


Good morning, everyone. Welcome back to Physics 608. I'm Distinguished
Professor Dr M A Gondal, and today, we embark on a journey into one of

the most elegant and powerful techniques in modern laser spectroscopy.

We'll be covering Chapter 2, Section 3: Saturation Spectroscopy. This topic
represents a pivotal moment in the history of spectroscopy, as it was one of
the first and remains one of the most fundamental methods for overcoming

the limits imposed by the thermal motion of atoms and molecules.

Over the course of this lecture, we will see how we can use the properties
of laser light to intelligently select a small group of atoms and interrogate

them, revealing spectral details that are normally completely washed out.

This is the gateway to ultra-high precision measurements.
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So, let's begin by defining the problem that we need to solve. The title here
says it all: "Doppler-Broadened Absorption — Why Sub-Doppler Methods
Are Needed."

Imagine a gas of atoms or molecules in a cell at some finite temperature.
These particles are not sitting still; they are in constant, random motion,
described by the Maxwell-Boltzmann velocity distribution. Now, when we
shine a laser beam through this gas to perform absorption spectroscopy,
each individual absorber doesn't see the laser at its laboratory frequency,
which we'll call w w. Instead, due to the Doppler effect, an atom moving
towards the laser source sees the light blue-shifted to a higher frequency,

while an atom moving away sees it red-shifted to a lower frequency.



- In a thermal gas, this random motion causes each absorber to see a
slightly different laser frequency. The resonance condition is different for
every atom, depending on its velocity component along the laser beam's

axis.

- Now, what does our spectrometer measure? It doesn't see any single
atom. It measures the collective response of the entire ensemble of
particles. We are summing up the absorption profiles of atoms across the
whole range of velocities. The result, as stated in the second bullet point, is
that the ensemble absorption profile becomes a Gaussian. This Gaussian
lineshape is a direct reflection of the Maxwell-Boltzmann velocity
distribution of the absorbers. We characterize the width of this line by its full
width at half maximum, or FWHM. This phenomenon is known as Doppler
broadening, and it is a classic example of what we call inhomogeneous
broadening, because different atoms in the ensemble contribute to different
parts of the overall spectral line. This is the great enemy of high-resolution

spectroscopy.
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So, just how wide is this Doppler broadening? On this page, we see the
fundamental equation that quantifies it. The Doppler width, in terms of

angular frequency, is given by the expression:



Let's break this down, term by term, because each part tells us something

physical.
*AwD

, spelled Delta omega sub D, is the Doppler width, specifically the full-width
at half-maximum of the Gaussian profile. This is the quantity we want to

understand. Its units are radians per second. * w 4

, Spelled omega naught, is the center angular frequency of the transition for
an atom at rest. This is the true, un-shifted frequency that contains the
precise information about the atomic or molecular energy levels we want to

measure. * kB

, spelled k sub B, is the Boltzmann constant. It's the fundamental bridge

between temperature and energy, with units of Joules per Kelvin. * T

is the absolute temperature of the gas in Kelvin. This is critical. The higher
the temperature, the faster the atoms move on average, the wider their

velocity distribution, and thus the larger the Doppler broadening. * m

is the mass of the absorbing particle in kilograms. Notice it's in the
denominator. This means that for a given temperature, lighter particles like
hydrogen atoms will have a much larger Doppler broadening than heavy

particles like cesium or iodine. * ¢
Is the speed of light, appearing here as c 2

in the denominator. * Finally, the In (2)



factor, the natural log of two, isn't from some deep physics; it's a
mathematical factor that arises specifically from converting the standard

deviation of a Gaussian distribution into its full-width at half-maximum.

So this equation beautifully encapsulates the physics: the broadening is
proportional to the transition frequency itself and scales with the square

root of temperature over mass.

Page 4.

Now let's consider the practical consequences of this Doppler width.

- The first bullet point here continues our list of terms from the previous

equation: ¢
is of course the speed of light in vacuum, in meters per second.

- The second bullet point is the real heart of the matter. This calculated
Gaussian width isn't a small effect. In the optical domain, it typically
amounts to hundreds of Megahertz, or even several Gigahertz. To put that
in perspective, the natural linewidth of an allowed atomic transition—the
ultimate limit set by the Heisenberg uncertainty principle and the lifetime of
the excited state—can be on the order of just a few Megahertz. Other
important effects, like pressure broadening from collisions, might contribute

tens of Megahertz.

- The problem is that this gigantic Doppler width acts like a thick blanket,
completely masking these much narrower, more subtle linewidths that carry
the most precise spectroscopic information. If you have two hyperfine

components of a transition that are separated by, say, 50 Megahertz, you



will not see two distinct peaks in a conventional absorption spectrum. You
will see one single, giant, featureless Gaussian blob that is a Gigahertz

wide. The interesting physics is lost.

- This brings us to our motivation, stated in the final bullet point. Sub-
Doppler techniques, the topic of our lecture, aim to recover these narrow,
intrinsic linewidths. And they all, in one way or another, work by a very
clever trick: they selectively probe only those molecules with a specific,
well-defined velocity, or more precisely, a narrow class of velocities. By
doing this, they effectively eliminate the inhomogeneous averaging over the
entire thermal distribution, sidestepping the Doppler effect and revealing

the underlying homogeneous lineshape.
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This leads us directly to the star of today's lecture. As the slide says,
Saturation spectroscopy, which is also famously known as Lamb-dip
spectroscopy, is one of the most powerful and widely used sub-Doppler

methods. It will be the central topic of this entire sequence of slides.

The name "Lamb-dip" honors Willis Lamb, who first explained the
phenomenon in the context of gas lasers in the early 1960s. His work laid
the theoretical foundation for understanding how a standing wave inside a
laser cavity could interact with the gain medium, and it's this core idea of a
standing wave—which is nothing more than two counter-propagating
waves—that we are going to exploit. So, let's dive into the principle of how

this technique works.
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Alright, let's explore the principle of Saturation, or Lamb-Dip, Spectroscopy.
The core concept is elegant and relies on a specific geometric

arrangement.

The first bullet point lays out the essential setup: Two counter-propagating
laser beams with nearly identical frequencies interact with the same volume
of an absorbing sample. Imagine a gas cell. We send one laser beam in
from the left and another, from the same laser, in from the right. A standing

wave is essentially formed within the interaction region.

Now, these two beams are not created equal. The second bullet point
introduces a crucial asymmetry: A strong "pump" beam is used to saturate
the absorbers. What does "saturate” mean in this context? If the pump
beam is sufficiently intense, it can drive the atomic transition so effectively
that it significantly depletes the population of the ground state and
increases the population of the excited state. The rate of stimulated
absorption and emission becomes very high. For that specific frequency,

the medium essentially becomes partially transparent, or "bleached."

But—and this is the key to velocity selection—the pump beam doesn't
saturate all the atoms. It only interacts resonantly with a specific velocity
class: those atoms whose axial velocity component, v z v, along the beam
direction, Doppler-shifts the pump laser's frequency into resonance with the
atom's natural transition frequency. This is the first-order Doppler condition,
and it's how the pump beam begins its job of picking out a single group of

atoms from the entire thermal distribution.
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Here we see the mathematical statement of that first-order Doppler
condition for the pump beam. Let's assume the pump travels in the positive

z-direction. It will be resonant with atoms that satisfy the condition:
wlaser=w0(1+vzc).
(%

Wiaser = Wo (1 + ?Z)
Here, wlaser
is the frequency of our laser in the lab frame, w
Is the rest-frame atomic transition frequency, v z
is the atomic velocity along the laser axis, and ¢

is the speed of light.

This equation tells us that for a given laser frequency that is slightly

detuned from w

, the pump beam selectively interacts with and saturates a narrow slice of

the velocity distribution at a specific v z

. It effectively "burns a hole" in the ground-state population for that velocity

class.

Now, the second bullet point introduces the other beam: A weak "probe"
beam travelling in the opposite direction. It's weak because we don't want it

to do any saturating itself; it's just there to measure the absorption.



Because it travels in the opposite direction, the Doppler shift it sees has the

opposite sign.

So, when can both beams interact with the very same group of atoms? This

can only happen when the velocity v z
that satisfies the resonance condition is zero. If v z

is zero, both the pump and probe Doppler conditions simplifyto wlaser

zwo

. In other words, when the laser is tuned exactly to the center of the atomic
resonance, both the strong pump and the weak probe interact with the

class of atoms that are essentially stationary along the laser axis.
The final bullet point describes the consequence. For this special v z

=~ 0 velocity class, the transition becomes saturated by the strong pump
beam. The ground-state population is depleted. When the probe beam
comes along, it finds fewer atoms in the ground state available to absorb its
photons. This results in a reduction of absorption specifically for the probe
beam, and only when the laser is tuned to the very center of the Doppler-

broadened line.
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This leads us to the spectroscopic signature that we actually observe. As
the laser frequency is scanned across the entire Doppler profile, we
monitor the absorption of the weak probe beam. For most frequencies, the
probe just measures the regular, broad Doppler-broadened absorption. But,

as the first bullet point states, when the laser frequency w w is tuned very



close to the rest-frame transition frequency, w 0 w,, we see a dip in the

probe’s absorption. This is the famous Lamb dip.

And here is the crucial payoff: the width of this dip is not determined by the
Doppler width. Instead, its width is determined by the homogeneous
broadening mechanisms—things like the natural lifetime of the state,
collisions between atoms, and other effects that affect every atom equally,
regardless of its velocity. We have successfully traded a huge, gigahertz-
wide inhomogeneous profile for a narrow, megahertz-wide homogeneous
feature. We have defeated Doppler broadening and can now resolve the

true, underlying structure of the transition.
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To truly appreciate the power of this technique, let's illustrate the gain in

resolution with a concrete example involving two overlapping transitions.

As the first bullet point suggests, consider a system with two distinct
transitions that are very close in energy. A common scenario is two
hyperfine components or two transitions from different isotopes. Let's say
they share a common lower state, which we label with the ket | ¢ ) |c), and
they terminate in two closely spaced upper states, |a) |a)and | b)) |b).
The center frequencies of these two transitions are wca w., and wcb

Wep-

Now, let's imagine their frequency separation is small. The second bullet
point gives us the condition: Doppler broadening will cause the two
corresponding Gaussian profiles to overlap almost completely, making

them spectroscopically indistinguishable, if the absolute value of the



frequency difference, |[wca-wcb | |w., — wsp]|, IS much, much less than
the Doppler width, A w D Awp.

In a standard absorption experiment, you wouldn't see two lines. You'd see
a single, wide, blended feature, and the information about the splitting

between states |a) |a)and |b) |b) would be completely lost.
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So, how does saturation spectroscopy solve this problem?

The first bullet point explains that each of these transitions, the one to state
| a) |a) and the one to state | b') |b), will possess its own, narrow Lamb
dip. The width of this dip is related to a quantity we’ll call the saturation
width, y s ys, which is a measure of the homogeneous broadening. We’'ll

define this more formally in a moment.

The critical consequence is stated in the second bullet point. These two
narrow, sub-Doppler features will remain resolvable from each other
provided that their separation is greater than their width. A common
criterion for resolvability is that the separation must be greater than the full

width of one of the features. Here, the condition is given as:

A w Aw, which is equalto wca- wcb w, —w., Mmust be greater than

2YS 2ys.
Where 2y s 2y, represents the full width of the Lamb dip.

The practical consequence, laid out in the final bullet point, is astounding.
We can now distinguish transitions that are separated by only a few

Megahertz, even though they are buried inside Doppler envelopes that can



be a Gigahertz wide or more. We have achieved a resolution enhancement
of potentially a factor of 100 or even 1000. This is the true power of sub-

Doppler spectroscopy.
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This slide provides a perfect visual summary of the resolution gain we've

just discussed. Let’s break down this figure.

On the left, we have a simple energy level diagram. There’'s a common
ground state labeled | ¢ ) |[c). From this state, there are two possible
transitions, represented by the red arrows, to two closely spaced excited
states, |a) |a)and | b ) |b). The transition frequencies are w C a w,,

and wcb wg.

Now, look at the main graph on the right. The horizontal axis is the laser

frequency, w w, and the vertical axis represents absorption.

The large, broad, light-blue, bell-shaped curve is labeled as the “Doppler-
broadened profile.” This is what you would measure with conventional
spectroscopy. As you can see, it's just one wide, featureless lump; the two
transitions are completely unresolved. The full width of this profile is

indicated by the line labeled A w D Awp,.

But, when we perform saturation spectroscopy, we see something
remarkable. Carved into the very top of this broad profile are two sharp,
narrow features. These are labeled “Lamb Dips (sub-Doppler features).”
Each dip is centered perfectly at its respective transition frequency, w c a

Weq aNd W Cb wgp.



Notice how narrow these dips are. Their width is labeled 2y s 2y,, and you
can visually see that it is vastly smaller than A w D Aw,. Because the
separation between the dips, A w 4w, is greater than their individual
widths, 2 y s 2y,, we can clearly resolve them. The condition for

resolvability written at the bottom of the slide,
Aw=|wca-wcb|>2ys
Aw = |weq — Wep| > 2ys

is made beautifully intuitive by this diagram. We are literally digging out the

fine details from beneath the Doppler blanket.
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Now that we understand the principle, let's move on to the practical details
of the experimental setup. This slide outlines the core scheme for a pump-

probe geometry.

First, as the top bullet point indicates, you need a very specific kind of light
source: a single-frequency, tunable laser. You can't do this with a
broadband lamp. You need a spectrally narrow source that you can scan
precisely. This beam is then split by a beam splitter, abbreviated BS, into

two separate beams.

The next two bullet points address the intensities of these beams, and this

iS a crucial detall.

* The pump beam has an intensity | 1 I;. This beam needs to be strong
enough to cause saturation. The probe beam has an intensity |2 I,, and it

must be much, much weaker than the pump beam. The conditionis |2 « |



11, « I;. Why? The probe is meant to be a non-perturbative tool. Its job is
simply to measure the absorption of the sample without significantly
altering the atomic populations itself. We want it to probe the changes

created by the pump*, not to create its own changes.

Finally, the geometry is key. The last bullet point reiterates that the pump
and probe traverse the sample cell in strictly opposite directions. This
counter-propagating configuration is precisely what allows us to selectively
address the velocity group with v z= 0 v, = 0, which is the cornerstone of

the entire technique.
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So, we have our pump and probe beams interacting with the sample. How

do we get a signal out?

The first bullet point explains that a photodetector is placed in the path of
the probe beam after it has passed through the sample cell. This detector

measures the transmitted probe power, which we'll denote as 1t 2 (w )
Itz (w).

Now, what we are truly interested in is the absorption, which is the amount
of light that was removed from the probe beam. The second bullet point
shows how we can construct this signal electronically. The detection signal,
DS (w) DS(w), is made to be proportional to the incident probe intensity,
| 2 I,, minus the transmitted probe intensity, 1t 2 ( w ) I;,(w). This
difference is a direct measure of the power absorbed by the sample as a

function of the laser frequency, w w.



So, what does the recorded trace look like? The final bullet point describes
the observation. As you scan the laser frequency, you first see the wide
Doppler profile, representing the background absorption. But right at the
line center, we know that the pump beam saturates the medium, reducing
the absorption of the probe. This means the transmitted power, [t 2 I,

increases. Therefore, our detection signal, 12 -1t 2 I, — I;,, decreases.

This would normally create a "dip". However, the slide notes that the
observed trace shows sharp Lamb peaks. This is a very common and
important practical point. While the physical phenomenon is a dip in
absorption, it's often electronically convenient to invert the signal or use
detection techniques that represent this reduced absorption as a positive
peak on a baseline. So, a "Lamb peak" in the final data almost always
corresponds to a "Lamb dip" in the physical absorption. The slide clarifies

this: "probe attenuation is reduced at line center, so DS shows a peak."
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This slide presents a clear, comprehensive diagram of the entire pump-

probe experimental setup. Let’s trace the path of the light and the signal.

We begin on the left with the “Tunable Laser.” Its output beam, a single

magenta arrow, travels to a “Beam Splitter,” labeled BS.
The beam splitter performs the crucial task of creating our two beams.

1. The portion of the beam that passes straight through is our weak probe
beam, labeled | 2 I,. It traverses the “Sample Cell,” which contains our gas
of atoms (represented by blue dots). After the cell, the transmitted probe

beam, now labeled | ( w ) I(w), strikes the “Photodetector.”



2. The portion of the beam that is reflected by the beam splitter becomes
our strong pump beam, labeled 1 1 I;. It travels up to a “Mirror,” which
redirects it to enter the sample cell from the right, making it perfectly
counter-propagating to the probe. After passing through the cell, the pump

beam is typically discarded.

Now let’s look at the signal processing. The photodetector measures the
probe intensity and sends an electronic signal to the “Detection
Electronics.” The output of these electronics is our final signal, plotted on
the graph at the bottom right.

This graph shows the “Detection Signal, D S ( w ) DS(w)” on the vertical
axis versus the “Laser Frequency, w w” on the horizontal axis. We see the
broad, underlying “Doppler Profile” and, emerging from its center at

frequency w 0 w,, the sharp, narrow “Lamb Peak.”

The text box at the bottom beautifully summarizes the entire process, which
I'll paraphrase: a strong pump (|1 1 I;) and a weak, counter-propagating
probe ( | 2 I,) interact with the gas. When the laser is tuned to the
resonance, the pump saturates the atoms with near-zero axial velocity. The
probe experiences reduced absorption, resulting in the sharp Lamb peak
superimposed on the wide Doppler profile. This diagram is the canonical

picture of a saturation spectroscopy experiment.
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While the basic pump-probe setup works, in many real-world experiments,
the Lamb dip or peak can be a very small feature sitting on top of a very

large, sloping, and often noisy background from the Doppler profile. This



can make precise measurements difficult. This slide introduces a much
more sensitive and powerful detection technique: Lock-In Detection, which

is designed specifically to remove this Doppler background.

The first step, described in the first bullet point, is to modulate the
experiment in a specific way. The pump beam is mechanically "chopped,”
usually with a spinning wheel that has slots cut into it. This effectively turns
the pump beam on and off in a square-wave pattern at a specific

frequency, which we'll call fchop fehop-

The second bullet point describes how we use this modulation to our
advantage. The signal from the photodetector is fed into a lock-in amplifier.
This sophisticated instrument also receives a reference signal from the
chopper, oscillating at the same frequency, f chop fip- The lock-in
amplifier works by multiplying the detector output by this reference signal

and then applying a low-pass filter.

The genius of this technique is that it only passes signals that are varying
synchronously with the pump beam modulation. The Lamb dip's existence
depends entirely on the pump beam being present. So, when the pump is
on, the dip is there; when the pump is off, the dip is gone. This means the
Lamb dip signal is modulated at f chop feep- The broad Doppler
background, however, is caused by the probe beam interacting with the
gas, and it exists whether the pump is on or off. It is not modulated at f
chop fecnop- The lock-in amplifier therefore rejects the huge, steady
background and selectively amplifies only our tiny, modulated sub-Doppler

signal, resulting in a massive improvement in the signal-to-noise ratio.
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Let's formalize the physics behind this lock- in detection scheme. We can
describe the absorption process using the absorption coefficient, a ( w )

alw).

The first bullet point considers the case of a sufficiently weak probe
intensity, | 2 I,. The total absorption coefficient, in the presence of the

pump beam, can be thought of as the sum of two parts. The equation is:
a(w)=a0-as(w)
a(w) = ag — as(w)

Let's carefully define these terms, as shown in the bullet points below the

equation.

* a0 ay, spelled alpha naught, is the standard, unsaturated linear
absorption coefficient. This is the term that gives rise to the large, Gaussian
Doppler profile. It's independent of the pump beam. a s ( w ) as(w),
spelled alpha sub s of omega, is the saturated component. It represents the
change or reduction* in the absorption coefficient caused by the pump
beam. This is the term that contains our narrow, sub-Doppler Lamb dip

information.

Since the pump beam is chopped, it is the a s ( w ) as(w) term that is

modulated at f chop fehop- The lock-in amplifier is specifically designed to

isolate this modulated component.

The final bullet point reminds us that to find the exact mathematical form of

this Doppler-free contribution, a s ( w ) as(w), we need a more detailed



theoretical treatment using rate equations, which you would have seen in

Section 2.2 of our course notes. Let's look at the result of that treatment.
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result of the rate-equation analysis

for the Doppler-free contribution to

the absorption

This is the signal that our lock-in amplifier will isolate. The equation is:

The change in the absorption coefficient, which is written hereas a0 -as

QoSo
2

(W) ay — ag(w), is equal to a prefactor, (a0S02) ( ) multiplied by a

classic Lorentzian lineshape function. The Lorentzian is given by the
2
fraction: (VSZ)Z(?) in the numerator,and (wW-w0)2+(ys2)2

2
(w — wp)? + (%) in the denominator.

a0-as(w)=a0S02:- (ys2)2(w-w0)2+(ys2)2

®oSo _ (Vs/z)z
2 (w — wp)? + (¥s/2)?

This equation is rich with information, so let's unpack the parameters.

* First, notice the shape. The frequency dependence is purely Lorentzian,
centered at the rest-frame frequency w 0 w,. This is our beautiful, narrow,

Doppler-free feature. * S 0 S,, spelled capital S naught, is the on-axis



saturation parameter. It's a dimensionless quantity defined as the ratio of
the pump intensity |1 I; to the saturation intensity | sat Ig;. It tells us how
strongly we are saturating the transition. If S 0 S, is much greater than
one, we are in the strong saturation regime. * | sat Ig, spelled | sub sat, is
the saturation intensity. This is a fundamental characteristic of the transition
itself. Physically, it's the intensity required to reduce the population
difference between the ground and excited states to half of its equilibrium
value in steady state. It tells us how "easy" or "hard" it is to saturate a given
transition. * vy s ys, spelled gamma sub s, is the homogeneous Full Width at
Half Maximum, or FWHM, of the saturated transition. This is the width of
our measured Lamb dip. It is critically important to understand that this
width is determined by several physical processes, including the natural
lifetime, pressure broadening from collisions, power broadening from the
intense pump laser, and even transit-time broadening. We will dissect this

further in a moment.
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This slide provides a concise summary of the power of lock-in detection.

The key takeaway is that because the lock-in amplifier is phase-sensitive
and looks for signals only at the pump-chopping frequency, it performs a
remarkable feat of signal processing. The large Gaussian Doppler
background, which arises from the a 0 «, term, is essentially a DC or very
slowly varying signal from the lock-in's perspective. It does not depend on
the pump modulation, and therefore, it gets filtered out and averages to

Z€ero.



What remains? As the bullet point states, only the narrow Lorentzian term,
as (w) as(w), which is entirely dependent on the presence of the pump
beam, survives the lock-in detection process. We are left with a clean,
background-free, sub-Doppler signal, which dramatically improves our

measurement precision.
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Now let's delve deeper into the physical origins of the two crucial
parameters we just introduced: the saturation intensity, | s at I, and the

saturated homogeneous width, y s ys.

First, let's look at the saturation intensity for a standard electric-dipole

transition. The equation is:
Isat=mmhcyn3A3.

hey,
[sqr = EYER

Let's examine the terms:

* h his Planck's constant. * c c is the speed of light. * A A, spelled lambda,
is the transition wavelength in meters. * y n y,, spelled gamma sub n, is
the natural decay rate of the excited state, which we'll define on the next

slide.

The most striking feature of this equation is the A 3 A3 dependence in the
denominator. This has profound practical implications. It tells us that it is
much, much easier to saturate transitions at long wavelengths—for

example, in the infrared—than it is to saturate transitions at short



wavelengths, like in the ultraviolet. The required intensity scales very

strongly with wavelength.

Physically, | s a t I, represents the intensity at which the rate of
stimulated emission becomes comparable to the total relaxation rate of the
excited state. It's a measure of how hard you have to push the system to
bleach it.
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Now let's dissect the other key parameter: the homogeneous linewidth of

the Lamb dip, v s ys.

First, we must define the natural decay rate, y n y,, which appeared in the
equation for I s at Ig,;. As the first bullet point states, y n y, is simply the
inverse of the spontaneous lifetime of the excited state, 17 t. So, y n y,
equals one over T t. Its units are inverse seconds. The corresponding
natural width in Hertz is y n y, divided by 2 1 2m. This is the absolute

minimum linewidth permitted by the Heisenberg uncertainty principle.

However, in a real experiment, the measured linewidth, vy s ys, is always
broader than this fundamental limit. It is the sum of several homogeneous

broadening contributions, as shown in the central equation:
ys=yn+yp+yc+ytt.
Ys =+ Y + Vet Ve

Let's look at each of these components:



- Y n v, is the natural width we just discussed. - y p ¥, is the collisional, or
pressure-broadened, width. This arises from collisions between the
absorbing atom and other atoms in the gas. These collisions interrupt the
phase of the atomic oscillator, effectively shortening its lifetime and
broadening the line. This term is directly proportional to the gas pressure. -
Y C ¥, Is the saturation broadening, also known as power broadening. The
strong pump beam itself perturbs the energy levels and broadens the
transition. The slide gives an approximate formula for this additional width:
yc=(1+S0)yn-vyny. =1+ Sy)v, — ¥»- The crucial takeaway is that
a stronger pump beam (larger S 0 S,) gives you a bigger signal, but it also
makes your Lamb dip wider. There is a direct trade-off between signal-to-
noise and resolution. - Finally, there's vy tt y;;, which stands for transit-time

broadening.
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Let's define that last term, y tt y;.. This is transit-time broadening, and it
arises because the atoms are flying through the laser beam. They only
interact with the light for a finite amount of time—the time it takes for them
to transit the beam's diameter. This finite interaction time, via the
uncertainty principle, leads to an uncertainty in the measured energy, which
manifests as a broadening of the spectral line. This effect is inversely
proportional to the beam diameter; to get very narrow lines and minimize

transit-time broadening, you need to use very wide laser beams.

The second bullet point provides the crucial summary. The narrow

Lorentzian feature that we observe in our saturation spectroscopy



experiment—the Lamb dip—inherits this total width, y s ys. This means the
ultimate resolution of a Lamb-dip experiment can never surpass the
combined limits imposed by all these homogeneous broadening
mechanisms. We have successfully beaten Doppler broadening, but we are

still subject to these other, more fundamental, limits.
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Even with lock-in detection, we can still be limited by noise, particularly
fluctuations in the laser’s intensity. This slide introduces an even more
sensitive and refined experimental arrangement that uses a differential

detection scheme with two probe beams.

The core idea, as stated in the first bullet point, is to take the weak probe
beam and split it a second time using another beam splitter, BS2. This

creates two parallel probe paths through the sample cell.
Let’s look at these two paths:

1. Path A is our signal path. It traverses the region of the sample cell that is
illuminated by the strong, chopped pump beam. Therefore, the medium in

Path A is being saturated and un-saturated at the chopping frequency.

2. Path B is our reference path. It traverses a parallel, but spatially
separate, portion of the cell where there is no pump beam. The medium in

Path B is therefore always unsaturated.

As the final bullet point states, we then use two separate photodiodes, D 1

D, and D 2 D,, to simultaneously monitor the transmitted intensities of both



paths, which we call 1t A I, and |tB I;z. The magic happens when we

combine these two signals.
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This slide explains how we process the signals from the two photodiodes.

The two signals are fed into the inputs of a differential amplifier. The
amplifier's output, as shown in the equation, is the difference between the

two signals:
Al(w)=ItB(w)-I1tA(w)
Al(w) = Iip(w) — Iia(w)

Let's think about what this subtraction achieves. Any technical noise from
the laser, such as fluctuations in its power, will affect both probe beams A
and B equally. When we take the difference, this "common-mode" noise is

canceled out. This is a huge advantage.

Furthermore, the signal from the reference path, 1t B Iz, represents the
simple, unsaturated Doppler-broadened absorption. The signal from the
signal path, 1t A I,,, represents the same Doppler-broadened absorption
plus the small, modulated change due to saturation. When we subtract |t
A I, from |t B Iz, the large, common Doppler backgrounds cancel each
other out dynamically, leaving behind only the pure saturation signal. The
slide notes that the system is balanced by setting the output to zero when
the pump is blocked. This provides a very clean signal to send to the lock-

in amplifier, further improving the signal-to-noise ratio.



The final point on this slide is a crucial practical detail. If there is a small
crossing angle, a a, between the pump and probe beams—if they are not
perfectly anti-collinear—this introduces a residual Doppler width. The

formula is given as:
Swl=AwDxa
dw; =Awp X a

This shows that to achieve the highest possible resolution, strict anti-

collinearity, where a =0 a = 0, is highly desirable.
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However, achieving perfect anti-collinearity ( a = 0 a = 0) creates a new
practical problem. If the probe beam is exactly counter-propagating with the
pump, it will travel back along the pump’s path, hit the main beam splitter,
and a portion of its light will be directed straight back into the laser source

itself.

This parasitic optical feedback can severely destabilize the laser, causing
its frequency and output power to fluctuate wildly. It's a recipe for a noisy

and unreliable experiment.

The solution, as stated in the bullet point, is to use an optical isolator. An
optical isolator is a clever device, typically made of a Faraday rotator
sandwiched between two polarizers. It acts like a one-way street for light. It
allows the initial laser beam to pass through to the experiment with minimal
loss, but it blocks any light that tries to travel back into the laser, thus

preventing the destabilizing feedback. It's an essential component for any



high-precision spectroscopy experiment that requires perfectly counter-

propagating beams.
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This slide presents a fantastic, detailed schematic of the advanced
saturation spectroscopy setup incorporating both differential detection and

an optical isolator.

Let's trace the full beam path. Starting from the "Laser,” the light first
passes through an "Optical Isolator" to protect the laser. Then it hits the

first beam splitter, "BS1".

The reflected path is the pump beam. It's modulated by a "Chopper" at

frequency f chop fehop, reflected by mirror "M", and passes through the

"Gas Cell".

The transmitted path from BSL1 is the probe. It hits a second beam splitter,

"BS2," which creates our two probe beams.

Probe A, the signal beam, passes through the saturated region* of the cell
where the pump is present. It's detected by photodiode D A D,. Probe B,
the reference beam, passes through an unsaturated path* in the cell. It's
detected by photodiode D B Dg.

The signals from D A D, and D B Dg go to a "Differential Amplifier." The

output of this amplifier, A | ( w ) 4I(w), which is now an extremely clean

saturation signal, can then be sent to a lock-in amplifier for final processing.



The inset at the bottom left illustrates the "Faraday Isolator Operation,”
showing how it transmits the forward beam but blocks the reflected beam
due to polarization rotation.

Finally, the graph on the right shows the "ldeal Lock-In/Differential Signal."
The result of all this work is a perfect, Doppler-free Lamb Dip (shown here
as a peak) on a completely flat, zero background. This is the gold standard
for this type of measurement.
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Cesium isotopes

Let's now look at a real-world example that showcases the power of this

technique: the Lamb-dip spectrum of Cesium isotopes.

As the first bullet point states, the sample is a natural mixture of several
cesium isotopes: stable Cesium-133, and radioactive Cesium-135 and
Cesium-137. To get enough atoms in the gas phase to do the experiment,

the sample cell is heated to approximately 100 degrees Celsius.

The second bullet point specifies the electronic transition being observed:
itsthe 62S1/262S;,,t0 72P 72P transition, which has a wavelength
of 459.3 n m 459.3 nm, in the blue part of the spectrum.

Now, here is where the physics gets interesting. The different isotopes
have slightly different nuclear masses and sizes, which leads to small shifts
in their transition frequencies, known as isotope shifts. Furthermore, each

isotope has a nuclear spin, which couples to the electronic angular



momentum. This leads to a further splitting of the energy levels, known as

hyperfine splitting.

The result, as stated in the final bullet point, is that what would have been a
single line is actually a complex manifold of transitions. Using saturation
spectroscopy, we can resolve more than ten distinct Lamb dips, all packed

within a narrow frequency range of just a few hundred Megahertz.

Page 27:

The ability to resolve these features is not just a technical curiosity; it allows

for extremely precise measurements.

As the bullet point here states, the measured frequency separations
between these Lamb-dip peaks correspond directly to the underlying
nuclear-spin-dependent energy shifts and the isotope shifts. And because
we are using a sub-Doppler technique, we can determine these energy

splittings with incredible accuracy—nbetter than 100 kilohertz.

Think about that. The Doppler width for cesium at this temperature is on the
order of a Gigahertz, or one thousand Megahertz. We are measuring
splittings with an accuracy of 0.1 Megahertz, a ten-thousand-fold
Improvement in precision. This is what allows us to perform stringent tests
of our models of atomic structure and nuclear properties. It's all thanks to

the sub-Doppler resolution we gain from the Lamb-dip method.
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This graph provides a stunning visualization of the cesium data we've just
been discussing. The title is "Lamb-Dip Spectrum of Cesium Isotopes.” The
vertical axis is signal intensity, and the horizontal axis is frequency detuning

in Megahertz.

Two traces are plotted. The first is the light-blue, smooth, broad curve
labeled "Doppler-broadened profil." This is the theoretical envelope,
representing what you would see with a conventional spectrometer. It's one
large, unresolved feature. The second trace, in dark blue, is the actual
experimental data from the saturation spectroscopy measurement. It is a
dense forest of sharp, narrow features. Each one of these is a Lamb dip, a
sub-Doppler feature corresponding to a specific hyperfine transition of one

of the cesium isotopes.

It's a visually dramatic demonstration. All of the rich physics contained in
that complex structure of peaks is completely hidden, completely obscured
by Doppler broadening, until we apply the saturation technique to reveal it.

This is why sub-Doppler spectroscopy is so essential in atomic physics.
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So far, we’ve discussed saturation spectroscopy using absorption
detection. But what happens if our sample is extremely tenuous? What if

we have a very low density of absorbers?

This is the scenario described in the first bullet point. At low absorber
densities, the change in the transmitted probe power—the 12 -1t 2 I, —
I, signal—might be incredibly small, perhaps so small that it is completely

buried in the electronic noise of the photodetector. In this situation, even



our sophisticated lock-in and differential techniques might not be enough.
Absorption spectroscopy is fundamentally a measurement of a small
change on a large background, which is challenging when the change is

minuscule.

This is when we switch to a different detection method, described in the
second bullet point: Laser-Induced Fluorescence, or LIF. Instead of
measuring the photons that get through the sample, we measure the
photons that are emitted by the sample. After an atom absorbs a laser
photon and goes to the excited state, it will typically decay back down by
spontaneously emitting a fluorescence photon. These photons are emitted
in all directions. We can use a lens to collect this fluorescence light and
focus it onto a very sensitive, high quantum efficiency detector like a
Photomultiplier Tube (PMT) or an Avalanche Photodiode (APD).

The key advantage of LIF is that it is a “zero-background” technique. If no
laser light is absorbed, no fluorescence is emitted, and the signal is zero.
We are looking for a small signal on a nearly-zero background, which is
often much more sensitive than looking for a small dip in a large signal. The
LIF signal is directly proportional to the amount of power absorbed by the

sample.
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So, how do we combine the sensitivity of fluorescence detection with the
sub-Doppler resolution of saturation spectroscopy? This leads to a very
clever technique developed by Michael Sorem and Arthur Schawlow, called

intermodulated fluorescence spectroscopy.



The basic idea is to find a way to distinguish the fluorescence coming from
the nonlinear saturation interaction from the linear fluorescence that comes
from the entire Doppler-broadened profile. The trick, as described in the
first bullet point, is to modulate the pump and the probe beams at two
independent chopping frequencies, f 1 f; for the pump and f 2 f, for the
probe.

Now, the total fluorescence signal will have several components. There will
be a linear component from the pump beam exciting atoms, modulated at f
1 f;. There will be another linear component from the probe beam exciting

atoms, modulated at f 2 f,. These still carry the full Doppler broadening.

However, the saturation effect—the Lamb dip—is a nonlinear phenomenon.
It only occurs when an atom interacts with both the pump and the probe
beam. Mathematically, this nonlinear term arises from the product of the
two intensities. And as we know from trigonometry, the product of two
signals at frequencies f1 f; and f 2 f, creates new frequency components
at theirsum, f1+1f2 f; + f,, and their difference, f1-f2 f; — f5.

The final bullet point reveals the experimental trick: we set our lock-in
amplifier to detect the fluorescence signal at the sum frequency, f1 +f2
fi + f>. This isolates only the nonlinear saturation term. By doing so, we
completely reject the linear fluorescence background that carries the
Doppler broadening, leaving us with a pure, background-free, sub-Doppler

signal.
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This diagram shows the experimental setup for intermodulated

fluorescence spectroscopy. Let's trace the components.

We start with the "Laser.” The beam goes to a "Beam Splitter," creating the

pump and probe beams.

Notice the "Chopper Wheel." It's specially designed with two different
patterns of slots on two concentric tracks. As it spins, it modulates the red
"Pump Beam" at a frequency f 1 f; and the green "Probe Beam" at a

different frequency, f 2 f,. A "Chopper Controller" manages this.

The two beams are then directed to be counter-propagating through the

"Sample Cell."

Now, look at the detection side. Instead of a photodiode in the beam path,
we have a "Collection Lens" positioned at a right angle to the laser beams.
This lens gathers the "LIF" signal—the fluorescence photons emitted from

the gas—and focuses them onto a detector, labeled "PMT/APD."

The signal from the detector goes into the "Signal In" port of the "Lock-in
Amplifier." The crucial part is the reference signal. The timing signals for f
1 f; and f 2 £, from the chopper are fed into a summing circuit, labeled with
a 2 Y symbol, to generate a reference signal at f1 +f2 f; + f,. This sum
frequency is fed into the "Ref In" port of the lock-in. This setup ensures that

we are detecting only the Doppler-free, nonlinear interaction.
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Let's look at a simplified mathematical model that explains why the
intermodulated fluorescence technique works. This is what's happening

inside the lock-in amplifier.

First, as shown in the top bullet point, we define the time-dependent
intensities of our two chopped beams. We can model the square-wave

chopping with a cosine function for simplicity.

* The pump intensity is:

I;(t) = Lo (1 + cos(41))

* The probe intensity is:

I,(t) = I (1 + cos(2;1))

* Here, |10 I, and | 20 I,, are the peak intensities, and the angular

frequencies Q1 02, and Q2 0N, are simply 2wf12nf, and 21 f22nf,.

Next, we consider the effect on the atoms. The second bullet point gives
the steady-state solution for the saturated population difference, A N s
ANg, right at the line center, where the sub-Doppler signal exists. As we've
seen before, saturation depends on the total intensity, |1+ 12 I, +I,. The

equation is:
ANs=ANO[1-a(l1+12)]
ANS =AN0[1—a(11+12)]

We will define the terms AN O AN, and a a on the next slide.
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Continuing with our model, let's define the terms from the previous

equation.

* A N O AN,, spelled Delta N naught, is the unsaturated population
inversion. For a typical absorption experiment, the ground state is more
populated than the excited state, so this value is negative. * The parameter

a a is a proportionality constant that depends on the properties of the

transition. It is proportional to 1 | sat =

sat

Now, the final piece of the puzzle is the fluorescence intensity itself. The
fluorescence signal we detect, | F Ig, is proportional to the rate at which
photons are absorbed. This rate depends on both the population available
for excitation, A N s AN, and the total intensity of light available to drive

the transition, 11+ 121, + I,.
So, the fluorescence intensity is given by the equation:
IF(t)=C- ANs- (11+12).

I(t) =C-ANg - (I; + L,).

Here, C C is just a constant that accounts for the geometric collection

efficiency of our lens and the quantum efficiency of our detector.

To find the time dependence of our signal, we need to substitute our
expressions for AN s ANg, 11 (t) I,(t),and |2 (t) I,(t) into this final

equation.
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When we perform that substitution, the resulting expression for the
fluorescence intensity becomes quite complex. As the first bullet point
explains, substituting the expression for A N s AN leads to terms that are
linear in the intensities |11 I; and | 2 I,, but it also produces a term that is

quadratic in the intensities, involving the product |11 I; times |2 [,.

This quadratic term is the source of our nonlinear signal. When we expand
the time-dependent intensities, this term will contain products of cosines,
like:

cos(2;t)cos(,t).

This is where the magic happens. The second bullet point reminds us of a

fundamental trigonometric identity:

cos(2;t)cos(2,t) =1/2 [cos((.()l + .Qz)t) + COS((.Ql — .Qz)t)].

This identity explicitly reveals that the nonlinear interaction term—the term
that only exists because of saturation—contains modulation components at
the sum frequency, f1 +1f2 f; + f,, and the difference frequency, |f1 - f
2 | |f1 — f2|- These frequency components are purely saturation-related. By
tuning our lock-in amplifierto f1 +f2 f; + f,, we can isolate this signal and
completely reject the linear, Doppler-broadened background which only

contains frequencies f1 f; and 2 f,.
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This slide neatly summarizes the lock-in strategy and the experimental
outcome. We have two main choices for our lock-in reference frequency,

and they give vastly different results.

- First, as the top bullet point describes, if we set our lock-in to detect at
frequency f 1 f;, we will primarily detect the linear fluorescence caused by
the probe beam, which is modulated at f 1 f;. This signal is still Doppler-
broadened. We will also see the Lamb dips, but they will appear as small

features on top of this large background, leading to limited precision.

- Second, the much more powerful strategy: if we set the lock-in to detect at
the sum frequency, f1 +f2 f; + f,, it will only be sensitive to the nonlinear
saturation term. The result is dramatic: the Doppler background disappears
entirely. We are left with a clean, background-free spectrum of our sub-

Doppler features.

The slide then gives a practical example where this technique was
famously applied: the study of a specific ro-vibrational transition in the
lodine molecule, | 2 I,. The transition starts from the ground electronic

state, X1Xg+ Xlzg, in the vibrational level v " =1 v" = 1 and rotational

level J" =98 J” =98, and goes to the excited B 3 I 0 u + B3I}, state,
with v'=58 v =58 and J' =99 J' =99. This transition is conveniently
located at a wavelength of 514.5 nanometers, which matches a strong line
from an Argon ion laser, making it a classic system for high-resolution

studies.
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This slide provides some of the impressive details from the seminal

experiment on iodine by Sorem and Schawlow.

Using the intermodulated fluorescence technique, they were able to resolve
15 distinct hyperfine components of that iodine transition, and they
determined their positions with an uncertainty of less than 1 Megahertz.

This was a groundbreaking achievement in resolution at the time.

The final bullet points give the specific modulation frequencies they used in

their experiment:

* The pump beam was chopped at f1 =600 f; = 600 inverse seconds, or
600 Hertz. * The probe beam was chopped at f 2 = 900 £, = 900 inverse

seconds, or 900 Hertz.

Therefore, to isolate the pure, Doppler-free signal, they would have set

their lock-in amplifier to detect at the sum frequency of 1500 1500 Hertz.
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This figure provides a powerful visual comparison of the two lock-in
detection schemes. The title is “Intermodulated Fluorescence

Spectroscopy,” and it compares detection at f1 f; versus f1+f2 f, + f5.

The top plot, in blue, shows the signal you would get if you set the lock-in to
detect at f 1 f;. The vertical axis is signal intensity. You can see a very
large, broad curve labeled "Doppler-broadened background.” Riding on top

of this background are some small wiggles, which are the "Lamb dip"



features. It's clear from the plot that extracting precise information from
these small features on such a large, curved background would be very
difficult.

Now, look at the bottom plot, in red. This shows the signal when the lock-in
Is set to the sum frequency, f 1 +f 2 f; + f,. The result is stunningly
different. The label "Doppler background suppressed” points to a perfectly
flat, zero-signal baseline. All that remains is a series of sharp, well-
resolved, negative-going peaks. Each one is a "Resolved hyperfine
component.” The signal is clean, the background is gone, and the
resolution is magnificent. This figure perfectly illustrates the superiority of

the intermodulation technique for high-precision spectroscopy.
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Let's now work through a practical estimation of the expected Lamb-dip
linewidth for a real system, like the iodine molecule we've been discussing.
This is Example 2.5 from the text. We need to consider all the different

homogeneous broadening mechanisms and add them up.

First, let's calculate the natural linewidth. The first bullet point gives us the
natural lifetime of the relevant excited state of iodine: T=1.0x10-7s.
T~ 1.0X1077s.

The natural decay rate in angular frequency units, y n y,, is the inverse of

the lifetime.

yn=11=107s-1.



1
== 107 s71,

To convert this to a more intuitive linewidth in hertz, A v Av, we divide by 2

T 2m.
Avn=yn2m=16MHzZz.

n
Av, = — =~ 1.6 MHz.
V= o Z

This is the fundamental limit set by nature.

Next, we consider pressure broadening. The second bullet point gives
typical experimental conditions: a vapor pressure p=005mbarp=
0.05 mbar at a temperature of 300 K 300 K. Under these conditions, the

pressure broadening contribution, & v p &v,, is estimated to be

approximately 2 M H z 2 MHz.
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Continuing our estimation of the Lamb-dip linewidth for iodine, this slide
tells us where that pressure broadening value came from. It was obtained
from a measured broadening coefficient, which for this iodine transition is
approximately 40 Megahertz per millibar of pressure. So, 40 Megahertz per

millibar, times our pressure of 0.05 millibar, gives exactly 2 Megahertz.
A0OMHz/mbarx005mbar=2MHz.
40 MHz/mbar X 0.05 mbar = 2 MHz.

Next, we must account for power broadening, also called saturation

broadening. This is caused by our strong pump beam. Let's assume we are



using an intensity that gives us a saturation parameter, S S, of 3. The slide
provides a rule-of-thumb formula for this case: the power broadening
contribution, d v s dvg, is approximately twice the natural linewidth, d v n

dv,. SO, the calculation is:
dvs=20vn=32MHz.
6vg = 26v, = 3.2 MHz.

This shows that power broadening is a very significant contribution, often

larger than the natural width itself.

Finally, we have transit-time broadening. This depends on our laser beam’s
size and the speed of the atoms. Let’'s assume a beam radius, w w, of 0.5
millimeters and a mean atomic speed, v v, of 300 meters per second. The

approximate formula is:
ovtt=04vw.
v
(51/“: = 0.4‘ W.

Plugging in the numbers, we get approximately 0.24 Megahertz. In this
case, it's a smaller contribution, but it's certainly not negligible and must be

included for an accurate estimate.
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Now we have all the individual homogeneous contributions to our linewidth.
To find the total Lamb- dip Full Width at Half Maximum, we need to

combine them. Since these are independent, random processes, we



typically add their widths in quadrature, which means taking the

root- sum- square.
The equation is:

SVLD=(2MHz)2+(32MHz)2+(024MHz)2.

Svip ~ /(2 MHz)2 + (3.2 MHz)2 + (0.24 MHz)2.
When you calculate this, the result is approximately 3.6 M H z 3.6 MHz.

The final bullet point puts this number in context, and this is the punchline
of the entire exercise. This calculation demonstrates that we can achieve
sub- Doppler widths of only a few Megahertz. This is remarkable when you
remember that the Doppler width for iodine at room temperature exceeds
500 M H z 500 MHz. We have improved our spectral resolution by more
than a factor of 100 100, allowing us to see the fine details that were

previously completely obscured.
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Now we come to a fascinating and very useful subtlety of saturation
spectroscopy: the phenomenon of cross-over signals, which are additional

sub-Doppler resonances that can appear in the spectrum.

The first bullet point lays out the condition for their appearance. Cross-over
signals occur whenever you have two nearby transitions whose Doppler-
broadened envelopes overlap, and, crucially, these two transitions must
share a common energy level—either a common lower level or a common

upper level. The mathematical condition for Doppler overlap is that the



absolute value of the frequency difference, | w1 - w 2 | |[w; — w,|, is less
than the Doppler width, A w D Awp.

When these conditions are met, an extra resonance appears. As the
second bullet point states, this happens when the laser is tuned exactly

midway between the two main transitions, at a frequency w ¢ w,, given by:

wec=wl+w?22.

wq + w,
a)c=—2

Let's explore the mechanism that gives rise to this extra signal.
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The top of this slide explains the mechanism behind the crossover
resonance. When the laser is tuned to the midpoint frequency, w ¢ w, it
simultaneously meets the Doppler resonance condition for two different

non-zero velocity groups, one for each of the two transitions.

Let's think this through carefully, as described in the second bullet point.
Imagine the strong pump beam, with frequency w ¢ w,, is traveling to the
right. It will be resonant with, say, transition 1 for a group of atoms moving
with a specific velocity, v z v,. At the same time, the weak probe beam,
also at frequency w c w. but traveling to the left, will be resonant with

transition 2 for the exact same velocity group, Vv z v,.

This creates a link between the two transitions via this specific velocity
class. The pump beam interacts with transition 1, causing a population

change in the shared energy level for these v z v, atoms. The probe beam



then comes along and tries to drive transition 2, but it finds that the
population in the shared level has already been altered by the pump. This
modification of the probe's absorption creates an extra Lamb dip (or peak)

precisely at the crossover frequency, w ¢ w..

Finally, the sign of this crossover signal gives us valuable information, as

noted in the last two bullet points:

- If the two transitions share a common lower level, the pump depletes this
level. The probe then sees less absorption, resulting in a negative signal, or
a dip in transmission, just like a normal Lamb dip. - If they share a common
upper level, the pump populates this level. The probe can then be
stimulated to emit from this level, leading to a gain in transmission. This

appears as a positive signal, or a peak.
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This diagram provides a visual explanation of the crossover mechanism,

showing the two main cases.

On the top left, we have "Case 1. Shared Lower Level,” which is also
known as a V-System. We have a common ground state | g ) |g) and two

transitions, w 1 w; and w 2 w,, to two different excited states.

On the top right, we have "Case 2: Shared Upper Level," or a Lambda-
System. Here, two different ground states are connected to a common

excited state |e) |e).

The main graph below illustrates the mechanism by plotting population as a

function of the axial velocity, v z v,. The large pink curve represents the



thermal Maxwell-Boltzmann distribution of velocities. The key idea is the

"Interaction with a Specific Velocity Class."

Let's focus on the crossover condition. The pump beam, let's say it's
resonant with transition w 1 w,, interacts with a group of atoms at a
specific positive velocity, + v ¢ +v.. It "burns a hole" in the population of
the shared level for this velocity group. This is shown as the "Population

Hole."

Now, the counter-propagating probe beam, which is resonant with
transition w 2 w,, interacts with the very same velocity class, + v ¢ +v..
The annotation "Crossover Condition" explains that the probe beam sees
this velocity class and experiences the population change created by the
pump, resulting in the crossover signal. For the shared lower level case
shown, this will be a dip in absorption. For the shared upper level case, the

annotation notes that the signal is a peak.
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Let's put some simple equations to this concept of velocity selection for

Cross-overs.

First, let's define the laser frequency detuning. When the laser is tuned to
the crossover resonance at w ¢ w,, its detuning relative to the center of

transition 1 is given by A w Aw:
Aw=wc-w1
Aw = we — w4

Substituting the definition of w ¢ wg, this becomes:



Aw=w2-w12

Wy — Wq

A —
@ 2

So, the laser is detuned from each transition by exactly half of their total

separation.

Now, for the laser to be resonant, this frequency detuning must be exactly
compensated by the Doppler shift, k v z kv,. The second bullet point gives
the corresponding axial velocity group that is excited by the pump beam
interacting with transition 1. The velocity v z v, must satisfy kvz=Aw

kv, = Aw. Solving for the velocity, we get:

vz=Awk

The slide includes an additional term, vy k' i%, which accounts for the

fact that we are not selecting an infinitely sharp velocity, but rather a narrow
packet of velocities determined by the homogeneous half-width, gamma.
The key point is that there is a specific, non-zero velocity group that is now

the center of the interaction.
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This slide summarizes the quantitative picture and defines the terms we

just used.

- k k is the wave number, defined as w / ¢ w/c, with units of radians per

meter. - y y is the homogeneous half-width of the transition.



The final bullet point recaps the entire mechanism beautifully. The counter-
propagating probe beam addresses the same v z v, group as the pump
beam, but it drives transition 2 instead of transition 1. Because the pump
has already modified the population of the shared level for this specific
group of atoms, the probe beam's absorption is modified. This creates our
crossover resonance, even though the probe's frequency, w ¢ w, is
exactly halfway between the two main resonance frequencies. It's a three-

level interaction mediated by a specific velocity class.
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So, why are these crossover signals important? Are they just a confusing
artifact? Absolutely not. As this slide points out, they are an incredibly

useful diagnostic tool.

The key utility is that crossover features assist in assigning spectral lines to
a common quantum level structure. Imagine you have a very dense
molecular spectrum with hundreds of lines, and you don't know how they
are connected. If you observe two main Lamb dips, let's call them A and B,
and you see a third, sub-Doppler feature appearing exactly halfway
between them in frequency, you have an unambiguous, powerful piece of

evidence that transitions A and B share a common energy level.

By identifying these crossover patterns throughout the spectrum, you can
piece together the connectivity of the energy level diagram, like solving a
puzzle. This is absolutely crucial for understanding the structure of complex
atoms and molecules, especially in dense molecular spectra where line

assignments would otherwise be nearly impossible.
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Let's look at a real-world example of this principle in action. This slide
discusses the spectrum of Helium, specificallythe 33D 33Dto 23 P 23P
transition. This transition actually consists of several closely spaced fine-

structure components.

When an experimental Lamb-dip spectrum is taken of this system, it
displays three distinct sub-Doppler features. As the bullet points list, we
observe: * A Lamb dip at the frequency of the first transition component, w
1 w,. * A second Lamb dip at the frequency of another component, w 2 w,.
* And, crucially, a cross-over signal located precisely at the midpoint

frequency, (w1+w2)/2 (w; +wy)/2.

The very presence of this third feature is a direct confirmation that the two
transitions at w 1 w; and w 2 w, are linked, sharing a common energy

level.

Page 48: This slide continues the

Interpretation of the Helium

spectrum.

- The first bullet point notes that by examining the intensity pattern—
specifically the sign and amplitude of the crossover signal—we can confirm
that both of these optical transitions originate from the same lower level,
which is the 23 P



state. Since it's a shared lower level, this is a V-system, and the crossover

signal would appear as a dip in absorption, just like the main Lamb dips.

- The second bullet point generalizes this idea. Mapping these cross-overs
across an entire spectrum is a powerful strategy. It helps us to construct
and verify energy-level diagrams, even in cases where the spectra are so
dense and complicated that direct assignments of individual lines are

ambiguous or impossible. They provide the crucial links in the chain.
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This slide provides a clear visual summary of the Helium crossover
example we've been discussing. The overall title is "Saturation

Spectroscopy with Cross-Over Signals.”

On the left, we see the "Energy Level Scheme." It shows a common lower
level, E c E_, explicitly noted as being the Helium 2 3 P 23P state in this
example. Two transitions, with frequencies w 1 w; and w 2 w,, connect
this common lower level to two distinct upper levels, E 1 E; and E 2 E,.

This is a classic V-type system.

On the right, we have the "Resulting Saturation Spectrum.” This is a plot of

probe absorption versus laser frequency.

- The dashed light-blue line shows the broad, unresolved Doppler profile. -
The solid dark-blue line shows the experimental data. We clearly see three
sharp features, all of which are dips in absorption. - Two of these dips are
the primary Lamb dips, located at the resonance frequencies w 1 w,; and

w 2 w,. - The third dip, as expected, appears exactly in the middle, at the



crossover frequency (w 1+ w 2 )/ 2 (w; +w,)/2. The red inverted

triangle highlights this crossover resonance.

This diagram perfectly illustrates how the underlying V-shaped energy level
structure gives rise to this characteristic three-dip pattern in the saturation

spectrum.
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This Paage provides a detailed textual description of the figure from the
previous slide, which | will summarize and elaborate upon. It serves as an

excellent review of the crossover concept.

The figure is a schematic representation of saturation spectroscopy

featuring a cross-over resonance.

The description of the (Left) Energy Level Scheme confirms that this
diagram illustrates the necessary condition for a crossover: two distinct
transitions, w 1 w; and w 2 w,, must share a common level. Here, we're
explicitly considering the case of a common lower level, as in the Helium 2
3 P 23 P states.

The description of the (Right) Resulting Saturation Spectrum explains what
we see when we plot the probe's absorption against the tunable laser

frequency.

* The broad dashed curve is the Doppler-broadened profile, which masks
the underlying structure. * When the laser is resonant with either w 1 w, or
w 2 w,, the strong pump beam saturates the transition for the near-zero

velocity atoms, creating the two narrow Lamb dips. Then, the crucial point:



when the laser is tuned exactly halfway between the two transitions, w ¢ =
(w1+w?2)/2 w,=(w; +w,)/2, the cross-over resonance appears. It
explains the mechanism perfectly: at this frequency, the pump beam is
resonant with transition w 1 w; for a specific non-zero velocity group. The
counter-propagating probe beam is seen as resonant with transition w 2
w, by the exact same velocity group*. Since the pump has depleted the
shared lower level for these atoms, the probe absorption is reduced,
creating the third dip.

The final sentence encapsulates the importance of this feature: This cross-
over signal is a powerful, unambiguous signature of transitions sharing a
common quantum level, and it is crucial for assigning dense and complex

spectra.
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We're now going to shift gears and discuss an even more sensitive
variation of the technique: Intracavity Saturation Spectroscopy. This
method is all about maximizing the interaction between the light and the

sample.

The general idea, as stated in the first bullet point, is to place the sample—
for example, a gas cell—inside the optical resonator of a tunable laser. So,
instead of the sample being external to the laser, it becomes an integral
part of the laser itself. We could do this with various lasers, like dye lasers,

Titanium-sapphire lasers, or CO, lasers.

Why would we do this? The answer lies in the second bullet point. The

circulating optical power inside a laser cavity can be incredibly high, often



exceeding the power that is coupled out of the laser by factors of 100 to
10,000. This is because the output coupler mirror is designed to be highly

reflective, trapping most of the light inside to bounce back and forth.

This enormous intracavity power acts as an extremely effective pump
beam. This has two major benefits: it makes it much easier to achieve
saturation (effectively lowering the saturation intensity | sat Iy you need to
provide from an external source), and it dramatically enhances the contrast,
or signal size, of the resulting Lamb dip. This is the path to ultimate

sensitivity.
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In an intracavity setup, how do we observe the signal? We are no longer
using an external probe beam. Instead, we monitor the output power of the
laser itself, P (w ) P(w).

The first line describes the effect: Saturated absorption of the intracavity
sample appears as a gain peak in the laser's output power. Let's
understand why. The sample inside the cavity acts as a variable,
frequency-dependent loss. When we tune the laser to the Lamb-dip
condition, w=w 0 w = w,, the absorption of the sample is reduced due to
saturation. From the laser’s perspective, a reduction in loss is equivalent to
an increase in the net cavity gain. And according to basic laser theory, a

higher net gain results in a higher laser output power.

So, the Lamb dip in absorption is inverted and appears as a narrow peak in

the laser power. This is sometimes called an “inverse Lamb dip.”



However, we face a familiar problem, described in the second bullet point.
This observed Lamb peak is a tiny feature riding on the very broad
background, which is a convolution of the laser's own gain profile, G ( w )

G(w), and the unsaturated absorption of the sample, a 0 (w ) a®(w).

The solution, once again, is to find a way to remove this slowly varying
background. As the final bullet point suggests, the technique of choice here
Is derivative spectroscopy. By electronically taking the first, second, or even
third derivative of the output power signal with respect to frequency, we can
progressively eliminate the broad background and isolate the narrow Lamb

structure.

Page 53: Let's formalize the

derivation of the laser output power

In_the presence of an _intracavity

absorber.

The first bullet point defines the net small- signal gain inside the cavity.
This is simply the gain provided by the laser’s active medium, which we can
model as a function G (w - w ) G(w — w;), minus the loss introduced by

our absorbing sample, a 0 (w ) a®(w).

The second bullet point recalls the effect of saturation. Saturation reduces
the absorption according to the now-familiar formula. The total absorption,

a (w ) a(w), is given by the unsaturated absorption, a 0 ( w ) a®(w),



multiplied by a correction factor that includes the saturation parameter S 0

Sy and the sharp Lorentzian function. The equation is:
a(w)=a0(w)[1-S02(1+(ys2)2(w-w0)2+(ys2)2)].

(Vs/z)z >]
(0 —we)?+ (1s/2)%)]

a(w) = a®(w) [1 —%(1 +

The final bullet point states the principle of laser operation: the output
power is proportional to the difference between the total gain and the total
loss, multiplied by the cavity output coupling factor. This difference is what
determines how much power can build up inside and subsequently leak out

of the cavity.
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Continuing our derivation, the first line simplifies the relationship: the laser
power, PL ( w) P (w), is proportional to the difference between the gain,

G(w-wl)G(w— w), and the total saturated absorption, a ( w ) a(w).

Now, as the second bullet point explains, we make a key approximation.
Near the narrow absorption resonance at w 0 w,, the laser gain profile G
G and the unsaturated part of the absorption a 0 «° are very broad and
slowly varying. We can therefore perform a Taylor expansion and
approximate this combined background as a simple quadratic function of

frequency.

When we combine this quadratic background with our sharp Lorentzian
term from the saturated absorption, we arrive at an expression for the total

laser power:



PL(w)=Aw2+Bw+C+D(w-w0)2+(ys/2)2.

D

P(w)=Aw?*+Bw+C + .
L (0 — wg)?* + (¥5/2)?

The coefficients A A, B B, and C C are constants that describe the slowly
varying cavity background that we want to eliminate. The coefficient D D
represents the amplitude of our desired signal, the Lamb-dip Lorentzian

term.

Our goal now is to isolate this D D term from the A A, B B,and C C

terms.
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This slide demonstrates how we can use calculus to suppress that
polynomial background. We will calculate the derivatives of our laser power
function, PL (w) P (w).

First, let's take the first derivative with respect to omega. The equation is:

PL(1)(w)=2Aw+B-2Dw-wl0[(w-w0)2+(ys2)2]2.

(,()_(,()0

B (w) =2Aw+B — 2D .
(0 — wp)? + )22

The derivative of the quadratic background is a simple linear term. The
derivative of the Lorentzian gives a characteristic dispersive shape. We've
reduced the order of the background polynomial, but it's still there as a

sloped line.

Now, let's take the second derivative. The equation is:



PL(2)(w)=2A+6D x(amore complex fraction with numerator ( w
- w0)2-(ys2)2).

PL(Z) (w) = 2A + 6 D x (a more complex fraction with numerator (w — w,)?
— (1s/2)7).

The derivative of the background is now just a constant offset, 2 A 2A. The
second derivative of the Lorentzian is a sharpened central peak with

negative sidelobes. We're getting closer; the background is almost gone.
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The final step in eliminating the background is to take the third derivative.

The first bullet point shows the result. The third derivative, PL (3 ) ( w)

PL(3) (w), is given by a rather complicated expression:

PL(3)(w)=24D - alarge fraction .
PL(?‘)(w) = 24 D - a large fraction.

The numerator contains the term (W - w0 ) (w — wy) times [(W-w0) 2
-3(ys/2)2][(w—wg)?—3(ys/2)?]. The denominator is raised to the

fourth power.

While the expression is complex, the crucial result is what happens to the
background. As the second bullet point states, the polynomial background,
Aw?2+Bw+C Aw? + Bw + C, is progressively eliminated. After taking
three derivatives, the derivative of the quadratic background is identically

zero. It is totally gone.



We are left with only the third derivative of the Lorentzian, which is a clean,

symmetric, background-free signal.
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This fantastic set of four plots provides a clear, side-by-side visualization of

how derivative spectroscopy works to suppress the background.

Let’s start with the top-left graph, labeled “Laser Output Power: P L ( w )
P (w)”. This is our raw signal. We see a small, narrow peak (our inverse
Lamb dip) sitting on top of a very broad, curved background, which

represents the laser gain profile.

Now, move down to the bottom-left graph, “First Derivative: PL (1) (w)
PL(l)(w)”. The signal now has a dispersive shape, crossing zero near the

peak of the raw signal. However, it's clearly riding on a tilted, linear

background.

Next, look at the bottom-right graph, “Second Derivative: PL (2 ) ( w)

PL(Z)(a))”. This looks much cleaner. We have a sharp, positive central peak

with negative sidelobes on either side. The background has been reduced

to a nearly constant DC offset.

Finally, the top-right graph shows the “Third Derivative: P L (3 ) ( w)

PL(3)(w)”. This is the ideal result. The background is completely gone,
leaving a perfectly symmetric, dispersive-shaped signal on a flat, zero
baseline. Notice the sharp, linear zero-crossing right at the center of the
resonance, at a frequency detuning of zero. This is the perfect error signal

for locking a laser.
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Let's analyze the mathematical properties of this third-derivative signal, P

L(3) PL(3), which is so useful for laser stabilization. This is Example 2.6.

First, we can find the zero-crossings by setting the equation for P L ( 3) (
w) PL(3)(w) equal to zero. From the formula on the previous slides, we can

see that there are three solutions. They are:

w=wo

wWw=w0xys?2

The central zero-crossing at w 0 w, is the one we use for locking. The two

outer zero-crossings are also present in the signal shape.

Next, where are the maxima and minima of this signal? We can find these

extrema by taking the fourth derivative, PL (4) (w) P,_(4) (w), and setting it

to zero. The slide gives the result for the central pair of extrema—the main
peak and trough that surround the central zero-crossing. Their positions

are:
wm,1,2=w0£0.16ys

Wm,1,2 = Wo = 0.16 ¥4
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What are the practical implications of these signal properties?

The first bullet point notes that the frequency span between the two
dominant extrema—the main peak and trough of the third-derivative

signal—is given by d w =0.32y s dw = 0.32ys.

This is significant because this spacing is roughly one-third of the spacing
between the extrema in the first-derivative case. A smaller spacing
between the peak and trough means that the slope of the signal as it

passes through the zero-crossing is much steeper.

The key benefit is that a steeper slope provides a much better error signal
for a frequency-locking servo loop. Small deviations in frequency produce a
larger error voltage, allowing the servo to correct them more accurately and
hold the laser lock much more tightly. This leads to improved frequency

stability.

The final bullet point adds that while smaller, outer extrema do exist in the
signal farther from the center, their influence is weak, and they contribute

very little to any locking error.
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Calculating derivatives numerically in real-time can be complex.
Fortunately, there is a very elegant and practical way to generate a third-
derivative signal directly in an experiment. This is known as the "3-Omega"

or 3 Q 30 technique.

The core idea, described in the first bullet point, is to intentionally dither, or

sinusoidally modulate, the laser's frequency. We apply a small, fast



modulation using a piezo or an EOM, so that the instantaneous laser

frequency is:

w(t) = wy + asin(2t).

Here, w 0 w, is the central frequency we're interested in, a a is the small

modulation amplitude, and Q 2 is the high modulation frequency.

Now, as the second bullet point explains, if we take the laser's output
power, PL(w(t)) PL(a)(t)), and expand it as a Taylor series around w
0 wy, a wonderful thing happens. Due to the mathematical properties of
trigonometric functions, the component of the output signal that oscillates at
the third harmonic of the modulation frequency, 3 Q 3£, turns out to be
directly proportional to the third derivative of the power curve evaluated at
the center, P L (3) (w 0) B® (w,). This is a non-trivial result detailed in

Volume 1 of the textbook.

This means we can use a lock-in amplifier tuned to 3 Q 30 to directly
measure the third derivative signal without any explicit differentiation. The

experimental implementation is described on the next slide.
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This slide outlines the experimental implementation of the 3 Q 30 third-

derivative detection technique.



First, an electro-optic modulator or a piezoelectric element mounted on one
of the laser cavity mirrors is used to apply the small, sinusoidal frequency

modulation at frequency Q 0.

Second, we need to generate a reference signal for our lock-in amplifier at
the third harmonic, 3 Q 3. This can be done by taking the output from the
master modulation oscillator and feeding it into a frequency multiplier
circuit. Alternatively, a simpler method is to use a square-wave modulation
signal, which is naturally rich in odd harmonics, and then use a band-pass

filter to select the 3 Q 32 component to use as the lock-in reference.

Finally, the lock-in amplifier is set to this 3 Q 302 reference. Its output will
be the desired third-derivative signal. As the final bullet point states, this
provides a clean error signal with a steep, symmetric zero-crossing
precisely at the line center, w = w 0 w = w,, which is ideal for active laser

stabilization.
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This slide shows a block diagram for the entire third-derivative, or 3 Q 3.,

frequency locking system. It's a classic servo loop.

Let's start with the "Modulation Oscillator," which generates the primary

dither signal at frequency Q Q.

* This signal goes to the "Frequency Modulator,” which perturbs the

w(t) = wy +asin(2t). * The Q 2 signal also goes to a "Frequency

Multiplier (x3)" to create our 3 Q 31 reference signal.



Now let's follow the laser beam. The modulated light from the laser passes
through our "Reference Cavity" or "Saturated Absorption Cell." The output
power is measured by a "Photodetector (PD)," producing an electronic
signal, P (t) P(t).

This signal P (t) P(t) is fed into the "Signal" input of the "Lock-in
Amplifier." The 3 Q 302 signal from the multiplier is fed into the "Ref" input.
The lock-in amplifier does its magic, and its output is the "Error" signal,
which is proportional to the third derivative d 31dv 3 2—;.

This error signal is then fed back—for example, to a piezo on the laser
cavity—as a "Frequency Correction." This closes the loop, forcing the error

signal to be zero and thus locking the laser's average frequency w 0 w,

precisely to the center of the atomic resonance.
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Let’'s now revisit our favorite example, the hyperfine spectrum of the iodine
molecule near 514 nanometers, but this time recorded using the powerful

intracavity third-derivative method we’ve just described.

As the first bullet point notes, we are studying the same iodine hyperfine
manifold as before. The second bullet point describes the remarkable

result.

* First, there is no Doppler background visible whatsoever. It has been
completely suppressed by the derivative technique. * Second, what
remains are only the symmetric, dispersive-shaped signatures that are

characteristic of a third-derivative signal.



The third bullet point tees up the key advantages of this advanced method,

which we will detail on the next slide.
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This slide lists the key advantages of performing intracavity third-derivative

spectroscopy.

First, we achieve an extremely high signal-to-noise ratio. This is a direct
consequence of using the immense intracavity power to generate a very
strong saturation signal, which then stands out clearly against any residual

electronic noise.

Second, the technique produces direct, sharp, background-free zero-
crossings. As we've discussed, these are ideal for use as an error signal in
a servo loop for active laser stabilization. This is how some of the world's

most stable lasers are built.

Third, the results show excellent agreement with those obtained from the
completely different technique of intermodulated fluorescence. The fact that
two different experimental methods vyield the same results for the line
positions and widths gives us great confidence that both techniques are
correctly probing the identical, underlying homogeneous Lamb-dip width

and are free from significant systematic errors.
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Here we see the actual third-derivative spectrum of iodine near 514

nanometers, based on the data in Demtroder's textbook.



The vertical axis is the "Third Derivative Signal," proportionalto d31dv 3

3

in arbitrary units. The horizontal axis is the frequency detuning in

dv3’

Megahertz.

The spectrum is stunningly clean. The baseline is perfectly flat at zero.
Each of the iodine hyperfine components appears as a sharp, symmetric,
dispersive signature. An arrow points to the central zero-crossing of one of
the features, explicitly labeling it as the "Zero-crossing for laser
stabilization.” This is the point where the servo loop would hold the laser's
frequency. It's a perfect visual representation of an ideal error signal for
high-precision applications.
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This slide provides a concise summary of the key characteristics of the
data we just saw, serving as an excellent review of the intracavity third-
derivative method.

First, No Doppler Background: This is the most obvious advantage. The
broad absorption profile is completely suppressed, leaving a flat, zero-
signal baseline, which makes the sub-Doppler features stand out with

perfect clarity.

Second, Dispersive-Shaped Signatures: Each hyperfine transition

appears as a symmetric, third-derivative lineshape. The signal is directly
proportional to d 3 1 d v 3 Z—;, and this specific shape is ideal for

stabilization.



Third, High Signal-to-Noise Ratio: The use of an intracavity setup
dramatically increases the effective laser power that interacts with the

sample. This yields an extremely clean spectrum with very little noise.

Finally, Laser Stabilization: The signal provides a sharp, unambiguous,
and linear zero-crossing precisely at the center of each resonance. This
makes it an ideal error signal for active laser frequency stabilization,

enabling stabilities at the kilohertz or even hertz level.

Page 67: Now that we have this

perfect error signal, how do we use

1t? This slide discusses the

application of these techniques for

the frequency stabilization of lasers.

As the first bullet point explains, the error signal we’ve generated, for
instance the third-derivative signal from the previous figures, is fed into a
servo loop. This electronic circuit acts on various elements of the laser to
control its frequency. Typically, it uses a fast actuator, like a piezoelectric
transducer on a cavity mirror, to correct for rapid fluctuations in the cavity
length. It also uses a slow actuator, like controlling the laser’s temperature

or using a larger-range piezo stack, to correct for slow drifts over time.

The second bullet point lists some common and important molecular

transitions that are used as absolute frequency references for this purpose.



1. The v 3 vy vibrational band of the methane molecule, C H 4 CH,, has
strong absorption lines at 3.39 y m 3.39um, which are perfect for
stabilizing Helium-Neon lasers. 2. The vibration-rotation lines of carbon
dioxide, C O 2 CO,, near 10 y m 10um are used as references for

stabilizing C O 2 CO, lasers, which are workhorses in many fields.

Page 68: Continuing our list of

common frequency references

3. The hyperfine components of the lodine molecule, I, , which we have
discussed at length, provide a dense forest of excellent references in the
visible part of the spectrum, from about 500 to 650 nanometers. These are

widely used to stabilize dye lasers and diode lasers.

The next bullet point gives some examples of the incredible performance

that can be achieved with these methods.

1. It's possible to achieve a short-term laser linewidth of approximately 800
Hertz. This is truly remarkable stability. 2. The long-term drift can be

controlled to be less than 2 kilohertz per hour.

For the absolute highest levels of stability, as the final point mentions,
advanced schemes are employed. A common approach is a “double servo”
system. Here, an intermediate reference, such as a high-finesse Fabry—
Perot cavity, is itself stabilized to a molecular Lamb dip. Then, the main
science laser is locked to one of the narrow transmission peaks of this now
ultra-stable cavity. This helps to filter out noise and provides a more robust

lock.
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(no content — transition)

So, we've now mastered the art of creating a single, ultra-stable laser
locked to a specific molecular transition. But what if our experiment
requires a laser at a different frequency, while still demanding that same
level of stability? This brings us to the elegant technique of frequency-offset

locking.
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This slide introduces the concept of Frequency-Offset Locking, a technique

for transferring the stability of a reference laser to any tunable laser.
Here's the core idea, broken down into steps:

1. First, we start with a "reference laser.” This laser is tightly locked to a
molecular Lamb dip at a well-known, stable frequency, w 0 w,. This is our
frequency standard. 2. Second, we have our "slave laser." This is a
powerful, tunable laser operating at the frequency w w that we need for
our experiment. We take the beam from the slave laser and combine it with
the beam from the reference laser on a fast photodiode, labeled D 1 D;.
This process is called heterodyning. The photodiode's output will contain
an oscillating signal, called a "beat note,” at the difference frequency
between the two lasers: the absolute value of | W 0 - w | |wy — w]. 3.
Third, as the final bullet point describes, we use an electronic mixer to
compare this optical beat note with a highly stable, user-selectable radio

]

frequency (RF) signal, w ' ', which is generated by an electronic



synthesizer. The output of the mixer is an error signal proportional to the

difference between the beat note and our RF reference.
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This slide explains how we use that error signal to close the loop.

The error signal from the mixer is used to drive an actuator, such as a
piezo element P 2 P,, inside the slave laser's cavity. This actuator adjusts

the slave laser's frequency w w.

The servo loop works to force the error signal to zero. This happens when
the beat note frequency is exactly equal to the RF reference frequency.
The lock condition is:
wl-w=w'

Wog—W=0w
By rearranging this equation, we see that this forces the slave laser's
frequency to be:
wWw=wl-w'

wW=wy—w

This is the beauty of the technique. The slave laser is now phase-locked to

the master reference laser, but with a precise, electronically controlled

frequency offset, w ' w'. The slave laser inherits the full stability and

absolute accuracy of our molecular reference.

And as the final bullet point states, we can now tune the slave laser's

frequency simply by tuning the electronic frequency of the RF synthesizer.



The tuning range is limited only by the synthesizer's range and the gain
bandwidth of the slave laser. We have created a fully tunable, yet ultra-

stable, laser system.
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This block diagram illustrates the entire frequency-offset locking scheme.

Let’s start at the top left with our “Reference Laser.” It's locked to an lodine

cell Lamb dip and produces a stable output at frequency w 0 w,.

Below it is our “Tunable Slave Laser,” for example, a dye or diode laser,

producing light at frequency w w.

The beams from both lasers, one at w 0 w, and one at w w, are combined
and directed onto a “Fast Photodiode (D, ).” The photodiode generates the

electrical beat note signal at the difference frequency, |w 0 - w | |wy — w].

This beat note is fed into a “Mixer.” The other input to the mixer is a tunable

reference frequency, w ' w’, from an “RF Synthesizer.”

The mixer's output is the “Error Signal,” which is sent to a “Servo
Controller.” The controller processes this signal and sends a correction

voltage to the piezo P 2 P, on the slave laser, closing the feedback loop.

The final result is the “Stabilized Output Beam” from the slave laser, whose
frequency is now precisely controlled tobe w=w 0 - w ' w=wy— w'.
This stable, tunable beam can now be sent to your main experiment,

labeled “Sample” and “Detector.”
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Now let's turn to the ultimate pursuit of resolution. In ultra-high resolution
work, we need to minimize every possible source of broadening. A key one

to tackle is transit-time broadening.

As the first bullet point reminds us, the Lamb-dip width contribution from

transit time, vy tt y;, scales inversely with the laser beam radius, w w.
That is, y tt y; is proportional to 1 w % To make the transit-time

broadening smaller, we must make the interaction time longer, which

means making the laser beam wider.

The solution, described in the second bullet point, is to expand the slave
laser beam using a telescope to achieve diameters of several centimeters.
This is a common technique in labs working on precision measurements
and optical clocks. By doing this, Lamb dips with widths below 100 kilohertz
become achievable.

The third bullet point offers an important experimental tip. To create the
counter-propagating probe beam, using a retroreflector, such as a corner
cube, is superior to using a simple mirror. A retroreflector has the unique
property of sending any incoming beam back exactly parallel to itself,
regardless of the incident angle. This automatically ensures perfect
counter-propagation ( a = 0 a = 0) without the need for painstaking mirror
alignment, which helps to eliminate any residual Doppler broadening.

Page 74

This slide mentions a few more practical considerations for pushing the

limits of high-resolution spectroscopy.



As we've seen before, optical isolators are essential to prevent parasitic
feedback from destabilizing the lasers, especially in these complex, multi-
laser setups. Additionally, sometimes "helper" lasers are used. These can
help to resolve ambiguities in the beat-note signal, for example, when the
slave laser frequency is very close to the reference laser frequency, and

the beat note approaches zero offset.

The payoff for all this careful experimental design is immense. As the final
bullet point states, this type of configuration enables the study of extremely
weak and subtle interactions, such as spin-rotation coupling, Coriolis
effects, and hyperfine structure, even in large, complex polyatomic
molecules. These are the kinds of interactions that provide the deepest
insights into molecular physics but are completely inaccessible without this

level of resolution.
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This brings us to a landmark example of ultra-high resolution saturation
spectroscopy: the work done by Christian Bordé and his collaborators on

the molecule Sulfur Hexafluoride, or SF¢ .

Using the advanced techniques we have been discussing, they were able
to resolve the rotational-vibrational transitions of this molecule with

unprecedented detail.

As the bullet points list, they were able to see a wealth of rich interaction

physics:

* They observed splittings due to spin-rotation coupling, which is the

interaction between the nuclear spins of the fluorine atoms and the overall



rotation of the molecule. * They resolved features caused by Coriolis
coupling between different vibrational modes of the molecule. * And, most
impressively, they observed the hyperfine structure caused by the nuclear
spins of the six fluorine-19 atoms. The resolution was so extraordinary that
they even identified what is known as "super-hyperfine" or "tensor"
structure, which are even smaller splittings within the main hyperfine

manifold. This work really set a new standard for molecular spectroscopy.
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What was the significance of this work on S F 6 SF?

First, as the top bullet point explains, the spectral complexity was simplified
by carefully identifying the cross-over patterns that we discussed earlier.
This allowed them to tie each observed Lamb dip to a specific set of
quantum transitions, untangling what would otherwise be an impossibly

dense spectrum.

Second, the precision achieved was astounding. They were able to
measure the line positions to better than 30 kilohertz. This level of precision
enables a new class of experiments. It allows for rigorous tests of our
theoretical models of molecular Hamiltonians, and it even opens the door to
searches for fundamental physics, such as looking for tiny, parity-violating

energy differences between chiral molecules.

Finally, the legacy of this work is profound. As the last bullet point notes,
similar techniques are now routinely applied in many areas of modern

physics, from studying the overtone bands of acetylene (a key wavelength



standard) to the development of Doppler-free spectroscopy using optical

frequency combs, which is the basis for today’s best atomic clocks.
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This slide provides a visual summary of the high-resolution SFq

experiment.

At the top, we see a "Simplified Experimental Setup for Minimizing Transit-
Time Broadening." It shows the key components: the Slave Laser, an
Optical Isolator, a Beam Expander to create a wide beam, the Gas Cell,

and a Retroreflector to ensure perfect counter-propagation.

The middle graph shows a real "Experimental Spectrum.” It's a dense
cluster of incredibly sharp absorption lines, showcasing the complexity of

the SF, structure.

The bottom graph gives a "Simulated Spectrum & Analysis," which helps us
interpret these features. It's a zoomed-in view that identifies: * A "Crossover
Resonance.” * Splittings due to "Spin-Rotation Coupling” and "Coriolis
Interaction.” * It indicates a measured "Linewidth" of around 100 kHz. * And
it highlights the incredible "Precision,” noting that the line positions were

measured to an accuracy of less than 30 kHz.

This figure beautifully encapsulates the entire story, from the experimental

technique to the rich physics that it unlocks.
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We've covered a great deal of material today, from basic principles to
advanced applications. This slide begins our final summary, highlighting the

key takeaways for practitioners of laser spectroscopy.

First, and most fundamentally, Saturation or Lamb-dip spectroscopy is the
key that converts broad, often uninformative Doppler-broadened lines into
narrow, sharp Lorentzian features. The width of these features is limited
only by the fundamental homogeneous broadening mechanisms, allowing

for massive gains in resolution.

Second, we've seen that there is a whole toolbox of detection strategies.
Multiple strategies exist, and each is optimized for specific experimental
constraints. We've discussed direct transmission, differential detection for
noise cancellation, intermodulated fluorescence for high sensitivity with
dilute samples, and intracavity derivative methods for the ultimate signal-to-

noise ratio. The right choice depends on your specific experiment.

Third, we learned about cross-over signals. While they can complicate the
appearance of a spectrum, they are not a nuisance. Instead, they serve as
valuable, unambiguous markers that help us to assign energy levels and

piece together the quantum structure of complex systems.
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Continuing with our key takeaways:

The fourth point is about laser stabilization. We saw that derivative
techniques, particularly the third-derivative 3 Q 302 method, when

combined with frequency modulation, yield the steep, background-free



error signals that are absolutely essential for active laser stabilization,

pushing stability down to the Hertz level and below.

And finally, let's step back and look at the big picture. The ultra-high
resolution gained from all these Lamb-dip methods is not just about making
sharper lines on a graph. It's about unlocking detailed insights into
molecular structure and fundamental physical interactions—Ilike hyperfine,
Coriolis, and spin-rotation effects—that were previously and completely
obscured by the blanket of Doppler broadening. These techniques
fundamentally changed the landscape of precision measurement and
continue to be a cornerstone of modern atomic, molecular, and optical

physics.

That concludes our lecture on Saturation Spectroscopy. Thank you.



