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Good morning, everyone. Welcome back to Physics 608, Laser 

Spectroscopy. 

I’m Distinguished Professor Dr M A Gondal, and today, we begin a new 

and foundational topic, which I’ve designated as Chapter 2.1 in our course 

notes. 
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The title of this chapter, and the core theme for our next few lectures, is 

Linear and Nonlinear Absorption. This distinction is absolutely central to 

understanding modern laser spectroscopy. In your undergraduate optics 

and quantum mechanics courses, you almost certainly dealt exclusively 

with linear absorption, governed by the familiar Beer-Lambert law. In that 

world, a material's ability to absorb light is a fixed property, independent of 

how bright the light is. 

However, the advent of the laser, with its unprecedented intensity and 

monochromaticity, opened the door to a new regime of light-matter 

interactions—the nonlinear regime. Here, the material's response changes 

depending on the intensity of the incident light. The medium and the light 

field become deeply coupled in a way that gives rise to a host of new, 

powerful, and fascinating phenomena. Our goal today is to build a solid, 

quantitative foundation for understanding the simplest and most important 

of these: saturation absorption. This will be our gateway to the entire field 

of nonlinear spectroscopy. 
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Alright, let's start with the motivation. Why do we even need to venture into 

the complexities of nonlinear spectroscopy? The answer lies in the pursuit 

of ever-higher resolution. 

The first bullet point here states the primary objective: The goal of high-

resolution spectroscopy is to resolve spectral features that are narrower 

than the Doppler width. 

Let's unpack that. In any gas or vapor sample at a finite temperature, the 

atoms or molecules are not stationary. They are moving randomly, 

following a Maxwell-Boltzmann velocity distribution. Due to the Doppler 

effect, an atom moving towards the laser source sees the light blue-shifted, 

while an atom moving away sees it red-shifted. This means that even if 

every single atom has the exact same, infinitesimally sharp transition 

frequency in its own rest frame, the ensemble of atoms in the lab frame will 

absorb light over a broad range of frequencies. This broadening of the 

spectral line due to the thermal motion of the absorbers is called Doppler 

broadening, and its characteristic width is the Doppler width. 

For many situations, especially in atomic and molecular physics, the 

Doppler width is the dominant broadening mechanism, often being 

hundreds of megahertz or even gigahertz wide. It acts like a thick curtain, 

obscuring the finer details of the energy level structure, such as hyperfine 

splittings or natural linewidths. To see those details, we must find a way to 

peek behind this Doppler curtain. 



This is where our second point comes in. Single-mode, or narrow-band, 

lasers are the key. They provide two essential properties: incredibly high 

spectral brightness, meaning a lot of power in a very narrow frequency 

range, and tunability. These properties enable what we call Doppler-free 

methods—techniques specifically designed to eliminate the effects of 

Doppler broadening. And the most fundamental of these methods relies on 

the nonlinear phenomenon of saturation. 
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So, how do we use a laser to achieve this? The key strategy is laid out in 

the first point on this slide. We drive the absorbing transition so strongly 

that the lower-state population is depleted. The term we use for this is that 

the transition becomes "saturated." This very act of depletion creates a 

nonlinear light-matter interaction. 

Let's think about this intuitively. Absorption happens because there are 

more atoms in the lower energy state than in the upper one. An incident 

photon gets absorbed, promoting an atom to the upper state. In the linear 

regime, with weak light, the atom quickly relaxes back down, ready to 

absorb another photon. The lower state population is barely affected. But if 

we hit the sample with an incredibly intense, resonant laser beam, we are 

promoting atoms to the upper state much faster than they can relax back 

down. The result? We run out of atoms in the lower state to do the 

absorbing! The ground state becomes depleted, and the population 

difference between the two states shrinks. 



This leads directly to the result mentioned in the second bullet point. The 

absorption coefficient, which we usually think of as a constant, now 

becomes intensity-dependent. Let's call it alpha of I,  α ( I ) 𝛼(𝐼). As you 

increase the intensity  I 𝐼, you deplete the ground state, which reduces the 

absorption coefficient. The medium effectively becomes more transparent, 

or "bleached," by the intense light. This intensity-dependent absorption is 

the hallmark of nonlinearity. And as we will see, signals derived from this 

nonlinear interaction contain sub-Doppler information, as well as enabling 

other fascinating effects like multiphoton phenomena. 

So, the topic for this set of slides, our agenda if you will, is to develop the 

fundamental physics, the key definitions, and the quantitative formulas we 

need to understand saturation and the spectroscopic tools that are built 

upon it. We're going to build this up from first principles. 
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Alright, let's lay out a road-map for this lecture so you can see how the 

concepts will build on one another. 

First, we'll start with a quick recap of linear absorption. We need to 

establish our baseline and define our notation clearly. This is the world of 

Beer's Law, which should be familiar territory. 

Second, we'll dive into the core concept of saturation. We will explore the 

population dynamics in a simple two-level system. A crucial distinction we'll 



make here is between "open" and "closed" systems, which has profound 

practical consequences for experiments. 

Third, we will get quantitative. We will define and learn how to calculate the 

two most important parameters in this field: the saturation parameter, which 

is a dimensionless quantity given by the symbol capital  S 𝑆, and the 

saturation intensity,  I s 𝐼s. The saturation intensity is a critical benchmark 

for any experiment. 

Fourth, we will connect this population-based picture to the more 

microscopic, coherent picture of light-matter interactions. We will discuss 

the relation of saturation to the Rabi frequency, which we denote as capital 

Omega sub  R 𝑅,  Ω R 𝛺R. This will also give us a chance to reinforce the 

concepts of homogeneous versus inhomogeneous broadening, which are 

essential for understanding whose spectral features we can resolve. 
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Continuing with our road-map, once we have the theoretical framework in 

place, we will move to practical evaluation. Physics is, after all, an 

experimental science. 

We'll work through some numerical examples for real-world systems, like 

molecular beams and atomic vapors. We'll examine the influence of 

practical parameters like the laser's own bandwidth, the rate of collisions in 

the sample, and the duration of the laser pulse if we're not using a 

continuous wave laser. 

This will ground our theory in the reality of the lab. 
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Let's begin by solidifying the key idea: the distinction between a linear and 

a nonlinear response. 

First, linear optics. This is the regime of low light intensity. The defining 

characteristic, as stated in the first bullet point, is that the absorbed power 

is directly proportional to the incident power. If you double the intensity of 

your flashlight, the material absorbs twice as much power. This implies that 

the absorption coefficient, little  α 𝛼, is a constant. It's an intrinsic property 

of the material at that frequency, independent of the light's intensity. This is 

the domain of Beer's Law. 

Now for nonlinear optics. Here, we use intense fields, like those from a 

laser. The populations of the quantum states are no longer determined 

solely by the thermal equilibrium described by the Boltzmann distribution. 

The intense light field is strong enough to actively alter the populations 

itself. As we discussed, it can deplete the ground state and populate the 

excited state. Because the absorption coefficient depends directly on the 

population difference, this means  α 𝛼 is no longer a constant. It becomes a 

function of intensity,  α ( I ) 𝛼(𝐼). This is the fundamental departure from the 

linear world. 

Within nonlinear optics, there are many different effects. For our purposes, 

we can group them into two main classes. 

The first is saturation, which is the focus of today's lecture. Saturation is a 

single-photon driven process. It involves the laser changing the populations 

of the very same transition that it is being used to probe. A single photon is 



absorbed, changing the state populations, which in turn affects the 

absorption of subsequent photons from the same beam. 
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The second major class of nonlinearities involves multiphoton processes. 

This includes effects like two-photon absorption, Raman scattering, and so 

on. In these cases, the interaction involves the simultaneous absorption of 

two or more photons. For example, an atom can be excited from state A to 

state C by simultaneously absorbing two photons whose individual 

energies don’t match any intermediate state, but whose sum of energies 

precisely matches the A-to-C transition energy. These are fascinating and 

powerful spectroscopic tools in their own right, but they are typically higher-

order, weaker effects than saturation. 

Therefore, our focus here will be on saturation. It is the simplest, most 

direct, and most ubiquitous nonlinear process you will encounter in laser 

spectroscopy. Mastering it is the first and most important step into the world 

of nonlinear optics. 

Page 10: 

To build a quantitative model, we first need a mathematical description of 

our light field. For the majority of our analysis, we will use the simplest and 

most useful model: a monochromatic plane wave. 

The first bullet point shows how we write the electric field. The equation is: 

Capital  E 𝐸 as a function of  z 𝑧 and  t 𝑡 equals  E 0 𝐸0 times the cosine of 

the quantity  ω t − k z 𝜔𝑡 − 𝑘𝑧. That is, 



 E ( z , t ) = E 0 cos ⁡ ( ω t − k z )  

𝐸(𝑧, 𝑡) = 𝐸0cos(𝜔𝑡 − 𝑘𝑧) 

Let's break this down. On the next slide, we have the symbols and units. 

 E 0 𝐸0, pronounced 'E-naught' or 'E-sub-zero', is the peak electric-field 

amplitude. It represents the maximum strength of the electric field. Its units 

are Volts per meter,  V m − 1 V m−1. 

The Greek letter  ω 𝜔, omega, is the angular frequency of the wave. It tells 

us how rapidly the field oscillates in time at a fixed point in space. Its units 

are radians per second,  r a d s − 1 rad s−1. Of course, it's related to the 

ordinary frequency  ν 𝜈 in Hertz by  ω = 2 π ν 𝜔 = 2𝜋𝜈. 

The letter  k 𝑘 is the wave number, or more precisely, the angular wave 

number. It tells us how rapidly the field oscillates in space at a fixed 

moment in time. It's related to the wavelength  λ 𝜆 by  k = 2 π / λ 𝑘 = 2𝜋/𝜆. 

For a wave propagating in vacuum, the wave number is equal to the 

angular frequency divided by the speed of light,  k = ω / c 𝑘 = 𝜔/𝑐. Its units 

are radians per meter, or simply inverse meters,  m − 1 m−1. 

The argument of the cosine,  ω t − k z 𝜔𝑡 − 𝑘𝑧, is the phase of the wave. 

The form  ω t − k z 𝜔𝑡 − 𝑘𝑧 describes a wave propagating in the positive  z 

𝑧-direction. 
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definitions for the plane wave model: 



c is, of course, the speed of light in vacuum, with a value of approximately  

2.9979 × 10 8 2.9979 × 108 meters per second. 

Now, in the lab, we don't usually measure the electric field directly. We 

measure power or intensity. The intensity of a light wave is the power per 

unit area, typically in units of Watts per square meter. For an oscillating 

field, we are interested in the average intensity, averaged over one cycle of 

the oscillation. The relationship between this cycle-averaged intensity, 

capital I, and the peak electric field amplitude, E₀ , is given by the crucial 

formula: 

Capital I equals  1 2 c ϵ 0 E 0 2 1 2⁄ 𝑐𝜖0𝐸0
2. 

That is,  I = 1 2 c ϵ 0 E 0 2 .  

𝐼 =
1

2
𝑐𝜖0𝐸0

2. 

Here, ε₀ , epsilon-naught, is the permittivity of free space, a fundamental 

constant with the value  8.854 × 10 − 12 8.854 × 10−12 Farads per meter. 

Notice the key relationship: the intensity, which is what our power meters 

measure, is proportional to the \textit{square} of the electric field amplitude. 

This is a general feature of electromagnetic waves. To double the intensity, 

you only need to increase the E-field amplitude by a factor of  2 √2. 
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This slide provides a simple visual for the model we've just discussed. Here 

we see a snapshot of our monochromatic plane wave at a fixed moment in 

time, say  t = 0 𝑡 = 0. 



The plot shows the Electric field, capital  E 𝐸, on the vertical axis, versus 

the propagation direction,  z 𝑧, on the horizontal axis. As you can see, the 

field varies sinusoidally in space. 

The diagram explicitly labels the key parameters. The peak amplitude of 

the wave, the maximum value the electric field reaches, is labeled  E 0 𝐸0. 

This is the quantity we discussed, measured in Volts per meter. 

The spatial period of the wave, the distance over which the wave pattern 

repeats itself, is the wavelength, labeled with the Greek letter  λ 𝜆, lambda. 

As we know, lambda is related to the wave number  k 𝑘 by  λ = 2 π k 𝜆 =

2𝜋

𝑘
. 

This simple, idealized wave is the light source we will use to interact with 

our atoms. It's a powerful model because any complex light field can be 

decomposed into a sum of such plane waves through Fourier analysis. 
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Now that we have our model for the light, let's introduce the 'matter' side of 

the light-matter interaction. We'll consider a single transition within an atom 

or molecule. 

The first point establishes the most fundamental condition for any 

spectroscopic interaction: the energy and frequency match. We have a 

transition from a lower energy level,  E i 𝐸i, to an upper energy level,  E k 

𝐸k. For light to be absorbed, the energy of the photon must precisely match 

the energy difference between these two states. This is the Bohr frequency 



condition, written here as: Capital Delta  E 𝐸 equals  E k − E i 𝐸k − 𝐸i, which 

must equal  ℏ  ω ℏ𝜔. 

 Δ E = E k − E i = ℏ  ω  

𝛥𝐸 = 𝐸k − 𝐸i = ℏ𝜔 

Here,  ℏ  ℏ, or h-bar, is the reduced Planck constant, and  ω 𝜔 is the 

angular frequency of our laser light. This equation is the heart of 

resonance. The laser is like a key, and the atomic transition is the lock. 

They only interact strongly if the key fits perfectly. 

Let's define our symbols. We'll use Dirac notation, or bra-ket notation, as 

it's the language of quantum mechanics. The ket  | i ⟩  |𝑖⟩ represents the 

quantum state of the lower level, which has energy  E i 𝐸i. The ket  | k ⟩  |𝑘⟩ 

represents the quantum state of the upper level, which has energy  E k 𝐸k. 
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Continuing with our definitions for the atomic system: 

As mentioned,  ℏ  ℏ is the reduced Planck constant, with a value of  1.054 × 

10 − 34 1.054 × 10−34 Joule-seconds. We assume our laser, with its 

angular frequency  ω 𝜔, is tuned to be resonant with this transition. 

The next concept is the absorption cross section, denoted  σ i k ( ν ) 𝜎𝑖𝑘(𝜈), 

pronounced sigma-sub-i-k of nu. This is a phenomenological but incredibly 

useful quantity. You can think of it as the "effective target area" that the 

absorbing particle presents to the incoming photons. If a photon "hits" this 

area, it gets absorbed. The larger the cross section, the more likely 

absorption is to occur. Crucially, it's a function of frequency,  ν 𝜈, meaning it 



has a certain lineshape—it's largest on resonance and falls off as the laser 

is detuned. The unit of cross section is area, so in SI units, it's meters 

squared,  m 2 m2. 

Finally, we come to a concept of paramount importance for both linear and 

nonlinear absorption: the population difference, which we'll denote capital  

Δ N 𝛥𝑁. Net absorption of light is not just about having atoms in the ground 

state. It's about the difference between the number of atoms in the lower 

state and the upper state. The definition given here is: Capital Delta  Δ N 

𝛥𝑁 equals  N i 𝑁i minus the ratio  g i / g k 𝑔i/𝑔k times  N k 𝑁k. 

 Δ N = N i − g i g k N k  

𝛥𝑁 = 𝑁i −
𝑔i

𝑔k

𝑁k 

Here,  N i 𝑁i and  N k 𝑁k are the number densities (number of atoms per 

unit volume) in the lower and upper states, respectively.  g i 𝑔i and  g k 𝑔k 

are the statistical weights, or degeneracies, of the levels. They count how 

many distinct quantum states have the same energy  E i 𝐸i or  E k 𝐸k. The 

reason for this specific form, which accounts for both absorption from  i 𝑖 to  

k 𝑘 and stimulated emission from  k 𝑘 down to  i 𝑖, comes from a more 

detailed analysis using Einstein coefficients, which we will touch on later. 

For now, accept this as the effective population difference that drives net 

absorption. For a typical absorbing medium,  N i 𝑁i is much larger than  N k 

𝑁k, so  Δ N 𝛥𝑁 is positive. 

Could you please provide the raw transcript content for Page 15 so I can 

format and transcribe it according to your directives? 
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Now we are ready to combine our model of the light field with our model of 

the atomic medium to derive a fundamental relationship for power 

absorption. We'll perform an infinitesimal power balance calculation. 

Let's set up the geometry. Imagine our laser beam, with a cross-sectional 

area  A 𝐴 (in meters squared), is traveling through our absorbing medium. 

The incident intensity is  I 0 𝐼0, which is the incident power  P 0 𝑃0 divided 

by the area  A 𝐴. 

Now, consider a very thin slice of this medium, with thickness  d z 𝑑𝑧, as 

the beam propagates through it. As the light passes through this slice, 

some of its power will be absorbed. We want to find the infinitesimal 

change in power,  d P 𝑑𝑃. 

The central equation on this slide gives us the answer:  d P 𝑑𝑃 equals 

minus  A 𝐴 times  I 0 𝐼0 times  σ i k ( ν ) 𝜎𝑖𝑘(𝜈) times  Δ N 𝛥𝑁 times  d z 𝑑𝑧. 

 d P = − A I 0 σ i k ( ν ) Δ N d z  

𝑑𝑃 = −𝐴 𝐼0 𝜎𝑖𝑘(𝜈) 𝛥𝑁 𝑑𝑧 

Let's take a moment to understand the physical meaning of every single 

factor in this equation. This is not just symbol pushing; there is clear 

physical logic here. 

First,  A 𝐴 times  d z 𝑑𝑧. This is the area of our beam times the thickness of 

our slice. This product is simply the volume of the slice,  d V 𝑑𝑉. 
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Let's continue deconstructing our power balance equation. 

Next,  I 0 𝐼0. As we defined it, this is the intensity, which can also be 

thought of as the photon flux density, representing energy per unit area per 

unit time. 

Now, consider the product  σ i k 𝜎𝑖𝑘 times  Δ N 𝛥𝑁.  σ i k 𝜎𝑖𝑘 is the cross 

section per particle, and  Δ N 𝛥𝑁 is the effective number density of 

absorbing particles. So this product,  σ i k Δ N 𝜎𝑖𝑘  𝛥𝑁, represents the 

effective absorption area per unit volume of the medium. We often define 

this entire product as the absorption coefficient,  α 𝛼. So 

 α = σ i k Δ N .  

𝛼 = 𝜎𝑖𝑘 𝛥𝑁. 

Let's put it all together. The total number of effective absorbers in our slice 

is the number density  Δ N 𝛥𝑁 times the volume of the slice,  A d z 𝐴 𝑑𝑧. 

The total absorbing area presented by these atoms is this number of atoms 

multiplied by the cross section per atom,  σ i k 𝜎𝑖𝑘. So the total target area 

is 

 ( A d z ) × ( Δ N σ i k ) .  

(𝐴 𝑑𝑧) × (𝛥𝑁 𝜎𝑖𝑘). 

The amount of power absorbed is this total target area multiplied by the 

power per unit area, which is the intensity  I 0 𝐼0. This gives us 

 I 0 × ( A d z ) × ( Δ N σ i k ) ,  

𝐼0 × (𝐴 𝑑𝑧) × (𝛥𝑁 𝜎𝑖𝑘), 



which is exactly the expression we have, apart from the sign. 

Finally, the negative sign. This is crucial. It signifies that power is being 

removed from the beam due to absorption. As the beam propagates in the 

positive  z 𝑧 direction, its power  P 𝑃 decreases.  d P 𝑑𝑃 is a negative 

quantity. 

So, this simple-looking differential equation is built on a solid, intuitive 

physical foundation. 
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We can now use our infinitesimal power balance equation to derive the 

famous Beer's Law, which describes absorption in the linear regime. 

The key assumption for linearity, as stated in the first point, is that we are 

using a weak incident intensity. "Weak" means that the rate of absorption is 

so low that it doesn't significantly alter the populations  N i 𝑁i and  N k 𝑁k. 

Therefore, the population difference  Δ N 𝛥𝑁 remains constant, at its 

thermal equilibrium value. If  Δ N 𝛥𝑁 is constant, and the cross section  σ i 

k 𝜎𝑖𝑘 is a property of the atom, then their product, the absorption coefficient  

α 𝛼, is also a constant. 

So,  α = σ i k Δ N = constant .  

𝛼 = 𝜎𝑖𝑘 𝛥𝑁 = constant. 

Now let's rewrite our infinitesimal form. The equation was  d P = − A I 0 σ i 

k Δ N d z .  

𝑑𝑃 = −𝐴𝐼0 𝜎𝑖𝑘 𝛥𝑁 𝑑𝑧. 



We can substitute  I 0 = P / A 𝐼0 = 𝑃/𝐴 and  α = σ i k Δ N 𝛼 = 𝜎𝑖𝑘  𝛥𝑁. This 

gives  d P = − A ( P A ) α d z ,  

𝑑𝑃 = −𝐴 (
𝑃

𝐴
)𝛼 𝑑𝑧, 

and the areas  A 𝐴 cancel out, leading to the simple differential equation:  d 

P d z = − α P .  

𝑑𝑃

𝑑𝑧
= −𝛼 𝑃. 

This equation is one of the simplest and most common in physics. It states 

that the rate of change of power with distance is proportional to the power 

itself. 

To find the power  P ( z ) 𝑃(𝑧) after the beam has traveled a distance  z 𝑧 

through the medium, we just need to integrate this equation. The solution is 

a simple exponential decay: 

 P ( z ) = P 0 exp ⁡ ( − α z ) .  

𝑃(𝑧) = 𝑃0exp(−𝛼𝑧). 

This is the Beer-Lambert Law. It says that the power of a light beam 

decreases exponentially as it propagates through a linear absorbing 

medium.  P 0 𝑃0 is the initial power at  z = 0 𝑧 = 0, and  α 𝛼 is the 

absorption coefficient that characterizes how strongly the medium absorbs 

the light. 
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notes on Beer's Law 

The product  α z 𝛼𝑧 in the exponent is often given its own name: the optical 

depth, denoted by the Greek letter  τ 𝜏 (tau). So,  τ = α z 𝜏 = 𝛼𝑧. The optical 

depth is a dimensionless measure of how opaque a medium is. If  τ 𝜏 is 

much less than 1, the medium is optically thin, and not much light is 

absorbed. If  τ 𝜏 is much greater than 1, the medium is optically thick, and 

most of the light is absorbed. In this notation, Beer's law becomes  P ( z ) = 

P 0 exp ⁡ ( − τ ) 𝑃(𝑧) = 𝑃0exp(−𝜏). 

The second point on this slide is the most important one to remember. 

Beer's Law, and the entire concept of a constant absorption coefficient, is 

valid only when  α 𝛼 is independent of the incident intensity  I 0 𝐼0. This is 

the definition of the linear regime. As soon as  α 𝛼 starts to depend on  I 0 

𝐼0, we enter the nonlinear world, and Beer's Law breaks down. This is 

precisely the territory we are heading into. 
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This graph provides an excellent visualization of Beer's Law. The title says 

it all: "Beer's Law: Exponential Attenuation (Semi-Log Plot)". 

Let's analyze the axes. The horizontal axis is the path length  z 𝑧 through 

the medium, in arbitrary units. The vertical axis is the transmitted power  P ( 

z ) 𝑃(𝑧), also in arbitrary units, but it's plotted on a logarithmic scale. This is 

what "semi-log plot" means. 



The equation for the line is given right on the graph:  P ( z ) = P 0 exp ⁡ ( − 

α z ) 𝑃(𝑧) = 𝑃0exp(−𝛼𝑧). If we take the natural logarithm of both sides of 

this equation, we get: 

 ln ⁡ ( P ( z ) ) = ln ⁡ ( P 0 ) − α z .  

ln(𝑃(𝑧)) = ln(𝑃0) − 𝛼𝑧. 

This is the equation of a straight line. If we plot  ln ⁡ ( P ) ln(𝑃) on the y-

axis and  z 𝑧 on the x-axis, the y-intercept is  ln ⁡ ( P 0 ) ln(𝑃0) and the 

slope is  − α −𝛼. Because our vertical axis is logarithmic, the exponential 

decay function appears as a straight line. 

We can see this on the plot. At  z = 0 𝑧 = 0, the power is  P 0 𝑃0, which is 

normalized to 1 on this graph. As  z 𝑧 increases, the power drops. The fact 

that the blue line is perfectly straight confirms the exponential nature of the 

decay. And as labeled, the slope of this line is equal to the negative of the 

absorption coefficient,  − α −𝛼. 

The dashed red lines illustrate this. For a certain change in path length,  Δ 

z 𝛥𝑧, there is a corresponding change in the logarithm of the power,  Δ ( ln 

⁡ P ) 𝛥(ln𝑃). The ratio,  Δ ( ln ⁡ P ) / Δ z 𝛥(ln𝑃)/𝛥𝑧, gives the slope,  − α 

−𝛼. This is a very common way to measure absorption coefficients in the 

lab. You measure the transmitted power for several different path lengths, 

plot the data on a semi-log graph, and fit a straight line to it. The slope 

gives you your answer. 
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So, how do we experimentally observe the transition from the linear regime 

to the nonlinear, saturated regime? One of the most convenient methods is 

by monitoring fluorescence. 

The first point explains the principle. When an atom or molecule absorbs a 

photon and goes to the upper state, which we've labeled  | k ⟩  |𝑘⟩, it has to 

relax back down. One common relaxation pathway is radiative decay, or 

fluorescence, where it emits a photon. This emitted fluorescence light can 

be collected by a detector. The key insight is that the total fluorescence 

intensity, which we'll call  I F L 𝐼FL, is directly proportional to the rate at 

which atoms are being excited to the upper state. And that rate is, in turn, 

proportional to the power being absorbed by the sample. So,  I F L 𝐼FL is 

proportional to the absorbed power. 

This gives us a powerful diagnostic tool. In the linear region, where 

absorbed power is proportional to incident intensity  I 0 𝐼0, the fluorescence 

signal  I F L 𝐼FL will also increase linearly with  I 0 𝐼0. If you double your 

laser intensity, you get double the fluorescence signal. 

However, as we increase the incident intensity  I 0 𝐼0 further, we start to 

deplete the ground state. The populations begin to saturate. Since the 

medium becomes less absorbing, the absorbed power no longer increases 

linearly with  I 0 𝐼0. The curve of absorbed power versus incident intensity 

starts to bend and eventually levels off. Because the fluorescence just 

mirrors the absorbed power, the curve of  I F L 𝐼FL versus  I 0 𝐼0 will show 

the exact same behavior. 

The great advantage of this technique, as noted in the final bullet point, is 

that it's a "background-free" measurement. You shine your laser in, and 



you collect the fluorescence photons, which are typically emitted in all 

directions, at a right angle to the laser beam. In this geometry, you're not 

trying to measure a small change in a very large transmitted laser power, 

which can be difficult. Instead, you're measuring an emitted signal against 

a nearly dark background. This makes it a very sensitive way to detect 

absorption and observe the onset of saturation. 
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This figure, titled "Monitoring Absorption via Fluorescence Saturation," 

illustrates exactly the behavior we just discussed. 

Let's look at the axes. The horizontal axis is the incident laser intensity,  I 0 

𝐼0. The vertical axis is the measured fluorescence intensity,  I F L 𝐼𝐹𝐿. 

At very low incident intensities, close to the origin, you can see a dashed 

line labeled "Linear Region." Here, the blue curve representing our signal is 

essentially a straight line. The fluorescence is directly proportional to the 

incident intensity. This is the Beer's Law regime. 

As we crank up the laser intensity, moving to the right along the horizontal 

axis, the blue curve clearly starts to bend over. The slope decreases. This 

region is marked with an arrow labeled "Saturation Onset (Knee)". This is 

the "knee" of the curve, where the nonlinearity becomes significant. We are 

no longer getting a proportional increase in fluorescence for an increase in 

laser power. We are starting to saturate the transition. 

Finally, at very high incident intensities, the curve becomes almost 

horizontal, approaching a "Plateau." In this regime, we are in deep 

saturation. We are exciting atoms to the upper state as fast as they can 



possibly be excited, limited by their relaxation rates. The absorbed power 

has leveled off, and therefore, so has the fluorescence. Pumping the 

system with even more laser power yields diminishing returns; the 

fluorescence signal barely increases. 

This saturation curve is the characteristic signature of this nonlinear 

process, and measuring it is a standard technique in any laser 

spectroscopy lab. 
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Let's formalize what's happening beyond the linear regime. The key is that 

the absorption coefficient,  α 𝛼, is now dependent on intensity. 

The first point gets to the heart of the physics: there's a competition. On 

one hand, we have the absorption rate, which is driven by the laser and is 

proportional to the incident intensity  I 0 𝐼0. On the other hand, we have the 

various relaxation processes (spontaneous emission, collisions, etc.) that 

try to return the system to thermal equilibrium. When the absorption rate 

becomes comparable to the relaxation rate, the population of the lower 

state,  N i 𝑁i, begins to diminish significantly. 

This means we have to generalize our differential law for absorption. 

Instead of  d P = − P α d z d𝑃 = −𝑃 𝛼 d𝑧, where  α 𝛼 is a constant, we must 

now write: 

 d P = − P 0 α ( I 0 ) d z .  

d𝑃 = −𝑃0 𝛼(𝐼0) d𝑧. 

Or, more fundamentally, 



 d P = − P 0 σ i k Δ N ( I 0 ) d z .  

d𝑃 = −𝑃0 𝜎𝑖𝑘 𝛥𝑁(𝐼0) d𝑧. 

The crucial change is that both the absorption coefficient  α 𝛼 and the 

population difference  Δ N 𝛥𝑁 are now functions of the incident intensity  I 0 

𝐼0. 

As you increase  I 0 𝐼0,  Δ N 𝛥𝑁 decreases because you're moving 

population from the lower to the upper state. Consequently,  α ( I 0 ) 𝛼(𝐼0) 

also decreases. It's a monotonically decreasing function of  I 0 𝐼0. 

This phenomenon goes by several names, which are standard terminology 

you should be familiar with. It's called "nonlinear absorption," for obvious 

reasons. It's often called "saturation absorption," which is the term we'll 

favor. And a very descriptive term is "bleaching." The medium is "bleached" 

by the light, meaning it becomes more transparent. Just like bleaching a 

colored cloth makes it lose its color (its ability to absorb certain 

wavelengths), intense resonant light makes the medium lose some of its 

ability to absorb that light. 
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To make the idea of an intensity-dependent absorption coefficient more 

concrete, let’s look at a simple algebraic example. This is a 

phenomenological model, a “toy model” if you will, but it’s very instructive. 

Let’s imagine that for small intensities, we can approximate the behavior of  

α ( I ) 𝛼(𝐼) using a first-order Taylor expansion around  I = 0 𝐼 = 0. This 

gives us the model shown: 



 α ( I ) = α 0 ( 1 − b I ) .  

𝛼(𝐼) = 𝛼0(1 − 𝑏 𝐼). 

Let’s define the terms here. 

 α 0 𝛼0, or alpha-naught, is the small-signal absorption coefficient. This is 

the familiar, constant absorption coefficient from Beer's Law that you’d 

measure in the limit of very low intensity. 

 b 𝑏 is an empirical constant that characterizes the strength of the 

nonlinearity. Its units must be inverse intensity, for instance, square meters 

per Watt ( m 2 W − 1 m2 W−1), to make the term  b I 𝑏𝐼 dimensionless. 

Now, let’s substitute this simple nonlinear model for  α 𝛼 into our power 

balance equation. 
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Substituting our model  α ( I ) = α 0 ( 1 − b I ) 𝛼(𝐼) = 𝛼0(1 − 𝑏𝐼) into the 

power balance equation  d P = − A I α ( I ) d z d𝑃 = −𝐴 𝐼 𝛼(𝐼) d𝑧 gives us 

the following expression: 

 d P = − A ( I α 0 − α 0 b I 2 ) d z .  

d𝑃 = −𝐴(𝐼𝛼0 − 𝛼0𝑏𝐼2) d𝑧. 

Let's examine the terms inside the parentheses. The first term,  I α 0 𝐼𝛼0, is 

linear in intensity  I 𝐼. This is the familiar term that leads to Beer's Law. The 

second term,  − α 0 b I 2 −𝛼0𝑏𝐼2, is quadratic in intensity, proportional to  I 

𝐼 squared. This is the new, nonlinear term that arises from our model. 



We don't need to solve this differential equation right now; the slide notes 

that the solution involves logarithmic and inverse power terms. 

The key conceptual point is to see how even the simplest possible model of 

nonlinearity—a linear decrease in  α 𝛼 with  I 𝐼—introduces higher-order 

terms in intensity into the fundamental equation for power absorption. This 

demonstrates conceptually how the behavior deviates from the simple 

exponential decay of Beer's Law. 
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very important and practical point: 

the relationship between the laser’s 

spectral width and the transition’s 

width. 

Now, we need to address a very important and practical point: the 

relationship between the laser’s spectral width and the transition’s width. 

So far, we’ve been a bit cavalier, assuming a perfectly monochromatic 

laser and a perfectly sharp transition. In reality, both have finite spectral 

widths, and their interaction depends on their overlap. 

First, let’s define spectral intensity density. We can’t just talk about the total 

intensity  I 𝐼 anymore. We need to know how that intensity is distributed 

over different frequencies. We define  ρ ν ( ν ) 𝜌𝜈(𝜈) (rho-sub-nu of nu) as 

the spectral energy density, which is energy per unit volume per unit 



frequency interval. This is related to the spectral intensity density,  I ν ( ν ) 

𝐼𝜈(𝜈) (I-sub-nu of nu), by a factor of the speed of light:  ρ ν ( ν ) = I ν ( ν ) / c 

𝜌𝜈(𝜈) = 𝐼𝜈(𝜈)/𝑐.  I ν 𝐼𝜈 has units of Watts per square meter per Hertz. 

The total intensity,  I 𝐼, is then the integral of the spectral intensity  I ν 𝐼𝜈 

over all frequencies. For a laser with a finite bandwidth,  δ ν L 𝛿𝜈L (delta-

nu-sub-L), we can approximate this integral, as shown in the equation: 

 I = ∫ I ν ( ν ) d ν ≈ I ν ( ν 0 ) δ ν L .  

𝐼 = ∫ 𝐼𝜈(𝜈) 𝑑𝜈 ≈ 𝐼𝜈(𝜈0) 𝛿𝜈L. 

Here,  ν 0 𝜈0 is the center frequency of the laser. This approximation 

assumes that the laser has a roughly flat-top spectrum across its 

bandwidth, which is often a reasonable starting point. 

This brings us to the most important distinction on this page. 
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Here is the critical distinction we must always keep in mind when designing 

or analyzing an experiment. 

First, there is the laser bandwidth, which we denote  δ ν L 𝛿𝜈L. This is the 

frequency spread of the light source itself. A single-mode laser might have 

a bandwidth of a megahertz or less, while a multimode diode laser could 

have a bandwidth of many gigahertz. 

Second, there is the absorption linewidth, which we denote  δ ν a 𝛿𝜈a. This 

is the frequency range over which the atomic or molecular sample can 

absorb light. This linewidth can have contributions from both homogeneous 



broadening (like natural lifetime broadening or collision broadening, which 

affects all absorbers equally) and inhomogeneous broadening (like Doppler 

broadening, where different absorbers have different resonant 

frequencies). 

The total absorbed power, and indeed the entire nature of the saturation, 

depends critically on the spectral overlap of these two profiles: the laser’s 

emission profile and the sample’s absorption profile. We will now consider 

the consequences of this overlap. 
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Let's write down the general expression for absorbed power, which 

explicitly accounts for these spectral profiles. 

In a small volume element  d V = A d z 𝑑𝑉 = 𝐴 𝑑𝑧, the total absorbed 

power, which we'll now call  Δ P 𝛥𝑃 to avoid confusion with the differential  

d P 𝑑𝑃, is given by the overlap integral: 

Capital Delta P equals  Δ N d V 𝛥𝑁 𝑑𝑉 times the integral of  I ν ( ν ) σ i k ( ν 

) d ν 𝐼𝜈(𝜈) 𝜎𝑖𝑘(𝜈) 𝑑𝜈. 

 Δ P = Δ N d V ∫ I ν ( ν ) σ i k ( ν ) d ν  

𝛥𝑃 = 𝛥𝑁 𝑑𝑉∫ 𝐼𝜈(𝜈) 𝜎𝑖𝑘(𝜈) 𝑑𝜈 

This equation is the most general statement. It says that for each little slice 

of frequency  d ν 𝑑𝜈, the absorbed power is proportional to the intensity in 

that slice,  I ν ( ν ) 𝐼𝜈(𝜈), and the absorption cross-section at that frequency,  

σ i k ( ν ) 𝜎𝑖𝑘(𝜈). We then integrate over all frequencies to get the total 

absorbed power. 



Now, let's look at two important special situations that simplify this integral. 

Case 1: The laser is narrow and tuned to the peak of the transition. 

"Narrow" means the laser bandwidth  δ ν L 𝛿𝜈L is much, much smaller than 

the absorption linewidth  δ ν a 𝛿𝜈a. In this case, the laser's spectrum  I ν ( ν 

) 𝐼𝜈(𝜈) is essentially a spike, a delta function, centered at the resonance 

frequency  ν 0 𝜈0. The absorption cross section  σ i k ( ν ) 𝜎𝑖𝑘(𝜈) is broad 

and slowly varying over the laser's width. So, we can pull the constant 

value  σ i k ( ν 0 ) 𝜎𝑖𝑘(𝜈0) out of the integral. The remaining integral,  ∫ I ν ( ν 

) d ν ∫ 𝐼𝜈(𝜈) 𝑑𝜈, is just the total intensity  I 𝐼. The expression simplifies to: 

 Δ P 𝛥𝑃 equals  Δ N d V 𝛥𝑁 𝑑𝑉 times  I ( ν 0 ) 𝐼(𝜈0) times  σ i k ( ν 0 ) 

𝜎𝑖𝑘(𝜈0). 

Note a slight typo on the slide, it should really be the total intensity  I 𝐼, not  

I ( ν 0 ) 𝐼(𝜈0). So, 

 Δ P = Δ N d V I σ i k ( ν 0 )  

𝛥𝑃 = 𝛥𝑁 𝑑𝑉 𝐼 𝜎𝑖𝑘(𝜈0) 

Case 2: The laser is much broader than the absorption line. Here,  δ ν L 

𝛿𝜈L is much greater than  δ ν a 𝛿𝜈a. 
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Continuing with Case 2, where the laser is much broader than the 

absorption line. 

In this scenario, the atomic absorption profile  σ i k ( ν ) 𝜎𝑖𝑘(𝜈) is the narrow 

feature, looking like a spike, while the laser’s spectral intensity  I ν ( ν ) 



𝐼𝜈(𝜈) is broad and nearly constant over the absorption line. So this time, we 

can pull the constant value of the spectral intensity,  I ν ( ν 0 ) 𝐼𝜈(𝜈0), out of 

the integral. The remaining integral,  ∫ σ i k ( ν ) d ν ∫ 𝜎𝑖𝑘(𝜈) 𝑑𝜈, is the total 

integrated cross section. 

A simpler, more intuitive way to think about this is that only the fraction of 

the laser’s power that falls within the absorption linewidth can actually be 

absorbed. If the laser has a total intensity  I 𝐼 distributed over a bandwidth  

δ ν L 𝛿𝜈L, then the intensity per unit frequency is roughly  I / δ ν L 𝐼/𝛿𝜈L. 

The amount of this intensity that overlaps with the absorption line of width  

δ ν a 𝛿𝜈a is then  ( I / δ ν L ) × δ ν a (𝐼/𝛿𝜈L) × 𝛿𝜈a. 

So, we can say that only an effective fraction of the laser’s intensity, given 

by the ratio  δ ν a / δ ν L 𝛿𝜈a/𝛿𝜈L, is available for absorption. The resulting 

absorbed power is:  Δ P 𝛥𝑃 equals  Δ N d V 𝛥𝑁 𝑑𝑉 times  I ( ν 0 ) 𝐼(𝜈0) 

times  σ i k ( ν 0 ) 𝜎𝑖𝑘(𝜈0) times the fraction  δ ν a / δ ν L 𝛿𝜈a/𝛿𝜈L. 

This tells us that if you use a broadband laser, much of its power is 

“wasted” because it’s at the wrong frequency to be absorbed. This 

highlights the importance of what we call spectral brightness—power per 

unit bandwidth—which is a key figure of merit for lasers in spectroscopy. 
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We've been using the phenomenological absorption cross-section,  σ i k 

𝜎𝑖𝑘. Now, let's connect this to the more fundamental parameters of 

quantum mechanics, specifically the Einstein coefficients. This link provides 

a deeper theoretical foundation for our model. 



In 1917, Albert Einstein introduced his famous A and B coefficients to 

describe absorption, stimulated emission, and spontaneous emission. The 

rate of photon absorption can be expressed using the Einstein B coefficient 

for absorption,  B i k 𝐵𝑖𝑘. 

The equation on the slide states that  n ph 𝑛ph, the number of photons 

absorbed per unit time in a volume  d V 𝑑𝑉, is given by: 

 n ph = B i k ρ ν ( ν 0 ) Δ N d V  

𝑛ph = 𝐵𝑖𝑘  𝜌𝜈(𝜈0) 𝛥𝑁 𝑑𝑉 

Let's define these terms again for clarity: 

 n ph 𝑛ph is the number of photons absorbed per second. 

 ρ ν 𝜌𝜈, rho-sub-nu, is the spectral energy density of the radiation field at 

the transition frequency,  ν 0 𝜈0. Its units are Joules per cubic meter per 

Hertz ( J m − 3 H z − 1 𝐽 𝑚−3 𝐻𝑧−1). Remember, this is related to the 

spectral intensity  I ν 𝐼𝜈 by  ρ ν = I ν / c 𝜌𝜈 = 𝐼𝜈/𝑐. 

 Δ N 𝛥𝑁 is our familiar effective population density difference, and  d V 𝑑𝑉 

is the volume element. 

 B i k 𝐵𝑖𝑘 is the Einstein coefficient for stimulated absorption, which is a 

fundamental constant for a given transition, encapsulating the quantum 

mechanical transition probability. 
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Now we can make the connection. We have two different expressions for 

the rate of energy absorption. 



From the previous discussion, the absorbed power  Δ P 𝛥𝑃 for a narrow 

laser is  Δ P = I σ i k Δ N d V 𝛥𝑃 = 𝐼𝜎𝑖𝑘𝛥𝑁 𝑑𝑉. The number of photons 

absorbed per second,  n p h 𝑛ph, is simply the absorbed power divided by 

the energy of a single photon,  h ν ℎ𝜈. So,  n p h = Δ P h ν = I σ i k Δ N d V 

h ν 𝑛ph =
𝛥𝑃

ℎ𝜈
=

𝐼𝜎𝑖𝑘𝛥𝑁 𝑑𝑉

ℎ𝜈
. 

We also have the Einstein rate equation from the previous slide:  n p h = B i 

k ρ ν Δ N d V 𝑛ph = 𝐵𝑖𝑘𝜌𝜈𝛥𝑁 𝑑𝑉. 

Let's equate these two expressions for  n p h 𝑛ph:  I σ i k Δ N d V h ν = B i k 

ρ ν Δ N d V .  

𝐼𝜎𝑖𝑘𝛥𝑁 𝑑𝑉

ℎ𝜈
= 𝐵𝑖𝑘𝜌𝜈𝛥𝑁 𝑑𝑉. 

We can cancel  Δ N 𝛥𝑁 and  d V 𝑑𝑉 from both sides. We also know the 

relationship between intensity  I 𝐼 and energy density  ρ ν 𝜌𝜈. For a narrow 

laser,  I = c ρ ν 𝐼 = 𝑐𝜌𝜈. Substituting this in, we get:  c ρ ν σ i k h ν = B i k ρ 

ν .  

𝑐𝜌𝜈𝜎𝑖𝑘

ℎ𝜈
= 𝐵𝑖𝑘𝜌𝜈. 

The energy density  ρ ν 𝜌𝜈 cancels out, and we are left with a relationship 

between  B i k 𝐵𝑖𝑘 and  σ i k 𝜎𝑖𝑘. 

The slide actually does this for the more general case involving the 

integrated cross section, which is the proper way. If you equate the general 

expressions, you find the beautiful and profound relation shown in the 

middle of the slide: 



 B i k 𝐵𝑖𝑘 equals  c 𝑐 over  h ν ℎ𝜈, times the integral from zero to infinity of  

σ i k ( ν ) d ν 𝜎𝑖𝑘(𝜈) 𝑑𝜈. 

 B i k = c h ν ∫ 0 ∞ σ i k ( ν ) d ν .  

𝐵𝑖𝑘 =
𝑐

ℎ𝜈
∫ 𝜎𝑖𝑘

∞

0

(𝜈) 𝑑𝜈. 

This is a powerful result. It shows that the fundamental quantum-

mechanical transition probability,  B i k 𝐵𝑖𝑘, is directly proportional to the 

total integrated area under the absorption cross-section curve. The cross-

section  σ i k ( ν ) 𝜎𝑖𝑘(𝜈) describes the lineshape of the transition, while  B i 

k 𝐵𝑖𝑘 describes its total, intrinsic strength. This equation connects the two. 
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Cross-Section 

This diagram provides a perfect visual summary of the relationship we just 

derived. 

On the axes, we have the absorption cross-section,  σ i k ( ν ) 𝜎𝑖𝑘(𝜈), 

plotted on the vertical axis against the frequency,  ν 𝜈, on the horizontal 

axis. The curve shows a typical absorption line profile, peaked at the 

resonant frequency  ν 0 𝜈0. It could be a Gaussian profile from Doppler 

broadening, or a Lorentzian from lifetime broadening, or something more 

complex. 

The blue bars represent a histogram, perhaps from a measurement, while 

the dashed red line is the theoretical lineshape function that fits the data. 



The key takeaway is illustrated by the annotation. The Einstein B 

coefficient,  B i k 𝐵𝑖𝑘, is proportional to the total area under this curve. This 

area is the integrated cross-section,  ∫ σ i k ( ν ) d ν ∫ 𝜎𝑖𝑘(𝜈) 𝑑𝜈. So, a 

“strong” transition, one with a large  B i k 𝐵𝑖𝑘, will have a large area under 

its absorption profile. This could mean it’s a very tall and narrow peak, or a 

shorter but very broad peak. The total strength is determined by the total 

area. This provides a beautiful and intuitive link between a microscopic 

quantum property ( B i k 𝐵𝑖𝑘) and a macroscopically measurable quantity 

(the absorption lineshape and its area). 
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We are now going to refine our model of the atomic system to make it more 

realistic. The simple two-level atom is a great starting point, but real 

systems are rarely so clean. We need to introduce the concept of an open 

two-level system. 

First, what levels do we consider explicitly? We still focus on our two 

primary levels: a lower level, which from now on we'll label  | 1 ⟩  |1⟩, and 

an upper level,  | 2 ⟩  |2⟩. This is the transition we are probing with our 

laser. 

The key feature of an "open" system is that there are additional "reservoir" 

levels that exist outside of our two-level model. Population can leak out 

from levels  | 1 ⟩  |1⟩ and  | 2 ⟩  |2⟩ into this reservoir, and population can 

also be replenished from the reservoir. What could these reservoir levels 

be? They could be other electronic or vibrational states, magnetic 



sublevels, or simply represent the atom or molecule physically leaving the 

interaction region of the laser beam. 

Therefore, as the third point states, the system is "open." This is in stark 

contrast to an idealized "closed" two-level atom, where the total population  

N 1 + N 2 𝑁1 + 𝑁2 is strictly conserved. In an open system, the total 

population in our two levels of interest can change over time. 

To model this mathematically, we will use rate equations. These equations 

must incorporate all the relevant physical processes: the laser-induced 

transitions (absorption and stimulated emission), spontaneous decay from 

level 2 to level 1, collisional relaxation processes that can move population 

around, and even molecular diffusion or transit-time effects, where 

molecules physically enter and leave the laser beam. 
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This slide simply contains a descriptive caption for the diagram we’re about 

to see on the next page. It summarizes the key concepts of an open two-

level system. 

It reiterates that unlike an idealized closed system, an open system 

accounts for interactions with its environment. 

It consists of the two primary levels,  | 1 ⟩  |1⟩ and  | 2 ⟩  |2⟩. Population can 

leak to or be replenished from a "reservoir" of other states. 

The diagram will show the key processes: laser-induced transitions, 

spontaneous decay, and these crucial relaxation and replenishment 

pathways to and from the reservoir. 



Let’s look at the diagram itself. 
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Here is the energy level diagram for our open two-level system. This is a 

critically important picture to have in your mind. 

On the vertical axis, we have energy. We see two discrete energy levels, 

the lower state  | 1 ⟩  |1⟩ and the upper state  | 2 ⟩  |2⟩. 

Let's look at the processes connecting these two levels. The wavy red 

arrow pointing up from  | 1 ⟩  |1⟩ to  | 2 ⟩  |2⟩ represents laser-induced 

absorption. The wavy red arrow pointing down from  | 2 ⟩  |2⟩ to  | 1 ⟩  |1⟩ 

represents stimulated emission. Both are driven by the laser field, and they 

are collectively labeled  W i n d 𝑊ind, for the induced transition rate. The 

wavy blue arrow from  | 2 ⟩  |2⟩ to  | 1 ⟩  |1⟩ represents spontaneous 

emission, with its characteristic rate  A 21 𝐴21. This happens even without a 

laser field present. 

Now for the "open" part. To the right, we have a box labeled "Reservoir 

Levels." This represents all other states in the universe besides  | 1 ⟩  |1⟩ 

and  | 2 ⟩  |2⟩. There are dashed green arrows showing the coupling. There 

is an outflow rate from level  | 2 ⟩  |2⟩ to the reservoir, labeled  Γ o u t 𝛤out 

(capital Gamma out). This could be decay to some other third level, or 

collisional de-excitation. There is also an inflow rate from the reservoir to 

level  | 1 ⟩  |1⟩, labeled  Γ i n 𝛤in (capital Gamma in). This could represent 

molecules in the ground state diffusing into the laser beam, or collisional 

processes populating level  | 1 ⟩  |1⟩. There could also be other rates, like 



outflow from  | 1 ⟩  |1⟩ or inflow to  | 2 ⟩  |2⟩, but these are the most 

common ones to consider. 

This diagram encapsulates all the population traffic we need to account for 

in our mathematical model. 
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Now, let's translate the physical picture from the previous slide into a set of 

mathematical equations. These are the famous rate equations. 

For simplicity, we'll start with the case of non-degenerate levels, meaning 

the statistical weights are  g 1 = g 2 = 1 𝑔1 = 𝑔2 = 1. This simplifies the 

Einstein coefficients, since  B 12 = B 21 𝐵12 = 𝐵21. 

We have two coupled, first-order ordinary differential equations, one for the 

population of each level. 

The first equation describes the rate of change of the population density in 

the lower level,  N 1 𝑁1: 

 d N 1 d t = B 12 ρ ν ( N 2 − N 1 ) − R 1 N 1 + C 1  

𝑑𝑁1

𝑑𝑡
= 𝐵12 𝜌𝜈 (𝑁2 − 𝑁1) − 𝑅1 𝑁1 + 𝐶1 

Let's break this down term by term. 

The term  B 12 ρ ν ( N 2 − N 1 ) 𝐵12 𝜌𝜈 (𝑁2 − 𝑁1) describes the change in  N 

1 𝑁1 due to the laser field.  B 12 ρ ν N 2 𝐵12 𝜌𝜈 𝑁2 represents molecules 

arriving in level 1 via stimulated emission from level 2.  B 12 ρ ν N 1 



𝐵12 𝜌𝜈 𝑁1 represents molecules leaving level 1 via absorption. The net 

effect is proportional to  N 2 − N 1 𝑁2 − 𝑁1. 

The term  − R 1 N 1 −𝑅1 𝑁1 represents all processes that cause population 

to leave level 1, at a total rate  R 1 𝑅1. This could be diffusion out of the 

beam, for example. 

The term  + C 1 +𝐶1 represents all processes that cause population to 

enter level 1 from outside, at a constant rate  C 1 𝐶1. This could be diffusion 

into the beam. 

The second equation describes the rate of change of the population density 

in the upper level,  N 2 𝑁2: 

 d N 2 d t = B 12 ρ ν ( N 1 − N 2 ) − R 2 N 2 + C 2  

𝑑𝑁2

𝑑𝑡
= 𝐵12 𝜌𝜈 (𝑁1 − 𝑁2) − 𝑅2 𝑁2 + 𝐶2 

This has a similar structure. 

The term  B 12 ρ ν ( N 1 − N 2 ) 𝐵12 𝜌𝜈 (𝑁1 − 𝑁2) is the change due to the 

laser. It's exactly the negative of the corresponding term for  N 1 𝑁1, since a 

molecule that leaves level 1 via absorption must arrive in level 2. 

The term  − R 2 N 2 −𝑅2 𝑁2 is the total depopulation rate of the upper level. 

This is a very important term; it includes spontaneous emission ( A 21 𝐴21), 

collisional quenching, and any other decay out of level 2. 

The term  + C 2 +𝐶2 is an external pumping rate that might populate level 2 

directly. In many cases, this is zero. 



These two equations form the mathematical core of our model for 

saturation in an open system. 
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Let's clearly define the terms we've introduced in the rate equations. 

1.  R i N i 𝑅i𝑁i: This product represents the total depopulation rate of level  i 

𝑖. So  R i 𝑅i is the total rate constant for leaving level  i 𝑖, with units of 

inverse seconds. It's a sum of all possible loss channels. For the upper 

state,  R 2 𝑅2 would include the spontaneous emission rate  A 21 𝐴21, plus 

a rate for collisions, plus a rate for transit out of the beam, and so on. 

 R 2 = A 21 + R c o l l i s i o n a l + R t r a n s i t + …  

𝑅2 = 𝐴21 + 𝑅collisional + 𝑅transit + ⋯ 

For the ground state,  R 1 𝑅1 would typically be dominated by the transit 

rate. 

2.  C i 𝐶i: This is the inflow rate into level  i 𝑖 from all external channels. It's 

a pumping term, representing how quickly population is supplied to our two-

level system from the outside world. Units would be number of atoms per 

cubic meter per second. For example, in a molecular beam experiment,  C 

1 𝐶1 would represent the rate at which fresh ground-state molecules enter 

the laser interaction volume. 

3. The third point is a reminder of a detail we've already used. In the case 

of non-degenerate levels ( g 1 = g 2 = 1 𝑔1 = 𝑔2 = 1), the Einstein 

coefficients for stimulated absorption and stimulated emission are equal:  B 

12 = B 21 𝐵12 = 𝐵21. This is why the same coefficient  B 12 𝐵12 appears in 



both rate equations, simplifying the analysis. If the levels were degenerate, 

we would have  g 1 B 12 = g 2 B 21 𝑔1𝐵12 = 𝑔2𝐵21. 
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Before we analyze the full system with the laser on, it's essential to 

establish a baseline. What do the populations look like in the absence of 

the laser? This gives us the unsaturated populations. 

To find this, we take our rate equations and set the laser intensity to zero. 

This means the spectral energy density  ρ ν 𝜌𝜈 is zero. All the terms with  B 

12 𝐵12 vanish. We are also interested in the stationary, or steady-state, 

solution, which means the populations are no longer changing in time. So, 

we set  d N 1 d t 
𝑑𝑁1

𝑑𝑡
 and  d N 2 d t 

𝑑𝑁2

𝑑𝑡
 to zero. 

The rate equations become simple algebraic equations: 

 0 = − R 1 N 1 0 + C 1  

0 = −𝑅1𝑁1
0 + 𝐶1 

 0 = − R 2 N 2 0 + C 2  

0 = −𝑅2𝑁2
0 + 𝐶2 

The superscript '0' indicates that these are the unsaturated, laser-off 

populations. Solving these is trivial. We find  N 1 0 = C 1 / R 1 𝑁1
0 = 𝐶1/𝑅1 

and  N 2 0 = C 2 / R 2 𝑁2
0 = 𝐶2/𝑅2. 

The slide shows the solution for the unsaturated population difference,  Δ N 

0 𝛥𝑁0. The slide defines  Δ N 𝛥𝑁 as  N 2 − N 1 𝑁2 − 𝑁1, so: 



 Δ N 0 = N 2 0 − N 1 0 = C 2 R 2 − C 1 R 1  

𝛥𝑁0 = 𝑁2
0 − 𝑁1

0  =  
𝐶2

𝑅2
−

𝐶1

𝑅1
 

Combining the fractions gives the expression shown: 

 Δ N 0 = C 2 R 1 − C 1 R 2 R 1 R 2  

𝛥𝑁0 =
𝐶2𝑅1 − 𝐶1𝑅2

𝑅1𝑅2
 

Now, for a typical absorbing transition, the ground state population  N 1 0 

𝑁1
0 is much larger than the upper state population  N 2 0 𝑁2

0. This means 

that our population difference  Δ N = N 2 − N 1 𝛥𝑁 = 𝑁2 − 𝑁1 will be a 

negative number. This is important to keep track of. The slide notes  Δ N 0 

< 0 𝛥𝑁0 < 0 for an absorbing transition. Some textbooks define  Δ N 𝛥𝑁 as  

N 1 − N 2 𝑁1 − 𝑁2 to keep it positive. It doesn't matter as long as you are 

consistent. We will stick with the slide's convention. 

This unsaturated population difference  Δ N 0 𝛥𝑁0 is our crucial reference 

point. The degree of saturation will be defined by how much the laser 

reduces the population difference relative to this initial value. 
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Now for the main event: let's find the stationary solution with the laser 

turned on. We are still in steady-state, so  d N / d t 𝑑𝑁/𝑑𝑡 is zero, but now 

the energy density  ρ ν 𝜌𝜈 is not zero. We need to solve the full system of 

coupled algebraic equations. I will spare you the algebra, which is 



straightforward but a bit tedious, and jump straight to the beautiful and very 

important result. 

The steady-state population difference with the laser on,  Δ N 𝛥𝑁, is related 

to the unsaturated population difference  Δ N 0 𝛥𝑁0 by the following 

formula: 

 Δ N = Δ N 0 1 + B 12 ρ ν ( 1 R 1 + 1 R 2 ) .  

𝛥𝑁 =
𝛥𝑁0

1 + 𝐵12 𝜌𝜈  (
1
𝑅1

+
1
𝑅2

)
. 

Look at this structure. The laser's effect is entirely contained in that second 

term in the denominator. If the laser is off ( ρ ν = 0 𝜌𝜈 = 0), the denominator 

is 1, and we get  Δ N = Δ N 0 𝛥𝑁 = 𝛥𝑁0, as expected. As the laser intensity  

ρ ν 𝜌𝜈 increases, the denominator gets larger, and the magnitude of the 

population difference  | Δ N | |𝛥𝑁| gets smaller. The transition is being 

saturated. 

To make this expression even more elegant and physically transparent, we 

introduce a new quantity: the dimensionless saturation parameter, capital  

S 𝑆. The result can then be written as: 

 Δ N = Δ N 0 1 + S .  

𝛥𝑁 =
𝛥𝑁0

1 + 𝑆
. 

By comparing the two forms, we can see the definition of  S 𝑆: 

 S = B 12 ρ ν R ∗  .  



𝑆 =
𝐵12 𝜌𝜈

𝑅∗ . 

Where  R ∗  𝑅∗ is a newly defined effective relaxation rate, given by: 

 R ∗  = R 1 R 2 R 1 + R 2 .  

𝑅∗ =
𝑅1 𝑅2

𝑅1 + 𝑅2
. 

This parameter  S 𝑆 is the single most important quantity for describing 

saturation. It is a dimensionless number that tells you exactly how 

saturated your transition is. 
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Just a quick note on the mathematical nature of the effective relaxation rate  

R ∗  𝑅∗ that we just defined. 

The slide points out that  R ∗  𝑅∗ is the harmonic mean of the two relaxation 

rates,  R 1 𝑅1 and  R 2 𝑅2. 

Remember, the arithmetic mean is  R 1 + R 2 2 
𝑅1+𝑅2

2
. The geometric mean 

is  R 1 R 2 √𝑅1 𝑅2. And the harmonic mean is the reciprocal of the 

arithmetic mean of the reciprocals, which is  1 ( 1 R 1 + 1 R 2 ) / 2 .  

1

(
1
𝑅1

+
1
𝑅2

) /2
. 

Our \(R^\) is off by a factor of 2 from this standard definition, but it arises 

naturally from the algebra of the rate equations and represents the 

characteristic rate that governs the saturation process in an open system. 



It's dominated by the slower* of the two relaxation rates  R 1 𝑅1 and  R 2 

𝑅2. 

So, the saturation parameter \(S = \frac{B_{12}\rho_\nu}{R^}\) can be 

interpreted physically as the ratio of the light-induced transition rate, which 

is proportional to  B 12 ρ ν 𝐵12𝜌𝜈, to this effective relaxation rate, \(R^\). It's 

a direct measure of the competition between the laser pumping and the 

system's relaxation. 
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Let's explore the physical meaning of the saturation parameter  S 𝑆. 

Understanding its different limits is key to developing an intuition for 

saturation phenomena. 

First, if  S = 0 𝑆 = 0, this corresponds to the linear absorption limit. This 

happens if the laser intensity is zero. In this case, our formula  Δ N = Δ N 0 

1 + S 𝛥𝑁 =
𝛥𝑁0

1+𝑆
 gives  Δ N = Δ N 0 𝛥𝑁 = 𝛥𝑁0. The population difference is 

unchanged from its thermal equilibrium value. 

Second, the case  S = 1 𝑆 = 1. This is a crucial benchmark. When  S = 1 

𝑆 = 1, our formula gives  Δ N = Δ N 0 1 + 1 = Δ N 0 2 𝛥𝑁 =
𝛥𝑁0

1+1
=

𝛥𝑁0

2
. This 

means the population difference has been reduced to exactly 50 percent of 

its unsaturated value. The intensity that is required to achieve  S = 1 𝑆 = 1 

is given a special name: the "saturation intensity," which we will denote  I s 

𝐼s. So by definition,  I s 𝐼s is the intensity at which  S = 1 𝑆 = 1. 

Third, the case  S ≫ 1 𝑆 ≫ 1, meaning  S 𝑆 is much greater than one. This 

is the regime of "deep saturation." In this limit, the  1 1 in the denominator 



of  1 + S 1 + 𝑆 is negligible, so  Δ N 𝛥𝑁 approaches  Δ N 0 S 
𝛥𝑁0

𝑆
, which 

becomes very small. The populations of the two levels nearly equalize. In 

some special cases with strong external pumping, it's even possible to 

achieve population inversion ( N 2 > N 1 𝑁2 > 𝑁1), where the medium can 

act as an amplifier, but for simple absorption, the populations just tend to 

equalize. 

Finally, we need to express  S 𝑆 in a way that's easy to use in the lab. We 

don't measure energy density  ρ ν 𝜌𝜈; we measure intensity  I 𝐼. So let's 

write an alternative expression for  S 𝑆 using measurable intensities. 
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Here we see the conversion of the saturation parameter  S 𝑆 into a more 

practical form. We start with our definition:  S = B 12 ρ ν R ∗  𝑆 =
𝐵12𝜌𝜈

𝑅∗
. We 

know the relationship between spectral energy density  ρ ν 𝜌𝜈 and spectral 

intensity  I ν 𝐼𝜈 is  ρ ν = I ν c 𝜌𝜈 =
𝐼𝜈

𝑐
. Substituting this in, we get: 

 S = B 12 I ν c R ∗   

𝑆 =
𝐵12  𝐼𝜈
𝑐 𝑅∗  

This is a perfectly valid form. However, what if our laser is very narrow-

band? We often work with the total intensity  I 𝐼, not the spectral intensity  I 

ν 𝐼𝜈. For a narrow laser with bandwidth  δ ν L 𝛿𝜈L, we can approximate the 

total intensity as  I ≈ I ν δ ν L 𝐼 ≈ 𝐼𝜈 𝛿𝜈L. This lets us write  I ν ≈ I / δ ν L 𝐼𝜈 ≈

𝐼/𝛿𝜈L. 



The slide shows a slightly different path to get to an expression with total 

intensity  I 𝐼. The last equality shown is: 

 S = B 12 I c R 1 R 2  

𝑆 =
𝐵12 𝐼

𝑐 𝑅1 𝑅2
 

Let's check the algebra here. The expression \(S = 

\frac{B_{12}\rho_{\nu}}{R^}\) combined with the definitions \(R^ = \frac{R_1 

R_2}{R_1 + R_2}\) and  I ≈ I ν δ ν L 𝐼 ≈ 𝐼𝜈 𝛿𝜈L ... ah, there seems to be a 

slight inconsistency or an unstated assumption in the slide's final step. 

Let's stick to the most direct interpretation. We define the saturation 

intensity  I s 𝐼s such that  S = I / I s 𝑆 = 𝐼/𝐼s. This is the most common and 

useful form. From the expression \(S = \frac{B_{12}\,I_{\nu}}{c\,R^}\), we 

can define a spectral saturation intensity \(I_{s,\nu} = \frac{c\,R^}{B_{12}}\). 

Then  S = I ν / I s , ν 𝑆 = 𝐼𝜈/𝐼𝑠,𝜈. This is the most rigorous form. The 

conversion to total intensity  I 𝐼 depends on the relative widths of the laser 

and the absorption line, a point we will return to. For now, the key idea is 

that  S 𝑆 is directly proportional to the laser intensity. 
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Let's formally define and explore the saturation intensity,  I s 𝐼s. 

As stated in the first bullet point, it is defined by the condition  S = 1 𝑆 = 1. 

It is the intensity required to reduce the population difference to half of its 

unsaturated value. It's the characteristic intensity scale for nonlinear effects 

in a given system. 



From our previous discussion, we can write down a frequency-dependent, 

or spectral, form of the saturation intensity. Let's call it  I s ( ν ) 𝐼s(𝜈). It is 

the spectral intensity required to reach  S = 1 𝑆 = 1. 

 I s ( ν ) = c R ∗  B 12  

𝐼s(𝜈) =
𝑐 𝑅∗

𝐵12
 

This shows us what  I s 𝐼s depends on: fundamental constants ( c 𝑐), the 

atomic transition probability ( B 12 𝐵12), and the relaxation environment of 

the system (hidden in  R ∗  𝑅∗). 

Now, if we have a laser with a finite bandwidth  δ ν L 𝛿𝜈L, the total 

saturation intensity  I s 𝐼s is found by integrating the spectral saturation 

intensity over the laser's spectrum. Similar to our earlier approximation for 

total intensity, we can say: 

 I s = ∫ I s ( ν ) d ν ≈ I s ( ν L ) δ ν L  

𝐼s = ∫ 𝐼s(𝜈) 𝑑𝜈  ≈   𝐼s(𝜈L) 𝛿𝜈L 

This is the total power per unit area we need from our laser to achieve  S = 

1 𝑆 = 1. 
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This final point on saturation intensity is a crucial practical one for any 

experimentalist. 

Knowledge of  I s 𝐼s is critical for two main reasons. First, for designing 

saturation experiments. If you want to perform saturation spectroscopy, you 



need to know what  I s 𝐼s is for your transition of interest. This tells you how 

much laser power you need and how tightly you need to focus your beam 

to achieve an intensity  I 𝐼 that is comparable to or greater than  I s 𝐼s. If 

your laser system cannot deliver an intensity of at least  I s 𝐼s, you will not 

be able to saturate the transition and your experiment will fail. 

Second, and equally important, is avoiding optical damage. Lasers can 

deliver very high intensities, especially when focused. For some materials, 

particularly solids or complex molecules, the saturation intensity might be 

close to or even above the optical damage threshold of the sample. You 

must ensure that the intensity you need for your experiment won't 

inadvertently destroy what you're trying to measure. So, calculating  I s 𝐼s 

beforehand is a critical safety and feasibility check. 

Page 45: Saturation of Atomic 

Population Difference 

This graph beautifully visualizes the concept of saturation. The title is 

"Saturation of Atomic Population Difference." 

Let's look at the axes. The vertical axis is the Normalized Population 

Difference, which is the ratio  Δ N Δ N 0 
𝛥𝑁

𝛥𝑁0
. At zero intensity, this value is  

1 1, meaning the population difference is its full, unsaturated value. The 

horizontal axis is the Incident Intensity,  I 𝐼, plotted in units of the saturation 

intensity,  I s 𝐼s. So we have points for  I s 𝐼s,  2 I s 2 𝐼s,  3 I s 3 𝐼s, and so 

on. 



The curve shows the function we derived:  Δ N Δ N 0 = 1 1 + S 
𝛥𝑁

𝛥𝑁0
=

1

1+𝑆
. 

Since  S = I I s 𝑆 =
𝐼

𝐼s
, this is equivalent to the equation shown on the plot: 

 Δ N Δ N 0 = 1 1 + I I s  

𝛥𝑁

𝛥𝑁0
=

1

1 +
𝐼
𝐼s

 

Let's trace the curve. At  I = 0 𝐼 = 0, the ratio is  1 1. Now, let's go to the 

point on the x-axis labeled  I s 𝐼s. This is the saturation intensity. If we look 

up to the blue curve and then across to the y-axis, we see that the 

normalized population difference is  0.5 0.5. This is the very definition of  I s 

𝐼s. It's the intensity needed to cut the population difference in half. The 

dashed red lines on the plot highlight this 50% reduction. 

As we increase the intensity further, to  2 I s 2 𝐼s,  3 I s 3 𝐼s, and beyond, the 

curve continues to fall, asymptotically approaching zero. The population 

difference is being "squashed" by the strong laser field. This plot is the 

quantitative picture of "bleaching" the medium. 
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Now let's incorporate our new understanding of saturation back into the 

absorption law itself. 

Let's consider the specific case where our laser is narrower than the 

absorption line ( δ ν L < δ ν a 𝛿𝜈L < 𝛿𝜈a). Our infinitesimal power balance 

equation was  d P = − A I σ 12 Δ N d z 𝑑𝑃 = −𝐴 𝐼 𝜎12 𝛥𝑁 𝑑𝑧. We can now 

substitute our expression for the saturated population difference,  Δ N = Δ 



N 0 / ( 1 + S ) 𝛥𝑁 = 𝛥𝑁0/(1 + 𝑆). This gives us the new, nonlinear 

absorption law: 

 d P = − A I σ 12 Δ N 0 1 + S d z .  

𝑑𝑃 = −𝐴 𝐼 𝜎12  
𝛥𝑁0

1 + 𝑆
 𝑑𝑧. 

And since  I = P A 𝐼 = 𝑃 𝐴⁄ , we could write: 

 d P P = − σ 12 Δ N 0 1 + S d z .  

𝑑𝑃

𝑃
= −

𝜎12 𝛥𝑁0

1 + 𝑆
 𝑑𝑧. 

Let's compare this with the linear case. The linear law is  d P = − P σ 12 Δ 

N 0 d z 𝑑𝑃 = −𝑃 𝜎12 𝛥𝑁0 𝑑𝑧, which gives  d P P = − ( σ 12 Δ N 0 ) d z 

𝑑𝑃 𝑃⁄ = −(𝜎12 𝛥𝑁0) 𝑑𝑧. The only difference is the factor of  1 / ( 1 + S ) 

1/(1 + 𝑆) in the denominator. This factor is always less than or equal to 1, 

and it decreases as the intensity  I 𝐼 increases. This is the mathematical 

representation of saturation. 

What is the qualitative effect? The third point is subtle but important. The 

absolute absorbed power,  d P 𝑑𝑃, still rises with intensity  I 𝐼 (at least 

initially), but the relative absorption, the fraction of power absorbed per unit 

length, which is  d P / P 𝑑𝑃/𝑃, decreases. You get diminishing returns. 

Doubling a high intensity does not double the absorbed power. 

This behavior is precisely what we observe experimentally as the 

fluorescence "bleaching" curve that we saw on slide 22. That curve is a 

direct plot of the consequences of this nonlinear absorption law. 
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This slide addresses a very practical question: why is saturation 

spectroscopy synonymous with laser spectroscopy? Can't we achieve 

saturation with other light sources? 

The answer lies in spectral intensity,  I ν 𝐼𝜈. Let's look at the first point. 

Spectral lamps, like a sodium lamp or a mercury-vapor lamp, are what we 

call incoherent sources. They emit light over a broad range of angles and a 

relatively broad range of frequencies. Their spectral intensity  I ν 𝐼𝜈 is 

actually very small. If you plug the numbers into our formula for the 

saturation parameter  S 𝑆, you will find that for any typical allowed atomic 

transition,  S 𝑆 is always much, much less than 1. The light from a lamp is 

simply not intense enough at the specific resonant frequency to significantly 

alter the populations. With conventional light sources, you are always in the 

linear absorption regime. 

Now consider lasers. Lasers produce coherent light that is highly collimated 

and, for a single-mode laser, extremely monochromatic. This means they 

can achieve orders of magnitude higher spectral intensity  I ν 𝐼𝜈. 

Furthermore, this light can be focused down to a tiny spot, increasing the 

intensity  I 𝐼 dramatically. With a typical continuous-wave laser, it is easy to 

achieve conditions where the saturation parameter  S 𝑆 is greater than or 

equal to 1. 

Therefore, the inescapable conclusion is that saturation spectroscopy, and 

indeed almost all nonlinear spectroscopy, essentially requires lasers. The 



laser is not just a convenient tool; it's the enabling technology that opened 

up this entire field of physics. 
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We've established that lasers are what allow us to perform nonlinear 

spectroscopy, such as Doppler-free measurements and nonlinear mixing 

techniques. Now, we're going to pivot slightly and look at the interaction 

from a more microscopic, quantum-coherent perspective. This will 

introduce us to the Rabi frequency. 

The title of this section is "Rabi Frequency,  Ω R 𝛺R – Microscopic Picture." 

So far, we've used rate equations. Rate equations deal with populations,  N 

1 𝑁1 and  N 2 𝑁2. They describe the interaction in terms of probabilities and 

rates, which is an incoherent picture. However, a more fundamental 

description, especially for short timescales, uses a semi-classical treatment 

where we consider the quantum atom interacting with a classical 

electromagnetic field. 

In this picture, the oscillating electric field of the laser drives a coherent 

oscillation of the atom's electric dipole moment. This isn't just a random 

hopping between states; it's a deterministic, coherent evolution of the 

quantum amplitudes. The atom is driven back and forth between the 

ground and excited states. The angular frequency of this coherent 

population cycling is called the Rabi frequency, denoted capital Omega 

sub R,  Ω R 𝛺R. 



The formula for the Rabi frequency is given as:  Ω R = D i k E 0 ℏ  𝛺R =

𝐷𝑖𝑘𝐸0

ℏ
. 

 Ω R = D i k E 0 ℏ   

𝛺R =
𝐷𝑖𝑘𝐸0

ℏ
 

Let's break this down.  ℏ  ℏ is the reduced Planck constant.  E 0 𝐸0 is the 

peak electric field amplitude of our laser, which we control. And  D i k 𝐷𝑖𝑘 is 

the transition dipole matrix element. 
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Let's elaborate on the terms in the Rabi frequency formula. 

 D i k 𝐷𝑖𝑘 is the transition dipole matrix element. Its formal definition is the 

matrix element of the electric dipole operator between the initial state  | i ⟩  

|𝑖⟩ and the final state  | k ⟩  |𝑘⟩. It has units of charge times distance, and 

the slide gives its SI units as Coulomb-meters  ( C m ) (𝐶 𝑚). This quantity,  

D i k 𝐷𝑖𝑘, is a purely quantum mechanical property of the atom or molecule. 

It is calculated from the wavefunctions of the two states and it quantifies 

how strongly those two states are coupled by an electric field. Strong 

transitions have large dipole matrix elements. "Forbidden" transitions have 

dipole matrix elements that are zero or very close to zero. 

The Rabi frequency,  Ω R 𝛺R, provides a crucial link. It relates a 

macroscopic, controllable experimental parameter—the laser's electric field  

E 0 𝐸0 (which is related to its intensity  I 𝐼)—to the microscopic evolution of 



the quantum amplitudes of the atom. It tells you, at a fundamental level, 

how fast the laser is "talking" to the atom. 

Why is this important? It serves as a bridge between the rate-equation 

picture we've been using, with its saturation parameter  S 𝑆, and the more 

advanced semi-classical picture described by the optical Bloch equations. 

The optical Bloch equations are a set of differential equations that describe 

the evolution of not just the populations, but also the coherent 

superposition between the states. The Rabi frequency is a central 

parameter in the Bloch equations. 
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Now we arrive at a beautiful and insightful result that connects the two 

pictures we’ve been developing: the incoherent rate‐ equation picture 

(characterized by  S 𝑆) and the coherent semi‐ classical picture 

(characterized by  Ω R 𝛺R). We can express the saturation parameter  S 𝑆 

directly in terms of the Rabi frequency  Ω R 𝛺R. 

Let’s consider a system where the broadening is purely homogeneous. The 

homogeneous linewidth,  γ 𝛾, is the sum of the total decay rates of the two 

levels, so  γ = R 1 + R 2 𝛾 = 𝑅1 + 𝑅2. In this case, after some algebra which 

involves relating the Einstein  B 𝐵 coefficient to the dipole matrix element  

D i k 𝐷𝑖𝑘, we find the following elegant relationship: 

Capital  S 𝑆 equals  Ω R 2 𝛺R
2 , divided by the product  R γ 𝑅𝛾. Which 

simplifies to  Ω R 2 𝛺R
2 , divided by  R 1 R 2 𝑅1𝑅2. 

 S = Ω R 2 R γ = Ω R 2 R 1 R 2 .  



𝑆 =
𝛺R

2

𝑅 𝛾
 = 

𝛺R
2

𝑅1 𝑅2
. 

Let’s focus on that final form:  S = Ω R 2 R 1 R 2 𝑆 =
𝛺R

2

𝑅1𝑅2
. 

This gives us a profound physical interpretation of saturation. Remember 

that saturation occurs when  S 𝑆 is on the order of 1. So, saturation is 

reached when  Ω R 2 ≈ R 1 R 2 𝛺R
2 ≈ 𝑅1𝑅2, or  Ω R ≈ R 1 R 2 𝛺R ≈ √𝑅1𝑅2. 

In words: saturation is achieved when the coherent driving rate (the Rabi 

frequency,  Ω R 𝛺R) becomes equal to the geometric mean of the 

relaxation rates of the two levels ( R 1 𝑅1 and  R 2 𝑅2). It’s a competition!  

Ω R 𝛺R is trying to coherently drive population back and forth, while  R 1 𝑅1 

and  R 2 𝑅2 are the incoherent relaxation processes trying to destroy that 

coherence and restore thermal equilibrium. When the coherent driving is 

fast enough to overcome the relaxation, the system saturates. 

The final bullet point rephrases this. The laser intensity  I 𝐼 that fulfills the 

condition  Ω R 2 = R 1 R 2 𝛺R
2 = 𝑅1𝑅2 corresponds precisely to the 

saturation intensity,  I = I s 𝐼 = 𝐼s. 
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Let's revisit and summarize the important distinction between closed and 

open two-level systems, as this has direct consequences for the saturation 

behavior. 

First, a closed system. This is an idealized model, often a good 

approximation for a single, isolated atom. The key feature is that the total 



population in our two levels of interest, capital  N = N 1 + N 2 𝑁 = 𝑁1 + 𝑁2, 

is conserved. It's a constant. There are no external channels for population 

to leak out to or be pumped in from. 

Second, an open system. This is the more realistic model for most 

experiments, like atoms in a vapor cell or molecules in a beam. Here, there 

are additional decay pathways (outflow) and pumping mechanisms (inflow), 

which we modeled with the  C i 𝐶i terms. Population is exchanged with the 

environment (the "reservoir levels"). 

This difference leads to a different mathematical form for the mean 

relaxation probability, or the effective relaxation rate, that governs 

saturation. 

For a closed system, the relevant rate turns out to be the arithmetic mean,  

R = R 1 + R 2 2 𝑅 =
𝑅1+𝑅2

2
. 

For the open system, as we derived, the effective rate is the harmonic 

mean,  R ∗  = R 1 R 2 R 1 + R 2 𝑅∗ =
𝑅1𝑅2

𝑅1+𝑅2
. 

These might look similar, but they can lead to very different saturation 

intensities, especially if one relaxation rate is much larger than the other. 
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What is the practical consequence of this difference between open and 

closed systems? 



The consequence is that a stronger laser intensity is often needed to 

saturate an open system, particularly when external loss channels 

dominate. 

Let’s think about why. In an open system, you might have rapid relaxation 

or replenishment processes. For example, in a molecular beam, fresh, 

unsaturated molecules are constantly flying into the laser beam. To 

saturate the transition, your laser has to be intense enough to pump the 

molecules that are already there and the new ones that are continuously 

arriving. The inflow of fresh ground-state molecules is an additional channel 

that the laser has to “fight against” to deplete the ground state population. 

This means the denominator in the saturation parameter  S 𝑆 is effectively 

larger, and thus you need a larger numerator—a higher intensity  I 𝐼—to 

achieve  S = 1 𝑆 = 1. 
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These two diagrams provide a clear side-by-side comparison of the closed 

and open two-level systems. 

On the left, we have the "Closed Two-Level System." We see the two 

levels,  | 1 ⟩  |1⟩ and  | 2 ⟩  |2⟩. The laser drives the transition with a Rabi 

frequency  Ω R 𝛺R. The only relaxation path shown is spontaneous 

emission from  | 2 ⟩  |2⟩ back down to  | 1 ⟩  |1⟩, with a rate  R 2 = A 21 

𝑅2 = 𝐴21. In this system, the crucial concept, written at the bottom, is that 

the total population  N = N 1 + N 2 𝑁 = 𝑁1 + 𝑁2 is constant. Every atom 

that leaves level 1 must arrive in level 2, and vice versa. The population is 

just shuffled between these two levels. 



On the right, we have the "Open Two-Level System." This looks more like a 

real experiment. We still have the laser driving the  | 1 ⟩  |1⟩ to  | 2 ⟩  |2⟩ 

transition with Rabi frequency  Ω R 𝛺R. We still have spontaneous emission  

A 21 𝐴21. But now we have additional channels. There's a pump term,  Λ 𝛬, 

feeding population into the ground state  | 1 ⟩  |1⟩. This could be molecules 

entering the beam. There's also an additional loss channel from the upper 

state,  γ loss 𝛾loss, which takes population out of the system entirely (e.g., 

decay to a third, dark state). And there is a loss rate  R 1 𝑅1 from the 

ground state, for example atoms leaving the beam. As noted at the bottom, 

population is exchanged with the environment. The total decay rate from 

level 2 is now  R 2 = A 21 + γ loss 𝑅2 = 𝐴21 + 𝛾loss. The total population  N 

1 + N 2 𝑁1 + 𝑁2 is no longer constant. 

This visual comparison makes the distinction very clear. 
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Let's analyze the limits of saturation in a closed system. What is the 

maximum possible transparency, or "bleaching," we can achieve? To find 

this, we look at the minimum possible population that can remain in the 

lower level,  N 1 𝑁1, under very high laser intensity. 

The slide presents the analytic solution for  N 1 𝑁1 in a closed system 

under laser drive. The equation is: 

 N 1 = B 12 I ν c + R 2 2 B 12 I ν c + R 1 + R 2 2 N .  

𝑁1 =

𝐵12𝐼𝜈
𝑐

+
𝑅2

2
𝐵12𝐼𝜈

𝑐
+

𝑅1 + 𝑅2
2

 𝑁. 



This expression comes from solving the steady-state rate equations with 

the constraint  N 1 + N 2 = N 𝑁1 + 𝑁2 = 𝑁. 

Now, let's consider the limiting case of infinite intensity. We take the limit as 

the spectral intensity  I ν 𝐼𝜈 goes to infinity. In the fraction, the terms with  I 

ν 𝐼𝜈 will dominate. The  R / 2 𝑅/2 terms become negligible. So the 

expression becomes 

 B 12 I ν c B 12 I ν c = 1.  

𝐵12𝐼𝜈
𝑐

𝐵12𝐼𝜈
𝑐

= 1. 

However, we have to be careful with the algebra. 

A more direct way to see this is that at infinite intensity, the rates of 

stimulated absorption and stimulated emission become infinitely fast 

compared to relaxation, forcing the populations to equalize, taking into 

account degeneracies. For non-degenerate levels, this means  N 1 𝑁1 

approaches  N 2 𝑁2. Since  N 1 + N 2 = N 𝑁1 + 𝑁2 = 𝑁, this implies  N 1 𝑁1 

approaches  N / 2 𝑁/2. The limit shown on the slide is correct: The limit of  

N 1 𝑁1 as  I ν 𝐼𝜈 approaches infinity is  N / 2 𝑁/2. 
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This leads us to a very important conclusion about closed systems. 

The result  lim N 1 = N 2 lim𝑁1 =
𝑁

2
 means that the lower-level population 

cannot be depleted below 50 percent of the total population, no matter how 

strong your laser is. 



Think about what this means for absorption. The population difference  Δ N 

= N 2 − N 1 𝛥𝑁 = 𝑁2 − 𝑁1 approaches zero. The absorption coefficient  α 𝛼 

approaches zero. However, you can never achieve population inversion, 

and you can't empty the ground state. 

The key takeaway is that in a closed two-level atom, complete bleaching is 

impossible. The best you can do is make the populations equal, at which 

point the rates of absorption and stimulated emission exactly balance, and 

the medium becomes transparent. But you cannot get rid of all the atoms in 

the ground state, because the very same laser that removes them via 

absorption also puts them back via stimulated emission. The only way to 

truly empty the ground state is if there are external channels involved. 
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Now let's contrast this with the situation in an open system. What is the 

minimum ground state population here? 

The slide gives the solution for  N 1 𝑁1 in the limit of very high saturation,  S 

→ ∞ 𝑆 → ∞, for the general open system rates. 

The result is: 

 N 1 ( S → ∞ ) = C 1 + C 2 R 1 + R 2 N .  

𝑁1(𝑆 → ∞) =
𝐶1 + 𝐶2

𝑅1 + 𝑅2
𝑁. 

This result is much more interesting than the closed system case. The final 

ground state population depends on the ratio of the total inflow rates ( C 1 

+ C 2 𝐶1 + 𝐶2) to the total outflow rates ( R 1 + R 2 𝑅1 + 𝑅2). 



Now consider a very common experimental situation, like a molecular 

beam crossing a laser beam, where collisions are negligible. In this case, 

the main inflow  C 1 𝐶1 is fresh molecules entering the beam into the 

ground state. There is no pumping into the upper state, so  C 2 = 0 𝐶2 = 0. 

The main outflow  R 1 𝑅1 is molecules leaving the beam. The outflow  R 2 

𝑅2 from the upper state includes spontaneous decay  A 21 𝐴21 and also 

decay to other "dark" vibrational levels that don't couple back into our 

system. If the inflow rates are much smaller than the relaxation rates ( C 1 , 

C 2 ≪ R 1 , R 2 𝐶1, 𝐶2 ≪ 𝑅1, 𝑅2), which can be engineered, then the limiting 

population  N 1 𝑁1 can approach zero! 

This is the punchline. Hence, saturation can be much deeper in an open 

system. You can achieve almost complete bleaching, making the ground 

state population nearly zero. 

This is essential for many advanced techniques, particularly for the 

background-free detection of very weak transitions. By pumping all the 

population out of the ground state, you create a very high-contrast "on/off" 

signal. 

Page 57: 

Let's make this concrete with a detailed example of a molecular beam 

experiment. We will define the rate constants in terms of physical 

experimental parameters. 

First, let's list the typical parameters. 



The transit time,  t τ 𝑡𝜏, is the average time a molecule spends passing 

through the laser beam. If the beam has a diameter  d 𝑑 and the molecules 

have a velocity  v 𝑣, then  t τ = d v 𝑡𝜏 =
𝑑

𝑣
. 

The upper state, level 2, can decay via spontaneous emission with a total 

rate  A 2 𝐴2. However, only a fraction of this decay may go back to our 

ground state, level 1. We define the branching ratio  A 21 𝐴21 as the rate of 

decay specifically from 2 to 1. 

The inflow of fresh molecules is a diffusion or transit process. We can 

define a diffusion inflow rate  D 1 𝐷1, which has units of number per volume 

per time. This rate is approximately equal to the total available number 

density  N 0 𝑁0 divided by the transit time  t τ 𝑡𝜏. So,  D 1 ≈ N 0 t τ 𝐷1 ≈
𝑁0

𝑡𝜏
. 

Now we can replace the generic variables in our rate equations ( R 1 𝑅1,  R 

2 𝑅2,  C 1 𝐶1,  C 2 𝐶2) with these specific physical processes. 
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Here is how we map the experimental parameters from the molecular beam 

example onto our rate equation constants. 

 R 1 𝑅1: This is the total decay rate from the ground state. In a collision-free 

beam, the main way a ground state molecule leaves the interaction zone is 

by simply flying out of the laser beam. So, the rate  R 1 𝑅1 is the inverse of 

the transit time. 

 R 1 = 1 t τ  



𝑅1 =
1

𝑡𝜏
 

 R 2 𝑅2: This is the total decay rate from the upper state. A molecule in the 

upper state can also fly out of the beam, so there is a transit-time 

contribution  1 / t τ 1/𝑡𝜏. Additionally, it can decay spontaneously with a 

total rate  A 2 𝐴2. So,  R 2 = A 2 + 1 / t τ 𝑅2 = 𝐴2 + 1/𝑡𝜏. 

 R 2 = A 2 + 1 t τ  

𝑅2 = 𝐴2 +
1

𝑡𝜏
 

 C 1 𝐶1: This is the inflow rate to the ground state. It has two contributions. 

First, there's the diffusion of new molecules into the beam, which we called  

D 1 𝐷1. Second, population from the upper state  N 2 𝑁2 can decay back 

down to the ground state via spontaneous emission with rate  A 21 𝐴21. So,  

C 1 = D 1 + N 2 A 21 𝐶1 = 𝐷1 + 𝑁2𝐴21. Note that because this term 

depends on  N 2 𝑁2, it makes the rate equations slightly more coupled than 

our initial general form. 

 C 1 = D 1 + N 2 A 21  

𝐶1 = 𝐷1 + 𝑁2𝐴21 

 C 2 𝐶2: This is the external pumping rate to the upper level. In a typical 

molecular beam absorption experiment, there is no such process. We are 

not actively pumping molecules into the excited state from outside. So, we 

can set  C 2 = 0 𝐶2 = 0. 

 C 2 = 0  

𝐶2 = 0 



With these substitutions, we can now solve for the steady-state populations 

for this specific, realistic scenario. 
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Alright, after substituting the specific rates for the molecular beam into the 

rate equations and solving for the steady-state population  N 1 𝑁1 under 

laser drive, we get the rather formidable-looking expression shown on this 

slide. 

 N 1 = N D 1 ( B 12 ρ + A 2 + 1 / t τ ) B 12 ρ ( A 2 − A 21 + 2 / t τ ) + 1 / t τ 2 

.  

𝑁1 = 𝑁 
𝐷1(𝐵12𝜌 + 𝐴2 + 1/𝑡𝜏)

𝐵12𝜌(𝐴2 − 𝐴21 + 2/𝑡𝜏) + 1/𝑡𝜏
2
 . 

I don't expect you to memorize this. What's important is to understand its 

behavior in the limiting cases. 

First limiting case: No laser. We set the energy density  ρ 𝜌 to zero. All the 

terms with  B 12 ρ 𝐵12𝜌 vanish. The expression simplifies to 

 N 1 = D 1 ( A 2 + 1 / t τ ) 1 / t τ 2 .  

𝑁1 =
𝐷1(𝐴2 + 1/𝑡𝜏)

1/𝑡𝜏
2  . 

Assuming  A 2 𝐴2 is not pathologically large, this can be shown to simplify 

to the result 

 N 1 0 = D 1 t τ .  

𝑁1
0 = 𝐷1 𝑡𝜏  . 



This makes perfect physical sense. With no laser, the steady-state ground 

population is simply the rate at which molecules enter ( D 1 𝐷1) times the 

time they spend in the beam ( t τ 𝑡𝜏). This is our unsaturated reference 

population. 

Second limiting case: Strong laser. This is the limit as the saturation 

parameter  S 𝑆 goes to infinity, which corresponds to  ρ 𝜌 going to infinity. 
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Continuing with the strong laser limit for our molecular beam example. 

As the energy density  ρ 𝜌 becomes very large, the terms multiplied by  B 

12 ρ 𝐵12𝜌 in our large expression for  N 1 𝑁1 will dominate both the 

numerator and the denominator. So,  N 1 𝑁1 will approach the ratio of the 

coefficients of the  B 12 ρ 𝐵12𝜌 terms. This gives the approximation: 

 N 1 ≈ D 1 A 2 − A 21 + 2 t τ .  

𝑁1 ≈
𝐷1

𝐴2 − 𝐴21 +
2
𝑡𝜏

. 

The crucial thing to notice here is the comparison with the unsaturated 

population,  N 1 0 = D 1 t τ 𝑁1
0 = 𝐷1 𝑡𝜏. The saturated population  N 1 𝑁1 

can be much, much smaller than  N 1 0 𝑁1
0. For typical values, the 

denominator  A 2 − A 21 + 2 t τ 𝐴2 − 𝐴21 +
2

𝑡𝜏
 can be a very large number, 

especially if the transit time is short. This means we can achieve a very 

strong depletion of the ground state. This confirms our earlier general 

conclusion: open systems can be bleached very deeply. 
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Let's plug in some realistic numbers to get a feel for the magnitude of this 

effect. This numerical example is based on one from the Demtröder 

textbook. 

Here are the parameters for our hypothetical molecular beam experiment: - 

The laser beam diameter is  d = 1 𝑑 = 1 millimeter. - The velocity of the 

molecules is  v = 5 × 10 4 𝑣 = 5 × 104 centimeters per second, which is 

500 meters per second, a typical thermal velocity. - This gives a transit time  

t τ = d / v = ( 1   m m ) / ( 500   m / s ) = 2 × 10 − 6 𝑡𝜏 = 𝑑/𝑣 = (1 mm)/

(500 m/s) = 2 × 10−6 seconds, or 2 microseconds. 

The diffusion inflow rate is given as  D 1 = 10 14 𝐷1 = 1014 molecules per 

cubic centimeter per second. 

From this, we can calculate the unsaturated ground state population 

density: 

 N 1 0 = D 1 t τ = ( 10 14 c m − 3 s − 1 ) × ( 2 × 10 − 6 s ) = 2 × 10 8  

𝑁1
0 = 𝐷1 𝑡𝜏 = (1014 cm−3 s−1) × (2 × 10−6 s) = 2 × 108 

molecules per cubic centimeter. 

Finally, we have the radiative rates for the transition. The total decay rate 

from the upper state is  A 2 = 10 8 s − 1 𝐴2 = 108 s−1, corresponding to a 

10 nanosecond lifetime. The specific decay rate back to our ground state is  

A 21 = 10 7 s − 1 𝐴21 = 107 s−1. This means only 10% of the molecules 

that decay from the upper state return to the ground state; the other 90% 

decay to other "dark" reservoir levels. This is a classic open system. 
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Now let's use the numbers from the previous slide to calculate the ground-

state population in the limit of deep saturation. 

We use our formula for the strong laser case: 

 N 1 ≈ D 1 A 2 − A 21 + 2 t τ .  

𝑁1 ≈
𝐷1

𝐴2 − 𝐴21 +
2
𝑡𝜏

. 

Plugging in the numbers: 

 D 1 = 10 14 c m − 3 s − 1 𝐷1 = 1014 cm−3 s−1 

 A 2 = 10 8 s − 1 𝐴2 = 108 s−1 

 A 21 = 10 7 s − 1 𝐴21 = 107 s−1 

 t τ = 2 × 10 − 6 s 𝑡𝜏 = 2 × 10−6 s, so  2 t τ = 10 6 s − 1 . 
2

𝑡𝜏
= 106 s−1. 

The denominator is  ( 10 8 − 10 7 + 10 6 ) s − 1 (108 − 107 + 106) s−1, 

which is roughly  0.91 × 10 8 s − 1 0.91 × 108 s−1. 

So,  N 1 ≈ 10 14 0.91 × 10 8 ≈ 1.1 × 10 6 𝑁1 ≈
1014

0.91×108
≈ 1.1 × 106 

molecules per cubic centimeter. 

The slide approximates this as  N 1 ≈ 10 6 c m − 3 𝑁1 ≈ 106 cm−3. 

Let's compare this to the unsaturated value,  N 1 0 = 2 × 10 8 c m − 3 𝑁1
0 =

2 × 108 cm−3. 



The ratio  N 1 / N 1 0 𝑁1/𝑁1
0 is  10 6 / ( 2 × 10 8 ) = 0.005 106/(2 × 108) =

0.005, or 0.5 percent! 

This is a stunning result. In deep saturation, we have depleted the ground 

state population down to just half a percent of its initial value. This 

demonstrates the dramatic bleaching that is achievable in a collision-free, 

open-system environment like a molecular beam. This is what enables 

extremely high-contrast, low-background nonlinear spectroscopy. 
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Now we will shift gears and calculate the saturation intensity  I s 𝐼s for a few 

different, practical cases. 

Case (a) is a broadband continuous-wave, or CW, laser. "Broadband" here 

means that the laser's bandwidth,  δ ν L 𝛿𝜈L, is much, much greater than 

the absorption linewidth of an individual molecule,  δ ν a 𝛿𝜈a.  δ ν L ≫ δ ν a 

𝛿𝜈L ≫ 𝛿𝜈a. 

This is a common situation when doing spectroscopy on a Doppler-

broadened sample in a gas cell with a multi-mode laser. The absorption 

linewidth for any single molecule (the homogeneous width) is small, but the 

laser talks to all the different velocity classes at once because its own 

bandwidth covers the entire Doppler profile. 

The first point notes that the overlap fraction  δ ν a / δ ν L 𝛿𝜈a/𝛿𝜈L is very 

small for any individual molecule, but the laser addresses all velocity 

classes simultaneously. 



To find the total saturation intensity, we start from the condition  S = 1 𝑆 =

1. Using our general expressions, we find that the total saturation intensity  

I s 𝐼s is approximately: 

 I s ≈ c R ∗  B 12 δ ν L  

𝐼s ≈
𝑐 𝑅∗

𝐵12
 𝛿𝜈L 

The units are  W m − 2 W m−2. 

The key thing to see here is that  I s 𝐼s is directly proportional to the laser 

bandwidth  δ ν L 𝛿𝜈L. This makes sense: if your laser power is spread out 

over a large frequency range, you need more total power to achieve the 

required intensity at the resonant frequency to saturate the transition. 
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Let's consider two important implications of our result for the broadband 

laser case. 

First, the expression we derived for  I s 𝐼s is independent of the 

homogeneous or inhomogeneous nature of the underlying transition. Why? 

Because the laser bandwidth  δ ν L 𝛿𝜈L is assumed to be so large that it 

covers the entire absorption profile, whether it's a single homogeneous line 

or a broad inhomogeneous collection of lines like a Doppler profile. The 

laser simply interacts with the entire ensemble at once. 

Second, and this is a crucial point for experimentalists, this case highlights 

the importance of spectral brightness, not just total power. Spectral 

brightness is power per unit bandwidth. Our formula 



 I s ≈ c R ∗  B 12 ⋅  δ ν L 𝐼s ≈
𝑐 𝑅∗

𝐵12
⋅ 𝛿𝜈L 

shows that to achieve saturation ( I ≈ I s 𝐼 ≈ 𝐼s), what matters is the power 

you can deliver within the relevant atomic linewidth. A 1 Watt laser with a 

100 GHz bandwidth may be less effective at saturating a transition than a 1 

milliwatt laser with a 1 MHz bandwidth, because the latter has a much 

higher spectral brightness. It concentrates all of its power exactly where it’s 

needed. 
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Let's plug in some numbers for this broadband case, following Example 2.3 

from the textbook. 

We'll assume a laser bandwidth of  δ ν L = 3 × 10 9 s − 1 𝛿𝜈L = 3 × 109 s−1, 

which is 3 gigahertz. In terms of wavenumbers, which chemists and 

physicists often use, this is  0.1 c m − 1 0.1 cm−1. This is a typical 

bandwidth for a standard, non-stabilized dye laser or a multimode diode 

laser. 

To calculate  I s 𝐼s, we need the Einstein  B 12 𝐵12 coefficient. We can 

relate  B 12 𝐵12 to the more commonly quoted spontaneous emission rate  

A 21 𝐴21 using a standard formula from quantum mechanics. For a simple 

two-level system, this relation is: 

 B 12 = c 3 8 π h ν 3 A 21 .  

𝐵12 =
𝑐3

8𝜋ℎ𝜈3  𝐴21. 



Now, we substitute this expression for  B 12 𝐵12, along with our molecular 

beam parameters for the relaxation rates  R 1 𝑅1 and  R 2 𝑅2, into our 

formula for  I s 𝐼s from the previous slide. After turning the crank on the 

arithmetic, we arrive at the result: The saturation intensity  I s 𝐼s is 

approximately  3 × 10 3 3 × 103 Watts per square meter. 

Is this a lot? Let's see what it means in terms of total power. If we focus our 

laser beam down to a spot with an area  A = 1 𝐴 = 1 square millimeter ( 1 

m m 2 1 mm2), the power  P s 𝑃s required to reach this saturation intensity 

is:  P s = I s × A = ( 3 × 10 3 W / m 2 ) × ( 10 − 6 m 2 ) = 3 × 10 − 3 𝑃s =

𝐼s × 𝐴 = (3 × 103 W/m2) × (10−6 m2) = 3 × 10−3 Watts, or 3 milliwatts. 
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The result of our calculation—that only 3 milliwatts of power is needed to 

saturate the transition in this broadband example—is very significant. 

As the slide notes, this illustrates the feasibility of saturation spectroscopy 

with very modest, common laboratory lasers. Three milliwatts is well within 

the output power range of typical diode lasers, like the one in your laser 

pointer, or laboratory workhorses like dye lasers and Ti:sapphire lasers. 

You don't need a giant, building-sized fusion laser to explore nonlinear 

optics. The high spectral brightness of even common, low-power lasers is 

more than sufficient to drive atomic and molecular transitions into the 

saturated regime, opening the door to a wide range of powerful 

spectroscopic techniques. 
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Let’s consider another important special case: matching the laser 

bandwidth to the homogeneous width of the transition. This represents the 

most efficient use of laser photons, as you’re putting all the light exactly 

where the atoms can absorb it. 

The condition is  δ ν L ≈ γ / 2 π 𝛿𝜈L ≈ 𝛾/2𝜋, where  γ 𝛾 is the full-width at 

half-maximum of the homogeneous Lorentzian lineshape. For our 

molecular beam example, the homogeneous width  γ 𝛾 is determined by 

the total decay rate from the upper state,  A 2 𝐴2, and the transit time, 

which contributes to the broadening for both levels. The formula is  γ = A 2 

+ 2 / t τ 𝛾 = 𝐴2 + 2/𝑡𝜏. 

With this condition, we can derive a specific formula for the saturation 

intensity  I s 𝐼s. The algebra is a bit involved, but the result is: 

 I s = 4 h ν 3 T A 21 c 2 ( A 2 + 1 / t τ ) .  

𝐼s =
4 ℎ 𝜈3

𝑇 𝐴21 𝑐
2(𝐴2 + 1/𝑡𝜏)

. 

There seems to be a  T 𝑇 in the formula on the slide which is likely a typo 

and should not be there. Let’s ignore it. 

Plugging in our typical numbers for a visible transition, we arrive at a 

remarkable result:  I s 𝐼s is approximately  100   W / m 2 100 W/m2. This is 

equivalent to  100   μ W / m m 2 100 𝜇W/mm2. 

This is already 30 times lower than the saturation intensity we found for the 

broadband laser. We are using our photons much more efficiently. 



Now, what if we focus the laser even more tightly? If we focus down to a 

tiny spot,  10 × 10   μ m 2 10 × 10 𝜇m2, which has an area of  10 − 10   m 2 

10−10 m2, the required power to reach saturation,  P s 𝑃s, is: 

 P s = I s × A = ( 100   W / m 2 ) × ( 10 − 10   m 2 ) = 10 − 8   W ,  

𝑃s = 𝐼s × 𝐴 = (100 W/m2) × (10−10 m2) = 10−8 W, 

which is 10 nanowatts. 
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The result of that last calculation—that a saturation power of just 10 

nanowatts is needed when the laser bandwidth is matched to the 

homogeneous width and tightly focused—is truly astounding. 

This demonstrates the incredible propensity of narrow-band lasers to 

saturate even extremely weak transitions. Ten nanowatts is an 

exceptionally small amount of optical power. This means that if you have a 

stable, narrow-band laser, you can perform saturation spectroscopy on 

almost any allowed transition you can find. It underscores the power of 

concentrating your optical energy not just spatially (by focusing) but also 

spectrally (by using a narrow-band source). This is the key that unlocks the 

ability to study subtle effects and very weak transitions with high precision. 
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Let's now analyze our final specific scenario, Case (b): a single‐ mode 

laser interacting with a simple atomic line. 



First, let's lay out the assumptions. We assume the atomic line is 

homogeneously broadened. This means effects like Doppler broadening 

are absent, perhaps because we are using a cooled and trapped sample of 

atoms or a perpendicular atomic beam. We also assume that spontaneous 

emission is the dominant relaxation mechanism. This means we can 

neglect collisions and transit‐ time effects. 

Under these conditions, the relaxation rates simplify greatly. The ground 

state is stable, so  R 1 = 0 𝑅1 = 0. The upper state decays only via 

spontaneous emission back to the ground state, so  R 2 = A 21 𝑅2 = 𝐴21. 

Our effective relaxation rate  R ∗  𝑅∗ was defined as  R 1 R 2 R 1 + R 2 

𝑅1  𝑅2

𝑅1+𝑅2
. Plugging in  R 1 = 0 𝑅1 = 0 and  R 2 = A 21 𝑅2 = 𝐴21 seems to give 

zero, but we need to be more careful. This is a case of a closed two‐ level 

system. The relevant relaxation rate in the formula relating  S 𝑆 and  Ω R 

𝛺R is  R 1 R 2 𝑅1𝑅2. If  R 1 𝑅1 is zero... ah, we need to use the more 

general formula for a closed system. 

Alternatively, the slide provides a result for \(R^\). It states that for 

upper‐ state decay only via  A 21 𝐴21, the effective \(R^\) to be used is  A 

21 / 2 𝐴21/2. This comes from the proper treatment of a closed two‐ level 

system. 

Now, we can consider the phenomenon of power broadening. When we 

drive a transition with a strong field, the transition itself appears broader. 

The saturation‐ broadened half‐ width of the transition at an intensity 

corresponding to  S = 1 𝑆 = 1 is given by the formula... 
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The slide gives the saturation-broadened absorption linewidth  δ ν a 𝛿𝜈a for 

this case. It is given by  δ ν a = 2 A 21 2 π 𝛿𝜈a = √
2 𝐴21

2𝜋
. This formula seems 

slightly unconventional. A more standard result for the power-broadened 

FWHM  γ ′ 𝛾′ is  γ ′ = γ 1 + S 𝛾′ = 𝛾√1 + 𝑆, where  γ = A 21 2 π 𝛾 =
𝐴21

2𝜋
 is 

the natural linewidth. 

Let’s focus on the second part of the slide, which is a classic and very 

useful result. We can derive the saturation intensity  I s 𝐼s directly from the  

S = 1 𝑆 = 1 condition. This requires relating the  B 12 𝐵12 coefficient to  A 

21 𝐴21 and using the appropriate relaxation rates. When the algebra is 

done, we obtain the following classic formula for the saturation intensity of 

a two-level atom dominated by spontaneous emission: 

 I s = 2 2 h ν A 21 λ 2  

𝐼s =
2√2 ℎ 𝜈 𝐴21

𝜆2  

There seems to be an inconsistency in the formulas presented across 

slides. A more standard, and perhaps more memorable, formula often 

derived in this limit is 

 I s = π h c A 21 3 λ 3  

𝐼s =
𝜋 ℎ 𝑐 𝐴21

3 𝜆3  

or 

 I s = 2 π 2 h c γ 3 λ 3 .  



𝐼s =
2𝜋2  ℎ 𝑐 𝛾

3 𝜆3 . 

Let’s proceed with the formula given on the slide, but be aware that 

different derivations can lead to slightly different numerical prefactors 

depending on the exact definitions of lineshape and width. The key 

dependencies are what matter. 

 I s 𝐼s is proportional to  h ν ℎ𝜈 (the photon energy) and  A 21 𝐴21 (the 

decay rate), and inversely proportional to  λ 2 𝜆2 (the wavelength squared). 

We also use the fundamental relation 

 λ = c ν  

𝜆 =
𝑐

𝜈
 

. 
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Let's explore an alternative route to derive this saturation intensity,  I s 𝐼s, 

using the absorption cross-section. This is a great way to build confidence 

in our results; if we can arrive at the same answer from two different 

perspectives, we can be more certain that our theory is consistent. 

First, let's look at the integrated line strength. We've already established 

the relationship between the integrated cross-section and the Einstein 

coefficients. Here it's written connecting  B 12 𝐵12 and  A 21 𝐴21: 

 ∫ σ 12 d ν = h ν c B 12 = c 2 8 π ν 2 A 21 .  



∫ 𝜎12 𝑑𝜈 =
ℎ𝜈

𝑐
 𝐵12 =

𝑐2

8𝜋𝜈2  𝐴21. 

This is a fundamental sum rule. 

Now, for a purely lifetime-broadened transition, the lineshape is a 

Lorentzian. A Lorentzian has a peak value,  σ ( ν 0 ) 𝜎(𝜈0), and a full-width 

at half-maximum,  γ 𝛾. The area under a Lorentzian is related to the peak 

times the width. Specifically, 

 ∫ σ ( ν ) d ν = π 2 σ ( ν 0 ) γ .  

∫ 𝜎(𝜈) 𝑑𝜈 =
𝜋

2
 𝜎(𝜈0) 𝛾. 

The slide suggests a simpler approximation:  peak value × width ≈ integral . 

peak value × width ≈ integral. So,  σ ( ν 0 ) γ ≈ c 2 8 π ν 2 A 21 . 𝜎(𝜈0) 𝛾 ≈

𝑐2

8𝜋𝜈2
 𝐴21. We also know the natural linewidth is  γ = A 21 2 π . 𝛾 =

𝐴21

2𝜋
. We 

can solve this for the peak cross-section  σ ( ν 0 ) 𝜎(𝜈0). 

Then, we can use an alternative definition for  I s 𝐼s, which is  I s = h ν 2 σ ( 

ν 0 ) τ s p 𝐼s =
ℎ𝜈

2 𝜎(𝜈0) 𝜏𝑠𝑝
, where  τ s p = 1 A 21 𝜏𝑠𝑝 = 1 𝐴21⁄ . Plugging in our 

expression for  σ ( ν 0 ) 𝜎(𝜈0) should allow us to derive the same  I s 𝐼s. 
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After performing the calculation using the cross-section method, we arrive 

at an expression for the saturation intensity  I s 𝐼s. The expression shown 

here is: 

 I s = 2 h ν A 21 λ 2  



𝐼s =
2ℎ𝜈𝐴21

𝜆2  

This result is derived without explicitly including the effects of saturation 

broadening in the definition, hence the note "(without saturation 

broadening)". It differs from the formula on Paage 70 by a factor of  2 √2. 

This highlights that numerical prefactors can vary depending on the 

approximations used (e.g., square lineshapes vs. Lorentzians, how 

broadening is handled). The key takeaway is that the physical 

dependencies—proportionality to  h ν ℎ𝜈 and  A 21 𝐴21, and inverse 

proportionality to  λ 2 𝜆2—remain robust. 

The final point here is a crucial one in theoretical physics. Performing these 

kinds of consistency cross-checks, where we derive the same result from 

different starting points, provides confidence in our theoretical expressions. 

It shows that our framework of rate equations, Einstein coefficients, and 

cross-sections forms a coherent and self-consistent picture of reality. 
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Let's end our theoretical development with one final numerical example, 

this time for a typical visible atomic line. 

We will choose a wavelength  λ = 500 𝜆 = 500 nanometers, which is in the 

green part of the spectrum. We'll assume a strong, allowed transition with a 

spontaneous decay rate of  A 21 = 10 8 s − 1 𝐴21 = 108 s−1, which 

corresponds to an excited state lifetime of 10 nanoseconds. 

Now, let's evaluate the saturation intensity  I s 𝐼s using the formula from 

Paage 70: 



 I s ≈ 2 2 h c 2 A 21 λ 3 ,  

𝐼s ≈
2√2 ℎ 𝑐2 𝐴21

𝜆3
, 

after substituting  ν = c / λ 𝜈 = 𝑐/𝜆. The slide presents the result of this 

calculation as:  I s ≈ 2.6 × 10 7 W / m 2 𝐼s ≈ 2.6 × 107 W/m2. This is 26 

megawatts per square meter. This seems like a very high intensity. 

As the slide notes, in a live lecture, we would work through the detailed 

arithmetic on the board to ensure all the constants and powers of 10 are 

correct.  h ≈ 6.6 × 10 − 34 ℎ ≈ 6.6 × 10−34,  c ≈ 3 × 10 8 𝑐 ≈ 3 × 108,  A 21 

= 10 8 𝐴21 = 108,  λ = 5 × 10 − 7 𝜆 = 5 × 10−7. 

 I s ≈ 2.8 × 6.6 × 10 − 34 × 3 × 10 8 × 10 8 ( 5 × 10 − 7 ) 2 = 5.9 × 10 − 17 

2.5 × 10 − 13 ≈ 2.4 × 10 − 4 W / m 2 .  

𝐼s ≈
2.8 × 6.6 × 10−34 × 3 × 108 × 108

(5 × 10−7)2 =
5.9 × 10−17

2.5 × 10−13 ≈ 2.4 × 10−4 W/m2. 

There is a major discrepancy between my calculation and the slide. Let's 

re-examine the formulas. Using  I s = π h c A 21 3 λ 3 𝐼s =
𝜋 ℎ 𝑐 𝐴21

3 𝜆3
: 

 I s = π × 6.6 × 10 − 34 × 3 × 10 8 × 10 8 3 × ( 5 × 10 − 7 ) 3 ≈ 1.6 × 10 2 W 

/ m 2 .  

𝐼s =
𝜋 × 6.6 × 10−34 × 3 × 108 × 108

3 × (5 × 10−7)3 ≈ 1.6 × 102 W/m2. 

Let's trust the slide's calculation for now, as there may be a definition I'm 

missing, but always be critical of the numbers. Assuming  I s ≈ 2.6 × 10 7 

W / m 2 𝐼s ≈ 2.6 × 107 W/m2 is correct, let's see the power required. 



If we focus this light to a 10 micrometer radius spot, the area is  A = π r 2 ≈ 

3.1 × 10 − 10 m 2 𝐴 = 𝜋𝑟2 ≈ 3.1 × 10−10 m2. The required saturation power  

P s 𝑃s is then  I s × A 𝐼s × 𝐴. 

 P s ≈ ( 2.6 × 10 7 W / m 2 ) × ( 3.1 × 10 − 10 m 2 ) ≈ 8.1 × 10 − 3 W .  

𝑃s ≈ (2.6 × 107 W/m2) × (3.1 × 10−10 m2) ≈ 8.1 × 10−3 W. 

The slide says 0.8 mW. 

Ah,  2.6 × 10 3 W / m 2 2.6 × 103 W/m2 would give  0.8 μ W 0.8 𝜇W.  2.6 × 

10 7 W / m 2 2.6 × 107 W/m2 gives  8 m W 8 mW. It seems there are some 

typos in the slide's numbers. The key point, however, is that even for a high 

saturation intensity, the required power is typically in the milliwatt range or 

less due to the tight focusing, which is readily achievable. 
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Let's consider how the saturation intensity changes with the strength of the 

transition. Our formulas show that  I s 𝐼s is directly proportional to  A 21 𝐴21. 

So, if we consider a weaker transition, for instance, one where  A 21 = 10 7 

s − 1 𝐴21 = 107 s−1 (a 100 nanosecond lifetime) instead of  10 8 s − 1 

108 s−1, the saturation intensity  I s 𝐼s will drop by the same factor of 10. 

This might seem counter-intuitive at first. A weaker transition requires less 

intensity to saturate. Why? Because saturation is a competition between 

pumping and relaxation. For a weak transition, the relaxation rate  A 21 𝐴21 

is slow. This means the atom, once excited, stays in the upper state for a 

long time. It doesn't take a very high pumping rate to keep up with this slow 

relaxation and deplete the ground state. For a strong transition, relaxation 



is very fast, so you need a much more intense laser to pump the atoms 

faster than they can decay. 
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Let's briefly discuss a couple of additional factors that are important in real 

experiments: collision broadening and the use of pulsed lasers. 

First, collisions. In a gas cell, atoms are constantly colliding with each other 

or with a buffer gas. Each collision can interrupt the phase of the atomic 

wavefunction or induce a transition. This is an additional relaxation 

mechanism and it contributes to the homogeneous width of the transition. 

We can define a collisional broadening width,  γ coll 𝛾coll. This adds to the 

other relaxation rates, so the total relaxation rate  γ 𝛾 increases. Since the 

saturation intensity  I s 𝐼s is proportional to the relaxation rate ( I s ∝ γ 𝐼s ∝

𝛾), increasing the pressure and thus the collision rate will increase the 

saturation intensity. This is why at high pressures, more laser power is 

needed to saturate a transition. Techniques like buffer-gas cooling can be 

used to mitigate this by slowing down the collisions. 

Second, pulsed lasers. So far, we’ve mostly assumed continuous-wave 

(CW) lasers. But many experiments use pulsed lasers, which have very 

high peak power but are only on for a short duration,  T L 𝑇L (for example, 

nanoseconds or femtoseconds). If this pulse duration  T L 𝑇L is shorter than 

the population relaxation time (which is on the order of  1 / R 1/𝑅), then the 

system never reaches a steady state. Our steady-state rate equation 

analysis breaks down completely. 
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When dealing with short laser pulses where the system does not reach 

steady state, we need a more sophisticated approach. 

The effective saturation criterion must then be derived from the time-

dependent solutions of the optical Bloch equations. The Bloch equations 

are a more complete semi-classical model that tracks the evolution of the 

population difference and the atomic coherence (the off-diagonal elements 

of the density matrix) as a function of time. 

Solving these equations is beyond the scope of our current discussion, but 

the key conceptual difference is this: for CW saturation, we care about 

intensity (power per area, in Watts per square meter). For pulsed 

saturation, we care about fluence (energy per area, in Joules per square 

meter). You need to deliver a certain amount of energy in your pulse—often 

characterized by a "π-pulse" which has enough energy to completely invert 

the population—before the atom has time to relax. 
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This graph provides a very clear comparison of saturation behavior for 

continuous-wave (CW) versus nanosecond pulsed excitation. 

The axes are Normalized Signal (which could be the fraction of population 

in the excited state,  N 2 / N 𝑁2/𝑁) versus the Average Laser Power. 

The blue curve represents the CW laser. As we've discussed, it shows the 

classic saturation behavior. The system reaches a steady state where the 



excitation rate is balanced by the relaxation rate. Saturation depends on 

the laser's intensity (in Watts per square meter). 

The orange curve represents the pulsed laser. Notice that it rises much 

more steeply and saturates at a much lower average power. Why? 

Because the peak power of the pulse is enormous. Even though the laser 

is off most of the time, when it's on, it's incredibly bright. The text box for 

the pulsed laser explains that the pulse duration is shorter than the 

relaxation time, so the system is not in steady state. Significant population 

transfer can happen within a single pulse. Saturation now depends on the 

pulse fluence (in Joules per square meter). 

The dashed lines show a comparison. To reach a signal level of 0.5, the 

CW laser requires an average power of about 400 arbitrary units. The 

pulsed laser achieves the same level of excitation with an average power of 

only about 50 units. This is because the pulsed laser can efficiently pump 

the population before relaxation has a chance to undo its work. 

Page 78: 

Alright, let's summarize the key take-away messages from this entire 

lecture on linear and nonlinear absorption. 

First, the saturation parameter, capital  S 𝑆, is the central concept. It 

encapsulates the competition between light-induced excitation and the 

various relaxation processes in the system. The condition  S = 1 𝑆 = 1, 

which occurs at the saturation intensity  I s 𝐼s, defines the operational 

boundary between the linear and nonlinear regimes. It's the point where the 

population difference is halved. 



Second, the saturation intensity  I s 𝐼s is not a universal constant. It 

depends on many factors: the intrinsic transition probability of the atom 

(related to  A 21 𝐴21), the laser bandwidth, the specific relaxation channels 

present in the environment (collisions, transit time), and the focusing 

geometry of the beam. You must calculate it for your specific experimental 

conditions. 

Third, the distinction between open and closed systems is practically very 

important. Open systems, where population can leak out to a reservoir, can 

be "bleached" far more strongly than closed systems. This allows for the 

generation of very clear, high-contrast nonlinear signals, which is essential 

for many high-precision experiments. 
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And the final, and perhaps most important, take-away message is a 

practical one. 

The quantitative formulas we have derived today are not just abstract 

theoretical constructs. They are the essential tools that allow 

experimentalists to intelligently design their experiments. By using these 

formulas, you can calculate the required laser power, determine the optimal 

beam waist (focusing), and choose the right sample environment (e.g., a 

low-pressure cell or a molecular beam) to achieve the desired saturation 

conditions for optimal nonlinear-spectroscopic performance. This is theory 

put directly into practice. 

Page 80: 



To help you solidify your understanding of these concepts, here are some 

suggested further exercises. I strongly encourage you to work through 

them. 

1. Derive the saturation intensity  I s 𝐼s for a three-level Lambda-system. In 

a Lambda system, you have two ground states and one excited state. 

Imagine the upper level can decay preferentially to a third level, which is 

not the one you started from. How does this additional decay path, which 

makes the system very "open," affect the relaxation rates and the final 

expression for  I s 𝐼s? 

2. Simulate the time-dependent saturation for a nanosecond pulse. This 

would involve numerically solving the optical Bloch equations (or at least 

the time-dependent rate equations) for a system with a given Rabi 

frequency,  Ω R = 10 9 s − 1 𝛺R = 109 s−1, and relaxation rates  R 1 = R 2 

= 10 6 s − 1 𝑅1 = 𝑅2 = 106 s−1. You could plot the upper state population  

N 2 𝑁2 as a function of time during and after the pulse. 

3. This is a practical challenge. Think about how you would perform 

Doppler-free saturation spectroscopy on iodine vapor, a classic experiment. 

Using the formulas we discussed from slides 30 to 34, estimate the laser 

power you would need. You'll have to look up the relevant parameters for 

the iodine transitions, like  A 21 𝐴21 and the Doppler width at room 

temperature. 
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And a fourth exercise for those who are particularly ambitious: 



4. Explore the impact of power broadening on frequency-stabilization 

schemes. A very common technique for locking a laser's frequency to an 

atomic transition is the Pound-Drever-Hall (PDH) method. This method 

relies on probing the sharp dispersive feature of the transition. However, as 

you increase the laser power to get a better signal-to-noise ratio, you also 

power-broaden the transition. How does this broadening affect the slope of 

the error signal in a PDH lock, and what are the trade-offs between signal 

strength and locking accuracy? This is a very real problem in experimental 

physics. 
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Finally, I want to acknowledge the sources for this material and provide you 

with references for further reading. 

The primary source for much of this lecture, and indeed for this entire 

course, is the quintessential textbook in the field: Wolfgang Demtröder’s 

“Laser Spectroscopy.” I am using the 5th edition, published by Springer. If 

you buy one book on this subject, this should be it. It’s comprehensive, 

clear, and covers both the fundamental theory and the experimental details. 

For supplementary reading, I highly recommend a few other classics. 

Sargent, Scully, and Lamb’s “Laser Physics” is a more advanced, deeply 

theoretical treatment, especially good if you want to dive into the quantum 

mechanics and the density matrix formalism. 

Haken and Wolf’s “Molecular Physics and Elements of Quantum 

Chemistry” provides an excellent bridge between the worlds of physics and 

chemistry and has very clear explanations of many fundamental concepts. 



That concludes our lecture for today. Please review these concepts and 

have a look at the exercises. Next time, we will use this foundation in 

saturation to build our first Doppler-free spectroscopic technique. Thank 

you. 

  


