depletion of the ground
state sub-levels. The pump beam removes population from some M " M”
states, but not others. This creates a non-uniform, or anisotropic, sub-level
population distribution. The gas is no longer isotropic; it now has a
preferred orientation in space, imprinted upon it by the pump beam's

polarization.

Page 12:

This diagram provides a perfect visual illustration of the selection rules at

work. Let's analyze it carefully.

The title says we are looking at a P-branch transition, where AJ=-1 4] =

—1, with o + o™ polarized light, which means A M =+ 1 AM = +1. The



specific example shown is a transition from a lower state with J" =2 J" = 2

to an upper state with J'=1]" = 1.

At the bottom, we see the energy sub-levels of the lower J " =2 J" =2
state. The magnetic quantum number, M " M", can take values from - J
—Jto +J 4/, so we have levels for M"=-2 ,-1,0,+1, M" =
-2,—1,0,+1, and + 2 +2.

At the top, we see the sub-levels for the upper J'=1 ] = 1 state. Here, M
"M'canbe -1,0,—-1,0,0or +1 +1.

Now, let's apply our ¢ + o™ selectionrule: M'=M"+1M =M"+ 1.

- An atom inthe M" = -2 M" = —2 state can be pumped tothe M'= - 1
M' = —1 state. This is allowed, and we see a blue arrow for this transition. -
An atom inthe M " =-1 M" = —1 state can be pumped to the M'=10

M' = 0 state. This is also allowed, shown by the second arrow. - An atom in
the M" =0 M" = 0 state can be pumped to the M'=+1 M’ = +1 state.

This transition is also allowed, and is the third arrow shown.

Now, consider the M " =+ 1 M" = +1 state. A transition would require an
M'=+2 M = +2 state. But look at the upper manifold! Thereisno M'= +

2 M' = +2 sub-level. So, this transition is forbidden.

Similarly, forthe M "=+ 2 M" = +2 state, a transition would require an M

=+ 3 M' = 43 state, which also does not exist.

The clear result is that the strong pump beam depletes the populations of
the M"=-2,-1, M"=-2,—1, and 0 0 sub-levels, while leaving the
populations of the M "=+ 1 M" = +1 and + 2 +2 sub-levels completely



untouched. This is the very definition of creating an anisotropic population

distribution.
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So, we've established that the pump creates an unequal M M-population.
What does this mean macroscopically? It means we've induced a preferred
orientation of the molecular or atomic angular momentum, J J. Before the
pump, these vectors pointed in all directions randomly. Now, there is a net

alignment or orientation.

This leads to the crucial consequence: the medium itself becomes optically
anisotropic. An isotropic medium responds the same way to light,
regardless of the light's polarization or direction. Our pumped medium is no
longer isotropic. Specifically, it will now respond differently to right-hand
circularly polarized light, o + o*, versus left-hand circularly polarized light,

c—-o0 .
This optical anisotropy manifests in two distinct, measurable ways.

First, we get a difference in the absorption coefficients for the two circular
polarizations. The absorption coefficient for o + ¢ light, which we call a +
a,, will not be equal to the absorption coefficient for o — ¢~ light, a - a_.

This phenomenon is known as circular dichroism.
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The second macroscopic consequence is a difference in the refractive

indices. The refractive index experienced by o + o* light, n + n_, will not



be equal to the refractive index experienced by o — ¢~ light, n — n_. This
phenomenon is known as circular birefringence, which is analogous to the
birefringence you may have studied in crystals, but here it's induced in a

gas by our pump beam.

Now, let's bring the probe beam back into the picture. Remember, our
probe beam is linearly polarized. A key insight from classical optics is that
any linearly polarized light can be mathematically described as a perfect,
equal-amplitude superposition of right-hand ( o + ¢™) and left-hand ( o -

o) circularly polarized light.

So, when this linearly polarized probe enters our now-anisotropic medium,
its two circular components are treated differently. The difference in
refractive indices, n +# n — n,_ # n_, means one component travels slightly
slower than the other. This introduces a relative phase shift between them.
When they recombine upon exiting the sample, this phase shift results in a
small rotation of the plane of linear polarization. We denote this rotation by
A B A6.

Simultaneously, the difference in absorption coefficients, a + # a — a, #
a_, means one component is absorbed more strongly than the other. When
they recombine, they no longer have equal amplitudes. This imbalance
transforms the originally linear polarization into a slightly elliptical

polarization.

A useful analogy here is the Faraday effect, where an external magnetic
field aligns the atomic angular momenta, J J, causing a polarization

rotation. The beautiful thing about polarization spectroscopy is that we



achieve this alignment optically with the pump beam. No external magnetic

field is required.
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This pair of diagrams provides an excellent visual summary of the transition

from an isotropic to an anisotropic medium.

On the left, in panel (a), we see a depiction of an Isotropic Gas. We have a
collection of molecules, and the red arrows represent the orientation of their
individual angular momentum vectors, J J. As you can see, these arrows
point in random directions. There is no preferred orientation.
Macroscopically, this means the refractive index for o + ¢* light, n+ n,, is
exactly equal to the refractive index for o — ¢~ light, n — n_. The medium

is optically uniform.

Now, look at panel (b), the Optically Pumped Anisotropic Gas. A strong,
circularly polarized pump beam, represented by the thick green arrow,
passes through the gas. Due to the selection rules we just discussed, this
pump beam preferentially depletes certain M M-sublevels. The result is
that the angular momentum vectors are no longer randomly oriented; they
now have a preferred orientation, aligned with respect to the pump beam's

propagation axis.

The lower part of panel (b) shows the consequence for our probe beam.
The probe beam, composed of its o + o* (red wave) and o - ¢~ (blue
wave) components, enters this anisotropic medium. Because n + n, is not
equal to n - n_, the two components travel at different speeds. The

diagram beautifully illustrates that one wave gets phase-shifted relative to



the other. When these two components recombine, the resulting
polarization is rotated. This is the essence of birefringence, and it's the
physical origin of our signal. The result is clear: n + n, is not equal to n -

n_.
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Up to now, we've focused on the polarization aspect. But this is a Doppler-
free technique. So, let's re-introduce the velocity of the atoms and see how

the Doppler effect plays a crucial role.

As we've established, the pump and probe beams are counter-propagating.
This means their wave vectors are equal and opposite: the k k-vector for

the pump is equal to minus the k k-vector for the probe.

Now, consider an atom moving with a velocity component v z v, along the
laser beam axis. Due to the Doppler effect, this atom does not see the
laser's lab-frame frequency, w w. It sees a shifted frequency. For the pump
beam, this would be w - kv z w — k v,. For the probe, it would be w + kv
Z w+kv,. The atom will only interact resonantly with the light if this

Doppler-shifted frequency matches its natural transition frequency, w 0 w.

So, if we set our laser to a frequency w w, which is slightly detuned from
the line center w 0 w,, the resonance condition will only be met for
molecules with a specific axial velocity v z v,. Rearranging the Doppler

shift formula gives us, to first order, that the selected velocity is

vz=w0-wk.



Wy — W
k

v, =

This means that the pump beam doesn't interact with all the atoms. At a
given frequency, it selectively interacts with, and "burns a hole" in the

population of, a very specific velocity class.
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Let's be precise about the velocity classes for each beam.

The pump beam propagates, let's say, in the plus-z direction. The
resonance condition for an atom with velocity v z v, is that the atomic
resonance frequency, w 0 w,, must equal the Doppler-shifted laser
frequency, w - kv z w — kv,. Solving for v z v,, we find that the pump
interacts with molecules having an axial velocity of vz=(w-w0)/k
v, = (w — wy)/k. The slide has a minus sign, so let's be consistent and
define detuning as w 0 - W wy — w. So, the pump interacts with v z v,
equals plus (W0 - w )/ Kk (wg—w)/k. The small y / k y/k term

represents the small range of velocities within the natural linewidth.

Now, what about the probe? It's counter-propagating, so its wave vector is
- k —k. The resonance condition for the probeis w0=w-(-kK)Vvz w, =
w — (—k) v,, whichis w+ kv z w+ kv, Solving for v z v,, we find the

probe interacts with molecules having v z v, equals minus (w0 - w)/k
(wo — w)/k.

So, you see, when the laser is detuned from resonance (when w w is not
equal to w 0 wy), the pump and probe beams interact with two completely

different, distinct velocity classes, symmetric about v z = 0 v, =0. The



probe beam never encounters the atoms that have been polarized by the

pump.

The crucial exception is when we tune the laser frequency, w w, to be
exactly on resonance with the atomic transition, so that w w is

approximately equal to w 0 w,.

In this special case, the detuning is zero. The pump interacts with the v z
v, approximately equal to zero velocity class, and the probe also interacts

with the v z v, approximately equal to zero velocity class.

This is the key to the Doppler-free nature of the signal. It is only when both
beams interact with the same molecules—the stationary or near-stationary
ones—that the probe can "see" the anisotropy created by the pump. It is
only then that the medium becomes birefringent for the probe, and we get a

signal.
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The direct and powerful consequence of this condition is that the technique
produces a sharp, Doppler-free peak exactly at the line center, where w =
w 0 w = wy. When we scan the laser frequency across the entire Doppler-
broadened profile, we will see a signal only at the precise moment we pass

through the true, natural resonance frequency of the stationary atoms.

This allows us to measure transition frequencies with extremely high

precision, free from the limitations of thermal motion.
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This slide offers a fantastic graphical representation of the velocity

selection mechanism. Let’s walk through it.

In both panels, the blue curve represents the Maxwell-Boltzmann
distribution of axial velocities, v z v,, in our gas sample. The peakis at v z
= 0 v, = 0, and the width represents the thermal spread of velocities that

leads to Doppler broadening.

First, let's examine the left panel, the “Off-Resonance Condition”, where the
laser frequency, w w, is not equal to the atomic resonance, w 0 w,. The
laser detuning, (w0 - w )/k (wy —w)/k, is non-zero. As we derived, the
pump beam interacts with a specific velocity class, shown as the red slice,
at a positive v z v,. The counter-propagating probe beam interacts with a
different velocity class, shown as the blue slice, at a negative v z v,. They
are interacting with completely separate populations of atoms. The atoms
that the probe sees have not been affected by the pump. Therefore, no
polarization signal is generated. All we would measure is the standard,

broad Doppler-broadened absorption.

Now, turn your attention to the right panel, the “On-Resonance Condition”.
Here, we have tuned the laser so that w w is approximately equal to w 0

wo. The detuning is now essentially zero.

Both the pump and the probe beams interact with the same class of
molecules: those with near-zero axial velocity, right at the center of the

distribution. This region of overlap is shown in purple.

In this case, the intense pump beam aligns the molecules in this v z=0

v, = 0 group, creating birefringence and dichroism. The probe beam then



passes through this aligned group, its polarization gets rotated, and it

generates a sharp, Doppler-free signal.

The slider at the bottom conceptually represents tuning the laser frequency,
showing how the two selected velocity packets move symmetrically until

they merge at the center.
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Having established the physical principles, let's now build a more rigorous
mathematical description of the signal. This will be a mathematical prelude

to our final signal expression.

We begin by decomposing the probe field. Let's assume for concreteness
that our initial probe beam, after passing through the first polarizer P 1 P,
is linearly polarized along the x x-axis. We can write its electric field as a

plane wave:
E—-(z,t)=EO0Ox?*ei(wt-kz).
E(z,t) = E, & el@t—k2),

Now, here is the essential mathematical step we discussed conceptually
earlier. We will express this single linearly-polarized field as the sum of two

equal-amplitude, counter-rotating circular components. We write:

E—->=FE—>++E > —-.

Where E — + §+ represents the right-hand circularly polarized component,

and E > -E_ represents the left-hand circularly polarized component.
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Here we see the explicit expressions for these circular components.

E-plusis equalto EO0 2 % times the complex vector (x*+iy”) (X +iy),
all multiplied by the same plane wave factor, ei (wt -k z ) e!@t=k2 The
vector part, (x*+iy”) (x +iy), describes a vector that rotates in the x-y

plane and corresponds to right-hand circular or o + o* polarization.

Similarly, E-minus is equal to E0 2 % times the complex vector (x*-iy

) (X —iy), times the same plane wave factor. The (x*-iy ") (X —iy)

term corresponds to left-hand circular or o — ¢~ polarization.

You can easily verify that if you add E + E, and E - E_, the iy " iy terms

cancel, and you are left with the original x-polarized field.

The profound advantage of this decomposition is that we can now analyze
the interaction of our probe with the anisotropic medium by considering the
two circular modes, o + ¢t and o - o~, completely independently. The
medium, having been prepared by the o + o* pump beam, has different
properties—a different refractive index and a different absorption

coefficient—for each of these two components.

So, all of our further calculations will be performed for each component
separately. We'll calculate how E + E, propagates and how E - E_
propagates. Then, at the end, we will recombine them to find the final state
of the field.
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Let's now consider the propagation of our probe beam's components

through the anisotropic sample. We will follow the logic of Slide 7.

Let's say the probe travels through a length L L of the pumped medium.
We'll focus first on the o + g, component of the probe. As it propagates,
two things happen: its phase evolves and its amplitude is attenuated. The
refractive index for this component is n + n,, which corresponds to a wave

vector k + k,. The absorption coefficientis a + a,.

So, the field of the o + o, component after traveling a distance L L, which

we write as E + (L) E, (L), is given by the following expression:

E+(L)=EO02(x*+iy*)exp(iwt—-ik+L-a+L2).
E, . . .
E, (L) :7(3?+l)7)exp(1wt—lk+L—a+L/2).

E+ (L) E;(L) is equal to its initial amplitude, E 0 2 % times (x"+iy”")
(x + iy), multiplied by an exponential term. Inside the exponential, we have
exp exp of the quantity: i w t iwt which is just the time oscillation, minus ik
+ L ik, L, which is the phase accumulated due to propagation, minus a + L
2 a,L/2, which is the amplitude attenuation. Note that the absorption

coefficient a a appears in the field expressionas a/2 a/2.

An exactly analogous expression can be written for the E — E_ component,
E-(L)E_(L), butitwill involve the wave vector k — k_ and the absorption

coefficient a — a_.

Now, we will define some terms to simplify our upcoming algebra.
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The crucial physical quantities are the differences in how the medium treats

the two circular polarizations. We define these on this slide.
First, the difference in refractive indices, which causes birefringence:
An=n+-n-.

An=n, —n_.

Second, the difference in absorption coefficients, which causes circular

dichroism:
Aaoa=a+-a-.
Ada =a, —a_.

As the probe's two circular components propagate through the length L L
of the sample, they accumulate a relative phase difference. This resulting

phase difference, A ¢ 4¢, is given by:
Adb=(k+-k-)L.
A¢ = (k+ - k_) L.

Since the wavevector k k is related to the refractive index nnby k=wn/

Cc k = wn/c, this becomes:

Adb=wLcAn.

wL
A(p = T An.

This phase difference is what causes the polarization plane to rotate.



Simultaneously, the two components accumulate a resulting amplitude
difference due to differential absorption. The difference in field amplitude,

A E AE, after the sample is:

AE=Enaught2(e-a+L/2-e-a-L/2).

AE = E”aZUth (e—a+L/2 _ e—a_L/z)_

This amplitude difference is what makes the polarization elliptical.

It is clear from this that both A ¢ 4¢ and A E AE, which depend on A n 4An
and A a Aa respectively, encode the information about the interaction. This

IS our spectroscopy signal.
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Now we must address an important, and often unavoidable, experimental
reality: the effect of the windows of the sample cell. This is not just a trivial

detail; it can significantly impact the signal.

The cell windows, typically made of glass or quartz and having a thickness
we'll call ‘d’, can themselves contribute extra, or “parasitic,” birefringence
and absorption. This usually arises from mechanical stress induced during

manufacturing or from the pressure difference when the cell is evacuated.

To handle this, we introduce a complex refractive index to describe the
properties of the windows. We'll denote it by a tilde over the n. For the two

circular polarizations, we have:

n~wx=brx+ibizt.



nwi = bT‘i + 1 bii'

Here, b r b, is the real part of the window’s refractive index, and b i b; is

the imaginary part.

The imaginary part, bi b;, is directly related to absorption. We can relate it

to an absorption coefficient for the windows, as we'll see next.
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The relationship between the imaginary part of the refractive index of the

window, b i b;, and the window's absorption coefficient, a w «,, IS given
by:

awxt=2wchizx.

We can then define a total absorption for the windows, which we'll call ' a w
a,,/', that accounts for the fact that the probe passes through two windows
(at the entrance and exit of the cell). If each window has thickness ' d d',

the total path length in the glassis 2d 2d. So:
awxt=2dawt.
af =2dal.

Just as we did for the gas sample, we are interested in the differences for

the two circular polarizations. We define:

Abr=br+-br-.



Ab, = bt — by
This is the parasitic birefringence of the windows.
Aaw=aw+-aw-.

Aay, = a) — ay.
This is the parasitic dichroism of the windows.

The crucial takeaway here is that these parasitic terms can distort, or
worse, even mimic a real signal from the atoms. They introduce their own
rotation and ellipticity. Therefore, for a high-quality experiment, the
windows must be made from high-quality, strain-free material, and they

must be carefully characterized or their effects compensated.
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This diagram provides a clear illustration of how parasitic birefringence

arises in the vapor cell windows.

On the left, we see the vapor or gas sample, and attached to it is the cell
window, a cylinder of glass with thickness d d. Due to mechanical stress
from how the window is manufactured or mounted, the glass is often not
perfectly isotropic. It can develop privileged axes, known as the "fast axis"
and the "slow axis," indicated by the red arrows. This means the refractive

index is different for light polarized along these two directions.

As the text box below explains, this stress-induced anisotropy means that
when the probe beam passes through, its two circular polarization

components, o + 6" and o - o, experience different complex refractive



indices. This results in a parasitic phase difference, related to A b 4b that

we just defined, and a parasitic differential absorption, related to A a 4a.

This unwanted effect from the windows will add to the real signal from the
gas. It's a source of systematic error that must be carefully managed in any

precision polarization spectroscopy experiment.
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### Slide 9: Recombination & Emergent Elliptically Polarised Field

Alright, let's bring our mathematical description to its climax. We've
calculated how the E-plus and E-minus components of the probe field
propagate through both the pumped gas and the cell windows. Now it's
time to recombine them and see what the final emergent field looks like.

This is Slide 9, "Recombination & Emergent Elliptically Polarised Field".

After passing through the cell of length L, the total field, E-out, is simply the

vector sum of the two components:
Eout=E+(L)+E-(L)
Eoue = E4(L) + E_(L)

The algebra to combine the expressions from Slide 7, including the window
effects, is a bit tedious, but the result is beautifully compact. The
recombination vyields a field that is, in general, elliptically polarized. It can

be described by the following equation:

Eout=EQ2eiwte-i®d0(x*+iy*re-id)



E, . .
Eout=7oe“" ~o (£ 4+ iye0)

Let's look at this. @ 0 @, (capital Phi sub zero) is a common phase factor
that affects the whole field. The interesting part is the vector term. It is no
longer x M+ iy "™ x+ iy, which would be circular, or a simple real vector,
which would be linear. The presence of the complex phase factor e — i d
e~ on the y-component is what describes the new elliptical polarization
state. The complex phase © § (lowercase delta) contains all the physics of

the interaction.
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So what are these phase terms, Phi-naught and delta? Let's define them.
The common phase, capital Phi-naught, is given by:

PO0=wcnL+wcbrd-i(aL2+aw?2).

®, e bd (aL+aW)
—Cn lz 2

This term represents the average phase shift and average absorption from
both the gas (terms with n n and a «a) and the windows (terms with b r b,

and aw a,,). This is generally not what we're interested in.
The crucial term is the complex phase difference, lowercase delta:
O0=wLcAn+wdcAbr-i(LAa2+Aaw2).

wL wd LAa Aa,
6 =—4n + — Ab, — l(—-l-—)
c c 2 2



This term contains all the differential effects—the differences in refractive
index and absorption for both the gas sample and the windows. This is our

signal.
Let's break down 0 6.

The real part of & §, which comes from A n 4An and A b r 4b,, is directly
related to the rotation of the polarization axis. The rotation angle is

approximately the real part of & §, divided by 2.

The imaginary part of & §, which comes from A a da and A a w 4a,,, IS
responsible for the differential attenuation between the o + 6" and o - o~

components. This is what causes the probe to become elliptical.

So, by measuring the final polarization state, which is fully characterized by
this complex number © &, we can measure the underlying physics of the

light-matter interaction.
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### Slide 10:

We're now at the final step of the optical path: the analyzer. This is Slide
10. After the probe field emerges from the cell in its new, elliptically
polarized state, E o ut E,,, it must pass through the second polarizer, P

2 P,, before reaching the detector.

Ideally, P 2 P, is crossed with the initial polarizer P 1 P,. If P 1 P, defines
the x-axis, then P 2 P, would define the y-axis. However, for reasons that
will become cleatr, it's often useful to deliberately "uncross" the analyzer by

a small angle. Let's call this small uncrossing angle 0 6 (theta). So, the



transmission axis of P 2 P, is tilted by a small angle 06 6 away from the y-

axis.

The detector only measures the component of the E o ut E,; field that is
projected onto the transmission axis of P 2 P,. The transmitted field

amplitude, which we'll call E t E;, is given by simple vector projection.

E; = Exsin(8) + Eycos(6).

Where E x Ex and Ey E, are the x and y components of our Eo Ut Ey,;

field from the previous slide. This projection is what we will use to calculate

our final signal.

Page 30:

To arrive at a clear and interpretable expression for our signal, we will now
make the small-signal approximation. This is a very reasonable assumption
In most experimental conditions, where the changes induced by the pump

beam are indeed small perturbations.

We assume that all the differential quantities are much less than 1.

Specifically: - The differential absorption in the gas, L A a LA«a, is much,

much less than 1. - The differential phase shift in the gas, wLAnc wLCAn,

IS much, much less than 1. - And similarly, the window birefringence A br

Ab, and dichroism A a w 4a,, are also much, much less than 1.



Under this assumption, the complex phase © § we defined is a small

qguantity. This allows us to perform a Taylor series expansion of the

i0.

We will keep terms only through the first order in all of these small
quantities. This linearizes the problem and will give us a very clean final

result for the transmitted field.
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Applying the small-signal approximation to our expression for the

transmitted field E t E; gives us this wonderfully simple and insightful result:

E t E; is approximately equal to E 0 E, times a complex phase factor e i w

t—i® 0 e'wt=i®o all multiplied by the simple sum (8 +3) (8 + 6).

Let's pause and appreciate this equation. It tells us that the amplitude of
the light reaching the detector is proportional to the sum of two independent

terms, our two "control knobs."

1. The first term is 8 6, the deliberate, mechanical uncrossing angle of the
analyzer. This is a static, controllable parameter that we can set in the lab.
2. The second term is & &, the complex phase which contains all the
interesting, pump-induced physics: the rotation and dichroism from our
atomic sample, A n 4An and A a Aa, as well as the parasitic window

effects.



The final signal will arise from the interplay and interference of these two

terms.
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Now we can finally calculate the signal that our detector measures.
Detectors like photodiodes are square-law detectors; they measure

intensity, which is proportional to the electric field amplitude squared.
### Slide 11: the general expression for the Detector Intensity
This brings us to Slide 11, the general expression for the Detector Intensity.

The intensity, | T I1, is given by a constant times the permittivity of free
space, € 0 ¢, times the modulus squared of the transmitted field
amplitude, E t E;. Using our result from the last slide, this means the
intensity is proportional to the modulus squared of the quantity (8 + &)
(6 + 6). So, | T I is proportional to |6 +3 |2 |6 + §/|°.

But we have one more piece of experimental reality to include. Even the
best polarizers are not perfect. When they are ideally crossed, they don't
block 100% of the light. There is always a small "residual transmission" or
"leakage." We characterize this by the extinction ratio, ¢ ¢ (the Greek letter
xi), which is defined as the ratio of the residual intensity transmitted through
crossed polarizers, Ire s I, to the incident intensity, |0 I,. Typically, for
good polarizers, ¢ € is a very small number, on the order of 10 =6 107° to
10 - 8 1078. This ¢ ¢ term will act as a fundamental background floor in our

measurement.



Finally, to simplify the final expression, it's convenient to define a "shifted
angle," 0 '@’ (theta-prime), which absorbs the static window birefringence

term. We define:

B'=0+w2cAbr.

0’ =0 +— Ab
N 2¢ "

This combines the mechanical uncrossing angle with the static window

rotation into a single parameter.
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Putting all of these pieces together—the squared amplitude, the finite
extinction ratio ¢ &, and the parasitic window effects—we arrive at the final
expression for the total detected signal, | T (w ) It(w), as a function of the
laser frequency omega. The equation looks a bit complex, but we can

break it down:

IT(w)=10e-aL-aw[¢+0'2+(12Aaw)2+120'LAa(w)+
w2cO'LAn(w)+...]

2

1 1 )
It(w) = Iye™ %L~ lf + 0% + (EAQW) + EG’LAa(w) + ZQ’LAn(w) + ee

Let's dissect this.

-The 1 0e-alL-awlye* % term out front is just the overall
transmitted intensity, accounting for the average absorption in the gas and
windows. - Inside the brackets, the first three terms (€ &, 8'2 8’2, and the

A a w Aqa, squared term) are all independent of the laser frequency



detuning. They form a constant DC background. - The last two terms are
the ones we care about. They are the frequency-dependent contributions

that constitute our spectroscopic signal.
Let's highlight these two contributions of interest:

1. A "Dispersion-type term," which is proportionalto 6 ' 6’ times An (w)
An(w). But through the Kramers-Kronig relations, this is also related to A a
( w ) da(w). This term's shape will be dispersive, or anti-symmetric. 2. A
"Lorentzian-type term," which arises from the cross-term between the gas
sighal A a ( w ) da(w) and the window dichroism A a w 4a,,. Its shape will

be Lorentzian, or symmetric.

The relative strength of these two terms can be controlled by our

experimental parameters, 6'6'and A aw 4a,,.
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To understand the shape of our signal, we need a model for the frequency
dependence of the differential absorption, A a ( w ) da(w). This is the
subject of Slide 12.

The key physical insight is that the signal is generated only by those
molecules that are simultaneously in resonance with both the pump and the
probe beams. As we established, this only happens forthe vz=0 v, = 0

velocity class, when the laser is tuned near the line center w 0 w,.

Therefore, the lineshape of our signal is not the Doppler-broadened
Gaussian profile. Instead, it's the natural, homogeneous lineshape of the

transition, which is a Lorentzian. The width of this Lorentzian is the



homogeneous half-width, vy s ¥y, (gamma-sub-s). This width includes
natural broadening, collisional broadening, and, importantly, power

broadening from the strong pump beam.

To describe the lineshape mathematically, it's convenient to define a

dimensionless detuning parameter, which we'll call x x.

X x is defined as the frequency detuning from line center, ( W 0 - w )
(wy — w), normalized by the homogeneous half-width at half-maximum,

whichis ys/2 y/2.

x=w0-wys/2

0)0_0)
Ys/2

X =
When x =0 x = 0, we are at the exact line center. x =1 x = 1 means we
are detuned by one half-width.

With this definition, the Lorentzian change in the absorption coefficient has

a very simple form.
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The frequency-dependent differential absorption coefficient, A a ( w )

Aa(w), is given by a classic Lorentzian profile:

Aa(w)=Aa01+x2

Ada(w) = 1+ x?



Let's define the terms here: - A a 0 4, (Delta alpha naught) is the peak
differential absorption that occurs at the line center, where x =0 x = 0. It
represents the maximum change in absorption induced by the pump. - Its
units are typically inverse centimeters, or wavenumbers. - And x x is the

dimensionless detuning we just defined.

This symmetric, bell-shaped Lorentzian function describes how the
absorption part of our signal varies as we scan the laser frequency across

the resonance.
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Now we move to the other crucial component of our signal: the dispersion
part, which arises from the differential refractive index, A n ( w ) 4n(w).
This is the topic of Slide 13.

One of the most beautiful and fundamental principles in physics is
causality, which leads to the Kramers—Kronig relations. These relations
state that the real and imaginary parts of the linear response function of a
system—in our case, the susceptibility, X x (chi)—are not independent.
The real part of x y gives the refractive index, and the imaginary part gives
the absorption. If you know one of them over all frequencies, you can, in

principle, calculate the other.

We don't need to perform the full integral here. Using the standard
dispersion integral for a single Lorentzian absorption profile, we can directly
write down the corresponding change in refractive index, A n (w ) 4An(w).

The result is:



An(w)=cw0Aa0Ox1+x2.

X

Cc
An(a)) = a)—OACZO m

Let's examine the important features of this dispersion profile:

1. Notice the factor of x x in the numerator. This makes the function odd in
X x. It's an antisymmetric profile. It's positive on one side of the resonance
and negative on the other. 2. Because it's an odd function, it has a zero-
crossing exactly at the line center, where x = 0 x = 0, which corresponds

to w=w0i w = w,.

This zero-crossing is what makes the dispersion signal so incredibly useful
for laser frequency locking, as it provides a perfect, unambiguous lock

point.
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We now have all the ingredients in hand. We have the general expression
for the detector intensity from Slide 11, and we have the specific functional
forms for the Lorentzian absorption A a ( w ) da(w) and the dispersive

refractive index An (w ) An(w) from the last two slides.

The task now, as outlined in Slide 14, is to substitute these results back
Into our intensity expression to get the complete, final signal shape for the
case of a circularly polarized pump. This will give us a comprehensive
formula that describes what we actually measure in the experiment as we

scan the laser frequency.
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Here it is, the complete expression for the signal, Scp (w ) S?(w), where
‘cp' stands for circularly polarized pump. It looks a bit formidable, but we

will break it down term by term.

SMcp}(\omega) = |_0 \cdot e?{-\alpha L - a_\text{w}} \left\{

\left[\xi + \theta'"2 + \tfrac{1}{4}\,\Delta a_\text{w}*{2\right]}

+ \tfrac{1}{2}\,\theta'\,\Delta\alpha_0 L \cdot \left[\frac{x}{1 + x"2}\right]

+ \left[\tfrac{1H{4}\,\Delta a_\text{w}\,\Delta\alpha_0 L + \left(\tfrac{\Delta\alp
ha_0 LH{4Nright)*2\right] \cdot \left[\frac{1}{1 + x"2}\right]

+ \tfrac{3}{4} \cdot \left[\frac{\Delta\alpha_0 x}{1 + x"2}\right]"2 \right\}

$$SNcp}(\omega) = |_0 \cdot e{-\alpha L - a_\text{w}} \left\{ \left[\xi +

\theta”2 + \tfrac{1}{4}\,\\Delta a_\text{w}2\right]} +
\tfrac{1}{2}\,\\theta'\,\Delta\alpha_0 L \cdot \left[\frac{x}{1 + x"2}\right] +
\left[\tfrac{1}{4}\,\Delta a_\text{w}\,\Delta\alpha 0 L +

\left(\tfrac{\Delta\alpha_0 L}{4}right)*2\right] \cdot \left[\frac{1{1 +
x"2N\right]  + \tfrac{3}{4} \cdot \left[\frac{\Delta\alpha_0 x}{1 + x"2}\right]"2
\right\}$$

Let's analyze the behavior of each term, as suggested by the slide.

The first line, inside the curly braces, contains ¢ &, 8'2 0%, andthe Aaw
2 Aa? term. None of these depend on the laser frequency detuning x x.

This is our static, DC background signal.

Page 39:




Let's continue dissecting our signal equation.

x
14+x2°

from the Kramers—Kronig relations, this is the pure dispersion shape. Itis

The second line contains the term proportionalto x 1 + x 2 As we saw

antisymmetric about the line center. This part of the signal is primarily

controlled by the uncrossing angle, 8'6".

1
1+x

Lorentzian shape, which is symmetric about the line center. This part of

The third line has terms proportional to 1 1 + x 2

~. This is the pure

the signal is primarily driven by the window dichroism, A a w 4a,,, and also

by a term quadratic in the sample absorption itself.

The fourth line is proportional to the square of the dispersion shape. This is
a higher-order term. In the typical small-signal limit where A a O L Ada,L is

much less than 1, this term is usually negligible and can be ignored.

So, our total signal is a sum of a constant background, a dispersion

component, and a Lorentzian component.
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In many applications, particularly for laser locking, the goal is to obtain a
clean, pure dispersion signal. So, how can we achieve that? Slide 15 tells

us how to set up the experiment to isolate the dispersion term.

Looking back at our signal equation, the dispersion term is multiplied by 6’
0', and the main Lorentzian term is multiplied by A a w 4a,, the window
dichroism. To isolate the dispersion term, we need to make its pre-factor

large and the Lorentzian's pre-factor small.



Therefore, the condition is to set A a w 4a,, approximately to zero, and 6’

6’ to be non-zero.
Practically, how do we do this?

1. To make A a w 4a, near zero, we must minimize the stress in the cell
windows. This can be done by using high-quality, strain-free glass, and by
carefully mounting the windows. Sometimes, experimenters will even gently
squeeze the cell with a clamp to actively compensate for the birefringence
caused by the pressure difference between the inside and outside of the

cell.

2. To make 6 ' 8’ non-zero, we simply need to deliberately uncross the
polarizers P1 and P2 by a small angle, 6 6. The optimal angle, as we will
see when we discuss signal-to-noise, is typically chosen to be on the order

of the square root of the extinction ratio, ¢ ¢&.
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What is the outcome of setting up the experiment this way?

The outcome is that the term proportional to 8 ' A a 0 8'4a, becomes the
dominant frequency-dependent part of the signal. This yields a nearly pure
dispersion peak, with its characteristic anti-symmetric shape and zero-

crossing at the line center.

And why is this so useful? As I've mentioned, it's perfect for laser-frequency
locking. The steep, linear slope of the dispersion signal as it passes
through zero acts as an ideal error signal. If the laser frequency drifts

slightly off resonance, a positive or negative voltage is generated. This



voltage can be fed back into the laser's control electronics to push the
frequency back to the exact line center. This provides a robust and stable
lock without the need for additional frequency modulation, a technique

known as frequency dithering, which can introduce its own complications.
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### Slide 16

Now let's consider a variation of the experiment. What happens if we use a
linearly polarized pump beam instead of a circular one? This is the topic of
Slide 16.

When the pump beam is linearly polarized (let's say oriented at 45 degrees
to the probe's x-axis for maximum effect), the angular momentum selection
rule changes. For a pump polarized along the quantization axis, the
selection ruleis A M =0 4AM = 0. This creates a different kind of anisotropy

in the medium, known as alignment rather than orientation.

We can perform an analogous derivation, starting with this new selection
rule. 1 won't go through all the steps, but the result is a modified signal
expression. The signal for a linearly polarized pump, SLP (w ) S¥(w), is

given by:

SLP(w)=10e-aL-aw{[i+14062Aaw2+(w2cAbr)2]+A
brawcAaOL[x1+x2]+[-1406AawAaOL+(AaOL4)2][1
1+x2]}.



SP(w) =1lye L W({[E +1/46%Ad? + (w/2c Ab,)?]

Ab, w
L — AayL [x/1 4 x?]
4 ¢

+[— 1/46 Aa,, AayL + (AayL/4)?] [1/1 + x?]}.
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Let's compare this new signal expression for a linear pump with the one we

derived for a circular pump.

The most striking feature is an interchange of roles between the

experimental parameters.

- In the circular pump case, the dispersion term was proportional to the
analyzer uncrossing angle 8 6. - Now, in this linear pump case, look at the
dispersion term (the one with x/ (1 + x 2 ) x/(1 + x?)). Its coefficient is
proportional to A b r 4b,, the window birefringence. - Conversely, the
Lorentzian term (the one with 1/ (1 +x2) 1/(1 + x?)) is now proportional

to the analyzer angle 0 6 and the window dichroism A a w 4a,,.

This is a fascinating and important result. The choice of pump polarization
fundamentally changes how different experimental imperfections and
parameters contribute to the final lineshape. Understanding this is key to

correctly interpreting your data and designing your experiment.
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So far, we have implicitly assumed a simple two-level system, where the
pump and probe lasers are one and the same, driving a single transition

between a lower level (which might have degenerate sublevels) and an



upper level. However, the technique is more versatile than that. This brings

us to pump-probe level schemes beyond two levels.

By using two independent, tunable lasers—one for the pump and one for
the probe—we gain enormous flexibility. We can explore a variety of level

schemes.

1. The Two-level scheme is the standard one we've been discussing. The
pump and probe have the same frequency and interact with a common

lower and upper level, including their degenerate M-sublevels.

2. A V-type scheme involves one common lower level and two different
upper levels. The pump laser drives the transition to one upper level, while
the probe laser drives the transition from the same lower level to a different

upper level.

3. A Lambda-type scheme, denoted by the Greek letter Lambda, involves
two different lower levels and one common upper level. Here, the pump
might excite atoms from one lower level to the common upper level, and
the probe would measure a transition from a different lower level to that

same upper level.
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The key takeaway from these different schemes is this: Polarization
spectroscopy can be used to probe any transition that shares either the

lower or the upper state with the pumped transition.

Why does this work? Let's think about it. In a V-type scheme, the pump

creates an anisotropic population distribution in the shared lower state. The



probe, being resonant with a transition out of that same lower state, will

"see" this anisotropy and generate a signal.

In a Lambda-type scheme, the pump depletes the population of a lower
state by moving atoms to the shared upper state. This can create an
oriented population in the upper state. If the probe is resonant with a
transition into that same upper state, it will also experience a modified,

anisotropic environment and generate a signal.

This flexibility makes polarization spectroscopy a powerful tool for exploring
connections and interactions between different energy levels in complex

atoms and molecules.
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This slide provides simple energy level diagrams to visualize the schemes

we just discussed.

On the left, we have the Two-Level System. A single lower level and a
single upper level are shown. Both the pump (pink arrow) and the probe

(blue arrow) are resonant with this same transition.

In the center is the V-Type System. It looks like the letter 'V'. There is one
common lower level. The pump excites the system to one upper level,
while the probe beam monitors a transition to a second, different upper

level.

On the right is the Lambda-Type System, which looks like an inverted 'V'.
Here we have two distinct lower levels and one common upper level. The

pump excites the system from one of the lower levels, and the probe



examines a transition from the other lower level up to that same common
upper level. This scheme is particularly important in fields like coherent

population trapping and electromagnetically induced transparency.
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### Slide 18: Saturation Parameter

Let's now dig deeper into the quantitative aspects of the interaction. Slide
18 introduces the Saturation Parameter, S S, which quantifies the strength

of the pump beam's interaction with the atoms.
The dimensionless saturation parameter, S S, is defined as:

S=80JJ1TMI2ysR* h w.

YsR*hw'

Let's break down these terms: - o J J 1 M g;; 4 is the absorption cross-
section for the specific pump transition out of the sublevel |J, M) |/, M). It
has units of area, like centimeters squared. - 1 2 I, is the intensity of the
pump beam, in units like Watts per square centimeter. - y s y is the
saturated homogeneous linewidth, which we've encountered before. It has
units of inverse seconds. - R * R is the population-relaxation rate out of
the level, accounting for all decay channels. - A w hAw is, of course, the

energy of a single photon.

When S S is much less than 1, we are in the weak-pumping regime. When

S S is on the order of 1 or greater, the pump is strong enough to



significantly deplete the ground state population, and we say the transition

IS saturated.

Page 48:

The saturation parameter S S directly tells us how the population in a given
sub-level is affected by the pump beam. After the pump has been applied,
the new, saturated population, which we'll call N M S Nj;, is related to the

initial population, N M 0 Ny, by this simple formula:
NMS=NMO01+S.

Nyo
NS = .
M™14+s

So, if S=1S8=1, the population is cut in half. If S S is very large, the

population approaches zero.

This allows us to write a more fundamental expression for the peak
differential absorption, A a 0 A4«,, that we introduced earlier. It can be
shown that A a 0 4, is equal to the unsaturated absorption coefficient, a
0 a,, times the on-resonance saturation parameter, S 0 §,, times a purely

geometric factor, which we denoteas ACJJ 1 Aij]l.
AaO0=a0S0ACJJI1T=* .
Aao = ao SO AC]*jl

This expression is very powerful. It separates the physics into three parts:
a 0 oy, which depends on the total number of atoms; S 0 S,, which

depends on the laser power and intrinsic atomic properties; and A C AC,



which depends only on the angular momentum quantum numbers of the

transition.
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To be clear about the terms in our new expression for A a 0 day:

- S0 S, is the saturation parameter evaluated at the line center, where the
interaction is strongest. - A C J J 1+ A(C;; (Delta C star sub J J one) is a
purely geometric factor that encapsulates all the angular momentum
algebra. It depends on the J J values of the levels, the type of transition ( P
P, Q Q, or R R branch), and the polarization of the pump beam. We will
calculate this factor next. It's what determines the relative strengths of the

signals for different transitions.
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This brings us to the core of the geometric factor: the Clebsch—Gordan

weighted cross-sections, as described on Slide 19.

The absorption cross-section for a probe photon with a specific circular
polarization (o + o™ or 0 — ¢~) on a transition from a specific M M sub-

level is not uniform. We can write the differential absorption per sub-level,

cJJ1 Mo, as:
0JJ1Mz=0JJ1xC(J,J1,M,M£1).
o/ m =055, X CU,J, M,M + 1).

Let’s break this down:



- 0 J J 10, is the orientation-averaged cross-section for the transition.

This is the value you would measure if the sample were isotropic.

- C C is the square of the appropriate Clebsch—Gordan coefficient for the
specific transition from sub-level M M to sub-level M+ 1 M + 1. Clebsch-
Gordan coefficients are the mathematical tools from quantum mechanics
that tell us how to add angular momenta. They determine the relative
probabilities of transitions between different M M sub-levels. They are, in

essence, the "rules" of angular momentum conservation made quantitative.
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To find the total macroscopic differential absorption, A a Aa, we need to
sum the contributions from all the M sub-levels, taking into account the

population changes induced by the pump.

The total differential absorption for a transition from a manifold J to a
manifold J1 is given by the sum over all M of: The population in state M, N

M Ny, times the difference in cross-sections, cJJ1M+-0JJ1 M-
M = 7] M-

This involves a lengthy summation of Clebsch—Gordan coefficients.
Fortunately, this algebra has been worked out, and the result can be
encapsulated in that single numerical factor, \(\Delta C* {J J_1}\), that we
introduced. This factor essentially performs the weighted sum for us. The
values of \(\Delta C™\) have been tabulated and plotted for various cases,
which we’ll see on the next slide. This saves us from having to re-calculate

these sums for every new experiment.
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So, let's look at what this geometric factor, AC JJ 1« A(j; , depends on.
This is outlined on Slide 20.

There are two separate cases to consider, based on the pump polarization,

as this determines the selection rules.

1. Linear pump: This corresponds to the selectionrule AM=0 AM = 0. 2.
Circular pump: This corresponds to the selection rue A M=% 1 AM =
+1.

Within each of these cases, the value of A C x AC* also depends heavily
on the type of rotational branch the transition belongs to. This is determined

by the change in the J quantum number, A J 4/:

- P-branch: AJ=-14]=-1.-Q-branch: AJ =0 4] =0. - R-branch:
AJ=+14] =+1.

So, for any given transition, we can look up or calculate the value of A C
AC* based on the pump polarization we choose and the branch type of the

transition.
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There is one more physical parameter that the geometric factor A C = AC*
depends on, and that is the ratio of the population relaxation rates of the
upper and lower levels. This is characterized by the parameter r r, defined

as.



r=yJ-yJ1lyJd+yJd1

= Yo=Y,
Yy tvy,

where y J y; and y J 1y, are the relaxation rates of the two levels

involved.

However, for our purposes, the most important information is the qualitative

take-away, which is immensely powerful for practical spectroscopy.

1. A linear pump configuration strongly favors and enhances signals from
Q-branch transitions. 2. A circular pump configuration strongly favors and

enhances signals from P-branch and R-branch transitions.

This provides an incredibly powerful diagnostic tool. If you have a complex,
congested spectrum with many overlapping lines and you don't know which
transition is which, you can simply record the spectrum twice: once with a
linear pump and once with a circular pump. The lines that are strong in the
first spectrum are Q-lines. The lines that are strong in the second are P or
R lines. This selectivity is one of the most celebrated features of

polarization spectroscopy.
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These graphs beautifully illustrate the selectivity we just discussed. They
plot the calculated relative signal strength, which is proportional to our A C

* AC™ factor, as a function of the rotational quantum number J J.

Let's look at the top graph, for Linear Pump Polarization. The vertical axis

Is the relative signal, and the horizontal axis is J J. The blue line represents



the signal for a Q-branch ( A J = 0 4] = 0). Notice that it is large and
relatively constant for all but the very lowest J J values. Now look at the red
and green lines for the P- and R-branches. Their signals are much, much
smaller. This plot visually confirms that a linear pump dramatically

enhances Q-branch signals.

Now, let's examine the bottom graph, for Circular Pump Polarization. The
situation is completely reversed. The red line (P-branch, A J =-1 4] =
—1) and the green line (R-branch, A J =+ 1 4] = +1) show large signals
that grow with increasing J J. In contrast, the blue line for the Q-branch is
much smaller in magnitude. This confirms that a circular pump is the right
choice for observing P- and R-branch transitions. These plots are the
theoretical basis for the powerful spectral assignment capability of the

technique.
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Let's look at a real-world application of this principle. Slide 21 shows an
example from the spectrum of the Cesium dimer molecule, Cs, , recorded

around a wavelength of 627.8 nanometers.
Two spectra were recorded of the exact same spectral region.

- The upper trace was taken using a linear pump. The result is exactly as
the theory predicts: the Q-lines, which are transitions with A J =0 4] =0,
dominate the spectrum, while the P and R lines are very weak. - The lower
trace was taken using a circular pump. Again, in perfect agreement with

theory, the P and R lines are now strongly enhanced, while the Q-lines



have all but disappeared, appearing only as small, residual dispersive

features.

This is a stunning demonstration of the selectivity of polarization
spectroscopy. It allows an experimenter to effectively "turn on" and "turn
off" different types of transitions simply by rotating a half-wave plate to
change the pump's polarization from linear to circular. This is an invaluable

technique for assigning and understanding complex molecular spectra.
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Here we see the actual data from the Cesium dimer example. The plot

shows signal intensity in arbitrary units versus wavelength in nanometers.

The Upper Trace, for linear pump polarization, is shown in blue. You can
see a very strong, sharp feature right in the middle, which is clearly labeled
as the dominant Q-lines. To the sides, where the P and R lines would be,

the signal is essentially flat and weak.

The Lower Trace, for circular pump polarization, is shown in red. The
change is dramatic. The central Q-line signal is now suppressed, appearing
as just a small residual wiggle. Instead, two massive signals have
appeared on either side, labeled as "P/R Lines Enhanced." These

correspond to the P- and R-branch transitions.

This figure is a perfect textbook illustration of how the choice of pump
polarization acts as a powerful filter, allowing us to disentangle different

components of a complex spectrum.
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Having thoroughly explored the physics and applications, let's return to one
of the technique's key advantages: the signal-to-noise ratio. Let's analyze

the case for a dispersion signal, which is often the most useful.

The dominant source of noise in our measurement is typically fluctuations

in the detector background. The background intensity, | b g I, comes

from the residual transmission of the polarizers, ¢ &, and the deliberate

uncrossing, 6 6. So, the background is:
Ibg=10- e-aL-aw:- ({+02)

Ing = I e ¥~ . (£ +6?)

The signal we want to measure is the peak-to-peak dispersion amplitude,

which we'll call A S max A4S,,,x- From our previous formulas, this is given
by:
ASmax=10- e-aL-aw- 6:- Aa0O- L

ASmaX = IO . e_aL_aW . 9 . Aao - L

To quantify the noise, we can define an intensity-noise coefficient, 'a’, such
that the noise on our incident laser beamis 10/ a I,/a. For example, if the
laser has 1% intensity noise, then 'a’ would be 100. This noise will

propagate through to our background measurement.
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Now we can write down the signal-to-noise ratio, S/ N S/N. The signal is
A S max ASy,,«x and the noise is the background 1 b g I, divided by our

noise coefficient a a. Hence, after canceling common terms, we get:

SN=aBAaOLE+062.

S 8dayl
N Y Erer

Now, we can optimize this! The angle 0 6 is a parameter we can control.
To find the maximum possible signal-to-noise ratio, we take the derivative
of this expression with respect to 8 6 and set it to zero. A quick calculation
shows that the optimum occurs when 08 2 = ¢ 6% =¢&, or when the
uncrossing angle 0 6 is equal to the square root of the polarizer extinction

ratio. This is a very important experimental rule of thumb.

Plugging this optimal © 6 back into the expression gives the maximum

achievable signal-to-noise ratio:

(S/N)max=aAaOL2¢.
AayL

aﬁ.

Let's compare this to the S/N for saturation spectroscopy, which can be
showntobe (S/N)sat=12aa 0L (5§/N)gt =1/2 aayL. The ratio of

these two gives us the gain factor of our technique.
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(S/N)max =




After accounting for the geometric factors, the final expression for the gain

In sensitivity of polarization spectroscopy over saturation spectroscopy is:

Gain=ACJJ1x 2¢.

ACy),

25

Let's look at this beautiful result. The gain depends on two things: 1. A C *

Gain =

AC*, the geometric factor, which is typically on the order of 1. 2. ¢ &, the

extinction ratio of our polarizers.

Since ¢ ¢ is a very small number, like 10 — 6 107® or 10 - 8 1078, the
square root of & & is also small (10 -3 1073 or 10 — 4 10~%). This means
the gain factor can be enormous. If ¢ éis 10 — 6 107°, the gain is on the
order of 1 2 x 10 = 3 1/2 x 1073, which is 500. This is where the huge

sensitivity improvement comes from.

Page 60:

#### Slide 23

Let's briefly consider the signal-to-noise ratio for the other case: generating

Lorentzian signals. This is Slide 23.

In this case, we keep the polarizers perfectly crossed, so our effective
angle 0'0’'is zero, but we assume we have a finite window dichroism, A a
w Aa,,. It's also possible to generate Lorentzian signals by carefully tuning

this window birefringence, for example by squeezing the cell.



From our general signal formula, the maximum signal amplitude in this

case, A S max 4AS,.x, IS:

ASmax=10- e-aL-aw- AaOL4- (Aaw+14Aa0lL).

—al-a. Aol
ASpax = 1o - € R (4ay, +1/4 Aayl).

The background intensity, |1b g I, is now:

Ibg=10- e-alL-aw- (§+14Aaw2).

2).
W

Ipg =1Ip-e "% . (§+1/4 Aa

We can again form the ratio of signal to noise.

Page 61:

We can now optimize the signal-to-noise ratio for the Lorentzian case, this
time by varying the window dichroism, A a w 4a,. The optimal value for
the window dichroism, A aw , opt 4a,, oy, is found to be approximately 4 ¢

I (AaOL)4&/(Aayl), for the case where ¢ & is much smaller than the
absorption.

If we insert this optimal value back into the S/ N S/N expression, we get a
lengthy formula, but the most important feature is how it scales. The
maximum S/ N S/N is proportionalto (AaOL)/& (4dayl)/é. Notice that
this scales as one over ¢ &, not one over the square root of ¢ ¢ as in the
dispersion case. This suggests that even larger enhancements are

possible.



The practical takeaway is that with good quality windows, where the
intrinsic extinction ¢ ¢ is less than or equal to 10 — 8 1078, and with proper
tuning of the window birefringence, it is possible to achieve sensitivity
improvement factors of 1,000 to 10,000 over conventional saturation

spectroscopy. This is truly remarkable.
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Let's make this concrete with a worked example using some realistic

numbers.
### Slide 24:

Let's assume the following parameters for our experiment: 1. The
geometric factor, A C x AC*, is 0.5. A typical value. 2. The polarizer
extinction ratio, € &,is 10 — 6 107. This corresponds to reasonably good,
but not exceptionally expensive, polarizers. 3. The unsaturated line-center
absorption, a 0 L ayL, is 10 = 2 1072, or 1%. This is a fairly weak
transition. 4. The on-resonance saturation parameter, S 0 S,, is 0.1. We
are weakly saturating the transition. 5. The laser intensity noise coefficient,

aa,is 10 2 102, or 100, which corresponds to 1% intensity noise.
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Now let's calculate the expected signal-to-noise ratios.

First, for our dispersion signal in polarization spectroscopy, we use the
aagLSyAC*

NI
Plugging in the numbers... we have 100 x 10 -2 x 0.1 x 05210 -6

formula (S/N)pol=aa0LS0ACx*x 2¢ (S/N)po =



100x1072x0.1X0.5 , , . _ 0.05
VTG , Wwhich simplifies to 0.052 x 10 -3 =25 25. So, we

2x1073
expect a signal-to-noise ratio of 25. That's a very clean signal. The slide

shows an alternate calculation using A a 0 4«,, leading to the same result.

Now, for the standard saturation spectroscopy signal, the formulais (S
IN)sat=12aa0LS0(S/N)s: = % a ayLS,. Plugging in the numbers:
0.5 x 100 x 10 = 2 x 0.1 0.5x 100 x 1072 x 0.1, which equals 0.05. A

signal-to-noise ratio of 0.05 means the signal is buried deep in the noise. It

would be essentially impossible to see.
The improvement factor is the ratio of the two, 25 0.05 % which is 500.

This numerical example powerfully demonstrates the orders-of-magnitude
sensitivity gain that polarization spectroscopy provides under realistic
laboratory conditions. It can turn an undetectable signal into a very clear

one.
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Let's discuss one final, but very important, practical consideration: noise
mitigation. Specifically, a type of noise that arises from interference. This is
Slide 25.

A common problem in these experiments is that a small amount of the
strong pump light can be back-scattered from the cell windows or other
optical surfaces. This scattered pump light can travel back along the probe

beam's path and interfere with the probe beam at the detector.



Because the path length of this scattered light is sensitive to tiny vibrations
and fluctuations in air density along the beam path, the phase of the
interference term, ¢ (t) ¢(t), will fluctuate randomly. This creates a low-

frequency, drifting noise component that can be very difficult to deal with.

The remedy is an elegant technique called rapid phase modulation or
phase dithering. The idea is to intentionally modulate the phase of the
pump beam at a high frequency. This is typically done by mounting the
pump beam's retro-reflecting mirror, M2, on a piezoelectric transducer, or
PZT.

By applying a sinusoidal voltage to the PZT, we can make the mirror
oscillate back and forth. If we make the amplitude of this oscillation large
enough, such that the optical path length changes by more than a
wavelength of the light, we are rapidly sweeping the phase of the pump

beam through many cycles of 2 1 2.
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How does this rapid phase modulation help?

The key is in how we detect our signal. We use a lock-in amplifier, and we
set its integration time constant to be very long, which corresponds to a
detection frequency that is much, much lower than the rapid modulation

rate, f f, of the piezo.

The coherent interference noise term now oscillates at this high frequency
f f. By averaging or integrating the signal over a time period much longer

than 1/f1/f, this rapidly oscillating interference term averages to zero.



However, the real polarization spectroscopy signal, which arises from the
pump-induced birefringence, is an incoherent process with respect to this
phase modulation. The population changes induced by the pump depend
on its intensity, not its phase. Therefore, the real signal is not affected by

the phase dither.

The result is that the averaging process suppresses the unwanted coherent

interference terms, while retaining our desired signal.
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This diagram provides a schematic of the phase dithering technique.

Panel A, on the top left, shows the setup. The pump beam hits mirror M2,
which is mounted on a Piezo Transducer (PZT). A function generator drives
the PZT with a fast sinusoidal signal, f m o d f,,,q, Causing the mirror

position, and thus the pump path length AL (t) AL(t), to oscillate rapidly.

Panel B shows the sinusoidal drive voltage applied to the PZT as a function

of time.

Panel C illustrates the timing and averaging principle. The rapid phase
modulation signal, fm o d f,,,q, represents the fast-oscillating interference
noise. The lock-in amplifier effectively integrates the total signal over a long
time window, shown as the orange box. The key condition is that the lock-
in’s detection frequency, f f, is much slower than the modulation

frequency, fTmod fy04-

As the mechanism box explains, the fast-oscillating cosine term from the

interference noise averages to zero over the long integration window,



effectively eliminating this source of noise from our measurement. This is a
common and essential trick for achieving the highest sensitivity in many

optical experiments.
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summary of the numerous
advantages of Polarization
Spectroscopy

First, High resolution. Like other Doppler-free techniques, the resolution is
not limited by thermal motion. In practice, the primary limitation on
resolution is often the small residual angle between the pump and probe
beams. Any non-zero angle re-introduces a small amount of Doppler
broadening, known as the residual Doppler width. With careful alignment,
this can be made extremely small, allowing for exceptionally high-resolution

measurements.

Second, Superior sensitivity. This is the key advantage we have
emphasized throughout. Typically, polarization spectroscopy offers a
sensitivity that is 100 to 1000 times greater than that of standard saturation
spectroscopy. The ultimate limit on this sensitivity is determined by the
quality of the polarizers (the extinction ratio, ¢ &) and the quality of the cell

windows (the residual window birefringence).
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Continuing with the advantages:

Branch selectivity. As we demonstrated with the Cesium dimer example,
we can choose the pump polarization—linear or circular—to selectively
emphasize either P and R lines, or Q lines. This makes polarization
spectroscopy a powerful diagnostic tool for making unambiguous

assignments in complex, congested spectra.

Intrinsic dispersion output. By simply uncrossing the polarizers by a tiny
amount, the technique naturally produces a dispersion-shaped signal. This
provides an ideal error signal for laser frequency stabilization, without the
need for any extra frequency dithering of the laser itself. This simplifies the
experimental setup and avoids adding unwanted modulation sidebands to

the laser.

Broad applicability. The principles we've discussed are very general.
Polarization spectroscopy has been successfully demonstrated and widely
used on a vast range of systems, including many different atoms and
molecules, such as lodine (I, ), Cesium dimer (Cs, ), and even more exotic

species like rare-gas excimers.
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Finally, to put everything together, here is a concluding roadmap for
Implementing polarization spectroscopy successfully in the laboratory. This
Is a practical checklist for any student setting out to build such an

experiment.



1. First, procure the best polarizers you can afford. Ensure you are using
high extinction-ratio polarizers, with ¢ ¢ value of less than 10 -7 1077,

if possible. This is the foundation of the technique's sensitivity.

2. Next, characterize and, if necessary, compensate for the window
birefringence. This might involve testing the empty cell for any polarization
rotation or even building a mechanical clamp to apply a compensating

stress to the windows.

3. Align your beams carefully. Set the angle between the probe and
pump beams to be as small as your optics will permit. This is crucial to
minimize the residual Doppler broadening and achieve the highest possible

spectral resolution.

4. Finally, to eliminate noise from back-scattered light, use piezo
modulation on the pump beam's retro-reflector to implement the phase

dithering technique we discussed.
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And the final step on our roadmap:

Choose your pump polarization—circular versus linear—strategically,
according to the desired transition branch you wish to study. If you are
trying to identify Q-branch transitions in a molecule, use a linear pump. If
you are interested in the P and R branches, or if you are working with an
atomic transition that behaves like a P or R branch, use a circular pump.

This deliberate choice is one of the most powerful features at your disposal.



By following these steps, you can harness the full power of this elegant and

sensitive spectroscopic method.

That concludes our lecture on Polarization Spectroscopy. Thank you.



