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Good morning, everyone. Welcome back to Physics 608, Laser

Spectroscopy.

I’'m Distinguished Professor Dr M A Gondal, and today, we begin a new
and foundational topic, which I've designated as Chapter 2.1 in our course

notes.
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The title of this chapter, and the core theme for our next few lectures, is
Linear and Nonlinear Absorption. This distinction is absolutely central to
understanding modern laser spectroscopy. In your undergraduate optics
and quantum mechanics courses, you almost certainly dealt exclusively
with linear absorption, governed by the familiar Beer-Lambert law. In that
world, a material's ability to absorb light is a fixed property, independent of
how bright the light is.

However, the advent of the laser, with its unprecedented intensity and
monochromaticity, opened the door to a new regime of light-matter
interactions—the nonlinear regime. Here, the material's response changes
depending on the intensity of the incident light. The medium and the light
field become deeply coupled in a way that gives rise to a host of new,
powerful, and fascinating phenomena. Our goal today is to build a solid,
quantitative foundation for understanding the simplest and most important
of these: saturation absorption. This will be our gateway to the entire field

of nonlinear spectroscopy.
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Alright, let's start with the motivation. Why do we even need to venture into
the complexities of nonlinear spectroscopy? The answer lies in the pursuit

of ever-higher resolution.

The first bullet point here states the primary objective: The goal of high-
resolution spectroscopy is to resolve spectral features that are narrower

than the Doppler width.

Let's unpack that. In any gas or vapor sample at a finite temperature, the
atoms or molecules are not stationary. They are moving randomly,
following a Maxwell-Boltzmann velocity distribution. Due to the Doppler
effect, an atom moving towards the laser source sees the light blue-shifted,
while an atom moving away sees it red-shifted. This means that even if
every single atom has the exact same, infinitesimally sharp transition
frequency in its own rest frame, the ensemble of atoms in the lab frame will
absorb light over a broad range of frequencies. This broadening of the
spectral line due to the thermal motion of the absorbers is called Doppler

broadening, and its characteristic width is the Doppler width.

For many situations, especially in atomic and molecular physics, the
Doppler width is the dominant broadening mechanism, often being
hundreds of megahertz or even gigahertz wide. It acts like a thick curtain,
obscuring the finer details of the energy level structure, such as hyperfine
splittings or natural linewidths. To see those details, we must find a way to

peek behind this Doppler curtain.



This is where our second point comes in. Single-mode, or narrow-band,
lasers are the key. They provide two essential properties: incredibly high
spectral brightness, meaning a lot of power in a very narrow frequency
range, and tunability. These properties enable what we call Doppler-free
methods—techniques specifically designed to eliminate the effects of
Doppler broadening. And the most fundamental of these methods relies on

the nonlinear phenomenon of saturation.
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So, how do we use a laser to achieve this? The key strategy is laid out in
the first point on this slide. We drive the absorbing transition so strongly
that the lower-state population is depleted. The term we use for this is that
the transition becomes "saturated." This very act of depletion creates a

nonlinear light-matter interaction.

Let's think about this intuitively. Absorption happens because there are
more atoms in the lower energy state than in the upper one. An incident
photon gets absorbed, promoting an atom to the upper state. In the linear
regime, with weak light, the atom quickly relaxes back down, ready to
absorb another photon. The lower state population is barely affected. But if
we hit the sample with an incredibly intense, resonant laser beam, we are
promoting atoms to the upper state much faster than they can relax back
down. The result? We run out of atoms in the lower state to do the
absorbing! The ground state becomes depleted, and the population

difference between the two states shrinks.



This leads directly to the result mentioned in the second bullet point. The
absorption coefficient, which we usually think of as a constant, now
becomes intensity-dependent. Let's call it alpha of I, a (|) a(I). As you
increase the intensity | I, you deplete the ground state, which reduces the
absorption coefficient. The medium effectively becomes more transparent,
or "bleached," by the intense light. This intensity-dependent absorption is
the hallmark of nonlinearity. And as we will see, signals derived from this
nonlinear interaction contain sub-Doppler information, as well as enabling

other fascinating effects like multiphoton phenomena.

So, the topic for this set of slides, our agenda if you will, is to develop the
fundamental physics, the key definitions, and the quantitative formulas we
need to understand saturation and the spectroscopic tools that are built

upon it. We're going to build this up from first principles.
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Alright, let's lay out a road-map for this lecture so you can see how the
concepts will build on one another.

First, we'll start with a quick recap of linear absorption. We need to
establish our baseline and define our notation clearly. This is the world of

Beer's Law, which should be familiar territory.

Second, we'll dive into the core concept of saturation. We will explore the

population dynamics in a simple two-level system. A crucial distinction we'll



make here is between "open" and "closed" systems, which has profound

practical consequences for experiments.

Third, we will get quantitative. We will define and learn how to calculate the
two most important parameters in this field: the saturation parameter, which
Is a dimensionless quantity given by the symbol capital S S, and the
saturation intensity, | s Is. The saturation intensity is a critical benchmark

for any experiment.

Fourth, we will connect this population-based picture to the more
microscopic, coherent picture of light-matter interactions. We will discuss
the relation of saturation to the Rabi frequency, which we denote as capital
Omega sub R R, Q R 0r. This will also give us a chance to reinforce the
concepts of homogeneous versus inhomogeneous broadening, which are

essential for understanding whose spectral features we can resolve.
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Continuing with our road-map, once we have the theoretical framework in
place, we will move to practical evaluation. Physics is, after all, an

experimental science.

We'll work through some numerical examples for real-world systems, like
molecular beams and atomic vapors. We'll examine the influence of
practical parameters like the laser's own bandwidth, the rate of collisions in
the sample, and the duration of the laser pulse if we're not using a

continuous wave laser.

This will ground our theory in the reality of the lab.
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Let's begin by solidifying the key idea: the distinction between a linear and

a nonlinear response.

First, linear optics. This is the regime of low light intensity. The defining
characteristic, as stated in the first bullet point, is that the absorbed power
Is directly proportional to the incident power. If you double the intensity of
your flashlight, the material absorbs twice as much power. This implies that
the absorption coefficient, little a «, is a constant. It's an intrinsic property
of the material at that frequency, independent of the light's intensity. This is

the domain of Beer's Law.

Now for nonlinear optics. Here, we use intense fields, like those from a
laser. The populations of the quantum states are no longer determined
solely by the thermal equilibrium described by the Boltzmann distribution.
The intense light field is strong enough to actively alter the populations
itself. As we discussed, it can deplete the ground state and populate the
excited state. Because the absorption coefficient depends directly on the
population difference, this means a a is no longer a constant. It becomes a
function of intensity, a (1) a(I). This is the fundamental departure from the

linear world.

Within nonlinear optics, there are many different effects. For our purposes,

we can group them into two main classes.

The first is saturation, which is the focus of today's lecture. Saturation is a
single-photon driven process. It involves the laser changing the populations

of the very same transition that it is being used to probe. A single photon is



absorbed, changing the state populations, which in turn affects the

absorption of subsequent photons from the same beam.

Page 9:

The second major class of nonlinearities involves multiphoton processes.
This includes effects like two-photon absorption, Raman scattering, and so
on. In these cases, the interaction involves the simultaneous absorption of
two or more photons. For example, an atom can be excited from state A to
state C by simultaneously absorbing two photons whose individual
energies don’t match any intermediate state, but whose sum of energies
precisely matches the A-to-C transition energy. These are fascinating and
powerful spectroscopic tools in their own right, but they are typically higher-

order, weaker effects than saturation.

Therefore, our focus here will be on saturation. It is the simplest, most
direct, and most ubiquitous nonlinear process you will encounter in laser
spectroscopy. Mastering it is the first and most important step into the world

of nonlinear optics.
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To build a quantitative model, we first need a mathematical description of
our light field. For the majority of our analysis, we will use the simplest and

most useful model: a monochromatic plane wave.

The first bullet point shows how we write the electric field. The equation is:
Capital E E as a function of z zand tt equals E O E, times the cosine of

the quantity wt-k z wt — kz. That s,



E(z,t) = Eycos(wt — kz)
Let's break this down. On the next slide, we have the symbols and units.

E 0 E,, pronounced 'E-naught' or 'E-sub-zero', is the peak electric-field
amplitude. It represents the maximum strength of the electric field. Its units

are Volts per meter, Vm-1Vm™1

The Greek letter w w, omega, is the angular frequency of the wave. It tells
us how rapidly the field oscillates in time at a fixed point in space. Its units
are radians per second, rads — 1 rads™!. Of course, it's related to the

ordinary frequency vvinHertzby w=21TvVv w = 2nv.

The letter k k is the wave number, or more precisely, the angular wave
number. It tells us how rapidly the field oscillates in space at a fixed
moment in time. It's related to the wavelength A Aby k=21 /A k =2n/A.
For a wave propagating in vacuum, the wave number is equal to the
angular frequency divided by the speed of light, k=w/c k = w/c. Its units

are radians per meter, or simply inverse meters, m -1 m™1.

The argument of the cosine, wt - k z wt — kz, is the phase of the wave.
The form wt - k z wt — kz describes a wave propagating in the positive z

z-direction.
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definitions for the plane wave model:




c is, of course, the speed of light in vacuum, with a value of approximately
2.9979 x 10 8 2.9979 x 10® meters per second.

Now, in the lab, we don't usually measure the electric field directly. We
measure power or intensity. The intensity of a light wave is the power per
unit area, typically in units of Watts per square meter. For an oscillating
field, we are interested in the average intensity, averaged over one cycle of
the oscillation. The relationship between this cycle-averaged intensity,
capital 1, and the peak electric field amplitude, E, , is given by the crucial

formula:
Capital lequals 12ce0E 02 1/2ceyE;.

Thatis, 1=12ce0EQ02.

1 2
I = ECEOEO.

Here, €, , epsilon-naught, is the permittivity of free space, a fundamental
constant with the value 8.854 x 10 — 12 8.854 x 10712 Farads per meter.

Notice the key relationship: the intensity, which is what our power meters
measure, is proportional to the \textit{square} of the electric field amplitude.

This is a general feature of electromagnetic waves. To double the intensity,

you only need to increase the E-field amplitude by a factor of 2 /2.
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This slide provides a simple visual for the model we've just discussed. Here
we see a snapshot of our monochromatic plane wave at a fixed moment in

time,say t=0t =0.



The plot shows the Electric field, capital E E, on the vertical axis, versus
the propagation direction, z z, on the horizontal axis. As you can see, the

field varies sinusoidally in space.

The diagram explicitly labels the key parameters. The peak amplitude of
the wave, the maximum value the electric field reaches, is labeled E 0 E,.

This is the quantity we discussed, measured in Volts per meter.

The spatial period of the wave, the distance over which the wave pattern
repeats itself, is the wavelength, labeled with the Greek letter A A, lambda.

As we know, lambda is related to the wave number k k by A=2mTk 1=

2w

—
This simple, idealized wave is the light source we will use to interact with

our atoms. It's a powerful model because any complex light field can be

decomposed into a sum of such plane waves through Fourier analysis.
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Now that we have our model for the light, let's introduce the 'matter' side of
the light-matter interaction. We'll consider a single transition within an atom

or molecule.

The first point establishes the most fundamental condition for any
spectroscopic interaction: the energy and frequency match. We have a
transition from a lower energy level, E i E;, to an upper energy level, E k
E.. For light to be absorbed, the energy of the photon must precisely match

the energy difference between these two states. This is the Bohr frequency



condition, written here as: Capital Delta E E equals E k — E i E, — E;, which

must equal 7 w Aw.
AE=EkKk-Ei=hn w
AE = E, — E; = hw

Here, h h, or h-bar, is the reduced Planck constant, and w w is the
angular frequency of our laser light. This equation is the heart of
resonance. The laser is like a key, and the atomic transition is the lock.

They only interact strongly if the key fits perfectly.

Let's define our symbols. We'll use Dirac notation, or bra-ket notation, as
it's the language of quantum mechanics. The ket | i) |[i) represents the
quantum state of the lower level, which has energy E i E;. The ket | k) |k)

represents the quantum state of the upper level, which has energy E k Ej.
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Continuing with our definitions for the atomic system:

As mentioned, f h is the reduced Planck constant, with a value of 1.054 x
10 - 34 1.054 x 1073* Joule-seconds. We assume our laser, with its

angular frequency w w, is tuned to be resonant with this transition.

The next concept is the absorption cross section, denoted g ik (v) g, (v),
pronounced sigma-sub-i-k of nu. This is a phenomenological but incredibly
useful quantity. You can think of it as the "effective target area" that the
absorbing particle presents to the incoming photons. If a photon "hits" this
area, it gets absorbed. The larger the cross section, the more likely

absorption is to occur. Crucially, it's a function of frequency, v v, meaning it



has a certain lineshape—it's largest on resonance and falls off as the laser
Is detuned. The unit of cross section is area, so in Sl units, it's meters

squared, m 2 m?.

Finally, we come to a concept of paramount importance for both linear and
nonlinear absorption: the population difference, which we'll denote capital
A N AN. Net absorption of light is not just about having atoms in the ground
state. It's about the difference between the number of atoms in the lower
state and the upper state. The definition given here is: Capital Delta A N

AN equals Ni N, minus the ratio gi/ gk gi/gx times N Kk N,.
AN=Ni-gigkNk

AN = Ni _&Nk

Yk

Here, N i N; and N k N, are the number densities (number of atoms per
unit volume) in the lower and upper states, respectively. gi g; and gk g
are the statistical weights, or degeneracies, of the levels. They count how
many distinct quantum states have the same energy E i E; or E k Ey. The
reason for this specific form, which accounts for both absorption from i i to
k k and stimulated emission from k k down to i i, comes from a more
detailed analysis using Einstein coefficients, which we will touch on later.
For now, accept this as the effective population difference that drives net
absorption. For a typical absorbing medium, N i N, is much larger than N k

Ny, so AN AN is positive.

Could you please provide the raw transcript content for Page 15 so | can

format and transcribe it according to your directives?
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Now we are ready to combine our model of the light field with our model of
the atomic medium to derive a fundamental relationship for power

absorption. We'll perform an infinitesimal power balance calculation.

Let's set up the geometry. Imagine our laser beam, with a cross-sectional
area A A (in meters squared), is traveling through our absorbing medium.
The incident intensity is | O I,, which is the incident power P 0 P, divided
by the area A A.

Now, consider a very thin slice of this medium, with thickness d z dz, as
the beam propagates through it. As the light passes through this slice,
some of its power will be absorbed. We want to find the infinitesimal

change in power, d P dP.

The central equation on this slide gives us the answer: d P dP equals

minus A Atimes 101],times cik (Vv)o;(v)times AN AN times d z dz.
dP=-Al0cik(v)ANdz
dP = —Alyo0;(v) AN dz

Let's take a moment to understand the physical meaning of every single
factor in this equation. This is not just symbol pushing; there is clear

physical logic here.

First, A Atimes d z dz. This is the area of our beam times the thickness of

our slice. This product is simply the volume of the slice, d V dV.
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Let's continue deconstructing our power balance equation.

Next, | 0 I,. As we defined it, this is the intensity, which can also be
thought of as the photon flux density, representing energy per unit area per

unit time.

Now, consider the product o i k g;;, times A N AN. o ik gy, IS the cross
section per particle, and A N AN is the effective number density of
absorbing particles. So this product, o i k A N g;, AN, represents the
effective absorption area per unit volume of the medium. We often define

this entire product as the absorption coefficient, a a. So
a=0ikAN.
a = oy AN.

Let's put it all together. The total number of effective absorbers in our slice
is the number density A N AN times the volume of the slice, Ad z Adz.
The total absorbing area presented by these atoms is this number of atoms
multiplied by the cross section per atom, ¢ ik o;,. So the total target area
IS
(Adz)x(ANoik).

(Adz) x (AN oy,).

The amount of power absorbed is this total target area multiplied by the

power per unit area, which is the intensity |0 I,. This gives us
I0x(Adz)x(ANaoik),

I, X (Adz) X (AN oy,),



which is exactly the expression we have, apart from the sign.

Finally, the negative sign. This is crucial. It signifies that power is being
removed from the beam due to absorption. As the beam propagates in the
positive z z direction, its power P P decreases. d P dP is a negative

quantity.

So, this simple-looking differential equation is built on a solid, intuitive

physical foundation.
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We can now use our infinitesimal power balance equation to derive the

famous Beer's Law, which describes absorption in the linear regime.

The key assumption for linearity, as stated in the first point, is that we are
using a weak incident intensity. "Weak" means that the rate of absorption is
so low that it doesn't significantly alter the populations N i N; and N k N.
Therefore, the population difference A N AN remains constant, at its
thermal equilibrium value. If A N AN is constant, and the cross section o i
k g;; is a property of the atom, then their product, the absorption coefficient

a a, is also a constant.
So, a=0ik AN =constant .
a = g;, AN = constant.

Now let's rewrite our infinitesimal form. The equation was dP=-A100 i
KANdz.

dP = —Al,0;, AN dz.



We can substitute 10=P/Al,=P/Aand a=0ikAN a =o0;,4AN. This
gives dP=-A(PA)adz,

dP = —-A P d
--s(fJou

and the areas A A cancel out, leading to the simple differential equation: d
Pdz=-aP.

dp b
dz o0

This equation is one of the simplest and most common in physics. It states
that the rate of change of power with distance is proportional to the power

itself.

To find the power P ( z) P(z) after the beam has traveled a distance z z
through the medium, we just need to integrate this equation. The solution is

a simple exponential decay:

P(z) = Pyexp(—az).

This is the Beer-Lambert Law. It says that the power of a light beam
decreases exponentially as it propagates through a linear absorbing
medium. P 0 P, is the initial power at z =0 z=0, and a « is the
absorption coefficient that characterizes how strongly the medium absorbs
the light.
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notes on Beer's Law

The product a z az in the exponent is often given its own name: the optical
depth, denoted by the Greek letter 1 7 (tau). So, 1= a z 7 = az. The optical
depth is a dimensionless measure of how opaque a medium is. If 17 7 is
much less than 1, the medium is optically thin, and not much light is
absorbed. If 1 T is much greater than 1, the medium is optically thick, and

most of the light is absorbed. In this notation, Beer's law becomes P (z) =

The second point on this slide is the most important one to remember.
Beer's Law, and the entire concept of a constant absorption coefficient, is
valid only when a a is independent of the incident intensity |0 I,. This is
the definition of the linear regime. As soon as a « starts to depend on 10
I,, we enter the nonlinear world, and Beer's Law breaks down. This is

precisely the territory we are heading into.
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This graph provides an excellent visualization of Beer's Law. The title says

it all: "Beer's Law: Exponential Attenuation (Semi-Log Plot)".

Let's analyze the axes. The horizontal axis is the path length z z through
the medium, in arbitrary units. The vertical axis is the transmitted power P (
z) P(z), also in arbitrary units, but it's plotted on a logarithmic scale. This is

what "semi-log plot" means.



a z ) P(z) = Pyexp(—az). If we take the natural logarithm of both sides of

this equation, we get:

slope is — a —a. Because our vertical axis is logarithmic, the exponential

decay function appears as a straight line.

We can see this on the plot. At z =0 z = 0, the power is P 0 P,, which is
normalized to 1 on this graph. As z z increases, the power drops. The fact
that the blue line is perfectly straight confirms the exponential nature of the
decay. And as labeled, the slope of this line is equal to the negative of the

absorption coefficient, — a —a.

The dashed red lines illustrate this. For a certain change in path length, A

z Az, there is a corresponding change in the logarithm of the power, A (In

—a. This is a very common way to measure absorption coefficients in the
lab. You measure the transmitted power for several different path lengths,
plot the data on a semi-log graph, and fit a straight line to it. The slope

gives you your answer.
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So, how do we experimentally observe the transition from the linear regime
to the nonlinear, saturated regime? One of the most convenient methods is

by monitoring fluorescence.

The first point explains the principle. When an atom or molecule absorbs a
photon and goes to the upper state, which we've labeled | k) |k), it has to
relax back down. One common relaxation pathway is radiative decay, or
fluorescence, where it emits a photon. This emitted fluorescence light can
be collected by a detector. The key insight is that the total fluorescence
intensity, which we'll call | F L Ig, is directly proportional to the rate at
which atoms are being excited to the upper state. And that rate is, in turn,
proportional to the power being absorbed by the sample. So, | F L Ig is

proportional to the absorbed power.

This gives us a powerful diagnostic tool. In the linear region, where
absorbed power is proportional to incident intensity 1 0 I,, the fluorescence
signal | F L Iz, will also increase linearly with | O I,. If you double your

laser intensity, you get double the fluorescence signal.

However, as we increase the incident intensity | 0 I, further, we start to
deplete the ground state. The populations begin to saturate. Since the
medium becomes less absorbing, the absorbed power no longer increases
linearly with | O I,. The curve of absorbed power versus incident intensity
starts to bend and eventually levels off. Because the fluorescence just
mirrors the absorbed power, the curve of | F L Iy, versus |0 I, will show

the exact same behavior.

The great advantage of this technique, as noted in the final bullet point, is

that it's a "background-free" measurement. You shine your laser in, and



you collect the fluorescence photons, which are typically emitted in all
directions, at a right angle to the laser beam. In this geometry, you're not
trying to measure a small change in a very large transmitted laser power,
which can be difficult. Instead, you're measuring an emitted signal against
a nearly dark background. This makes it a very sensitive way to detect

absorption and observe the onset of saturation.
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This figure, titled "Monitoring Absorption via Fluorescence Saturation,"

illustrates exactly the behavior we just discussed.

Let's look at the axes. The horizontal axis is the incident laser intensity, |10

I,. The vertical axis is the measured fluorescence intensity, | F L Ig;.

At very low incident intensities, close to the origin, you can see a dashed
line labeled "Linear Region." Here, the blue curve representing our signal is
essentially a straight line. The fluorescence is directly proportional to the

incident intensity. This is the Beer's Law regime.

As we crank up the laser intensity, moving to the right along the horizontal
axis, the blue curve clearly starts to bend over. The slope decreases. This
region is marked with an arrow labeled "Saturation Onset (Knee)". This is
the "knee" of the curve, where the nonlinearity becomes significant. We are
no longer getting a proportional increase in fluorescence for an increase in

laser power. We are starting to saturate the transition.

Finally, at very high incident intensities, the curve becomes almost
horizontal, approaching a "Plateau." In this regime, we are in deep

saturation. We are exciting atoms to the upper state as fast as they can



possibly be excited, limited by their relaxation rates. The absorbed power
has leveled off, and therefore, so has the fluorescence. Pumping the
system with even more laser power yields diminishing returns; the

fluorescence signal barely increases.

This saturation curve is the characteristic signature of this nonlinear
process, and measuring it is a standard technique in any laser

spectroscopy lab.
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Let's formalize what's happening beyond the linear regime. The key is that

the absorption coefficient, a «, is now dependent on intensity.

The first point gets to the heart of the physics: there's a competition. On
one hand, we have the absorption rate, which is driven by the laser and is
proportional to the incident intensity | O I,. On the other hand, we have the
various relaxation processes (spontaneous emission, collisions, etc.) that
try to return the system to thermal equilibrium. When the absorption rate
becomes comparable to the relaxation rate, the population of the lower

state, N i N;, begins to diminish significantly.

This means we have to generalize our differential law for absorption.
Instead of dP=-PadzdP = —-P adz, where a «a is a constant, we must

now write:
dP=-PO0a(l0)dz.
dP = _Poa(lo) dz.

Or, more fundamentally,



dP=-PO0GikAN(10)dz.
dP = _PO O-ikAN(IO) dZ.

The crucial change is that both the absorption coefficient a a and the
population difference A N AN are now functions of the incident intensity |0
Io.

As you increase | 0 I,, A N AN decreases because you're moving
population from the lower to the upper state. Consequently, a (10 ) a(l,)

also decreases. It's a monotonically decreasing function of 10 I,.

This phenomenon goes by several names, which are standard terminology
you should be familiar with. It's called "nonlinear absorption,” for obvious
reasons. It's often called "saturation absorption,"” which is the term we'll
favor. And a very descriptive term is "bleaching."” The medium is "bleached"
by the light, meaning it becomes more transparent. Just like bleaching a
colored cloth makes it lose its color (its ability to absorb certain
wavelengths), intense resonant light makes the medium lose some of its

ability to absorb that light.
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To make the idea of an intensity-dependent absorption coefficient more
concrete, let's look at a simple algebraic example. This is a

phenomenological model, a “toy model” if you will, but it's very instructive.

Let's imagine that for small intensities, we can approximate the behavior of
a (I') a(l) using a first-order Taylor expansion around | =0 I = 0. This

gives us the model shown:



a(l)=a0(1-Dbl).
Let’s define the terms here.

a 0 ag, or alpha-naught, is the small-signal absorption coefficient. This is
the familiar, constant absorption coefficient from Beer's Law that you'd

measure in the limit of very low intensity.

b b is an empirical constant that characterizes the strength of the
nonlinearity. Its units must be inverse intensity, for instance, square meters

per Watt (m 2 W - 1 m? W™1), to make the term b | bI dimensionless.

Now, let's substitute this simple nonlinear model for a a into our power

balance equation.
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Substituting our model a (1)=a0(1-bl) al) = ay,(1 —bl) into the
power balance equation dP=-Ala(l)dz dP =—-Ala(l)dz gives us

the following expression:
dP=-A(la0-a0bl2)dz.
dP = —A(lay — aybl?) dz.

Let's examine the terms inside the parentheses. The firstterm, 1 a 0 Iay, is
linear in intensity | I. This is the familiar term that leads to Beer's Law. The
second term, —a 0 b | 2 —aybI?, is quadratic in intensity, proportional to |

I squared. This is the new, nonlinear term that arises from our model.



We don't need to solve this differential equation right now; the slide notes

that the solution involves logarithmic and inverse power terms.

The key conceptual point is to see how even the simplest possible model of
nonlinearity—a linear decrease in a a with | I—introduces higher-order
terms in intensity into the fundamental equation for power absorption. This
demonstrates conceptually how the behavior deviates from the simple

exponential decay of Beer's Law.
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very important and practical point:

the relationship between the laser’s

spectral width and the transition’s
width.

Now, we need to address a very important and practical point: the
relationship between the laser's spectral width and the transition’s width.
So far, we've been a bit cavalier, assuming a perfectly monochromatic
laser and a perfectly sharp transition. In reality, both have finite spectral

widths, and their interaction depends on their overlap.

First, let's define spectral intensity density. We can'’t just talk about the total
intensity | I anymore. We need to know how that intensity is distributed
over different frequencies. We define p v ( v) p,(v) (rho-sub-nu of nu) as

the spectral energy density, which is energy per unit volume per unit



frequency interval. This is related to the spectral intensity density, v (v)
I,(v) (I-sub-nu of nu), by a factor of the speed of light: pv(v)=1Ilv(v)/c

p,(v) =1,(v)/c. Iv I, has units of Watts per square meter per Hertz.

The total intensity, | I, is then the integral of the spectral intensity | v I,
over all frequencies. For a laser with a finite bandwidth, & v L v, (delta-

nu-sub-L), we can approximate this integral, as shown in the equation:
I=Jlv(v)dv=Iv(v0)dvlL.
I=[1,)dv =1, dv.

Here, v 0 v, is the center frequency of the laser. This approximation
assumes that the laser has a roughly flat-top spectrum across its

bandwidth, which is often a reasonable starting point.

This brings us to the most important distinction on this page.
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Here is the critical distinction we must always keep in mind when designing

or analyzing an experiment.

First, there is the laser bandwidth, which we denote & v L év.. This is the
frequency spread of the light source itself. A single-mode laser might have
a bandwidth of a megahertz or less, while a multimode diode laser could

have a bandwidth of many gigahertz.

Second, there is the absorption linewidth, which we denote ® v a §v,. This
is the frequency range over which the atomic or molecular sample can

absorb light. This linewidth can have contributions from both homogeneous



broadening (like natural lifetime broadening or collision broadening, which
affects all absorbers equally) and inhomogeneous broadening (like Doppler
broadening, where different absorbers have different resonant

frequencies).

The total absorbed power, and indeed the entire nature of the saturation,
depends critically on the spectral overlap of these two profiles: the laser’s
emission profile and the sample’s absorption profile. We will now consider

the consequences of this overlap.
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Let's write down the general expression for absorbed power, which

explicitly accounts for these spectral profiles.

In a small volume element d V = A d z dV = Adz, the total absorbed
power, which we'll now call A P AP to avoid confusion with the differential

d P dP, is given by the overlap integral:

Capital Delta P equals AN dV AN dV times the integral of Iv(v)oik (v
ydv IL,(v) g, (v) dv.

AP=ANdV/[Iv(v)oik(v)dyv
AP = AN aV [ I,(v) o5 (v) dv

This equation is the most general statement. It says that for each little slice
of frequency d v dv, the absorbed power is proportional to the intensity in
that slice, 1v (v ) I,(v), and the absorption cross-section at that frequency,
oik(v)ogr(v). We then integrate over all frequencies to get the total

absorbed power.



Now, let's look at two important special situations that simplify this integral.

Case 1: The laser is narrow and tuned to the peak of the transition.
"Narrow" means the laser bandwidth & v L §v| is much, much smaller than
the absorption linewidth & v a §v,. In this case, the laser's spectrum v (v
) I,(v) is essentially a spike, a delta function, centered at the resonance
frequency v 0 v,. The absorption cross section o ik (v ) g;(v) is broad
and slowly varying over the laser's width. So, we can pull the constant
value o ik (v 0) oy (vy) out of the integral. The remaining integral, [1v (v

ydv [ I,(v) dv, is just the total intensity | I. The expression simplifies to:

AP AP equals ANV ANdV times | (v 0 ) I(vy) times ocik (vO0)

oik (Vo).

Note a slight typo on the slide, it should really be the total intensity | I, not
I (vO0)I(vy). So,

AP=ANdVIcik(vO0)
AP = AN dV I g3, (vy)

Case 2: The laser is much broader than the absorption line. Here, d v L

v is much greater than d v a év;.
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Continuing with Case 2, where the laser is much broader than the

absorption line.

In this scenario, the atomic absorption profile ik (v ) o;,(v) is the narrow

feature, looking like a spike, while the laser’s spectral intensity | v (v )



I,(v) is broad and nearly constant over the absorption line. So this time, we
can pull the constant value of the spectral intensity, 1v (v 0) I,(v,), out of
the integral. The remaining integral, Joik (v )d v [ g, (v)dv, is the total

integrated cross section.

A simpler, more intuitive way to think about this is that only the fraction of
the laser’'s power that falls within the absorption linewidth can actually be
absorbed. If the laser has a total intensity | I distributed over a bandwidth
0 v L év, then the intensity per unit frequency is roughly 1/d v L I/6v,.
The amount of this intensity that overlaps with the absorption line of width
dvadvyisthen (I/dvL)xdva(/6v) X bv,.

So, we can say that only an effective fraction of the laser’s intensity, given
by the ratio dva/dvL dvy/dv, is available for absorption. The resulting
absorbed power is: AP AP equals ANdV ANdV times | (v 0) I(vy)

times oik (v O0)ag;(vy) times the fraction dva/dvL dvy/dv,.

This tells us that if you use a broadband laser, much of its power is
‘wasted” because it's at the wrong frequency to be absorbed. This
highlights the importance of what we call spectral brightness—power per

unit bandwidth—which is a key figure of merit for lasers in spectroscopy.
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We've been using the phenomenological absorption cross-section, o i k
oix- Now, let's connect this to the more fundamental parameters of
guantum mechanics, specifically the Einstein coefficients. This link provides

a deeper theoretical foundation for our model.



In 1917, Albert Einstein introduced his famous A and B coefficients to
describe absorption, stimulated emission, and spontaneous emission. The
rate of photon absorption can be expressed using the Einstein B coefficient

for absorption, B ik By.

The equation on the slide states that n ph ng,, the number of photons

absorbed per unit time in a volume dV dV, is given by:
nph=Bikpv(vO)ANdV

Nph = By py(vo) AN dV
Let's define these terms again for clarity:

n ph ngy, is the number of photons absorbed per second.

p V p,, rho-sub-nu, is the spectral energy density of the radiation field at
the transition frequency, v 0 v,. Its units are Joules per cubic meter per
Hertz (J m - 3 H z -1 Jm3Hz™ ). Remember, this is related to the

spectral intensity IvI, by pv=Ilv/cp,=1,/c.

A N AN is our familiar effective population density difference, and d V dV

is the volume element.

B i k B;, is the Einstein coefficient for stimulated absorption, which is a
fundamental constant for a given transition, encapsulating the quantum

mechanical transition probability.
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Now we can make the connection. We have two different expressions for

the rate of energy absorption.



From the previous discussion, the absorbed power A P 4P for a narrow
laseris AP=10cikANdV AP =I0;;AN dV. The number of photons

absorbed per second, n p h nyy, is simply the absorbed power divided by

the energy of a single photon, hv hv. So, nph=APhv=1cikANdV

AP Ioj, AN dV
hv Tlph = =k .
hv hv

We also have the Einstein rate equation from the previous slide: nph =B
kpvANdV ny, = Bypy,AN dV.

Let's equate these two expressions for nphnp,: 10ikANdVhv=Bik
pvANdV.

I6, AN dV

7y = BikaAN dv.

We can cancel AN AN and d V dV from both sides. We also know the
relationship between intensity | I and energy density p v p,. For a narrow
laser, | =c pv I = cp,. Substituting this in, we get: cpvoikhv=Bikp
V.

CPyOik
hv

= Bixpv-

The energy density p v p, cancels out, and we are left with a relationship

between B ik B;, and o ik gj.

The slide actually does this for the more general case involving the
integrated cross section, which is the proper way. If you equate the general
expressions, you find the beautiful and profound relation shown in the
middle of the slide:



B ik Bj, equals c c over h v hv, times the integral from zero to infinity of
cgik(v)dvo;()adv.

Bik=chv|/O0~oik(v)dv.

C 0
By = EJ o (V) dv.
0

This is a powerful result. It shows that the fundamental quantum-
mechanical transition probability, B i k Bj, is directly proportional to the
total integrated area under the absorption cross-section curve. The cross-
section o ik (v) g, (v) describes the lineshape of the transition, while B i

k Bj;, describes its total, intrinsic strength. This equation connects the two.

Page 32: The Inteqrated Absorption

Cross-Section

This diagram provides a perfect visual summary of the relationship we just

derived.

On the axes, we have the absorption cross-section, o i k (v ) g;(v),
plotted on the vertical axis against the frequency, v v, on the horizontal
axis. The curve shows a typical absorption line profile, peaked at the
resonant frequency v 0 v,. It could be a Gaussian profile from Doppler
broadening, or a Lorentzian from lifetime broadening, or something more

complex.

The blue bars represent a histogram, perhaps from a measurement, while

the dashed red line is the theoretical lineshape function that fits the data.



The key takeaway is illustrated by the annotation. The Einstein B
coefficient, B ik By, is proportional to the total area under this curve. This
area is the integrated cross-section, | o ik (v )d v [o;:()dv. So, a
“strong” transition, one with a large B i k B, will have a large area under
its absorption profile. This could mean it's a very tall and narrow peak, or a
shorter but very broad peak. The total strength is determined by the total
area. This provides a beautiful and intuitive link between a microscopic
quantum property ( B 1 k B;;) and a macroscopically measurable quantity

(the absorption lineshape and its area).
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We are now going to refine our model of the atomic system to make it more
realistic. The simple two-level atom is a great starting point, but real
systems are rarely so clean. We need to introduce the concept of an open

two-level system.

First, what levels do we consider explicitly? We still focus on our two
primary levels: a lower level, which from now on we'll label | 1) |1), and
an upper level, | 2 ) |2). This is the transition we are probing with our

laser.

The key feature of an "open" system is that there are additional "reservoir"
levels that exist outside of our two-level model. Population can leak out
fromlevels [1) [1)and |2 ) |2) into this reservoir, and population can
also be replenished from the reservoir. What could these reservoir levels

be? They could be other electronic or vibrational states, magnetic



sublevels, or simply represent the atom or molecule physically leaving the

interaction region of the laser beam.

Therefore, as the third point states, the system is "open." This is in stark
contrast to an idealized "closed" two-level atom, where the total population
N1+ N2 N, +N, is strictly conserved. In an open system, the total

population in our two levels of interest can change over time.

To model this mathematically, we will use rate equations. These equations
must incorporate all the relevant physical processes: the laser-induced
transitions (absorption and stimulated emission), spontaneous decay from
level 2 to level 1, collisional relaxation processes that can move population
around, and even molecular diffusion or transit-time effects, where

molecules physically enter and leave the laser beam.

Page 34:

This slide simply contains a descriptive caption for the diagram we’re about
to see on the next page. It summarizes the key concepts of an open two-

level system.

It reiterates that unlike an idealized closed system, an open system

accounts for interactions with its environment.

It consists of the two primary levels, |1) |1)and |2 ) |2). Population can

leak to or be replenished from a "reservoir" of other states.

The diagram will show the key processes: laser-induced transitions,
spontaneous decay, and these crucial relaxation and replenishment

pathways to and from the reservaoir.



Let’s look at the diagram itself.
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Here is the energy level diagram for our open two-level system. This is a

critically important picture to have in your mind.

On the vertical axis, we have energy. We see two discrete energy levels,

the lower state | 1) |1) and the upper state |2) |2).

Let's look at the processes connecting these two levels. The wavy red
arrow pointing up from | 1) |1)to | 2 ) |2) represents laser-induced
absorption. The wavy red arrow pointing down from |2 ) |2)to | 1) |1)
represents stimulated emission. Both are driven by the laser field, and they
are collectively labeled W i n d W,,q4, for the induced transition rate. The
wavy blue arrow from | 2 ) |2) to | 1 ) |1) represents spontaneous
emission, with its characteristic rate A 21 A,;. This happens even without a

laser field present.

Now for the "open" part. To the right, we have a box labeled "Reservoir
Levels." This represents all other states in the universe besides | 1) |[1)
and | 2) |2). There are dashed green arrows showing the coupling. There
Is an outflow rate from level | 2 ) |2) to the reservoir, labeled I o ut I,y
(capital Gamma out). This could be decay to some other third level, or
collisional de-excitation. There is also an inflow rate from the reservoir to
level | 1) |1), labeled T in [;, (capital Gamma in). This could represent
molecules in the ground state diffusing into the laser beam, or collisional

processes populating level | 1) |1). There could also be other rates, like



outflow from | 1 ) |1) or inflow to | 2 ) |2), but these are the most

common ones to consider.

This diagram encapsulates all the population traffic we need to account for

in our mathematical model.
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Now, let's translate the physical picture from the previous slide into a set of
mathematical equations. These are the famous rate equations.

For simplicity, we'll start with the case of non-degenerate levels, meaning
the statistical weights are g1 =9 2 =1 g; = g, = 1. This simplifies the

Einstein coefficients, since B 12 =B 21 B, = B,;.

We have two coupled, first-order ordinary differential equations, one for the

population of each level.

The first equation describes the rate of change of the population density in

the lower level, N1 N;:
dN1dt=B12pv(N2-N1)-R1N1+C1

dN,
ar Bi; py (N —N;) =Ry N; +C;

Let's break this down term by term.
Theterm B12pv (N2 -N1) By, p, (N, — N;) describes the change in N

1 N; due to the laser field. B 12 p v N 2 By, p, N, represents molecules

arriving in level 1 via stimulated emission from level 2. B 12 p v N 1



B, py N; represents molecules leaving level 1 via absorption. The net

effect is proportionalto N2-N1 N, — N;.

Theterm - R 1 N 1 —R; N; represents all processes that cause population
to leave level 1, at a total rate R 1 R;. This could be diffusion out of the

beam, for example.

The term + C 1 +C; represents all processes that cause population to
enter level 1 from outside, at a constant rate C 1 C;. This could be diffusion
into the beam.

The second equation describes the rate of change of the population density

in the upper level, N 2 N,:
dN2dt=B12pv(N1-N2)-R2N2+C2

dN,
T Bi; py (N; — Ny) —R; N, + G,

This has a similar structure.

Theterm B12pv (N 1-N2) By, p, (N; — N,) is the change due to the
laser. It's exactly the negative of the corresponding term for N 1 N;, since a

molecule that leaves level 1 via absorption must arrive in level 2.

Theterm - R 2 N 2 —R, N, is the total depopulation rate of the upper level.
This is a very important term; it includes spontaneous emission ( A 21 A,,),

collisional quenching, and any other decay out of level 2.

The term + C 2 +C, is an external pumping rate that might populate level 2

directly. In many cases, this is zero.



These two equations form the mathematical core of our model for

saturation in an open system.
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Let's clearly define the terms we've introduced in the rate equations.

1. RiNi R;N;: This product represents the total depopulation rate of level i
i. SO R 1 R; is the total rate constant for leaving level i i, with units of
inverse seconds. It's a sum of all possible loss channels. For the upper
state, R 2 R, would include the spontaneous emission rate A 21 A,;, plus

a rate for collisions, plus a rate for transit out of the beam, and so on.
R2=A21+Rcollisional+Rtransit+...
R, = Az1 + Reottisional T Riransit +

For the ground state, R 1 R; would typically be dominated by the transit
rate.

2. Ci G Thisis the inflow rate into level i i from all external channels. It's
a pumping term, representing how quickly population is supplied to our two-
level system from the outside world. Units would be number of atoms per
cubic meter per second. For example, in a molecular beam experiment, C
1 C; would represent the rate at which fresh ground-state molecules enter

the laser interaction volume.

3. The third point is a reminder of a detail we've already used. In the case
of non-degenerate levels (g 1 =g 2 =1 g, =g, =1), the Einstein
coefficients for stimulated absorption and stimulated emission are equal: B

12 = B 21 By, = B,;. This is why the same coefficient B 12 B,, appears in



both rate equations, simplifying the analysis. If the levels were degenerate,

we would have g1 B 12=92B 21 g,B;; = g,B,;.
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Before we analyze the full system with the laser on, it's essential to
establish a baseline. What do the populations look like in the absence of

the laser? This gives us the unsaturated populations.

To find this, we take our rate equations and set the laser intensity to zero.
This means the spectral energy density p v p, is zero. All the terms with B
12 B;, vanish. We are also interested in the stationary, or steady-state,

solution, which means the populations are no longer changing in time. So,

dN,

weset dN1dt
dt

and dN2dt%to Zero.

The rate equations become simple algebraic equations:
0=-R1N10+C1

0=—-R,N+C,
0=-R2N20+C2

0=—R,N) + C,

The superscript '0" indicates that these are the unsaturated, laser-off
populations. Solving these is trivial. We find N10=C1/R 1 N? =C,/R,
and N20=C2/R 2N =C,/R,.

The slide shows the solution for the unsaturated population difference, A N
0 AN®. The slide defines AN ANas N2-N1N, — N,, so:



ANO=N20-N10=C2R2-C1R1

C; C;
AN® =N) - NP = —=——
2 1 RZ Rl

Combining the fractions gives the expression shown:
ANO=C2R1-C1R2R1R2

_ CoRy — C4Ry
~ RiR,

AN

Now, for a typical absorbing transition, the ground state population N 1 0
N? is much larger than the upper state population N 2 0 N2. This means
that our population difference AN =N 2 - N1 AN =N, —N; will be a
negative number. This is important to keep track of. The slide notes AN O
< 0 AN < 0 for an absorbing transition. Some textbooks define A N AN as
N 1-N2N, —N, to keep it positive. It doesn't matter as long as you are

consistent. We will stick with the slide's convention.

This unsaturated population difference A N 0 AN? is our crucial reference
point. The degree of saturation will be defined by how much the laser

reduces the population difference relative to this initial value.
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Now for the main event: let's find the stationary solution with the laser
turned on. We are still in steady-state, so d N/ dt dN/dt is zero, but now
the energy density p v p, is not zero. We need to solve the full system of

coupled algebraic equations. | will spare you the algebra, which is



straightforward but a bit tedious, and jump straight to the beautiful and very

important result.

The steady-state population difference with the laser on, A N AN, is related
to the unsaturated population difference A N 0 AN° by the following

formula:
AN=ANO1+B12pv(1R1+1R2).

AN

AN = 1 1~
1+ Byz py (R_1+R_2)

Look at this structure. The laser's effect is entirely contained in that second

term in the denominator. If the laser is off (p v =0 p, = 0), the denominator

is 1, and we get AN=ANO AN = AN°, as expected. As the laser intensity

p Vv p, increases, the denominator gets larger, and the magnitude of the

population difference | A N | |AN| gets smaller. The transition is being
saturated.

To make this expression even more elegant and physically transparent, we
introduce a new quantity: the dimensionless saturation parameter, capital

S S. The result can then be written as:
AN=ANO1+S.

AN__ANO
1485

By comparing the two forms, we can see the definition of S S:

S=B12pVvR=* .



B12 Py
S = :
R*

Where R * R*is a newly defined effective relaxation rate, given by:
Rx =R1R2R1+R2.

Ri R,

R* = :
R, + R,

This parameter S S is the single most important quantity for describing
saturation. It is a dimensionless number that tells you exactly how

saturated your transition is.
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Just a quick note on the mathematical nature of the effective relaxation rate
R = R* that we just defined.

The slide points out that R * R* is the harmonic mean of the two relaxation
rates, R1R; and R2R,.

Remember, the arithmetic meanis R1+R 22 @. The geometric mean

is R1R 2 .,R/R,. And the harmonic mean is the reciprocal of the

arithmetic mean of the reciprocals, whichis 1 (1R1+1R2)/2.

1
(7 m) 2

Our \(RMN) is off by a factor of 2 from this standard definition, but it arises

naturally from the algebra of the rate equations and represents the

characteristic rate that governs the saturation process in an open system.



It's dominated by the slower* of the two relaxation rates R 1 R; and R 2
R,.

So, the saturation parameter \(S = \frac{B_{12}\rho \nu{R"}\) can be
interpreted physically as the ratio of the light-induced transition rate, which
is proportional to B 12 p v B;,p,, 10 this effective relaxation rate, \(RM). It's
a direct measure of the competition between the laser pumping and the

system's relaxation.
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Let's explore the physical meaning of the saturation parameter S S.
Understanding its different limits is key to developing an intuition for

saturation phenomena.

First, if S =0 § =0, this corresponds to the linear absorption limit. This

happens if the laser intensity is zero. In this case, our formula AN=ANO
1+S AN = iTN; gives AN =ANO AN = AN°. The population difference is

unchanged from its thermal equilibrium value.

Second, the case S =1 S =1. This is a crucial benchmark. When S =1

S =1, our formula gives AN=ANO1+1=ANO2AN =25 =2 This

means the population difference has been reduced to exactly 50 percent of
its unsaturated value. The intensity that is required to achieve S=15=1
IS given a special name: the "saturation intensity," which we will denote | s

Is. So by definition, | s Ig is the intensity at which S=1S5 = 1.

Third, the case S > 1 S > 1, meaning S S is much greater than one. This

is the regime of "deep saturation." In this limit, the 1 1 in the denominator



of 1 +S 14 S is negligible, so A N AN approaches AN O S ATNO, which

becomes very small. The populations of the two levels nearly equalize. In
some special cases with strong external pumping, it's even possible to
achieve population inversion (N 2 >N 1 N, > N;), where the medium can
act as an amplifier, but for simple absorption, the populations just tend to

equalize.

Finally, we need to express S S in a way that's easy to use in the lab. We
don't measure energy density p v p,; we measure intensity | I. So let's

write an alternative expression for S S using measurable intensities.
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Here we see the conversion of the saturation parameter S S into a more
practical form. We start with our definition:. S=B12pv R * § = %. We
know the relationship between spectral energy density p v p, and spectral

intensity IvI,is pv=Ilvcp, = I;” Substituting this in, we get:

S=B12IvcR«*

_ B12 Iv
c R*

This is a perfectly valid form. However, what if our laser is very narrow-
band? We often work with the total intensity | I, not the spectral intensity |
v I,. For a narrow laser with bandwidth & v L §v_, we can approximate the
total intensityas I=lvdvLI=I,6v. Thisletsus write Ilv=I1/0dvLI, =
1/8v.



The slide shows a slightly different path to get to an expression with total

intensity | I. The last equality shown is:

S=B12IcR1R?2

By, 1
" cR.R,

Lets check the algebra here. The expression \(S =
\frac{B_{12})\rho_{\nu}}{R"}\) combined with the definitions \(R" = \frac{R_1
R2H{HR_ 1+R 2N and I=IlvdvLI=I, v ... ah, there seems to be a

slight inconsistency or an unstated assumption in the slide’s final step.

Let's stick to the most direct interpretation. We define the saturation
intensity Is Iy suchthat S=1/1s S =1/I. This is the most common and
useful form. From the expression \(S = \frac{B_{12}\,I_{\nu}}{c\,R"}\), we
can define a spectral saturation intensity \(I_{s,\nu} = \frac{c\,R"KB_{12}}\).
Then S =1v/Ils,vS=1I/I,. Thisis the most rigorous form. The
conversion to total intensity | I depends on the relative widths of the laser
and the absorption line, a point we will return to. For now, the key idea is

that S S is directly proportional to the laser intensity.
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Let's formally define and explore the saturation intensity, |s I;.

As stated in the first bullet point, it is defined by the condition S=1 S5 = 1.
It is the intensity required to reduce the population difference to half of its
unsaturated value. It's the characteristic intensity scale for nonlinear effects

In a given system.



From our previous discussion, we can write down a frequency-dependent,
or spectral, form of the saturation intensity. Let's call it Is (v ) I,(v). Itis

the spectral intensity required toreach S=15 =1.
Is(v)=cR=x B12

cR*

IS(V) = B_
12

This shows us what | s I depends on: fundamental constants ( ¢ c), the
atomic transition probability ( B 12 B;,), and the relaxation environment of
the system (hiddenin R x R™).

Now, if we have a laser with a finite bandwidth & v L dv|, the total
saturation intensity | s Ig is found by integrating the spectral saturation
intensity over the laser's spectrum. Similar to our earlier approximation for

total intensity, we can say:
Is=[Is(v)dv=Is(vL)dvL
Is=[I(Mdv ~ I(v) v

This is the total power per unit area we need from our laser to achieve S =
1S5=1.
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This final point on saturation intensity is a crucial practical one for any

experimentalist.

Knowledge of | s I is critical for two main reasons. First, for designing

saturation experiments. If you want to perform saturation spectroscopy, you



need to know what | s I is for your transition of interest. This tells you how
much laser power you need and how tightly you need to focus your beam
to achieve an intensity | I that is comparable to or greater than | s Ig. If
your laser system cannot deliver an intensity of at least | s Ig, you will not

be able to saturate the transition and your experiment will fail.

Second, and equally important, is avoiding optical damage. Lasers can
deliver very high intensities, especially when focused. For some materials,
particularly solids or complex molecules, the saturation intensity might be
close to or even above the optical damage threshold of the sample. You
must ensure that the intensity you need for your experiment won't
inadvertently destroy what you're trying to measure. So, calculating | s I

beforehand is a critical safety and feasibility check.
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Population Difference

This graph beautifully visualizes the concept of saturation. The title is

"Saturation of Atomic Population Difference."
Let's look at the axes. The vertical axis is the Normalized Population

Difference, which is the ratio ANANO %. At zero intensity, this value is

1 1, meaning the population difference is its full, unsaturated value. The
horizontal axis is the Incident Intensity, | I, plotted in units of the saturation
intensity, | s I;. So we have points for Isly, 21s2I;,, 31s 31, and so

on.



The curve shows the function we derived: ANANO=11+S % = 1—15

Since S=11s§ = Ii this is equivalent to the equation shown on the plot:

ANANO=11+11Is

AN 1
O =
AN® g L
I
Let's trace the curve. At 1 =01 =0, the ratiois 1 1. Now, let's go to the

point on the x-axis labeled | s I5. This is the saturation intensity. If we look
up to the blue curve and then across to the y-axis, we see that the
normalized population difference is 0.5 0.5. This is the very definition of | s
Is. It's the intensity needed to cut the population difference in half. The

dashed red lines on the plot highlight this 50% reduction.

As we increase the intensity further,to 21s 21, 31s 31, and beyond, the
curve continues to fall, asymptotically approaching zero. The population
difference is being "squashed" by the strong laser field. This plot is the

quantitative picture of "bleaching" the medium.
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Now let's incorporate our new understanding of saturation back into the

absorption law itself.

Let's consider the specific case where our laser is narrower than the
absorption line (& vL <d v a v, <dv,). Our infinitesimal power balance
equatonwas dP=-Al0c12ANdzdP=-Alo,, AN dz. We can now

substitute our expression for the saturated population difference, A N = A



NO/(1+S) AN=AN°/(1+S). This gives us the new, nonlinear

absorption law:
dP=-Alc12ANO01+Sdz.

AN°®

dP = —A1l
%1271

dz.

And since |=P A =P/A, we could write:
dPP=-012AN01+Sdz.

dp 012 AN°

P 1+S

dz.

Let's compare this with the linear case. The linearlawis dP=-P o 12 A
NOdzdP=-Poy;,AN%dz, which gives dPP=-(012ANO0)dz
dP/P = —(0,, AN®) dz. The only difference is the factor of 1/ (1 + S)
1/(1 + S) in the denominator. This factor is always less than or equal to 1,
and it decreases as the intensity | I increases. This is the mathematical

representation of saturation.

What is the qualitative effect? The third point is subtle but important. The
absolute absorbed power, d P dP, still rises with intensity | I (at least
initially), but the relative absorption, the fraction of power absorbed per unit
length, which'is d P/ P dP/P, decreases. You get diminishing returns.

Doubling a high intensity does not double the absorbed power.

This behavior is precisely what we observe experimentally as the
fluorescence "bleaching" curve that we saw on slide 22. That curve is a

direct plot of the consequences of this nonlinear absorption law.
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This slide addresses a very practical question: why is saturation
spectroscopy synonymous with laser spectroscopy? Can't we achieve

saturation with other light sources?

The answer lies in spectral intensity, | v I,. Let's look at the first point.
Spectral lamps, like a sodium lamp or a mercury-vapor lamp, are what we
call incoherent sources. They emit light over a broad range of angles and a
relatively broad range of frequencies. Their spectral intensity | v I, is
actually very small. If you plug the numbers into our formula for the
saturation parameter S S, you will find that for any typical allowed atomic
transition, S S is always much, much less than 1. The light from a lamp is
simply not intense enough at the specific resonant frequency to significantly
alter the populations. With conventional light sources, you are always in the
linear absorption regime.

Now consider lasers. Lasers produce coherent light that is highly collimated
and, for a single-mode laser, extremely monochromatic. This means they
can achieve orders of magnitude higher spectral intensity | v I,.
Furthermore, this light can be focused down to a tiny spot, increasing the
intensity | I dramatically. With a typical continuous-wave laser, it is easy to
achieve conditions where the saturation parameter S S is greater than or

equal to 1.

Therefore, the inescapable conclusion is that saturation spectroscopy, and

indeed almost all nonlinear spectroscopy, essentially requires lasers. The



laser is not just a convenient tool; it's the enabling technology that opened

up this entire field of physics.
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We've established that lasers are what allow us to perform nonlinear
spectroscopy, such as Doppler-free measurements and nonlinear mixing
techniques. Now, we're going to pivot slightly and look at the interaction
from a more microscopic, quantum-coherent perspective. This will

introduce us to the Rabi frequency.
The title of this section is "Rabi Frequency, Q R Qg — Microscopic Picture.”

So far, we've used rate equations. Rate equations deal with populations, N
1 N, and N 2 N,. They describe the interaction in terms of probabilities and
rates, which is an incoherent picture. However, a more fundamental
description, especially for short timescales, uses a semi-classical treatment
where we consider the quantum atom interacting with a classical

electromagnetic field.

In this picture, the oscillating electric field of the laser drives a coherent
oscillation of the atom's electric dipole moment. This isn't just a random
hopping between states; it's a deterministic, coherent evolution of the
quantum amplitudes. The atom is driven back and forth between the
ground and excited states. The angular frequency of this coherent
population cycling is called the Rabi frequency, denoted capital Omega
subR, QR 0R.



The formula for the Rabi frequency is givenas: QR =DikEO A Qg =
DikEq

h
QR=DikEOQO#R

DixEy

No =
R™ q

Let's break this down. # h is the reduced Planck constant. E O E| is the
peak electric field amplitude of our laser, which we control. And D ik Dy is

the transition dipole matrix element.
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Let's elaborate on the terms in the Rabi frequency formula.

D i k Dy is the transition dipole matrix element. Its formal definition is the
matrix element of the electric dipole operator between the initial state |i )
|i) and the final state | k ) |k). It has units of charge times distance, and
the slide gives its Sl units as Coulomb-meters ( C m ) (C m). This quantity,
D i k Dy, is a purely quantum mechanical property of the atom or molecule.
It is calculated from the wavefunctions of the two states and it quantifies
how strongly those two states are coupled by an electric field. Strong
transitions have large dipole matrix elements. "Forbidden" transitions have

dipole matrix elements that are zero or very close to zero.

The Rabi frequency, Q R g, provides a crucial link. It relates a
macroscopic, controllable experimental parameter—the laser's electric field

E 0 E, (which is related to its intensity | I)—to the microscopic evolution of



the quantum amplitudes of the atom. It tells you, at a fundamental level,

how fast the laser is "talking" to the atom.

Why is this important? It serves as a bridge between the rate-equation
picture we've been using, with its saturation parameter S S, and the more
advanced semi-classical picture described by the optical Bloch equations.
The optical Bloch equations are a set of differential equations that describe
the evolution of not just the populations, but also the coherent
superposition between the states. The Rabi frequency is a central

parameter in the Bloch equations.
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Now we arrive at a beautiful and insightful result that connects the two
pictures we’'ve been developing: the incoherent rate- equation picture
(characterized by S S) and the coherent semi- classical picture
(characterized by Q R 0g). We can express the saturation parameter S S

directly in terms of the Rabi frequency Q R 2.

Let’s consider a system where the broadening is purely homogeneous. The
homogeneous linewidth, vy v, is the sum of the total decay rates of the two
levels, so y=R 1+ R 2y =R; +R,. Inthis case, after some algebra which
involves relating the Einstein B B coefficient to the dipole matrix element

D i k Dy, we find the following elegant relationship:

Capital S S equals Q R 2 03, divided by the product R y Ry. Which
simplifies to Q R 2 03, divided by R 1 R 2 RR,.

S=QR2Ry=QR2R1R2.



O _ R

S = = :
Ry  RiR;

0&
RiR,

Let’s focus on that final form: S=QR2R1R2S =

This gives us a profound physical interpretation of saturation. Remember

that saturation occurs when S S is on the order of 1. So, saturation is

reached when QR2=R1R2 03 ~RR,,or QR=R1R20g ~./RiR,.

In words: saturation is achieved when the coherent driving rate (the Rabi
frequency, Q R (R) becomes equal to the geometric mean of the
relaxation rates of the two levels (R 1 R; and R 2 R,). It's a competition!
Q R R is trying to coherently drive population back and forth, while R 1 R,
and R 2 R, are the incoherent relaxation processes trying to destroy that
coherence and restore thermal equilibrium. When the coherent driving is

fast enough to overcome the relaxation, the system saturates.

The final bullet point rephrases this. The laser intensity | I that fulfills the
conditon Q R 2 = R 1 R 2 0% = R,R, corresponds precisely to the

saturation intensity, I=1s1 = I.
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Let's revisit and summarize the important distinction between closed and
open two-level systems, as this has direct consequences for the saturation

behavior.

First, a closed system. This is an idealized model, often a good

approximation for a single, isolated atom. The key feature is that the total



population in our two levels of interest, capital N=N1+N2 N =N, +N,,
Is conserved. It's a constant. There are no external channels for population

to leak out to or be pumped in from.

Second, an open system. This is the more realistic model for most
experiments, like atoms in a vapor cell or molecules in a beam. Here, there
are additional decay pathways (outflow) and pumping mechanisms (inflow),
which we modeled with the C i C; terms. Population is exchanged with the

environment (the "reservoir levels").

This difference leads to a different mathematical form for the mean
relaxation probability, or the effective relaxation rate, that governs

saturation.

For a closed system, the relevant rate turns out to be the arithmetic mean,

R=R1+R22R =5

For the open system, as we derived, the effective rate is the harmonic

RiR,

mean, Rx =R1R2R1+R2R*"= .
R,+R,

These might look similar, but they can lead to very different saturation

intensities, especially if one relaxation rate is much larger than the other.
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What is the practical consequence of this difference between open and

closed systems?



The consequence is that a stronger laser intensity is often needed to
saturate an open system, particularly when external loss channels

dominate.

Let’s think about why. In an open system, you might have rapid relaxation
or replenishment processes. For example, in a molecular beam, fresh,
unsaturated molecules are constantly flying into the laser beam. To
saturate the transition, your laser has to be intense enough to pump the
molecules that are already there and the new ones that are continuously
arriving. The inflow of fresh ground-state molecules is an additional channel
that the laser has to “fight against” to deplete the ground state population.
This means the denominator in the saturation parameter S S is effectively
larger, and thus you need a larger numerator—a higher intensity | I—to
achieve S=1S§=1.

Page 53

These two diagrams provide a clear side-by-side comparison of the closed

and open two-level systems.

On the left, we have the "Closed Two-Level System." We see the two
levels, | 1) |1)and |2 ) |2). The laser drives the transition with a Rabi
frequency Q R 0Nr. The only relaxation path shown is spontaneous
emission from |2 ) |2) back downto | 1) |1), witharate R2=A 21
R, = A,,. In this system, the crucial concept, written at the bottom, is that
the total population N=N 1+ N 2 N = N; + N, is constant. Every atom
that leaves level 1 must arrive in level 2, and vice versa. The population is

just shuffled between these two levels.



On the right, we have the "Open Two-Level System." This looks more like a
real experiment. We still have the laser driving the | 1) |1)to |2 ) |2)
transition with Rabi frequency Q R 2. We still have spontaneous emission
A 21 A,;. But now we have additional channels. There's a pump term, A 4,
feeding population into the ground state | 1 ) |1). This could be molecules
entering the beam. There's also an additional loss channel from the upper
state, vy loss y.ss, Which takes population out of the system entirely (e.g.,
decay to a third, dark state). And there is a loss rate R 1 R; from the
ground state, for example atoms leaving the beam. As noted at the bottom,
population is exchanged with the environment. The total decay rate from
level 2isnow R2=A21+vyloss R, = A,; + Vioss- The total population N

1+ N 2N, + N, is no longer constant.

This visual comparison makes the distinction very clear.
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Let's analyze the limits of saturation in a closed system. What is the
maximum possible transparency, or "bleaching,” we can achieve? To find
this, we look at the minimum possible population that can remain in the

lower level, N 1 N;, under very high laser intensity.

The slide presents the analytic solution for N 1 N; in a closed system

under laser drive. The equation is:
N1=B12Ivc+R22B12lvc+R1+R22N.

Bioly | Ry
2
N, = ¢ N.
1 Bioly , Ri+R;
c 2




This expression comes from solving the steady-state rate equations with
the constraint N1+N2=NN; + N, = N.

Now, let's consider the limiting case of infinite intensity. We take the limit as
the spectral intensity | v I, goes to infinity. In the fraction, the terms with |
v I, will dominate. The R / 2 R/2 terms become negligible. So the

expression becomes

B12lvcB121lvc=1.

However, we have to be careful with the algebra.

A more direct way to see this is that at infinite intensity, the rates of
stimulated absorption and stimulated emission become infinitely fast
compared to relaxation, forcing the populations to equalize, taking into
account degeneracies. For non-degenerate levels, this means N 1 N;
approaches N2 N,. Since N1+N2=NN; + N, =N, thisimplies N1 N;
approaches N /2 N/2. The limit shown on the slide is correct: The limit of

N 1N, as |v I, approaches infinityis N/2 N/2.
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This leads us to a very important conclusion about closed systems.

Theresult lim N 1 =N 2 limN, =g means that the lower-level population

cannot be depleted below 50 percent of the total population, no matter how

strong your laser is.



Think about what this means for absorption. The population difference A N
=N2-N1A4N = N, — N; approaches zero. The absorption coefficient a «
approaches zero. However, you can never achieve population inversion,

and you can't empty the ground state.

The key takeaway is that in a closed two-level atom, complete bleaching is
iImpossible. The best you can do is make the populations equal, at which
point the rates of absorption and stimulated emission exactly balance, and
the medium becomes transparent. But you cannot get rid of all the atoms in
the ground state, because the very same laser that removes them via
absorption also puts them back via stimulated emission. The only way to

truly empty the ground state is if there are external channels involved.
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Now let's contrast this with the situation in an open system. What is the

minimum ground state population here?

The slide gives the solution for N 1 N; in the limit of very high saturation, S

— © § — oo, for the general open system rates.
The result is:
N1(S—>=)=C1+C2R1+R2N.

C,+C,
R,+R,

Ni(§ —» ) =

This result is much more interesting than the closed system case. The final
ground state population depends on the ratio of the total inflow rates (C 1

+ C 2 C; + C,) to the total outflow rates (R 1+ R 2 R, + R;).



Now consider a very common experimental situation, like a molecular
beam crossing a laser beam, where collisions are negligible. In this case,
the main inflow C 1 C; is fresh molecules entering the beam into the
ground state. There is no pumping into the upper state, so C2 =0 C, = 0.
The main outflow R 1 R; is molecules leaving the beam. The outflow R 2
R, from the upper state includes spontaneous decay A 21 A,, and also
decay to other "dark" vibrational levels that don't couple back into our
system. If the inflow rates are much smaller than the relaxation rates (C 1,
C2«R1,R2C(CC, KR4 R,), which can be engineered, then the limiting

population N 1 N; can approach zero!

This is the punchline. Hence, saturation can be much deeper in an open
system. You can achieve almost complete bleaching, making the ground

state population nearly zero.

This is essential for many advanced techniques, particularly for the
background-free detection of very weak transitions. By pumping all the

population out of the ground state, you create a very high-contrast "on/off

signal.
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Let's make this concrete with a detailed example of a molecular beam
experiment. We will define the rate constants in terms of physical

experimental parameters.

First, let's list the typical parameters.



The transit time, t 1 t;, is the average time a molecule spends passing

through the laser beam. If the beam has a diameter d d and the molecules

have a velocity v v,then t1=dvt, = %.

The upper state, level 2, can decay via spontaneous emission with a total
rate A 2 A,. However, only a fraction of this decay may go back to our
ground state, level 1. We define the branching ratio A 21 A,, as the rate of

decay specifically from 2 to 1.

The inflow of fresh molecules is a diffusion or transit process. We can
define a diffusion inflow rate D 1 D,, which has units of number per volume

per time. This rate is approximately equal to the total available number

density N O N, divided by the transittime t1¢,.So, D1=NOtTD; = %

Now we can replace the generic variables in our rate equations (R 1 R;, R

2R,, C1cC,;, C2C(,) with these specific physical processes.
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Here is how we map the experimental parameters from the molecular beam

example onto our rate equation constants.

R 1 R;: This is the total decay rate from the ground state. In a collision-free
beam, the main way a ground state molecule leaves the interaction zone is
by simply flying out of the laser beam. So, the rate R 1 R, is the inverse of

the transit time.

R1=1tr



R, =—
1 t-[

R 2 R,: This is the total decay rate from the upper state. A molecule in the
upper state can also fly out of the beam, so there is a transit-time
contribution 1/t 1 1/t,. Additionally, it can decay spontaneously with a
total rate A2 A4,.So, R2=A2+1/tTR, =A,+ 1/t,.

R2=A2+1tr1

1
R2:A2+t_

T

C 1 C;: This is the inflow rate to the ground state. It has two contributions.
First, there's the diffusion of new molecules into the beam, which we called
D 1 D,. Second, population from the upper state N 2 N, can decay back
down to the ground state via spontaneous emission with rate A 21 A,,. So,
Cl1=D1+N2A21 (C;=D;+N,A,,. Note that because this term
depends on N 2 N,, it makes the rate equations slightly more coupled than

our initial general form.
Cl=D1+N2A21
C1 = D1 + NyAp

C 2 C,: This is the external pumping rate to the upper level. In a typical
molecular beam absorption experiment, there is no such process. We are
not actively pumping molecules into the excited state from outside. So, we
canset C2=0C, =0.

C2=0



With these substitutions, we can now solve for the steady-state populations

for this specific, realistic scenario.
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Alright, after substituting the specific rates for the molecular beam into the
rate equations and solving for the steady-state population N 1 N; under
laser drive, we get the rather formidable-looking expression shown on this

slide.

N1=ND1(B12p+A2+1/tT)B12p(A2-A21+2/tT)+1/t12

Di(Biop + Ay + 1/t7)

N, =N )
! Biap(Ay — Ayy + 2/t) + 1/t2

| don't expect you to memorize this. What's important is to understand its

behavior in the limiting cases.

First limiting case: No laser. We set the energy density p p to zero. All the

terms with B 12 p B;,p vanish. The expression simplifies to
N1=D1(A2+1/tT1)1/t12.

_ Dl(AZ + 1/tr)
! 1/t

Assuming A 2 A, is not pathologically large, this can be shown to simplify

to the result
N10=D1trT.

N2 =D, t,.



This makes perfect physical sense. With no laser, the steady-state ground
population is simply the rate at which molecules enter ( D 1 D,) times the
time they spend in the beam ( t 1 t;). This is our unsaturated reference

population.

Second limiting case: Strong laser. This is the limit as the saturation

parameter S S goes to infinity, which corresponds to p p going to infinity.
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Continuing with the strong laser limit for our molecular beam example.

As the energy density p p becomes very large, the terms multiplied by B
12 p By,p in our large expression for N 1 N; will dominate both the
numerator and the denominator. So, N 1 N; will approach the ratio of the

coefficients of the B 12 p B;,p terms. This gives the approximation:
N1=D1A2-A21+2tr.

D
le 1

AZ_A21+t£
T

The crucial thing to notice here is the comparison with the unsaturated
population, N 10=D 1t71 N? =D, t,. The saturated population N 1 N,

can be much, much smaller than N 1 0 N?. For typical values, the
denominator A2 -A21+2t1A4,—A4, +t3 can be a very large number,
especially if the transit time is short. This means we can achieve a very

strong depletion of the ground state. This confirms our earlier general

conclusion: open systems can be bleached very deeply.
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Let's plug in some realistic numbers to get a feel for the magnitude of this
effect. This numerical example is based on one from the Demtrbder

textbook.

Here are the parameters for our hypothetical molecular beam experiment: -
The laser beam diameter is d = 1 d =1 millimeter. - The velocity of the
molecules is v =5 x 10 4 v =5 x 10* centimeters per second, which is
500 meters per second, a typical thermal velocity. - This gives a transit time
tr=d/v=(1 mm)/(500 m/s)=2%x10-6t, =d/v= (1 mm)/

(500 m/s) = 2 x 107° seconds, or 2 microseconds.

The diffusion inflow rate is given as D 1 = 10 14 D; = 10'* molecules per

cubic centimeter per second.

From this, we can calculate the unsaturated ground state population

density:
N10=D1t1=(1014cm-3s-1)x(2%x10-6s)=2%x108

N)=D;t,=(10"cm3s 1) x(2x107%s) =2 x 108
molecules per cubic centimeter.

Finally, we have the radiative rates for the transition. The total decay rate
from the upper stateis A2=108s -1 4, = 108s™1, corresponding to a
10 nanosecond lifetime. The specific decay rate back to our ground state is
A21 =107 s -1 A,; =107s71. This means only 10% of the molecules
that decay from the upper state return to the ground state; the other 90%

decay to other "dark" reservoir levels. This is a classic open system.
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Now let's use the numbers from the previous slide to calculate the ground-

state population in the limit of deep saturation.
We use our formula for the strong laser case:

N1=D1A2-A21+2tr.

Plugging in the numbers:
D1=1014cm-3s-1D; =10 cm3s7!
A2=108s-14, =10%s"1
A21=107s-14, =107s71

tT=2x10-6st, =2x10°s,80 2tT=106s-1.=>=10°s"L.

tT
The denominator is (108 - 107 + 106 )s - 1 (108 — 107 + 10%)s71,
which is roughly 0.91 x 108 s -1 0.91 x 108571,

1014
0.91x108

So, N1=1014 091 x108 =11 x 10 6 N; = ~ 1.1 x 10°

molecules per cubic centimeter.
The slide approximates thisas N1=106cm -3 N; ~ 10°cm™3.

Let's compare this to the unsaturated value, N10=2x108cm -3 N =

2x 108 cm™3,



Theratio N1/N10N,;/N2is 106/ (2x 108) =0.005 10%/(2 x 108) =
0.005, or 0.5 percent!

This is a stunning result. In deep saturation, we have depleted the ground
state population down to just half a percent of its initial value. This
demonstrates the dramatic bleaching that is achievable in a collision-free,
open-system environment like a molecular beam. This is what enables

extremely high-contrast, low-background nonlinear spectroscopy.
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Now we will shift gears and calculate the saturation intensity | s I for a few

different, practical cases.

Case (a) is a broadband continuous-wave, or CW, laser. "Broadband" here
means that the laser's bandwidth, & v L év,, is much, much greater than
the absorption linewidth of an individual molecule, dva év,. OvL>»dva

Sv > Ov,.

This iIs a common situation when doing spectroscopy on a Doppler-
broadened sample in a gas cell with a multi-mode laser. The absorption
linewidth for any single molecule (the homogeneous width) is small, but the
laser talks to all the different velocity classes at once because its own

bandwidth covers the entire Doppler profile.

The first point notes that the overlap fraction dva/dvL 6vy/bv_ is very
small for any individual molecule, but the laser addresses all velocity

classes simultaneously.



To find the total saturation intensity, we start from the condition S=1 § =
1. Using our general expressions, we find that the total saturation intensity

| s I is approximately:

Is=cRx* B120vL

The unitsare Wm -2 Wm™2.

The key thing to see here is that | s I is directly proportional to the laser
bandwidth & v L §v,. This makes sense: if your laser power is spread out
over a large frequency range, you need more total power to achieve the

required intensity at the resonant frequency to saturate the transition.
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Let's consider two important implications of our result for the broadband

laser case.

First, the expression we derived for | s Ig is independent of the
homogeneous or inhomogeneous nature of the underlying transition. Why?
Because the laser bandwidth & v L v, is assumed to be so large that it
covers the entire absorption profile, whether it's a single homogeneous line
or a broad inhomogeneous collection of lines like a Doppler profile. The

laser simply interacts with the entire ensemble at once.

Second, and this is a crucial point for experimentalists, this case highlights
the importance of spectral brightness, not just total power. Spectral

brightness is power per unit bandwidth. Our formula



Is~cR+* B12- dvLI ~" 6y

12

shows that to achieve saturation (| = | s I = I5), what matters is the power
you can deliver within the relevant atomic linewidth. A 1 Watt laser with a
100 GHz bandwidth may be less effective at saturating a transition than a 1
milliwatt laser with a 1 MHz bandwidth, because the latter has a much
higher spectral brightness. It concentrates all of its power exactly where it’s
needed.
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Let's plug in some numbers for this broadband case, following Example 2.3
from the textbook.

We'll assume a laser bandwidthof 3vL=3x109s -1 6y, =3 x10%s7 1,
which is 3 gigahertz. In terms of wavenumbers, which chemists and
physicists often use, this is 0.1 ¢ m — 1 0.1cm™ L. This is a typical
bandwidth for a standard, non-stabilized dye laser or a multimode diode
laser.

To calculate | s I, we need the Einstein B 12 B,, coefficient. We can
relate B 12 B,, to the more commonly quoted spontaneous emission rate
A 21 A,, using a standard formula from quantum mechanics. For a simple

two-level system, this relation is:

B12=c38mhv3A21.



Now, we substitute this expression for B 12 B,,, along with our molecular
beam parameters for the relaxation rates R 1 R; and R 2 R,, into our
formula for | s I3 from the previous slide. After turning the crank on the
arithmetic, we arrive at the result: The saturation intensity | s I is

approximately 3 x 10 3 3 x 103 Watts per square meter.

Is this a lot? Let's see what it means in terms of total power. If we focus our
laser beam down to a spot with an area A =1 A = 1 square millimeter ( 1
m m 2 1 mm?), the power P s P, required to reach this saturation intensity
is: Ps=1sxA=(3x103W/m2)x(10-6m2)=3x10-3 P =
I; x A= (3%x103W/m?) x (10°m?) = 3 x 1073 Watts, or 3 milliwatts.
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The result of our calculation—that only 3 milliwatts of power is needed to

saturate the transition in this broadband example—is very significant.

As the slide notes, this illustrates the feasibility of saturation spectroscopy
with very modest, common laboratory lasers. Three milliwatts is well within
the output power range of typical diode lasers, like the one in your laser

pointer, or laboratory workhorses like dye lasers and Ti:sapphire lasers.

You don't need a giant, building-sized fusion laser to explore nonlinear
optics. The high spectral brightness of even common, low-power lasers is
more than sufficient to drive atomic and molecular transitions into the
saturated regime, opening the door to a wide range of powerful

spectroscopic techniques.
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Let's consider another important special case: matching the laser
bandwidth to the homogeneous width of the transition. This represents the
most efficient use of laser photons, as you’re putting all the light exactly

where the atoms can absorb it.

The conditionis dvL=y /2T dv = y/2m, where y vy is the full-width at
half-maximum of the homogeneous Lorentzian Ilineshape. For our
molecular beam example, the homogeneous width vy y is determined by
the total decay rate from the upper state, A 2 A4,, and the transit time,
which contributes to the broadening for both levels. The formulais y = A 2
+2/tTy = A, +2/t,.

With this condition, we can derive a specific formula for the saturation

intensity | s I5. The algebra is a bit involved, but the result is:
ls=4hv3TA21c2(A2+1/tT1).

B 4 hv3
CTAy (A, +1/t)

I

There seems to be a T T in the formula on the slide which is likely a typo

and should not be there. Let's ignore it.

Plugging in our typical numbers for a visible transition, we arrive at a
remarkable result: |s I is approximately 100 W / m 2 100 W/m?2. This is
equivalentto 100 pW /mm 2 100 yW/mm?2.

This is already 30 times lower than the saturation intensity we found for the

broadband laser. We are using our photons much more efficiently.



Now, what if we focus the laser even more tightly? If we focus down to a
tiny spot, 10 x 10 pm 2 10 x 10 um?, which has an areaof 10 -10 m 2

1071% m?, the required power to reach saturation, P s B,, is:
Ps=IsxA=(100 W/m2)x(10-10 m2)=10-8 W,
P,=I,x A= (100 W/m?) x (1071 m?) = 1078 w,

which is 10 nanowatts.
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The result of that last calculation—that a saturation power of just 10
nanowatts is needed when the laser bandwidth is matched to the

homogeneous width and tightly focused—is truly astounding.

This demonstrates the incredible propensity of narrow-band lasers to
saturate even extremely weak transitions. Ten nanowatts is an
exceptionally small amount of optical power. This means that if you have a
stable, narrow-band laser, you can perform saturation spectroscopy on
almost any allowed transition you can find. It underscores the power of
concentrating your optical energy not just spatially (by focusing) but also
spectrally (by using a narrow-band source). This is the key that unlocks the

ability to study subtle effects and very weak transitions with high precision.
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Let's now analyze our final specific scenario, Case (b): a single- mode

laser interacting with a simple atomic line.



First, let's lay out the assumptions. We assume the atomic line is
homogeneously broadened. This means effects like Doppler broadening
are absent, perhaps because we are using a cooled and trapped sample of
atoms or a perpendicular atomic beam. We also assume that spontaneous
emission is the dominant relaxation mechanism. This means we can

neglect collisions and transit- time effects.

Under these conditions, the relaxation rates simplify greatly. The ground
state is stable, so R 1 = 0 R, =0. The upper state decays only via
spontaneous emission back to the ground state, so R 2 = A 21 R, = A,;.
Our effective relaxation rate R = R* was definedas R1 R 2R 1+ R 2
R{R

ﬁ. Pluggingin R1=0R,=0and R2=A 21 R, = A,, seems to give
1 2

zero, but we need to be more careful. This is a case of a closed two- level
system. The relevant relaxation rate in the formula relating S S and Q R
Nris R1R 2 RR,. If R1R,is zero... ah, we need to use the more

general formula for a closed system.

Alternatively, the slide provides a result for \(R™). It states that for
upper- state decay only via A 21 A,,, the effective \(R™) to be used is A
21/ 2 A,,/2. This comes from the proper treatment of a closed two- level

system.

Now, we can consider the phenomenon of power broadening. When we
drive a transition with a strong field, the transition itself appears broader.
The saturation- broadened half- width of the transition at an intensity

correspondingto S=15 =1 is given by the formula...
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The slide gives the saturation-broadened absorption linewidth & v a v, for

this case. Itis givenby dva=2A212 1 év, = /2:% This formula seems
slightly unconventional. A more standard result for the power-broadened
FWHM y'y'is y'=y1+Sy =yVI+5, where y=A212my="2is
the natural linewidth.

Let's focus on the second part of the slide, which is a classic and very
useful result. We can derive the saturation intensity | s I directly from the
S =1 § =1 condition. This requires relating the B 12 B;, coefficient to A
21 A,; and using the appropriate relaxation rates. When the algebra is

done, we obtain the following classic formula for the saturation intensity of

a two-level atom dominated by spontaneous emission:

ls=22hvA21A2

22 hv Ay
s=—%

There seems to be an inconsistency in the formulas presented across
slides. A more standard, and perhaps more memorable, formula often

derived in this limit is
Is=mhcA213A3

Tl:hCAZl
Ve

or

ls=2m2hcy3A3.



2% hcy
s=—73

Let’'s proceed with the formula given on the slide, but be aware that
different derivations can lead to slightly different numerical prefactors
depending on the exact definitions of lineshape and width. The key

dependencies are what matter.

| s I is proportional to h v hv (the photon energy) and A 21 A,; (the

decay rate), and inversely proportional to A 2 A% (the wavelength squared).
We also use the fundamental relation

A=cv

|l a
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Let's explore an alternative route to derive this saturation intensity, | s I,
using the absorption cross-section. This is a great way to build confidence
in our results; if we can arrive at the same answer from two different

perspectives, we can be more certain that our theory is consistent.

First, let's look at the integrated line strength. We've already established
the relationship between the integrated cross-section and the Einstein

coefficients. Here it's written connecting B 12 B;, and A 21 A,;:

Jo12dv=hvcB12=c28mVv2A21.



hv c?

f g1, dv = T By, = Ay

8mv?
This is a fundamental sum rule.
Now, for a purely lifetime-broadened transition, the lineshape is a

Lorentzian. A Lorentzian has a peak value, o (v 0) a(v,), and a full-width

at half-maximum, y y. The area under a Lorentzian is related to the peak
times the width. Specifically,

Jo(v)dv=m20o(vO0)y.

[o(w)dv = % a(vy)y.

The slide suggests a simpler approximation: peak value x width = integral .

peak value x width ~ integral. So, o0 (vO0)y=c281mVv2A21.0(y))y =

c?

——; A21. We also know the natural linewidth is y =A212m.y = %_ We

can solve this for the peak cross-section o (v 0 ) a(vy).

Then, we can use an alternative definition for | s I, whichis Is=hv 2o (
hv

20(vo) Tsp

vO)Tspl = , where Tsp=1A2171g =1/A,. Plugging in our

expression for o (v 0) a(v,) should allow us to derive the same | s I;.
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After performing the calculation using the cross-section method, we arrive

at an expression for the saturation intensity | s Is. The expression shown

here is:

ls=2hvA21A2



2hVA21
I =—;

This result is derived without explicitly including the effects of saturation

broadening in the definition, hence the note "(without saturation

broadening)". It differs from the formula on Paage 70 by a factor of 2 /2.
This highlights that numerical prefactors can vary depending on the
approximations used (e.g., square lineshapes vs. Lorentzians, how
broadening is handled). The key takeaway is that the physical
dependencies—proportionality to h v hv and A 21 A,,, and inverse

proportionality to A 2 22—remain robust.

The final point here is a crucial one in theoretical physics. Performing these
kinds of consistency cross-checks, where we derive the same result from
different starting points, provides confidence in our theoretical expressions.
It shows that our framework of rate equations, Einstein coefficients, and

cross-sections forms a coherent and self-consistent picture of reality.
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Let's end our theoretical development with one final numerical example,

this time for a typical visible atomic line.

We will choose a wavelength A = 500 A = 500 nanometers, which is in the
green part of the spectrum. We'll assume a strong, allowed transition with a
spontaneous decay rate of A 21 = 10 8 s - 1 A4,; = 108s™1, which

corresponds to an excited state lifetime of 10 nanoseconds.

Now, let's evaluate the saturation intensity | s Ig using the formula from

Paage 70:



ls=22hc2A21A3,

2V2hc? Ay

Iy = JE ,
after substituting v = c/ A v =c/A. The slide presents the result of this
calculation as: 1s =26 x 107 W / m 2 I, =~ 2.6 X 107 W/m?. This is 26

megawatts per square meter. This seems like a very high intensity.

As the slide notes, in a live lecture, we would work through the detailed
arithmetic on the board to ensure all the constants and powers of 10 are
correct. h=6.6x10-34 h~6.6%x1073% c=3x108c~3x10% A21
=108 A4,;, =108 A=5x10-71=5x10"".

ls=28x6.6%x10-34x3x108x108(5x10-7)2=5.9%x10-17
25x10-13=24x10-4W/m2.

28x66x1073*x3x108x108 59x1071

— ~ -4 2
Is ~ Ex107) = e o=~ 24X 107 W/m?,

There is a major discrepancy between my calculation and the slide. Let's

mhcAy,,

re-examine the formulas. Using Is=mThcA213A3 [ = ——

ls=mx6.6x10-34x3%x108%x1083x(5%x10-7)3=16x102W
/m2.

_n><6.6><10-34><3><108><108

— z . x 2 2-
Is X E X107 1.6 x 102 W/m

Let's trust the slide's calculation for now, as there may be a definition I'm
missing, but always be critical of the numbers. Assuming | s=2.6 x 107

W/m?2I, ~ 2.6 x 107 W/m? is correct, let's see the power required.



If we focus this light to a 10 micrometer radius spot, the areais A=1r2=
31x10-10m2 A =nr? = 3.1 x 1071 m?. The required saturation power
Ps P isthen IsxA I X A.

Ps=(26x107W/m2)x(3.1x10-10m2)=81x10-3W .
P~ (26 x10"W/m?) x (3.1 x1071m?) ~ 8.1 x 1073 W.
The slide says 0.8 mW.

Ah, 2.6 x 103 W /m 2 2.6 x 103 W/m? would give 0.8 y W 0.8uW. 2.6 x
107W /m 2 2.6 x10” W/m? gives 8 m W 8 mW. It seems there are some
typos in the slide's numbers. The key point, however, is that even for a high
saturation intensity, the required power is typically in the milliwatt range or

less due to the tight focusing, which is readily achievable.
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Let's consider how the saturation intensity changes with the strength of the

transition. Our formulas show that | s I is directly proportional to A 21 A,;.

So, if we consider a weaker transition, for instance, one where A21 =107
s — 1 A4,;, =107s1 (a 100 nanosecond lifetime) instead of 10 8 s — 1

108 s71, the saturation intensity | s I will drop by the same factor of 10.

This might seem counter-intuitive at first. A weaker transition requires less
Intensity to saturate. Why? Because saturation is a competition between
pumping and relaxation. For a weak transition, the relaxation rate A 21 A,,
Is slow. This means the atom, once excited, stays in the upper state for a
long time. It doesn't take a very high pumping rate to keep up with this slow

relaxation and deplete the ground state. For a strong transition, relaxation



Is very fast, so you need a much more intense laser to pump the atoms

faster than they can decay.
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Let's briefly discuss a couple of additional factors that are important in real

experiments: collision broadening and the use of pulsed lasers.

First, collisions. In a gas cell, atoms are constantly colliding with each other
or with a buffer gas. Each collision can interrupt the phase of the atomic
wavefunction or induce a transition. This is an additional relaxation
mechanism and it contributes to the homogeneous width of the transition.
We can define a collisional broadening width, vy coll y.y. This adds to the
other relaxation rates, so the total relaxation rate y y increases. Since the
saturation intensity | s I is proportional to the relaxation rate (I s « y I5 <
¥), increasing the pressure and thus the collision rate will increase the
saturation intensity. This is why at high pressures, more laser power is
needed to saturate a transition. Techniques like buffer-gas cooling can be

used to mitigate this by slowing down the collisions.

Second, pulsed lasers. So far, we’'ve mostly assumed continuous-wave
(CW) lasers. But many experiments use pulsed lasers, which have very
high peak power but are only on for a short duration, T L T, (for example,
nanoseconds or femtoseconds). If this pulse duration T L T, is shorter than
the population relaxation time (which is on the order of 1/ R 1/R), then the
system never reaches a steady state. Our steady-state rate equation

analysis breaks down completely.
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When dealing with short laser pulses where the system does not reach

steady state, we need a more sophisticated approach.

The effective saturation criterion must then be derived from the time-
dependent solutions of the optical Bloch equations. The Bloch equations
are a more complete semi-classical model that tracks the evolution of the
population difference and the atomic coherence (the off-diagonal elements

of the density matrix) as a function of time.

Solving these equations is beyond the scope of our current discussion, but
the key conceptual difference is this: for CW saturation, we care about
intensity (power per area, in Watts per square meter). For pulsed
saturation, we care about fluence (energy per area, in Joules per square
meter). You need to deliver a certain amount of energy in your pulse—often
characterized by a "m-pulse” which has enough energy to completely invert

the population—before the atom has time to relax.
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This graph provides a very clear comparison of saturation behavior for

continuous-wave (CW) versus nanosecond pulsed excitation.

The axes are Normalized Signal (which could be the fraction of population

in the excited state, N 2/N N,/N) versus the Average Laser Power.

The blue curve represents the CW laser. As we've discussed, it shows the

classic saturation behavior. The system reaches a steady state where the



excitation rate is balanced by the relaxation rate. Saturation depends on

the laser's intensity (in Watts per square meter).

The orange curve represents the pulsed laser. Notice that it rises much
more steeply and saturates at a much lower average power. Why?
Because the peak power of the pulse is enormous. Even though the laser
is off most of the time, when it's on, it's incredibly bright. The text box for
the pulsed laser explains that the pulse duration is shorter than the
relaxation time, so the system is not in steady state. Significant population
transfer can happen within a single pulse. Saturation now depends on the

pulse fluence (in Joules per square meter).

The dashed lines show a comparison. To reach a signal level of 0.5, the
CW laser requires an average power of about 400 arbitrary units. The
pulsed laser achieves the same level of excitation with an average power of
only about 50 units. This is because the pulsed laser can efficiently pump

the population before relaxation has a chance to undo its work.
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Alright, let's summarize the key take-away messages from this entire

lecture on linear and nonlinear absorption.

First, the saturation parameter, capital S S, is the central concept. It
encapsulates the competition between light-induced excitation and the
various relaxation processes in the system. The condition S =1 §=1,
which occurs at the saturation intensity | s I, defines the operational
boundary between the linear and nonlinear regimes. It's the point where the

population difference is halved.



Second, the saturation intensity | s Ig is not a universal constant. It
depends on many factors: the intrinsic transition probability of the atom
(related to A 21 A,,), the laser bandwidth, the specific relaxation channels
present in the environment (collisions, transit time), and the focusing
geometry of the beam. You must calculate it for your specific experimental

conditions.

Third, the distinction between open and closed systems is practically very
important. Open systems, where population can leak out to a reservoir, can
be "bleached" far more strongly than closed systems. This allows for the
generation of very clear, high-contrast nonlinear signals, which is essential

for many high-precision experiments.
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And the final, and perhaps most important, take-away message is a

practical one.

The quantitative formulas we have derived today are not just abstract
theoretical constructs. They are the essential tools that allow
experimentalists to intelligently design their experiments. By using these
formulas, you can calculate the required laser power, determine the optimal
beam waist (focusing), and choose the right sample environment (e.g., a
low-pressure cell or a molecular beam) to achieve the desired saturation
conditions for optimal nonlinear-spectroscopic performance. This is theory

put directly into practice.
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To help you solidify your understanding of these concepts, here are some
suggested further exercises. | strongly encourage you to work through
them.

1. Derive the saturation intensity | s I for a three-level Lambda-system. In
a Lambda system, you have two ground states and one excited state.
Imagine the upper level can decay preferentially to a third level, which is
not the one you started from. How does this additional decay path, which
makes the system very "open," affect the relaxation rates and the final

expression for I's Ig?

2. Simulate the time-dependent saturation for a nanosecond pulse. This
would involve numerically solving the optical Bloch equations (or at least
the time-dependent rate equations) for a system with a given Rabi
frequency, QR =109s -1 g =10°s71, and relaxation rates R 1 =R 2
=106s-1R, =R, =10°s"1. You could plot the upper state population

N 2 N, as a function of time during and after the pulse.

3. This is a practical challenge. Think about how you would perform
Doppler-free saturation spectroscopy on iodine vapor, a classic experiment.
Using the formulas we discussed from slides 30 to 34, estimate the laser
power you would need. You'll have to look up the relevant parameters for
the iodine transitions, like A 21 A,; and the Doppler width at room

temperature.
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And a fourth exercise for those who are particularly ambitious:



4. Explore the impact of power broadening on frequency-stabilization
schemes. A very common technique for locking a laser's frequency to an
atomic transition is the Pound-Drever-Hall (PDH) method. This method
relies on probing the sharp dispersive feature of the transition. However, as
you increase the laser power to get a better signal-to-noise ratio, you also
power-broaden the transition. How does this broadening affect the slope of
the error signal in a PDH lock, and what are the trade-offs between signal
strength and locking accuracy? This is a very real problem in experimental

physics.
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Finally, | want to acknowledge the sources for this material and provide you

with references for further reading.

The primary source for much of this lecture, and indeed for this entire
course, is the quintessential textbook in the field: Wolfgang Demtrdder’s
“Laser Spectroscopy.” | am using the 5th edition, published by Springer. If
you buy one book on this subject, this should be it. It's comprehensive,

clear, and covers both the fundamental theory and the experimental details.
For supplementary reading, | highly recommend a few other classics.

Sargent, Scully, and Lamb’s “Laser Physics” is a more advanced, deeply
theoretical treatment, especially good if you want to dive into the quantum

mechanics and the density matrix formalism.

Haken and Wolf's “Molecular Physics and Elements of Quantum
Chemistry” provides an excellent bridge between the worlds of physics and

chemistry and has very clear explanations of many fundamental concepts.



That concludes our lecture for today. Please review these concepts and
have a look at the exercises. Next time, we will use this foundation in
saturation to build our first Doppler-free spectroscopic technique. Thank

you.



