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Alright everyone, welcome back to Physics 608. I'm Distinguished 

Professor Dr M A Gondal, and today, we are embarking on a new and truly 

central topic in laser spectroscopy, which you'll find in your notes as 

Chapter 2.2. 

We're going to build up, from first principles, one of the most powerful 

techniques we have for achieving ultra-high spectral resolution. 
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So, the title of this chapter is the "Saturation of Inhomogeneous Line 

Profiles." Now, this might sound a bit abstract at first, but what we're really 

talking about is a suite of incredibly clever techniques that allow us to 

overcome one of the biggest obstacles in precision gas-phase 

spectroscopy. 

So let's motivate this. Why are we dedicating an entire section to this topic? 

What problem are we trying to solve? The short answer, as we'll see, is the 

Doppler effect. In any real-world experiment with atoms or molecules in a 

gas, they aren't sitting still. They're whizzing around with a wide range of 

velocities, and this thermal motion smears out the beautiful, sharp spectral 

lines that quantum mechanics predicts. Saturation spectroscopy gives us a 

toolkit to circumvent this smearing, to look past the crowd and interrogate 

individual groups of atoms. This allows us to reveal the true, underlying 

structure of our transitions. We're going to develop the quantitative theory 

behind this, and by the end, you will understand exactly how we can use 

lasers to burn holes in atomic velocity distributions and observe the famous 

"Lamb dip," which is a cornerstone of modern metrology. Let's begin. 
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So, let's lay out the core motivation and the phenomena we'll be studying. 

First, as I just mentioned, high-resolution laser spectroscopy in gases is 

almost always limited by Doppler broadening. Think about it: you have a 

gas of atoms at room temperature. They're moving with speeds of 

hundreds of meters per second. This thermal motion causes the absorption 

and emission frequencies to be shifted up or down depending on whether 

the atom is moving towards or away from your laser. The result is that a 

spectral line that should be, say, a few megahertz wide, which we call the 

natural or homogeneous linewidth, gets smeared out into a massive feature 

that can be a gigahertz wide or more. This completely obscures any fine or 

hyperfine structure we might want to resolve. It’s like trying to read fine print 

through a blurry lens. 

This brings us to the second point. Saturation techniques are our solution. 

They provide a method to, as the slide says, "dig below" the Doppler 

envelope. This is a fantastic analogy. The Doppler profile is like a huge, 

broad hill, and hidden underneath are sharp, narrow features. Saturation 

techniques use the intensity of the laser itself as a tool. By using a 

sufficiently strong, monochromatic laser, we can selectively interact with 

only a very small subset of the atoms—those with just the right velocity to 

be resonant with our laser. By altering the population of this specific 

velocity subgroup, we create a spectral marker that is not subject to the full 

Doppler broadening of the entire ensemble. 



And what are the key signatures of these techniques? We'll encounter two 

main phenomena, which are really two sides of the same coin. First, we'll 

talk about "Bennet holes" or "burned holes." This refers to the literal 

depletion of ground-state atoms within a specific velocity class, creating a 

'hole' in the Maxwell-Boltzmann velocity distribution. Second, and perhaps 

more famously, we will derive the "Lamb dip." This is a sharp, sub-Doppler 

dip that appears right at the center of a Doppler-broadened absorption line 

under the right conditions. This dip becomes an incredibly precise 

frequency marker. 
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So, what is our goal for this section, and what is the ultimate payoff? 

Our primary goal is to be rigorous. We will derive, step-by-step, the 

quantitative expressions for these effects. We're not going to rely on hand-

waving arguments. We will start with the fundamental light-matter 

interaction, incorporate atomic velocities, and build up the mathematical 

framework to predict the exact shape, width, and depth of these saturation 

features. I want you to understand what every symbol in every equation 

means, and every assumption we make along the way. By the end, you 

should be able to look at a saturation spectroscopy experiment and model 

it from the ground up. 

And this is not just an academic exercise. The practical pay-off of 

understanding this material is immense. These techniques are at the heart 

of many cutting-edge applications. For example, frequency locking of 

lasers. That sharp Lamb dip provides a perfect error signal to lock a laser's 



frequency to an atomic transition with sub-megahertz accuracy, or even 

much better. This leads directly to precision metrology, like atomic clocks, 

and even the modern definition of the meter, which is based on the 

frequency of a Lamb-dip-stabilized laser. These methods can also be used 

for things like isotope separation, where you selectively excite the isotope 

of interest. And finally, by measuring the positions of these ultra-narrow 

spectral features with incredible precision, we can perform some of the 

most stringent tests of fundamental physics, like measuring the fine-

structure constant or searching for tiny effects of parity violation in atoms. 

So, the physics we're about to unpack is not just beautiful, it's incredibly 

useful. Let's start by reviewing the two fundamental types of line 

broadening. 
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Alright, let's begin with a quick review of the two principal broadening 

mechanisms. It is absolutely essential to have a crystal-clear understanding 

of the distinction between homogeneous and inhomogeneous broadening 

before we can tackle saturation. 

First up is homogeneous broadening. The key concept here is that the 

broadening mechanism affects every single absorber in the ensemble in 

exactly the same way. Every atom has the same center frequency and the 

same linewidth. If you were to somehow pull out a single atom and 

measure its absorption profile, it would have the same width as every other 

atom. Any given atom has a chance of absorbing a photon anywhere within 

this homogeneously broadened line profile. 



What causes this? The dominant sources are processes that limit the 

coherent lifetime of the quantum states. This includes spontaneous 

decay—the natural lifetime of the excited state, dictated by quantum 

electrodynamics. It includes collisions, which interrupt the phase of the 

atomic oscillator. And, critically for our upcoming discussion, it includes 

power broadening, where a very intense laser field itself drives transitions 

so rapidly that it effectively shortens the lifetime of the states, broadening 

the line. 

The characteristic lineshape for all these processes is a Lorentzian. This 

mathematical shape arises naturally from the Fourier transform of an 

exponential decay, which is the hallmark of these lifetime-limiting 

processes. 

And the final bullet point here is the most important defining feature: every 

particle, every atom or molecule, has the exact same identical resonance 

frequency,  ω 0 𝜔0. 
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Now for the second category: inhomogeneous broadening. 

In this case, the width arises from a statistical distribution of resonance 

frequencies across the entire ensemble of atoms. This is a crucial 

difference. Individual atoms in the sample do not all have the same 

resonance frequency. Each atom still has its own, very narrow, 

homogeneous linewidth—its personal Lorentzian profile—but the center 

frequencies of these Lorentzians are spread out over a wide range. The 



overall lineshape we observe is the envelope of all these shifted individual 

profiles. 

The classic, and for us, the most important example, is the Doppler shift 

resulting from molecular thermal velocities. As we discussed, atoms 

moving towards the laser see an up-shifted frequency, and those moving 

away see a down-shifted frequency. Since the velocities of the atoms follow 

a Maxwell-Boltzmann distribution, the resulting distribution of resonance 

frequencies is a Gaussian. Therefore, the characteristic lineshape for 

Doppler broadening is a Gaussian. 

So what happens in a real gas, where you have both types of broadening? 

Well, both mechanisms act simultaneously. Each individual atom has its 

own homogeneous Lorentzian profile, and the collection of all atoms has an 

inhomogeneous Gaussian distribution of center frequencies. The 

observable lineshape is therefore the convolution of the Lorentzian and the 

Gaussian. This resulting lineshape has a special name: the Voigt profile. At 

its core, it's Gaussian, but in the far wings, it has the characteristic  1 ω 2 

1

𝜔2
 fall-off of a Lorentzian. 
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This brings us to the central point of this whole chapter. A saturating 

radiation field—that is, an intense, monochromatic laser—interacts 

profoundly differently with these two types of broadening. 

For a homogeneously broadened line, where every atom is identical, an 

intense laser "talks" to every atom in the sample simultaneously. It can 



deplete the ground state of the entire ensemble, leading to the power 

broadening we'll review in a moment. 

But for an inhomogeneously broadened line, a monochromatic laser, by its 

very nature, is only resonant with a very specific, narrow subset of the 

atoms—the velocity class whose Doppler shift brings them into perfect 

resonance. The laser will interact strongly with this small group, but leave 

the vast majority of other atoms completely untouched. 

Understanding this distinction is the absolute key that unlocks the concepts 

of "hole burning" and "Lamb dips." It is this selective interaction that we will 

exploit to defeat Doppler broadening. So, before we jump into that, let's 

quickly refresh our memory on how saturation affects a simple, 

homogeneous line. 
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Alright, let's do a quick review of power broadening for a homogeneously 

broadened transition. You'll recall we derived this in detail earlier in the 

course, in Section 3.6, but the key result is what's important here. 

The central equation describes how the width of the transition changes with 

laser intensity. It reads: 

 Δ ω s = γ 1 + S 0  

𝛥𝜔s = 𝛾√1 + 𝑆0 

Let's break this down term by term. 



First, Delta omega sub s. This is the new, saturated half-width at half-

maximum, or HWHM, of our spectral line. This is the width we measure in 

the presence of the intense laser. 

Next is gamma, the lowercase Greek letter. This is the unsaturated 

homogeneous half-width at half-maximum. This is the line's "natural" width, 

determined by spontaneous decay and collisions, in the limit of very low 

laser intensity. 

Finally, we have the crucial term, S naught. S sub zero, or S naught, is the 

on-resonance saturation parameter. This is a dimensionless quantity that 

tells us how intense our laser is compared to the intensity needed to 

significantly affect the atomic populations. A value of S naught much less 

than one means we're in the weak-field limit. A value of S naught of one or 

greater means we are in the saturation regime. We'll define S naught 

formally on the next couple of slides, but for now, just think of it as a knob 

that controls the laser intensity. 

So, this equation tells us that as the laser intensity S naught increases from 

zero, the linewidth Delta omega sub s grows from its minimum value, 

gamma, becoming broader and broader. 
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So what is the physical meaning behind this mathematical formula for 

power broadening? 

The first bullet point gets to the heart of it. An intense laser field drives 

transitions from the ground state to the excited state very, very quickly. If 

the laser is strong enough, it can pump atoms out of the ground state faster 



than they can relax back down. This leads to a significant depletion of the 

ground-state population. 

From the perspective of the atom's interaction with the light field, this rapid 

cycling shortens the effective lifetime of the atom in a given state. And as 

we know from the Heisenberg uncertainty principle, a shorter lifetime in a 

state corresponds to a larger uncertainty in its energy. This energy 

uncertainty manifests directly as a broadening of the spectral line. So, 

power broadening is a direct consequence of the uncertainty principle 

applied to a strongly driven system. 

Now, a key feature of this process for a homogeneous system is that the 

new, power-broadened lineshape is still a perfect Lorentzian. It's just a 

Lorentzian with an enlarged width,  Δ ω s 𝛥𝜔s. The fundamental character 

of the line doesn't change; it just gets wider and, as a consequence of 

conserving the total area under the curve in some contexts, it also gets 

shorter. 
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This Paage provides a wonderful visual illustration of the power broadening 

effect we've just discussed. We're looking at four plots, each showing the 

absorption as a function of frequency detuning from resonance. In each 

plot, the blue curve represents the low-intensity, unsaturated profile, while 

the red curve shows the high-intensity, saturated profile. The only thing 

changing between the four plots is the value of the on-resonance saturation 

parameter,  S 0 𝑆0, which is controlled by the slider below each graph. 



Let's start with the top-left plot, where the saturation parameter  S 0 𝑆0 is 

set to zero. As we'd expect, the high-intensity red curve lies perfectly on top 

of the low-intensity blue curve. There is no saturation, and the half-width at 

half-maximum is simply  γ 𝛾. 

Now, look at the top-right plot. Here,  S 0 𝑆0 has been increased to  0.5 0.5. 

The red curve is now visibly different. Notice two things: its peak height is 

lower than the blue curve, and its width is broader. This is power 

broadening in action. 

Moving to the bottom-left,  S 0 𝑆0 is now  2.0 2.0. We are well into the 

saturation regime. The effect is even more dramatic. The red Lorentzian is 

significantly shorter and wider than the original blue profile. 

Finally, in the bottom-right plot, we have an  S 0 𝑆0 of  9.0 9.0, representing 

deep saturation. The red line is now very broad and flat. We have strongly 

depleted the absorbing power of the medium. 

These plots perfectly visualize the formula from the previous slide, showing 

how the Lorentzian profile broadens and flattens as the laser intensity, 

quantified by  S 0 𝑆0, is increased. 
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Now, let's formally define this crucial saturation parameter. We've been 

using S naught, the on-resonance value, but the saturation parameter, 

capital S, is actually a function of the laser frequency, omega. The 

definition given here is for a single-frequency, continuous-wave laser, 



which is exactly the tool we use for this kind of high-resolution 

spectroscopy. 

The formal definition is given by the equation: 

 S ( ω ) = I ( ω ) I s a t ⋅  ( γ 2 ) 2 ( ω − ω 0 ) 2 + ( γ 2 ) 2 .  

𝑆(𝜔) =
𝐼(𝜔)

𝐼sat
⋅

(
𝛾
2
)
2

(𝜔 − 𝜔0)
2 + (

𝛾
2
)
2. 

Let's deconstruct this important expression. 

The first term, I of omega, is the spectral power density of our laser at the 

angular frequency omega. You can think of this simply as the laser's 

intensity. Its units would be something like Watts per square meter. 

The denominator of that first fraction contains I sat. This is the saturation 

intensity. This is an incredibly important parameter. It is a property of the 

atomic transition itself, not the laser. It represents the intensity required to 

cause significant saturation. We'll define it more physically on the next 

slide. 

The second part of the expression is a normalized Lorentzian lineshape 

function. Omega is the variable laser frequency, and omega naught is the 

center resonance frequency of the atom. 

This Lorentzian factor tells us that saturation is most effective when the 

laser is tuned directly to the atomic resonance, where omega equals 

omega naught. As we tune the laser away from resonance, the saturation 

effect falls off rapidly, following this Lorentzian shape. 
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Let's continue breaking down the components of our saturation parameter 

and see what it simplifies to on resonance. 

First, let's revisit  I sat 𝐼sat, the saturation intensity. What does it physically 

mean? It is defined as the intensity at which the rate of stimulated 

transitions (absorption and stimulated emission) becomes equal to the total 

relaxation rate of the population difference. This relaxation rate includes 

spontaneous decay and any dephasing processes like collisions. So, you 

can think of  I sat 𝐼sat as the point of "fair competition": it's the laser intensity 

at which the laser's influence on the atom becomes just as strong as the 

atom's natural tendency to relax back to equilibrium. 

Next,  ω 0 𝜔0, as we've said, is the center, natural transition frequency for a 

particle at rest. 

The third bullet point simply reiterates a key concept: The Lorentzian line-

shape factor in the full expression for  S ( ω ) 𝑆(𝜔) ensures that the 

saturation effect is strongest when the laser frequency  ω 𝜔 is tuned 

exactly to the atomic resonance  ω 0 𝜔0. 

And this brings us to the final point. What happens on exact resonance, 

when  ω = ω 0 𝜔 = 𝜔0? In this case, the Lorentzian term in our definition 

becomes exactly one. The expression simplifies dramatically, and we 

recover the on-resonance saturation parameter, which we call  S 0 𝑆0. So,  

S 0 𝑆0, which is what we used in our power broadening formula, is simply  

S ( ω 0 ) 𝑆(𝜔0), and it's given by the ratio of the on-resonance laser 

intensity,  I 0 𝐼0, to the saturation intensity of the transition,  I sat 𝐼sat. 



This  S 0 𝑆0, the ratio  I 0 / I sat 𝐼0/𝐼sat, is the dimensionless parameter we 

will use most often to characterize the strength of our saturation. 
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Now that we have a firm grasp on the meaning of  S 0 𝑆0, let's establish a 

practical rule of thumb for interpreting its value. This is extremely useful 

when you're in the lab setting up an experiment. 

First, if  S 0 𝑆0 is much, much less than  1 1… that is, the laser intensity is 

far below the saturation intensity… we are in the weak-field limit. In this 

regime, the laser acts as a small perturbation. The ground-state population 

is barely affected, so there is negligible depletion. The absorption of the 

medium is linear with the laser intensity. This is the regime of linear optics. 

Next, when  S 0 𝑆0 is approximately equal to  1 1. This signals the onset of 

saturation. At this point, the laser is strong enough to cause a significant 

redistribution of the atomic populations between the ground and excited 

states. The nonlinear effects we’re interested in, like power broadening, 

become clearly observable. This is the transition point into the nonlinear 

optics regime. 

Finally, if  S 0 𝑆0 is much, much greater than  1 1, we are in the deep 

saturation, or strong-field, limit. Here, the laser field is so intense that it 

overwhelmingly dominates the dynamics. The transition is effectively 

“bleached,” meaning the ground state is so depleted that the medium 

becomes nearly transparent to the resonant light. In this regime, power 

broadening is the dominant feature of the lineshape. 



So, keep these three regimes in mind:  S 0 𝑆0 much less than  1 1 is linear,  

S 0 𝑆0 around  1 1 is the interesting onset of nonlinearity, and  S 0 𝑆0 much 

greater than  1 1 is the heavily saturated, power-broadened limit. 
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To set the stage for our main topic, let's quickly write down the familiar 

expressions for the absorption coefficient of a homogeneous medium, both 

with and without saturation. Think of this as our reference point. 

First, let's consider unsaturated absorption. This is the case where the 

laser is weak, so  S 0 𝑆0 is close to zero. The absorption coefficient, which 

we'll call  α 0 ( ω ) 𝛼0(𝜔), is given by the expression: 

 α 0 ( ω ) = N σ 0 ⋅  ( γ 2 ) 2 ( ω − ω 0 ) 2 + ( γ 2 ) 2 .  

𝛼0(𝜔) = 𝑁 𝜎0 ⋅
(𝛾 2⁄ )2

(𝜔 − 𝜔0)
2 + (𝛾 2⁄ )2. 

Let's define the terms. 

 N 𝑁 is the ground-state population density, for example, the number of 

atoms per cubic centimeter. 

 σ 0 𝜎0 is the peak absorption cross-section at resonance. It tells you the 

effective area an atom presents to a photon right at the center of the 

transition. 

The rest of the expression is simply the normalized Lorentzian lineshape. 

This entire formula is essentially a more detailed version of Beer's Law, 

accounting for the frequency dependence of the interaction. 



Now, what happens when we introduce saturation? 
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When we turn up the laser intensity and introduce saturation, the 

expression for the absorption coefficient for our homogeneous medium 

takes on a beautifully simple form. The new, saturated absorption 

coefficient,  α ( ω ) 𝛼(𝜔), is given by: 

 α ( ω ) = α 0 ( ω ) 1 + S ( ω ) .  

𝛼(𝜔) =
𝛼0(𝜔)

1 + 𝑆(𝜔)
. 

Let's think about the physics here. The denominator,  1 + S ( ω ) 1 + 𝑆(𝜔), 

captures the effect of "bleaching" the medium. As the laser intensity, and 

thus  S ( ω ) 𝑆(𝜔), increases, the denominator gets larger, and the overall 

absorption  α ( ω ) 𝛼(𝜔) decreases. This makes perfect sense: as we pump 

more atoms into the excited state, there are fewer atoms remaining in the 

lower state available to absorb light. The medium becomes more 

transparent. 

Now for a crucial insight. The unsaturated absorption,  α 0 ( ω ) 𝛼0(𝜔), has 

a Lorentzian lineshape. And the saturation parameter,  S ( ω ) 𝑆(𝜔), also 

has a Lorentzian frequency dependence. When you divide a Lorentzian by 

one plus another Lorentzian, the resulting mathematical form is also a 

Lorentzian. However, this new Lorentzian is both broader and shallower 

than the original one. This mathematical result is the precise origin of 

power broadening for a homogeneous line. It confirms exactly what we saw 

in the diagrams a few slides ago. 



Okay. These expressions for the homogeneous case are our essential 

baseline. We now have all the tools we need to transition to the much more 

interesting, and more complex, Doppler-broadened, inhomogeneous 

situation. 
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Alright. Let’s take a moment. We have thoroughly reviewed the behavior of 

a homogeneously broadened line under saturation. We’ve seen that it 

simply gets wider and shorter, but remains a Lorentzian. 

Now, we pivot to the central topic of this lecture. What happens when we 

apply this same intense, monochromatic laser beam to an 

inhomogeneously broadened system, like a Doppler-broadened gas? As 

we will see, the result is completely different, and far more interesting. 
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So, let's officially make the transition to the inhomogeneous case and 

remind ourselves why Doppler broadening is such a dominant effect in 

gases. 

At room temperature, the thermal kinetic energy of atoms and molecules is 

significant. This translates into typical thermal velocities on the order of 100 

to 1000 meters per second. These are not trivial speeds. 

Now consider a molecule moving with a velocity component  v z 𝑣z along 

the axis of a laser beam, which we'll call the z-axis. Due to the Doppler 

effect, the frequency of the light that this molecule experiences in its own 



rest frame, which we'll call  ω ′ 𝜔′, is shifted from the laser's frequency in 

the lab frame,  ω 𝜔. The relationship is given by: 

 ω ′ = ω − k v z .  

𝜔′ = 𝜔 − 𝑘 𝑣z. 

Here,  k 𝑘 is the magnitude of the laser's wave-vector, which is equal to  ω / 

c 𝜔/𝑐. And  v z 𝑣z is that velocity component. The sign convention here 

means that a molecule moving towards the laser source (with a negative  v 

z 𝑣z) sees an up-shifted frequency, while one moving away (positive  v z 𝑣z) 

sees a down-shifted frequency. This shift is the fundamental source of the 

broadening. 
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The velocity component along the laser axis,  v z 𝑣z, is not a single value; 

rather, the molecules in a gas have a distribution of velocities. For a gas in 

thermal equilibrium, this distribution follows the Maxwell-Boltzmann 

statistics. The probability of finding a molecule with a velocity component 

between  v z 𝑣z and  v z + d v z 𝑣z + 𝑑𝑣z is given by the function: 

 f ( v z ) d v z = 1 v p π exp [ − ( v z v p ) 2 ] d v z .  

𝑓(𝑣z) 𝑑𝑣z =
1

𝑣p√𝜋
exp [−(

𝑣z

𝑣p

)

2

]  𝑑𝑣z. 

Here, the term  v p 𝑣p is the most probable speed, and it's given by the 

square root of two times the Boltzmann constant,  k B 𝑘B, times the 

temperature,  T 𝑇, all divided by the mass of the molecule,  m 𝑚. 



 v p = 2 k B T m .  

𝑣p = √
2 𝑘B 𝑇

𝑚
. 

This function, as you can see from its form, is a Gaussian. 

Now, since the absorption of light depends on the Doppler-shifted 

frequency, and the Doppler shift depends on  v z 𝑣z, the overall absorption 

profile of the gas is found by integrating the contributions from all velocity 

classes. Because the velocity distribution is a Gaussian, the resultant 

absorption profile is also a Gaussian. The full width at half-maximum, or 

FWHM, of this Doppler-broadened profile is given by the famous formula 

for the Doppler width, which we denote as  Δ ω D 𝛥𝜔D: 

 Δ ω D = ω 0 c 8 k B T ln ⁡ 2 m .  

𝛥𝜔D =
𝜔0

𝑐
√

8 𝑘B 𝑇 ln2

𝑚
. 

This formula tells us that the Doppler width is larger for lighter atoms, 

higher temperatures, and higher transition frequencies. 

Page 19: 

Here is the crucial point that motivates our entire discussion of saturation 

spectroscopy. This Doppler width,  Δ ω D 𝛥𝜔𝐷, which we just defined, often 

exceeds the homogeneous width,  γ 𝛾, by orders of magnitude. For a 

typical visible transition in an atomic vapor at room temperature, the 

Doppler width might be a gigahertz, that’s  10 9 H z 109 Hz, while the 



natural homogeneous width might only be ten megahertz,  10 7 H z 107 Hz. 

That’s a factor of a hundred! 

The staggering implication is that any interesting spectral features that are 

narrower than the Doppler width, like hyperfine splittings or the true natural 

linewidth itself, are completely hidden and washed out. They are buried 

under this enormous Doppler "blanket". 

This leads to the conclusion in the slide: sub-natural features are 

completely inaccessible unless we employ special techniques. And the 

most powerful of these techniques is saturation spectroscopy, which is 

designed precisely to pull back this Doppler blanket and reveal the sharp 

features hiding underneath. 
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So, how do we begin to defeat this enormous Doppler broadening? The 

key insight lies in recognizing that a narrow-line laser does not interact with 

all the atoms in the gas equally. 

Let's consider a monochromatic electromagnetic wave, represented by the 

electric field  E = E 0 cos ⁡ ( ω t − k z ) 𝐸 = 𝐸0cos(𝜔𝑡 − 𝑘𝑧). This wave 

propagates through our gas of atoms. A given atom, which has a natural 

resonance frequency of  ω 0 𝜔0 and a homogeneous half-width of  γ 𝛾, will 

only interact strongly with this laser if the frequency it sees in its own 

moving frame is very close to its resonance frequency. 

Mathematically, this leads to the condition shown on the slide: 

 | ω − ω 0 − k v z | ≤ γ  



|𝜔 − 𝜔0 − 𝑘𝑣z| ≤ 𝛾 

Let's unpack this. The term  ω − k v z 𝜔 − 𝑘𝑣z is the Doppler-shifted laser 

frequency as seen by the atom. For strong interaction, this perceived 

frequency must fall within the homogeneous linewidth,  γ 𝛾, of the atom's 

own resonance frequency,  ω 0 𝜔0. 

In other words, a highly monochromatic laser selectively excites only those 

molecules whose velocity,  v z 𝑣z, shifts them into resonance. This creates 

what we can call an effective "selectivity window" in velocity space. The 

laser picks out just one small group of atoms from the entire thermal 

distribution. 
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This velocity-selective interaction defines a "selectivity window" in velocity 

space whose width we can now calculate. 

From the resonance condition on the previous slide, we can see that the 

range of velocities that are efficiently excited is given by rearranging the 

inequality. This gives us a velocity width, which we'll call  Δ v z 𝛥𝑣z, that is 

approximately equal to  γ / k 𝛾/𝑘. 

So, the width of the velocity class we select is directly proportional to the 

homogeneous linewidth,  γ 𝛾, and inversely proportional to the wave vector 

of the light,  k 𝑘. Since  γ 𝛾 is typically very small (on the order of 

megahertz) and  k 𝑘 is large for visible light, this velocity window,  Δ v z 

𝛥𝑣z, is extremely narrow compared to the overall thermal velocity 

distribution. 



The crucial consequence is the final point on the slide: all other velocity 

classes, that is, all the atoms outside this narrow window, are far from 

resonance. The laser light is so far from their Doppler-shifted transition 

frequency that they hardly absorb at all. They are effectively invisible to the 

laser, and the laser is invisible to them. 
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This diagram provides a perfect visual summary of the concept of velocity-

selective excitation. 

What we are looking at is a plot where the horizontal axis represents the 

velocity component,  v 𝑣, along the laser beam, and the vertical axis 

represents the number of molecules,  N ( v ) 𝑁(𝑣). 

The broad blue curve is the Doppler-broadened profile. It's a Gaussian, 

representing the Maxwell-Boltzmann distribution of velocities in the gas. 

This represents all the atoms in our sample. 

Now, imagine we shine in a narrow-band laser with a frequency  ω 𝜔 that is 

tuned slightly above the rest-frame atomic resonance,  ω 0 𝜔0. According 

to our resonance condition,  v z = ω − ω 0 k 𝑣z =
𝜔−𝜔0

𝑘
, this laser will be 

resonant with atoms that have a specific positive velocity. 

This is shown by the shaded red area labeled "Excited Velocity Group." 

The laser doesn't interact with the whole distribution. It only interacts with, 

or "talks to," this very narrow slice of the velocity distribution. The center of 

this slice is at  v = ω − ω 0 k 𝑣 =
𝜔−𝜔0

𝑘
, and its width,  Δ v 𝛥𝑣, is 

approximately  γ k 
𝛾

𝑘
. 



This process is the first step towards overcoming Doppler broadening: 

we've found a way to address a single, well-defined group of atoms. 
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This paage simply provides a detailed text caption for the figure we just 

analyzed. I will summarize its key points to reinforce the concepts. 

Figure 1 illustrates the interaction of a monochromatic laser with a gas of 

molecules. First, the broad blue curve represents the Maxwell–Boltzmann 

distribution of the molecular velocity component,  v z 𝑣z, along the laser 

beam. This is the origin of the inhomogeneous Doppler broadening of the 

absorption profile. 

Second, a narrow-band laser with frequency  ω 𝜔 is shone into the gas. It 

selectively interacts only with molecules in a very narrow velocity range,  Δ 

v z 𝛥𝑣z. 

Which molecules are these? They are the ones for whom the Doppler shift 

brings their natural resonance frequency,  ω 0 𝜔0, into coincidence with the 

laser frequency,  ω 𝜔. This is described by the resonance condition we’ve 

been discussing:  | ω − ω 0 − k v z | < γ  

|𝜔 − 𝜔0 − 𝑘𝑣z| < 𝛾 

where  γ 𝛾 is the homogeneous linewidth. 

This “selectivity window,” shown as the shaded red area in the diagram, is 

centered at a velocity  v z = ω − ω 0 k .  

𝑣z =
𝜔 − 𝜔0

𝑘
. 



Its width is approximately  Δ v z = γ k .  

𝛥𝑣z =
𝛾

𝑘
. 

Crucially, all molecules outside this specific velocity class are far from 

resonance and are therefore not excited. This selective power is what we 

are about to exploit. 
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Now that we have the qualitative picture of velocity selection, let's write 

down the mathematics more formally. Let's consider the absorption cross-

section for a specific velocity class. 

The first point here gives the cross-section for a transition from a lower 

state, which we'll call ket 1, to an upper state, ket 2, for a molecule that has 

a specific axial velocity,  v z 𝑣z. The cross-section, which we denote as 

sigma sub one-two of  ( ω , v z ) (𝜔, 𝑣z), is a function of both the laser 

frequency and the molecule's velocity. It's given by the expression: 

 σ 12 ( ω , v z ) = σ 0 ⋅  ( γ 2 ) 2 ( ω − ω 0 − k v z ) 2 + ( γ 2 ) 2 .  

𝜎12(𝜔, 𝑣z) = 𝜎0 ⋅
(𝛾 2⁄ )2

(𝜔 − 𝜔0 − 𝑘 𝑣z)
2 + (𝛾 2⁄ )2 . 

Let's look closely at this equation. It's a standard Lorentzian profile. 

However, the resonance condition in the denominator is not just  ω − ω 0 

𝜔 − 𝜔0. It's  ω − ω 0 − k v z 𝜔 − 𝜔0 − 𝑘 𝑣z. This means that for a molecule 

with velocity  v z 𝑣z, the entire Lorentzian profile is shifted in frequency 

space by the Doppler shift,  k v z 𝑘 𝑣z. For each velocity class, there is a 



different, shifted Lorentzian. This is the mathematical essence of 

inhomogeneous broadening. 
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Let's clarify the terms in that cross-section formula and its physical 

interpretation. 

First, sigma naught. This is the peak absorption cross-section. It's the 

maximum value of the cross-section, which occurs when the laser is tuned 

to the Doppler-shifted center of the line for that specific velocity class. That 

is, when  ω = ω 0 + k v z 𝜔 = 𝜔0 + 𝑘𝑣z. 

Next, gamma. As before, gamma is the Half-Width at Half-Maximum 

(HWHM) of the homogeneous Lorentzian. Physically, it's the total decay 

rate of the coherence between the two levels. For a simple two-level 

system, it's the sum of the population decay rates of the upper and lower 

levels,  γ = γ 1 + γ 2 𝛾 = 𝛾1 + 𝛾2. 

So, the resonant velocity class, this narrow slice of atoms that can interact 

with the laser, really does act as a “thin slice” of the full Maxwell–Boltzmann 

distribution. We are probing just one piece of the whole puzzle. 

The final point is critical for what comes next. Under weak probe conditions, 

meaning the saturation parameter  S 𝑆 is essentially zero, this Lorentzian 

formula we’ve written down describes the complete absorption probability 

for that single velocity slice. But what happens when we turn up the 

intensity, when  S 𝑆 is no longer zero? That’s when we start to burn a hole. 
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Alright. So we have firmly established that a monochromatic laser interacts 

with only a single, narrow velocity class within a Doppler-broadened profile. 

The next logical question is: what happens if we make that laser beam 

intense? What if the saturation parameter S is no longer negligible? 

This leads us directly to the central concept of this lecture: the 

phenomenon of "hole burning." 
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Let's build a qualitative picture of what we mean by "hole burning," a 

phenomenon also known as a "Bennet hole," after William R. Bennett Jr., 

who first predicted it. 

Imagine we now use an intense, narrow-band laser. We'll call this the 

"pump" laser. Because it's intense, it has a significant saturation parameter,  

S > 1 𝑆 > 1. Because it's narrow-band, it is still velocity-selective. The laser 

will drive the transition from the ground state to the excited state, but only 

for those atoms in the resonant velocity class. This intense pumping 

depletes the ground-state population, which we can call  N 1 ( v z ) 𝑁1(𝑣z), 

specifically and only for those resonant velocities. 

Simultaneously, as these atoms are removed from the ground state, they 

must appear in the excited state. So, the pump laser simultaneously 

populates the excited state,  N 2 ( v z ) 𝑁2(𝑣z), for that very same velocity 

class. 

The result is a striking modification of the population distributions. If we 

were to plot the ground state population,  N 1 𝑁1, as a function of velocity,  



v z 𝑣z, we would see the original Maxwell-Boltzmann distribution but with a 

narrow dip, or "hole," burned into it at the resonant velocity. Conversely, if 

we plotted the excited state population,  N 2 𝑁2, we would see zero 

population everywhere except for a narrow peak at that same resonant 

velocity. 

And what is the width of this hole and this peak? It's not the natural 

homogeneous width  γ 𝛾. It is the power-broadened homogeneous width, 

which we will call  γ s 𝛾s, because the hole is being created by a strong, 

saturating laser. 
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This diagram provides a stunning visualization of saturation hole burning. It 

plots the population,  N ( v z ) 𝑁(𝑣z), as a function of the axial velocity,  v z 

𝑣z. 

There are two curves shown. 

The blue curve, labeled  N 1 ( v z ) 𝑁1(𝑣z), represents the ground state 

population. You can see it largely follows the broad, Gaussian shape of the 

original Maxwell-Boltzmann distribution. However, at a specific velocity, 

labeled  v z ′ 𝑣z′, there is a sharp, narrow dip. This is the "Bennett Hole." It 

is a direct visualization of the depletion of ground-state atoms in the 

velocity class that is resonant with our intense pump laser. 

The red curve, labeled  N 2 ( v z ) 𝑁2(𝑣z), represents the excited state 

population. This curve is essentially zero everywhere, as you would expect 

for a gas in thermal equilibrium. But, at the very same velocity,  v z ′ 𝑣z′, 



there is a sharp, narrow peak. This "Excited State Peak" consists of the 

very atoms that were removed from the ground state to create the Bennett 

hole. 

The diagram beautifully annotates the key features. The width of the hole 

and the peak is the power-broadened homogeneous width,  γ s 𝛾s. This is 

much, much narrower than the overall Doppler width of the distribution, 

labeled  Δ v D 𝛥𝑣D. This picture perfectly captures the essence of velocity-

selective saturation. 
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Let's now move from the qualitative picture to a quantitative description of 

this population change. We'll start by considering the case of weak 

saturation, where the saturation parameter S is much less than 1. 

Our starting point is a general solution that comes from analyzing the rate 

equations for a two-level system under the influence of a laser field. This 

solution tells us how the population of the ground state changes. The 

equation is: 

 N 1 0 − N 1 = Δ N 1 0 1 + S .  

𝑁1
0 − 𝑁1 =

𝛥𝑁1
0

1 + 𝑆
. 

Let's break this down. The left side,  N 1 0 − N 1 𝑁1
0 − 𝑁1, is the change, or 

depletion, of the ground state population.  Δ N 1 0 𝛥𝑁1
0, in the numerator on 

the right, is the initial, unsaturated population difference between the 



ground and excited states. And S is the saturation parameter, which 

depends on both laser intensity and frequency. 

For the case we're considering, weak saturation where  S ≪ 1 𝑆 ≪ 1, we 

can use a Taylor expansion. The expression simplifies to: The change in 

population is approximately equal to  Δ N 1 0 ( 1 − S ) 𝛥𝑁1
0(1 − 𝑆). Wait, 

that's not quite right. A Taylor expansion of  1 / ( 1 + S ) 1/(1 + 𝑆) for small 

S is  1 − S 1 − 𝑆. So the change in population,  N 1 0 − N 1 𝑁1
0 − 𝑁1, should 

be approximately  Δ N 1 0 ⋅  S 𝛥𝑁1
0 ⋅ 𝑆. Let's re-examine the slide. Ah, the 

slide seems to be calculating the saturated population difference,  Δ N 𝛥𝑁. 

Let's assume the slide meant to write the saturated population difference 

 Δ N = Δ N 0 1 + S .  

𝛥𝑁 =
𝛥𝑁0

1 + 𝑆
. 

In the weak field limit  S ≪ 1 𝑆 ≪ 1, the change in population difference  Δ 

N 0 − Δ N 𝛥𝑁0 − 𝛥𝑁 is then 

 Δ N 0 S 1 + S  

𝛥𝑁0𝑆

1 + 𝑆
 

which is approximately  Δ N 0 ⋅  S 𝛥𝑁0 ⋅ 𝑆. Let's proceed with the 

expression given on the slide, but with the understanding that this is a 

simplified result from a rate equation model. I will note this is a 

simplification. The key is the dependence on S. 

Let's define the terms clearly. 



 N i 0 𝑁𝑖
0 is the equilibrium population of level 'i' in the absence of the laser. 

It follows the Maxwell-Boltzmann distribution.  Δ N 1 0 𝛥𝑁1
0 is the 

unsaturated population difference,  N 1 0 − N 2 0 𝑁1
0 − 𝑁2

0. For most 

systems at thermal equilibrium,  N 2 0 𝑁2
0 is nearly zero, so this is 

approximately just the total ground state population. This population 

difference is what drives the absorption process. 
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Let's continue with our quantitative description of the population change. 

The linear approximation we discussed, where the depletion is proportional 

to the saturation parameter S, is generally valid as long as the depletion 

remains small, say less than about 10 percent. This corresponds to the 

regime where S is significantly less than 1. 

Now for the most crucial point on this slide. The change in population is 

velocity-selective. Why? Because the saturation parameter, S, is itself 

strongly dependent on velocity. Recall the definition: S is a function of the 

detuning from resonance, which is  ω − ω 0 − k v z 𝜔 − 𝜔0 − 𝑘 𝑣z. This 

means that S, and therefore the population depletion, will have a large 

value only for velocities  v z 𝑣z that are very close to the resonant velocity. 

For all other velocities, S will be nearly zero, and the population will be 

unchanged. 
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To make this velocity‐ selectivity perfectly explicit, let’s write down the full 

form of the saturation parameter as a function of both laser frequency  ω 𝜔 

and molecular velocity  v z 𝑣z. 

The expression is: 

 S ( ω , v z ) = S 0 × ( γ / 2 ) 2 ( ω − ω 0 − k v z ) 2 + ( γ / 2 ) 2 .  

𝑆(𝜔, 𝑣z) = 𝑆0 ×
(𝛾/2)2

(𝜔 − 𝜔0 − 𝑘 𝑣z)
2 + (𝛾/2)2 . 

The numerator is  ( γ / 2 ) 2 (𝛾/2)2. The denominator is the quantity  ( ω − 

ω 0 − k v z ) 2 + ( γ / 2 ) 2 (𝜔 − 𝜔0 − 𝑘 𝑣z)
2 + (𝛾/2)2. 

Let’s interpret this in the context of hole burning. 

 S 0 𝑆0 here is the on‐ resonance saturation parameter. It represents the 

maximum possible saturation, which occurs for those molecules whose 

velocity  v z 𝑣z exactly satisfies the Doppler resonance condition, making 

the denominator of the Lorentzian minimal. 

Now, if we fix the laser frequency  ω 𝜔 and think of this expression as a 

function of  v z 𝑣z, we see that the saturation parameter itself has a 

Lorentzian shape in velocity space. The Lorentzian is centered on the 

resonant velocity,  v z = ( ω − ω 0 ) / k 𝑣z = (𝜔 − 𝜔0)/𝑘. This Lorentzian 

envelope is what selects the “burning” region. It mathematically defines the 

position and shape of the Bennett hole in the velocity distribution. 
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So, what is the width of this hole that we burn in the velocity distribution? 



If we look at the Lorentzian shape of the saturation parameter  S 𝑆 as a 

function of frequency, its half-width at half-maximum is given by our familiar 

power-broadening formula: 

 γ s = γ 1 + S 0 .  

𝛾s = 𝛾√1 + 𝑆0. 

This  γ s 𝛾s, the power-broadened width, is the characteristic width of the 

Bennett hole in the frequency domain. It tells us the range of frequencies 

over which the saturation is significant. 

This quantity,  γ s 𝛾s, is often referred to as the "power-broadened 

homogeneous width." This is a very descriptive name. It's the intrinsic 

homogeneous width of the atom,  γ 𝛾, but made larger by the influence of 

the intense laser field, quantified by  S 0 𝑆0. To find the width of the hole in 

velocity space, we would simply use the relation 

 Δ v s = γ s k .  

𝛥𝑣s =
𝛾s

𝑘
. 
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We are now ready to write down the detailed expressions for the velocity-

dependent populations, N one and N two, after the intense pump laser has 

been applied. These expressions might look a bit complicated, but they are 

just the combination of all the pieces we have assembled. We are 

assuming weak saturation,  S ≪ 1 𝑆 ≪ 1. 



The new ground state population,  N 1 ( ω , v z ) 𝑁1(𝜔, 𝑣z), is the original 

population,  N 1 0 ( v z ) 𝑁1
0(𝑣z), minus a depletion term. This depletion 

term is a Lorentzian function of velocity. The expression is: 

 N 1 ( ω , v z ) = N 1 0 ( v z ) − Δ N 0 S 0 ( γ 2 ) 2 γ 1 τ [ ( ω − ω 0 − k v z ) 

2 + ( γ s 2 ) 2 ] .  

𝑁1(𝜔, 𝑣z) = 𝑁1
0(𝑣z) −

𝛥𝑁0 𝑆0 (𝛾 2⁄ )2

𝛾1 𝜏 [(𝜔 − 𝜔0 − 𝑘𝑣z)
2 + (𝛾s 2⁄ )2]

 . 

Similarly, the new excited state population,  N 2 𝑁2, is the original 

population,  N 2 0 𝑁2
0, plus a peak term, which is also a Lorentzian function 

of velocity. The expression is analogous, but with a  γ 2 τ 𝛾2𝜏 factor in the 

denominator: 

 N 2 ( ω , v z ) = N 2 0 ( v z ) + Δ N 0 S 0 ( γ 2 ) 2 γ 2 τ [ ( ω − ω 0 − k v z ) 

2 + ( γ s 2 ) 2 ] .  

𝑁2(𝜔, 𝑣z) = 𝑁2
0(𝑣z) +

𝛥𝑁0  𝑆0 (𝛾 2⁄ )2

𝛾2 𝜏 [(𝜔 − 𝜔0 − 𝑘𝑣z)
2 + (𝛾s 2⁄ )2]

 . 

Let's define the new symbols here. 

Gamma one is the population decay rate out of the lower level, ket 1. In 

many cases, for a stable ground state, this is essentially zero unless there 

are collisions. 

Gamma two is the population decay rate out of the upper level, ket 2. This 

is primarily due to spontaneous emission. 



The term tau, which we'll define on the next slide, is the population 

relaxation time. Notice the width of these Lorentzians is the power-

broadened width,  γ s 𝛾s. 
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Let's define the relaxation times, tau and capital T, that appeared in the full 

rate equation solutions. 

First, tau, the lowercase Greek letter. This is the longitudinal relaxation 

time, also known as the T1 time. It characterizes the timescale over which 

the populations of the states return to thermal equilibrium after being 

perturbed. For a simple two-level system, it's related to the individual 

population decay rates by: 

 τ = 1 γ 1 + 1 γ 2 .  

𝜏 =
1

𝛾1
+

1

𝛾2
. 

This can also be written as  γ γ 1 γ 2 
𝛾

𝛾1𝛾2
, where  γ 𝛾 is the sum of the rates. 

Next, capital T. This is the transverse relaxation time, or T2 time. This is a 

measure of the coherence lifetime. It characterizes how quickly the relative 

phase of the superposition of the two states decays. It is related to the 

decay rates by: 

Capital T equals  1 / ( γ 1 + γ 2 ) 1/(𝛾1 + 𝛾2), which is simply  1 / γ 1/𝛾, our 

homogeneous linewidth parameter. 



The final note on this slide points out a subtle but important detail. If the 

decay rates from the two levels,  γ 1 𝛾1 and  γ 2 𝛾2, are unequal, this will 

produce an asymmetry between the depth of the Bennett hole in the 

ground state and the height of the corresponding peak in the excited state. 

This is because the depletion and repopulation dynamics are governed by 

these different rates. 
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Let's summarize the key properties of the Bennett hole we've been 

discussing: its center, its width, and its depth. 

First, the velocity of the hole's center. The hole is burned at the velocity 

class,  v z ∗  𝑣𝑧
∗, that is brought into resonance by the Doppler effect. This 

velocity is given by rearranging the resonance condition: 

 v z ∗  = ω − ω 0 k  

𝑣𝑧
∗ =

𝜔 − 𝜔0

𝑘
 

This equation shows us that we have direct experimental control over 

which velocity class we saturate. By simply tuning our laser frequency,  ω 

𝜔, we can move the Bennett hole to any position we choose within the 

Doppler profile. 

Second, the half-width of the hole in the frequency domain. As we've 

established, the hole's width is not the natural width  γ 𝛾, but the power-

broadened homogeneous width,  γ s 𝛾𝑠, given by: 

 γ s = γ 1 + S 0  



𝛾𝑠 = 𝛾√1 + 𝑆0 

Third, we can characterize the depth of the hole. A useful measure is the 

normalized depth, which is the fractional decrease of the population 

difference at the center of the hole. 
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Let's look at the formula for this normalized depth of the Bennett hole. 

The expression on the slide represents the fractional change in the 

population difference,  Δ N 𝛥𝑁, evaluated right at the center of the hole,  v 

z ∗  𝑣z
∗. It is given by the equation: 

\[\frac{\Delta N_0(v_\text{z}^{)} - \Delta N(v_\text{z}^{)}}{\Delta 

N_0(v_\text{z}^{*)}} \;=\; \frac{S_0}{1 + S_0}\,.\] 

This is a beautiful and intuitive formula. It tells us how effective our 

saturation is. Let's consider the implication spelled out on the slide. 

Suppose we set our laser intensity such that the on-resonance saturation 

parameter,  S 0 𝑆0, is exactly equal to 1. Plugging this into the formula 

gives us  1 / ( 1 + 1 ) 1/(1 + 1), which is one-half. This means that when 

the laser intensity equals the saturation intensity, we have removed exactly 

50 percent of the initial population difference at the center of the hole. This 

provides a very clear, physical meaning for the condition  S 0 = 1 𝑆0 = 1. 

It's the point where you've bleached half of the resonant absorbers. 
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Here we have another clean, clear visualization of a Bennett hole in the 

velocity distribution. 

The title "Bennet Hole in Velocity Distribution" describes exactly what we're 

seeing. The plot shows the ground state population,  N 1 ( v z ) 𝑁1(𝑣z), as a 

function of the velocity component,  v z 𝑣z. 

The dashed blue line represents the original, unperturbed Maxwell-

Boltzmann velocity distribution. It's a smooth Gaussian. 

The solid red line shows the population distribution after it has been 

interrogated by a strong, monochromatic laser beam. You can clearly see 

that a narrow "hole" has been burned into the distribution at a specific 

velocity, which here is around  v z = 0.8 𝑣z = 0.8 in some arbitrary units. 

This graph provides an unambiguous visual representation of the concept. 

Saturation doesn't affect the entire sample; it performs a kind of 

microscopic surgery, selectively removing atoms from one very specific 

velocity class, while leaving their neighbors untouched. 
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So, we've successfully created a hole in the velocity distribution of our 

atoms. This is a change in the microscopic properties of the gas. The 

crucial question now is: how does this microscopic change translate into a 

macroscopic, observable signal? Specifically, how does it affect the overall 

absorption of a laser beam passing through the gas? 

To answer this, we first consider the contribution to the total absorption 

from just one infinitesimal velocity slice,  d v z 𝑑𝑣z. The differential 



absorption coefficient, which we write as  d α ( ω , v z ) 𝑑𝛼(𝜔, 𝑣z), is given 

by the product of the number of absorbers in that slice and their cross-

section. The number of effective absorbers is the population difference,  Δ 

N ( v z ) 𝛥𝑁(𝑣z). The cross-section is  σ 1 − 2 ( ω , v z ) 𝜎1−2(𝜔, 𝑣z). So, we 

have: 

 d α ( ω , v z ) d v z = Δ N ( v z ) σ 1 − 2 ( ω , v z ) d v z .  

𝑑𝛼(𝜔, 𝑣z) 𝑑𝑣z = 𝛥𝑁(𝑣z) 𝜎1−2(𝜔, 𝑣z) 𝑑𝑣z. 

Here,  Δ N ( v z ) 𝛥𝑁(𝑣z) is the velocity-dependent population difference, 

which is  N 1 ( v z ) − N 2 ( v z ) 𝑁1(𝑣z) − 𝑁2(𝑣z). And this is the quantity 

that now contains the Bennett hole we've just burned. 
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To find the total, macroscopic absorption coefficient,  α ( ω ) 𝛼(𝜔), which is 

what a photodetector would actually measure, we must sum up the 

contributions from all the individual velocity slices. In calculus terms, we 

must integrate the differential absorption coefficient over the entire range of 

velocities. 

So, the total absorption coefficient is given by the integral: 

 α ( ω ) = ∫ − ∞ + ∞ Δ N ( v z ) σ 12 ( ω , v z ) d v z .  

𝛼(𝜔) = ∫ 𝛥
+∞

−∞

𝑁(𝑣z) 𝜎12(𝜔, 𝑣z) 𝑑𝑣z. 

This integral runs over the entire Maxwell–Boltzmann distribution. Now, 

let’s think about what’s inside this integral. The population difference,  Δ N ( 



v z ) 𝛥𝑁(𝑣z), now contains the Lorentzian-shaped hole that we burned. The 

cross-section,  σ 12 ( ω , v z ) 𝜎12(𝜔, 𝑣z), also has a Lorentzian 

dependence on  v z 𝑣z. 

So, when we perform this integral, we are effectively convoluting these 

Lorentzian features with the overall Gaussian envelope of the velocity 

distribution. This combination of a Gaussian and Lorentzians 

mathematically leads to what is known as a Voigt profile. However, as we 

are about to see, a crucial approximation will simplify this picture 

dramatically. 
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Let's begin the process of evaluating this integral. The first step is to insert 

the explicit mathematical forms for the terms in the integrand. We will use 

the simplified model where the saturation affects the overall population 

difference. 

The absorption coefficient,  α ( ω ) 𝛼(𝜔), is given by:  α ( ω ) = Δ N σ 0 v p 

π  

𝛼(𝜔) =
𝛥𝑁 𝜎0

𝑣𝑝 √𝜋
 

This prefactor contains the total population difference and peak cross-

section. This is then multiplied by the integral from  − ∞ −∞ to  + ∞ +∞ of 

the following: 

In the numerator, we have  e − ( v z / v p ) 2 d v z 𝑒−(𝑣𝑧/𝑣𝑝)
2

 𝑑𝑣𝑧. This is the 

Gaussian part from the Maxwell–Boltzmann distribution. 



In the denominator, we have  ( ω − ω 0 − k v z ) 2 + ( γ s / 2 ) 2 (𝜔 − 𝜔0 −

𝑘 𝑣𝑧)
2 + (𝛾𝑠/2)2. This is the Lorentzian lineshape for the absorption, where 

we've used the power-broadened width,  γ s 𝛾𝑠, because we are 

considering the absorption of the saturating beam itself. 

So, our task is to evaluate the integral of a Gaussian function multiplied by 

a Lorentzian function. This is the definition of a Voigt function. 
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Now for Step 2, which is the key intellectual leap that allows us to solve this 

integral easily. We must recognize the dominant region of the integrand. 

The integrand is a product of a very broad Gaussian and a very narrow 

Lorentzian. The Lorentzian part, with its denominator containing  ( γ s / 2 ) 

2 (𝛾s/2)2, is only significant when the detuning is small. That is, when the 

absolute value of  ( ω − ω 0 − k v z ) (𝜔 − 𝜔0 − 𝑘𝑣z) is less than or 

approximately equal to the power-broadened width,  γ s 𝛾s. 

This condition corresponds to a very narrow velocity interval,  Δ v z 𝛥𝑣z, 

which is equal to  γ s / k 𝛾s/𝑘. 

Now, we make a crucial comparison. In almost any realistic gas-phase 

experiment, the Doppler width,  δ ω D 𝛿𝜔D, is vastly larger than this power-

broadened homogeneous width,  γ s 𝛾s. This is especially true for weak 

saturation, where  S 0 < 1 𝑆0 < 1. This means the Gaussian exponential 

factor varies extremely slowly over the tiny velocity interval where the 

Lorentzian is non-zero. 



Because the Gaussian is essentially constant over the region where the 

rest of the integrand matters, we can pull it outside the integral! We 

evaluate the exponential factor at the center of the Lorentzian peak, which 

occurs at the resonant velocity,  v z ∗  = ( ω − ω 0 ) / k 𝑣z
∗ = (𝜔 − 𝜔0)/𝑘. 

This approximation is extremely accurate and simplifies the problem 

immensely. 
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After we pull the slowly-varying Gaussian factor outside the integral, what 

remains inside is a much simpler integral. This is Step 3. 

We are left with the integral  ∫ − ∞ ∞ d v z ( ω − ω 0 − k v z ) 2 + ( γ s 2 ) 2 

∫
𝑑𝑣z

(𝜔−𝜔0−𝑘𝑣z)
2+(

𝛾s

2
)
2

∞

−∞
. 

This is a standard definite integral. It is the integral of a pure Lorentzian 

function. The result of this integration is well-known and can be found in 

any table of integrals. The answer is:  π 𝜋, divided by the product of  k 𝑘 

and the half-width,  ( γ s 2 ) (
𝛾s

2
). 

So, the entire integral collapses into this simple algebraic term. All we have 

to do now is substitute this result back into our expression, along with the 

Gaussian factor we pulled out earlier, and simplify everything to get our 

final answer. 
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After substituting and simplifying, we arrive at the final formula for the 

saturated absorption coefficient for a single laser beam interacting with a 

Doppler-broadened medium. And the result is remarkably, perhaps 

surprisingly, simple. 

The saturated absorption coefficient, which we'll call  α s ( ω ) 𝛼s(𝜔), is 

given by the expression boxed on the slide: 

 α s ( ω ) = α 0 ( ω ) 1 + S 0  

𝛼s(𝜔) =
𝛼0(𝜔)

√1 + 𝑆0

 

Let's pause and appreciate this. After a multi-step integration and a key 

approximation, the complex interaction boils down to this: the saturated 

absorption profile has the exact same shape as the original, unsaturated 

Gaussian profile. The only effect of the saturation is to reduce its overall 

amplitude by a constant scaling factor, one over the square root of  1 + S 0 

1 + 𝑆0. 

The second equation on the slide just makes this explicit, showing that  α 0 

( ω ) 𝛼0(𝜔) is proportional to the Gaussian exponential factor: 

 α 0 ( ω ) ∝ exp [ − ( ω − ω 0 ) 2 ( 0.6 δ ω D ) 2 ]  

𝛼0(𝜔) ∝ exp [−
(𝜔 − 𝜔0)

2

(0.6 𝛿𝜔D)2] 

The denominator is just a conversion factor between FWHM and the 

standard deviation of the Gaussian. The key takeaway is that the shape 

remains perfectly Gaussian. 
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This leads us to a critical observation, and a point that often confuses 

students initially. 

Despite the fact that we have burned a very real, narrow hole in the velocity 

distribution of the atoms, no spectral "hole" appears in the macroscopic 

absorption profile. When we scan our single laser's frequency and measure 

the total absorption, we do not see a narrow dip. All we observe is an 

overall vertical scaling—a uniform reduction—of the Doppler profile. 

What is the reason for this? The detector in our experiment averages over 

the contributions from all velocities. At any given laser frequency  ω 𝜔, we 

are indeed burning a hole in a specific velocity class. However, this hole 

affects only a tiny fraction of the total number of molecules in the gas. As 

we scan the laser to a new frequency, we simply burn a new hole in a 

different velocity class. The local depletion is always there, but its 

contribution to the total attenuation is minuscule. When integrated over all 

velocities, the net effect is simply a slight reduction in the overall 

absorption, while the profile retains its Gaussian shape. 

Page 45: Saturated Absorption of a 

Doppler-Broadened Line 

This pair of interactive plots perfectly illustrates the conclusion we just 

reached. The title is "Saturated Absorption of a Doppler-Broadened Line." 

We are plotting the absorption coefficient versus frequency detuning. The 



solid blue line is the unsaturated profile, and the dashed red line is the 

saturated profile. 

On the left, the saturation parameter  S 0 𝑆0 is set to  0 0. As expected, the 

saturated and unsaturated profiles are identical. There is no effect. 

Now, look at the plot on the right, where the saturation parameter  S 0 𝑆0 

has been cranked up to  3.0 3.0. Look closely at the red dashed line. It is 

still a perfect Gaussian. It has the same center and the same width as the 

blue unsaturated profile. The only difference is that its peak amplitude is 

significantly lower. The absorption has been uniformly suppressed across 

the entire profile, exactly as our formula  α s = α 0 1 + S 0 𝛼s =
𝛼0

√1+𝑆0
 

predicts. 

The key observation, summarized in the box below, is the crucial takeaway: 

A single traveling laser wave interacting with an inhomogeneously 

broadened medium does not create a spectral hole or a Lamb Dip in the 

macroscopic absorption profile. The detector averages over everything. 

While a narrow group of atoms is saturated, their contribution is small 

compared to the whole. The result is just a uniform reduction of the entire 

Gaussian profile. 

Page 46: 

Let's just reiterate exactly why this Bennett hole is invisible in a simple, 

single-laser scan. There are three key reasons that work together. 



First, the saturation hole itself occupies a frequency width,  γ s 𝛾s, that is 

much, much smaller than the overall Doppler width. The hole is a tiny 

feature on a massive background. 

Second, the process of measuring the macroscopic absorption involves an 

integration over all velocities. This integration process effectively “smears 

out” the effect of the local depletion over the full Gaussian envelope. At 

each laser frequency, you’re probing a different velocity class, so you never 

get to see the persistent effect of a hole at one specific spectral location. 

Third, and most formally, the scaling factor we derived, which is  ( 1 + S 0 ) 

− 1 / 2 (1 + 𝑆0)
−1/2, is constant with respect to the laser frequency,  ω 𝜔, 

assuming our laser intensity is stable as we scan. A detector measuring the 

transmitted light cannot distinguish between a reduction in absorption due 

to saturation and, for example, simply having a lower concentration of 

atoms in the cell. It just sees a weaker signal across the board. 

So, how can we ever hope to see this hole? 
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The solution, and the key to all of modern saturation spectroscopy, is 

elegant and powerful. 

Instead of using one laser beam to both saturate and measure, we 

introduce a separate probe laser to interrogate the burned velocity class 

selectively. This is the foundation of what we call pump-probe 

spectroscopy. 



The idea is simple: We use one laser, the strong "pump," to do the work of 

burning the hole in a specific, fixed velocity class. Then we use a second, 

weak "probe" laser, whose frequency we scan, to act as a reporter. The 

probe's job is simply to measure the absorption profile of the medium that 

has been prepared by the pump. When the probe laser's frequency is 

tuned to be resonant with the same velocity class that the pump has 

already depleted, it will experience reduced absorption. It will "see" the 

hole. 
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Let's outline this two-laser pump-probe configuration to detect the Bennett 

hole. 

First, we have the pump laser. It has a wave-vector  k 1 𝑘1 and a frequency  

ω 1 𝜔1. This laser is strong, meaning it has a significant saturation 

parameter. Crucially, its frequency is held fixed at some value, usually 

somewhere within the Doppler profile. 

The job of this fixed-frequency pump laser is to burn a Bennett hole in one 

specific velocity class. The velocity class that gets saturated,  v z ∗  𝑣z
∗, is 

the one that satisfies the resonance condition. Following the convention on 

the slide, this is given by: 

 v z ∗  = ω 0 − ω 1 k 1 .  

𝑣z
∗ =

𝜔0 − 𝜔1

𝑘1
. 



So, by choosing the pump frequency  ω 1 𝜔1, we select and burn a hole in 

a single, well-defined velocity class. 

Next, we have the probe laser. It has a wave-vector  k 2 𝑘2 and a frequency  

ω 𝜔. This laser must have a weak intensity, with a saturation parameter  S 

≪ 1 𝑆 ≪ 1, to ensure that it doesn't cause any significant saturation itself. 

Its purpose is only to measure, not to perturb. The frequency,  ω 𝜔, of this 

probe laser is then scanned across the absorption profile to measure any 

changes in absorption caused by the pump. 
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So, under what condition will our probe laser "see" the hole burned by the 

pump? 

The probe experiences reduced absorption when it is tuned to interrogate 

the very same velocity class,  v z ∗  𝑣z
∗, that has been saturated by the 

pump. 

The pump selected the class  v z ∗  = ( ω 0 − ω 1 ) / k 1 𝑣z
∗ = (𝜔0 − 𝜔1)/𝑘1. 

The probe, as we scan its frequency  ω 𝜔, will be resonant with a velocity 

class  v = ( ω 0 − ω ) / k 2 𝑣 = (𝜔0 − 𝜔)/𝑘2. 

The probe will see the dip when these two velocities are the same. By 

setting them equal and rearranging, we arrive at the condition for the 

spectral dip: 

 ω = ω 0 ± ( ω 1 − ω 0 ) ( k 1 k 2 ) .  

𝜔 = 𝜔0 ± (𝜔1 − 𝜔0) (
𝑘1

𝑘2
). 



The plus or minus sign here is important and depends on the geometry of 

the experiment, specifically whether the pump and probe beams are co-

propagating or counter-propagating. We'll clarify this on the next slide. This 

equation tells us precisely where in the spectrum the Bennett hole will 

appear. 
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Let's clarify the meaning of the  ± ± sign in our condition for the spectral 

dip. The choice of sign depends on the relative directions of the pump and 

probe beams. 

You use the  + + sign for co-propagating beams. This is the case where 

the pump laser and probe laser are traveling in the same direction, so their 

wave-vectors,  k 1 𝑘1 and  k 2 𝑘2, have the same sign. 

You use the  − − sign for counter-propagating beams. This is where the 

pump and probe travel in opposite directions through the sample, so their 

wave-vectors have opposite signs, for instance,  k 1 𝑘1 is positive and  k 2 

𝑘2 is negative. 

This distinction arises because a given velocity class, say atoms moving 

with positive  v z 𝑣z, will have its resonance Doppler-shifted in one direction 

for a laser beam coming from the left, and in the opposite direction for a 

laser beam coming from the right. To have both beams interact with the 

same atoms, their frequencies must be tuned accordingly. 
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This diagram provides an excellent schematic of a pump-probe 

spectroscopy experiment designed to detect a Bennett hole. 

We see an atomic vapor cell in the center. An intense pump laser, shown in 

red with frequency  ω 1 𝜔1 and wave-vector  k 1 𝑘1, passes through the cell 

from left to right. Its frequency is fixed. This laser's job is to create the 

Bennett hole. As noted in box 1, it selectively interacts with and saturates 

atoms whose velocity vector  v 𝑣 satisfies the resonance condition,  k 1 ⋅  v 

= ω 1 − ω 0 𝑘1 ⋅ 𝑣 = 𝜔1 − 𝜔0. 

A second, weak probe laser, shown in blue with frequency  ω 𝜔 and wave-

vector  k 2 𝑘2, is also passed through the cell and its transmission is 

monitored by a detector. The key is that the probe laser's frequency,  ω 𝜔, 

is scanned. 

As described in box 2, the probe laser's absorption depends on atoms 

satisfying its own resonance condition,  k 2 ⋅  v = ω − ω 0 𝑘2 ⋅ 𝑣 = 𝜔 − 𝜔0. 

When the scanned frequency  ω 𝜔 reaches the value where the probe 

interacts with the same velocity class that has already been saturated by 

the pump, there are fewer ground state atoms available to absorb the 

probe light. The detector therefore measures a sharp dip in absorption. 

This dip is the spectral signature of the Bennett hole. 
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Now we arrive at the full integral expression for the probe absorption in the 

presence of the pump. This formula may look daunting, but it is a complete 

mathematical description of the pump-probe experiment. It represents the 



total absorption coefficient, alpha sub s, which is a function of both the fixed 

pump frequency, omega 1, and the scanned probe frequency, omega. 

The expression is: 

 α s = σ 0 Δ N 0 v p π ∫ − ∞ ∞ exp ⁡ ( − ( v z / v p ) 2 ) [ 1 − S 0 ( γ / 2 ) 2 ( 

ω 0 − ω 1 − k 1 v z ) 2 + ( γ s / 2 ) 2 ] 1 ( ω 0 − ω − k 2 v z ) 2 + ( γ / 2 ) 2 d 

v z .  

𝛼s  =  
𝜎0 𝛥𝑁0

𝑣p √𝜋
∫ exp

∞

−∞

(−(𝑣z/𝑣p)
2
) [1 

− 
𝑆0 (𝛾/2)2

(𝜔0 − 𝜔1 − 𝑘1𝑣z)
2 + (𝛾s/2)2]

1

(𝜔0 − 𝜔 − 𝑘2𝑣z)
2 + (𝛾/2)2  𝑑𝑣z. 

The integrand itself has three parts multiplied together. 

First,  exp ⁡ ( − ( v z / v p ) 2 ) exp (−(𝑣z/𝑣p)
2
), which is our Gaussian 

velocity distribution. 

Second, a population factor, which is  [ 1 − S 0 ( γ / 2 ) 2 ( ω 0 − ω 1 − k 1 v 

z ) 2 + ( γ s / 2 ) 2 ] [1 −
𝑆0  (𝛾/2)2

(𝜔0−𝜔1−𝑘1𝑣z)
2+(𝛾s/2)2

]. This term is a Lorentzian 

describing the hole burned by the pump. It looks like  1 − S 0 ( γ / 2 ) 2 ( ω 

0 − ω 1 − k 1 v z ) 2 + ( γ s / 2 ) 2 1 −
𝑆0  (𝛾/2)2

(𝜔0−𝜔1−𝑘1𝑣z)
2+(𝛾s/2)2

. This  ( 1 − … ) 

(1 − ⋯ ) factor represents the fraction of the population remaining after the 

pump has acted. 

Third, a probe interaction factor, which is another Lorentzian. This is  1 ( ω 

0 − ω − k 2 v z ) 2 + ( γ / 2 ) 2 
1

(𝜔0−𝜔−𝑘2𝑣z)
2+(𝛾/2)2

. This describes the 

probability of the weak probe interacting with each velocity class. 



So, the integral sums up, for every velocity slice, the product of: how many 

atoms are there (Gaussian), how many of them are left after the pump hits 

them (the hole factor), and how strongly the probe interacts with them (the 

probe Lorentzian). 
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Let's break down the physical meaning of the different parts of that 

complex integral from the previous page. 

The first key piece is a Lorentzian factor that describes the interaction of 

the weak probe with the atoms. This Lorentzian is a function of the probe 

frequency  ω 𝜔 and the velocity  v z 𝑣z. As we scan  ω 𝜔, this Lorentzian 

effectively sweeps through the velocity distribution, selecting which velocity 

class is being probed at any given moment. 

The second key piece is the bracketed term, the  [ 1 − … ] [1 − ⋯ ] factor. 

This term represents the population reduction produced by the strong pump 

laser. It's equal to 1 for velocities far from the pump's resonance, and it dips 

to a minimum at the velocity that is resonant with the pump. This term 

mathematically represents the Bennett hole. 

The crucial part of this term is the second Lorentzian, the one inside the 

bracket. It ensures that the population depletion only occurs for velocities 

that satisfy the pump's resonance condition. The entire integral will only 

yield a significant signal change when the probe's Lorentzian and the 

pump's Lorentzian (the hole) overlap in velocity space. 
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After performing the velocity integration, which involves the same kind of 

approximation we made earlier—assuming the Lorentzians are much 

narrower than the Gaussian—we arrive at the final result for the pump-

probe absorption spectrum. 

The saturated absorption coefficient,  α s ( ω 1 , ω ) 𝛼s(𝜔1, 𝜔), is given by 

the unsaturated Doppler profile,  α 0 ( ω ) 𝛼0(𝜔), multiplied by a factor: 

 α s ( ω 1 , ω ) = α 0 ( ω ) [ 1 − Lorentzian dip term ] .  

𝛼s(𝜔1, 𝜔) = 𝛼0(𝜔)[1 − Lorentzian dip term]. 

This Lorentzian term has a numerator proportional to  S 0 𝑆0, and a 

denominator of the form  ( ω − ω ′ ) 2 + ( Γ s / 2 ) 2 (𝜔 − 𝜔′)2 + (𝛤s/2)2. 

So, the result is no longer a uniformly suppressed Gaussian. Instead, we 

see the original Doppler profile with a sharp, narrow Lorentzian dip 

subtracted from it. We have finally revealed the hole! 

The central position of this dip,  ω ′ 𝜔′, is given by the formula we derived 

earlier: 

 ω ′ = ω 0 ± ( ω 1 − ω 0 ) k 1 k 2 .  

𝜔′ = 𝜔0 ± (𝜔1 − 𝜔0)
𝑘1

𝑘2
. 

This tells us exactly where to look for the dip in our spectrum. 

And what is the half-width of this observable dip? We'll define that on the 

next slide. 
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Let's now characterize the width and depth of this spectral dip that we 

observe in a pump-probe experiment. 

The half-width of the dip, which we will call capital Gamma sub s, is given 

by: 

 Γ s = γ + γ s  

𝛤s = 𝛾 + 𝛾s 

Let's unpack this. Gamma is the unsaturated homogeneous width, which is 

the width of the Lorentzian describing the weak probe's interaction. Gamma 

sub s is the power-broadened homogeneous width, which is the width of 

the Bennett hole burned by the pump. The total width of the observed dip is 

the sum of these two widths, which arises from the convolution of the two 

Lorentzian profiles—the "hole" profile and the "probe" profile. We can write 

this explicitly as: gamma times the quantity, one plus the square root of 

(one plus S naught). 

 Γ s = γ ( 1 + 1 + S 0 )  

𝛤s = 𝛾(1 + √1 + 𝑆0) 

Now, what about the depth of the dip at its center, omega prime? In the 

limit of weak saturation, where S naught is much less than one, the change 

in absorption, Delta alpha, is given by: 

Delta alpha at omega prime equals the unsaturated absorption at that 

frequency, alpha naught of omega prime, times S naught over four. 

 Δ α ( ω ′ ) = α 0 ( ω ′ ) S 0 4  



𝛥𝛼(𝜔′) = 𝛼0(𝜔′)
𝑆0

4
 

The depth of the dip is directly proportional to the saturation parameter, S 

naught. 

And the key point, to summarize everything: The Bennett hole, which was 

invisible in a single-beam experiment, becomes observable as a sharp 

spectral dip because the probe laser allows us to specifically interrogate 

the depleted velocity group that was selected by the pump. 
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Now we move to a particularly clever and practical implementation of 

saturation spectroscopy known as the Lamb dip, named after Willis Lamb. 

This technique uses only a single laser but achieves the pump-probe effect 

by creating counter-propagating beams from that single laser. 

The most common practical method is to take your laser beam, pass it 

through your sample cell, and then reflect it directly back upon itself with a 

mirror. This creates a standing wave inside the cell. 

In this configuration, we have a forward-propagating wave with wave-vector  

k 1 𝑘1, and a backward-propagating wave with wave-vector  k 2 𝑘2. Since 

it's a reflection, we have the condition:  k 1 = − k 2  

𝑘1 = −𝑘2 

We can just call the magnitude  k 𝑘. 

Now, consider what different atoms experience. An atom moving with some 

velocity  v z 𝑣z will be Doppler-shifted into resonance with the forward wave 



at one laser frequency, and with the backward wave at a different 

frequency. But what about the special case of molecules that are not 

moving along the laser axis, that is,  v z ≈ 0 𝑣z ≈ 0? 

These on-axis molecules experience both waves at essentially the same 

frequency,  ω 𝜔. They see the forward wave and the backward wave 

simultaneously. 

This means the intensity experienced by this zero-velocity class of 

molecules is effectively doubled. This leads to a deeper saturation effect 

specifically for the atoms with  v z ≈ 0 𝑣z ≈ 0. 
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The unique saturation of the zero-velocity atoms has a profound effect on 

the measured absorption spectrum. 

When we scan the frequency of our single laser, the resulting absorption 

profile shows a narrow dip precisely at the center of the transition, when  ω 

= ω 0 𝜔 = 𝜔0. This occurs despite the fact that we are still looking at the 

overall, broad Doppler envelope. 

Let's think about why. When the laser is tuned far from the line center, say 

to the blue side, the forward-propagating wave interacts with atoms moving 

away from the laser, and the backward-propagating wave interacts with 

atoms moving towards the laser. These are two completely different 

velocity classes. Each class sees only one of the waves, so the saturation 

is moderate. 



But when the laser is tuned to the exact line center,  ω = ω 0 𝜔 = 𝜔0, both 

the forward and backward waves become resonant with the same velocity 

class: the  v z = 0 𝑣z = 0 class. This class sees both beams, experiences 

double the intensity, becomes more strongly saturated, and therefore 

absorbs less light. This reduction in absorption at the line center creates 

the "Lamb dip." 
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beautiful illustration of how a Lamb 

dip is formed by saturation in a 

standing wave. 

We have a gas cell where an incident laser with wave-vector  k 𝑘 enters 

from the left, reflects off a mirror on the right, and propagates back as a 

reflected laser with wave-vector  − k −𝑘. The superposition of these two 

waves creates the green standing wave pattern. 

Now let's look at the different atoms, represented by colored circles. 

Consider an atom moving to the left, with  v z > 0 𝑣z > 0. As the label 

indicates, due to its Doppler shift, it can become resonant with the 

backward-propagating wave (the blue dashed line). Conversely, an atom 

moving to the right, with  v z < 0 𝑣z < 0, can be resonant with the forward-

propagating wave (the red dashed line). In both these cases, the atom 

interacts with only one of the traveling waves. 



But now look at the yellow circle, the special molecule with  v z ≈ 0 𝑣z ≈ 0. 

This molecule is stationary with respect to the standing wave. It interacts 

with both the forward and backward waves. If it's located at an antinode of 

the standing wave, it experiences a very high intensity. As the label says, 

this leads to strong saturation. It is this enhanced saturation of the zero-

velocity class, and only the zero-velocity class, that creates the Lamb dip. 
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Let's write down the mathematical expression for the population difference,  

Δ N 𝛥𝑁, in this standing-wave field. 

The total population difference as a function of velocity,  Δ N ( v z ) 𝛥𝑁(𝑣z), 

is the initial population difference,  Δ N 0 ( v z ) 𝛥𝑁0(𝑣z), multiplied by a 

saturation factor. This factor is now  [ 1 − one hole term − a second hole 

term ] [1 − one hole term − a second hole term]. 

So, the expression is: 

 Δ N ( v z ) = Δ N 0 ( v z ) [ 1 − a first Lorentzian hole − a second Lorentzian 

hole ] .  

𝛥𝑁(𝑣z) = 𝛥𝑁0(𝑣z) [1 − a first Lorentzian hole − a second Lorentzian hole]. 

The first hole term is  S 0 ( γ / 2 ) 2 ( ω 0 − ω − k v z ) 2 + ( γ s / 2 ) 2 

𝑆0  
(𝛾/2)2

(𝜔0−𝜔−𝑘𝑣z)
2+(𝛾s/2)2

. This is the hole burned by the forward-propagating 

wave, centered at a velocity  v z = ω − ω 0 k 𝑣z =
𝜔−𝜔0

𝑘
. 



The second hole term is  S 0 ( γ / 2 ) 2 ( ω 0 − ω + k v z ) 2 + ( γ s / 2 ) 2 

𝑆0  
(𝛾/2)2

(𝜔0−𝜔+𝑘𝑣z)
2+(𝛾s/2)2

. This is the hole burned by the backward-propagating 

wave, which has a wave vector of minus  k 𝑘. This hole is centered at a 

velocity  v z = − ω − ω 0 k 𝑣z = −
𝜔−𝜔0

𝑘
. 

So, for any off-resonant laser frequency  ω 𝜔, the standing wave burns two 

symmetric holes in the velocity distribution. 
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Now, what happens to these two holes as we tune our laser frequency? 

The two holes are centered at  v z = + ω − ω 0 k 𝑣z = +
𝜔−𝜔0

𝑘
 and  v z = − ω 

− ω 0 k 𝑣z = −
𝜔−𝜔0

𝑘
. 

When the laser frequency  ω 𝜔 is tuned to the exact atomic resonance,  ω 

0 𝜔0, the term  ( ω − ω 0 ) (𝜔 − 𝜔0) becomes zero. This means both holes 

become centered at  v z = 0 𝑣z = 0. They perfectly overlap. 

This overlap results in the deepest possible depletion, as the zero-velocity 

molecules are saturated by both the forward and backward waves 

simultaneously. This enhanced depletion of the zero-velocity molecules is 

precisely what leads directly to the formation of the Lamb dip in the 

absorption spectrum. The reduced absorption of this specific velocity class 

carves a narrow dip right at the center of the broad Doppler profile. 
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Let's look at the resulting absorption formula for the Lamb dip, specifically 

in the weak-field limit where  S 0 𝑆0 is small. 

The saturated absorption coefficient,  α s ( ω ) 𝛼s(𝜔), is given by the 

unsaturated Doppler profile,  α 0 ( ω ) 𝛼0(𝜔), multiplied by a dip factor. The 

expression is: 

 α s ( ω ) = α 0 ( ω ) [ 1 − S 0 2 1 1 + 4 ( ω − ω 0 ) 2 γ s 2 ] .  

𝛼s(𝜔) = 𝛼0(𝜔)

[
 
 
 
1 −

𝑆0

2
 

1

1 +
4(𝜔 − 𝜔0)

2

𝛾s
2 ]

 
 
 
. 

Let's break this down. The first term,  α 0 ( ω ) 𝛼0(𝜔), is just the peak 

Doppler absorption. This is multiplied by the dip-factor in the brackets. This 

factor is 1 minus a term that is sharply peaked when  ω = ω 0 𝜔 = 𝜔0. This 

"subtraction" is what creates the dip. The Lorentzian shape of this term 

means the dip itself will have a Lorentzian profile. 

Now, let's look at the situation at the exact center of the resonance, when  

ω = ω 0 𝜔 = 𝜔0. The Lorentzian term in the bracket becomes 1. The 

formula simplifies to: 

 α s ( ω 0 ) = α 0 ( ω 0 ) ( 1 − S 0 ) .  

𝛼s(𝜔0) = 𝛼0(𝜔0) (1 − 𝑆0). 

(Note: The formula on the slide uses  1 - S ₀   

. More detailed derivations often yield  1 - S ₀  2  

if S₀  is for the total intensity. Assuming the slide's convention, the depth is 

directly proportional to S₀ .) 



This shows the absorption is reduced right at the line center. 
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Let's characterize the width and depth of this Lamb dip. 

First, the half-width of the dip. The half-width at half-maximum of the Lamb 

dip, which we can denote as  δ ω L D 𝛿𝜔𝐿𝐷, is simply equal to our old 

friend, the power-broadened homogeneous width,  γ s 𝛾s. So, 

 δ ω L D = γ 1 + S 0 .  

𝛿𝜔𝐿𝐷 = 𝛾√1 + 𝑆0. 

This is a critical result. The width of the Lamb dip is determined by the 

homogeneous linewidth, not the Doppler width. This is why it's a sub-

Doppler technique. By measuring the width of the Lamb dip, we can directly 

measure the homogeneous linewidth of a transition, even when it's buried 

inside a massive Doppler profile. 

Now, what about the depth? As we saw, the depth is proportional to the 

saturation parameter,  S 0 𝑆0. This presents a classic experimental trade-

off. To get a deep, easily visible dip, you want to increase  S 0 𝑆0 by turning 

up your laser power. However, as you increase  S 0 𝑆0, you also increase 

the power broadening, which makes the dip wider. 

A good practical compromise, as noted on the slide, is to choose a laser 

intensity such that  S 0 𝑆0 is approximately equal to 1. This gives a 

significant reduction in absorption at the center—on the order of 50 

percent—while avoiding the excessive power broadening that would occur 

at very high  S 0 𝑆0. 
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Let's summarize the physical interpretation of the Lamb dip one more time 

to ensure the concept is crystal clear. We need to consider two distinct 

cases. 

Case 1: For off-resonant frequencies, where the laser frequency  ω 𝜔 is not 

equal to the atomic resonance  ω 0 𝜔0. 

In this situation, the forward and backward traveling waves that make up 

the standing wave interact with two different and distinct velocity classes. 

The forward wave interacts with atoms at velocity  v z = ω − ω 0 k 𝑣z =

𝜔−𝜔0

𝑘
, while the backward wave interacts with atoms at velocity  v z = − ω − 

ω 0 k 𝑣z = −
𝜔−𝜔0

𝑘
. 

Each of these velocity classes sees only a single traveling wave, and thus 

only experiences the intensity of that one wave. This leads to a moderate 

level of saturation for two separate groups of atoms. 

Case 2: For exact resonance. 
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Now, let's consider the second case: what happens at exact resonance, 

when the laser frequency  ω 𝜔 equals the atomic resonance  ω 0 𝜔0. 

In this special case, the condition for resonance for both the forward and 

backward waves collapses to  v z = 0 𝑣z = 0. This means that the same 



group of molecules—the zero-velocity class—interacts with both waves 

simultaneously. 

For these molecules, the effective intensity they experience is the sum of 

the intensities of the two waves, which is essentially double the intensity 

seen by any off-resonant velocity class. This doubling of intensity leads to a 

much stronger saturation effect, which in turn causes a significant decrease 

in the absorption for this zero-velocity group. 

Therefore, a sharp dip in the total absorption appears precisely at the line 

center. This feature is incredibly useful for practical applications like laser 

frequency locking with high precision, as the bottom of the dip provides a 

sharp, unambiguous marker for the true, un-shifted atomic resonance 

frequency. 
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This final diagram provides a comprehensive visual summary of Lamb Dip 

Spectroscopy. 

The main graph at the top shows the macroscopic Absorption Profile,  α ( ω 

) 𝛼(𝜔), as a function of frequency detuning. We see the broad, dashed-line 

Gaussian of the Doppler profile. Superimposed on this is the actual 

measured absorption, the solid blue line, which clearly shows the sharp, 

sub-Doppler Lamb Dip right at the center,  ω = ω 0 𝜔 = 𝜔0. 

The two smaller diagrams at the bottom explain the origin of this dip by 

showing what’s happening in velocity space. 



On the left, we see the "Off-Resonance" case. The forward and backward 

waves burn two separate, symmetric holes in the velocity distribution, well 

away from  v z = 0 𝑣z = 0. 

On the right, we see the "On-Resonance" case. Here, the two holes have 

coalesced. Both waves interact with the same  v z = 0 𝑣z = 0 atoms, 

burning a single, deeper hole right at the center of the distribution. It is this 

enhanced saturation at  v z = 0 𝑣z = 0 that is directly responsible for the 

Lamb dip we see in the frequency spectrum above. This is a perfect 

summary of the entire mechanism. 
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To solidify our understanding, let's make a direct comparison between 

saturating a homogeneous line versus an inhomogeneous line with a 

standing wave. The outcomes are qualitatively different. 

First, consider homogeneous broadening, as depicted in Figure 2.7a which 

we will see on a later slide. In this case, a standing wave still creates a 

spatial modulation of the intensity, and therefore a spatial modulation of the 

saturation. This is called spatial hole burning. However, every molecule in 

the sample has the same resonance frequency. There is no velocity 

selection. The spectrum you observe is simply a power-broadened 

Lorentzian. The standing wave does not produce a deep, narrow dip in the 

frequency spectrum. 

Now, consider inhomogeneous broadening, as depicted in Figure 2.7b. 

Here, velocity selection is the name of the game. As we've just seen, the 

special role of the zero-velocity class, which is the only class that can 



interact with both counter-propagating beams simultaneously, leads directly 

to the formation of a deep, narrow Lamb dip precisely at the un-shifted 

resonance frequency,  ω 0 𝜔0. It is the inhomogeneous nature of the 

broadening that makes this powerful technique possible. 
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The slide also mentions an additional scenario for comparison, which 

corresponds to Figure 2.7c. 

This scenario is our standard pump-probe experiment, but with a specific 

tuning. Here, the pump laser is fixed precisely at the line center,  ω 0 𝜔0. A 

separate, weak probe laser is then scanned across the profile. 

In this case, the pump burns a Bennett hole in the  v z = 0 𝑣z = 0 velocity 

class. When the scanned probe also reaches  ω 0 𝜔0, it will interrogate this 

same depleted class and observe the Bennett hole. The slide notes that the 

depth of this hole will be proportional to  S 0 / 2 𝑆0/2. This is just another 

configuration that allows us to see a sub-Doppler feature at the line center. 
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This slide provides the visual comparison we were just discussing, showing 

the profoundly different results of saturating different types of lines with a 

standing wave. The dashed line in each plot is the unsaturated profile, and 

the solid blue line is the saturated profile. 

Let's look at panel (a), labeled "Homogeneous Broadening." The 

unsaturated profile is a Lorentzian. When we apply the standing wave, the 



saturated profile is still a Lorentzian, but it is shorter and significantly wider 

due to power broadening. There is no narrow dip. 

Now look at panel (b), "Inhomogeneous Broadening (Lamb Dip)." The 

unsaturated profile is a wide Gaussian. When this is saturated by a 

standing wave, the result is the same wide Gaussian but with a sharp, 

narrow Lamb dip carved out precisely at the center,  ω 0 𝜔0. 

Finally, panel (c) shows the "Pump-Probe (Bennett Hole)" case. Here, a 

pump laser is fixed at a frequency slightly above line center, and a probe is 

scanned. We again see the broad Gaussian profile, but now a narrow dip—

the Bennett hole—appears at the frequency of the pump laser, not 

necessarily at the line center. 

These three plots brilliantly summarize the different spectral signatures of 

saturation under different conditions. 
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Up to this point, our mathematical treatment has mostly relied on rate 

equation models, which are a great approximation in the weak-field limit 

where  S 0 𝑆0 is small. Now, we will briefly venture "Beyond the Weak-Field 

Approximation" to consider the case of strong saturation. 

In this regime, coherence effects, which are neglected in simple rate 

equation models, become important. A more rigorous treatment using the 

density matrix formalism is required. We will not go through the derivation 

here, but we will present the result. The population equations yield a more 

complex expression for the saturated absorption coefficient. 



The formula for  α s ( ω ) 𝛼s(𝜔) is given as: 

 α s ( ω ) = α 0 ( ω ) ⋅  γ / 2 B ⋅  1 − 2 ( ω − ω 0 ) A + B .  

𝛼s(𝜔) = 𝛼0(𝜔)   ⋅  
𝛾/2

𝐵
  ⋅  √1 −

2(𝜔 − 𝜔0)

𝐴 + 𝐵
. 

This is clearly a more complicated expression. The terms A and B, which 

depend on frequency and saturation, are defined on the next slide. The key 

point here is that for very strong fields, the shape of the dip is no longer a 

simple Lorentzian. 
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Here we define the terms A and B from the strong-saturation formula on the 

previous slide. 

A is defined as the square root of, the quantity (omega minus omega 

naught) squared, plus (gamma over 2) squared. 

 A = ( ω − ω 0 ) 2 + ( γ 2 ) 2  

𝐴 = √(𝜔 − 𝜔0)
2 + (

𝛾

2
)
2

 

B is defined as the square root of, the quantity (omega minus omega 

naught) squared, plus (gamma over 2) squared times (one plus two S 

naught). 

 B = ( ω − ω 0 ) 2 + ( γ 2 ) 2 ( 1 + 2 S 0 )  



𝐵 = √(𝜔 − 𝜔0)
2 + (

𝛾

2
)
2

(1 + 2𝑆0) 

While the full expression is complex, it's very instructive to look at its 

behavior in two important limits. 

First, let's consider the line-center absorption, when omega equals omega 

naught. In this case, the complicated formula simplifies significantly, and 

we find that the absorption at the dip's minimum is: 

alpha sub s of omega naught equals the unsaturated value, alpha naught 

of omega naught, divided by the square root of (one plus two S naught). 

 α s ( ω 0 ) = α 0 ( ω 0 ) 1 + 2 S 0  

𝛼𝑠(𝜔0) =
𝛼0(𝜔0)

√1 + 2𝑆0

 

Second, let's look at the case far off-resonance, where the absolute value 

of the detuning, omega minus omega naught, is much greater than the 

linewidth gamma. In this limit, the absorption becomes: 

alpha sub s of omega equals the unsaturated value, alpha naught of 

omega, divided by the square root of (one plus S naught). 

 α s ( ω ) = α 0 ( ω ) 1 + S 0  

𝛼𝑠(𝜔) =
𝛼0(𝜔)

√1 + 𝑆0
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Let's think about that last result. Far from the resonance, the strong-field 

formula for the standing wave gives us an absorption that scales as  1 1 + 

S 0 
1

√1+𝑆0
. 

This should look very familiar! This is exactly the same scaling factor we 

derived for the saturation caused by a single traveling wave. 

This result is perfectly consistent and makes excellent physical sense. Far 

off-resonance, the forward and backward waves are interacting with two 

completely different velocity groups that are very far apart in velocity space. 

The atoms resonant with the forward wave have no idea that the backward 

wave even exists, and vice-versa. Therefore, the total absorption is simply 

the sum of the absorption from two independent, single-wave saturated 

profiles. It's a great consistency check on our more complex formula. 
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Given that the depth and width of the Lamb dip both depend on the 

saturation parameter  S 0 𝑆0, a natural question arises: what is the optimal 

value of  S 0 𝑆0 to achieve the best-looking dip? We can define "best" as 

having the maximum possible contrast. 

Let’s define a relative contrast function,  C ( S 0 ) 𝐶(𝑆0), which is the 

absorption in the wings minus the absorption at the center, all divided by 

the absorption in the wings. Using our results from the strong-field analysis, 

this contrast is given by the expression: C of S naught equals the quantity, 

one over the square root of (1 plus S naught), minus one over the square 

root of (1 plus 2S naught), all divided by one over the square root of (1 plus 



S naught). Wait, the slide has a different denominator. The denominator is  

1 1 + 2 S o  

. This seems to be the ratio of the depth to the central absorption. Let’s 

proceed with the slide’s formula. 

 C ( S 0 ) = 1 1 + S 0 − 1 1 + 2 S 0 1 1 + 2 S 0  

𝐶(𝑆0)  = 

1

√1 + 𝑆0

 − 
1

√1 + 2 𝑆0

1

√1 + 2 𝑆0

 

To find the optimum value, we do what we always do in physics: we take 

the derivative of this function,  C ( S 0 ) 𝐶(𝑆0), with respect to  S 0 𝑆0, set 

the derivative to zero, and solve for  S 0 𝑆0. 

Performing this optimization yields the result: The optimal saturation 

parameter,  S 0 , o p t 𝑆0,opt, is approximately equal to  1.4 1.4. 
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So we've found that the optimal contrast for the Lamb dip occurs at a 

saturation parameter  S 0 𝑆0 of about 1.4. What does this mean physically 

and practically? 

At this specific value, the depth of the dip is maximized without causing 

excessive power broadening. It represents the sweet spot in the trade-off. If 

you use a lower intensity, the dip will be narrower but also much shallower 

and harder to see. If you use a much higher intensity, you'll broaden the dip 



so much that its contrast relative to the wings will actually decrease, even if 

the absolute absorption at the center continues to drop. 

The practical implication for an experimentalist is clear: when setting up a 

Lamb dip experiment, you should choose your laser intensity such that the 

on-resonance saturation parameter,  S 0 𝑆0, sits somewhere in the 

neighborhood of  1 1 to  2 2. This will give you the best combination of 

depth and narrowness for your signal, making it ideal for applications like 

frequency locking. 
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This graph visually confirms the optimization calculation we just performed. 

The title is "Optimal Saturation for Lamb Dip Contrast." 

The plot shows the Normalized Lamb Dip Depth, which is proportional to 

our contrast function, on the vertical axis, versus the Saturation Parameter,  

S 0 𝑆0, on the horizontal axis. The blue curve shows how the dip depth 

changes as we increase the laser power. It starts at zero for  S 0 = 0 𝑆0 =

0. It then rises rapidly, reaches a clear maximum, and then begins to slowly 

decrease for higher values of  S 0 𝑆0. 

As the annotations on the graph indicate, this maximum occurs at an 

optimal  S 0 𝑆0 value of approximately 1.4. The formula shown on the 

graph, 

 Δ α ∝ 1 1 + S 0 − 1 1 + 2 S 0  

𝛥𝛼 ∝
1

√1 + 𝑆0

 − 
1

√1 + 2 𝑆0

 



is proportional to the numerator of our contrast function, representing the 

absolute depth of the dip. This plot provides a clear, visual guide for the 

experimentalist: cranking up the power indefinitely is not the best strategy; 

there is a well-defined optimum. 
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Let's consider one more practical scenario. In a real experiment, the 

reflected probe wave might be much weaker than the incident pump wave 

due to losses at the mirror or windows. What happens if we have unequal 

pump and probe intensities, say the reflected intensity  I 2 𝐼2 is much less 

than the incident intensity  I 1 𝐼1? 

In this case, the two counter-propagating waves are no longer symmetric. 

The strong incident wave acts as a powerful pump, while the weak 

reflected wave acts as a gentle probe. This is an intermediate case 

between the two-laser pump-probe setup and the ideal standing-wave 

Lamb dip. 

The result is that the effective half-width of the observed dip changes. The 

new width, which we can call \(\Gamma^_\text{s}\), is given by the 

average* of the unsaturated and saturated homogeneous widths: 

 Γ s ∗  = γ + γ s 2  

𝛤s
∗ =

𝛾 + 𝛾s

2
 

This makes intuitive sense. The width is an average of the hole's width ( γ s 

𝛾s) and the probe's interaction width ( γ 𝛾). 
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This is a continuation of the unequal intensities case. This average width,  ( 

γ + γ s ) / 2 (𝛾 + 𝛾s)/2, can be seen as the average of the width of the hole 

created by the strong pump and the natural width with which the weak 

probe interrogates it. 

For the weak saturation limit, where  S 0 ≪ 1 𝑆0 ≪ 1, the absorption formula 

becomes: 

 α s ( ω ) = α 0 ( ω ) × dip factor  

𝛼s(𝜔) = 𝛼0(𝜔) × dip factor 

The dip factor is 

 1 − S 0 2 ( a   Lorentzian )  

1 −
𝑆0

2
 (𝑎 Lorentzian) 

The Lorentzian in this case has a width given by our new effective width, 

\(\Gamma^_\text{s}\). So the denominator would be \((\omega - 

\omega_0)^2 + (\Gamma^_\text{s}/2)^2\). 

The slide shows a slightly different form, \(\displaystyle 

\frac{\gamma_\text{s}^{2/4}}{(\omega - \omega_0)^2 + 

(\Gamma^_\text{s}/2)^2}\). These forms are related, differing by 

normalization constants. The key physical point is that the width of the dip 

is now this new \(\Gamma^_\text{s}\). 



This demonstrates a powerful experimental flexibility. By varying the 

relative powers of the two beams, for example by using a variable 

attenuator before the mirror, an experimentalist can actively tailor the 

shape, width, and depth of the Lamb dip for specific diagnostic purposes. 
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Alright, we have covered a great deal of ground. Let's distill it all down to 

the key take-aways and practical applications. This is the summary of the 

entire chapter. 

First and foremost, the saturation of an inhomogeneous line, like a Doppler-

broadened line, differs qualitatively and profoundly from the saturation of a 

homogeneous case. This is the single most important concept. 

For a single laser beam interacting with the gas, what do we see? We see 

a uniform reduction of the absorption profile. There is no observable 

spectral hole. 

To see the sub-Doppler features, we need a more sophisticated setup. We 

must use either a pump-probe configuration or a standing wave. These 

techniques are what allow us to see the Bennett holes or the Lamb dips. 

These are the tools that let us "dig below" the Doppler profile. 

Page 78: Continuing with our key 

take-aways: 



The width of the observed dip, be it a Bennett hole or a Lamb dip, is set not 

by the Doppler width, but by the power-broadened homogeneous width,  γ 

s 𝛾s, which is equal to  γ 1 + S 0 𝛾√1 + 𝑆0. This is the "sub-Doppler" nature 

of the technique. 

The depth of the dip, for weak fields, scales roughly with the saturation 

parameter  S 0 𝑆0. It grows for  S 0 𝑆0 up to about 1, and then it saturates 

or even decreases in contrast for very strong fields. 

These techniques are not just theoretical curiosities; they are workhorses of 

modern physics. They are exploited for: - Precision frequency references. 

The Lamb dip in molecules like iodine or acetylene, or atoms like rubidium, 

provides an incredibly stable and accurate frequency standard. - And, laser 

cooling. The velocity-selective nature of the interaction is the first step in 

many laser cooling schemes. By tuning a laser just below resonance, you 

can preferentially slow down atoms moving towards the laser, removing 

kinetic energy from the gas. The selection of the zero-velocity class is a key 

ingredient. 
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And finally, some more profound applications and a concluding thought. 

Saturation spectroscopy enables fundamental tests of physics. By 

measuring the absolute frequencies of atomic transitions with the precision 

afforded by Lamb dips, we can test the predictions of quantum 

electrodynamics, help determine the value of fundamental constants like 

the fine-structure constant, and search for physics beyond the Standard 

Model, such as evidence for parity violation. 



The final bullet point here is my concluding message to you for this chapter. 

Understanding every intermediate step of the physics we've discussed—

from the microscopic rate equations for a single atom, to the velocity 

selection, to the integration over the entire ensemble, and finally to the 

macroscopic absorption profiles—is absolutely essential for anyone who 

wants to design, perform, or interpret a modern saturation spectroscopy 

experiment. 

You now have the complete toolkit, from the ground up, to understand one 

of the most elegant and powerful techniques in the physicist's arsenal. 

Thank you. 

  


