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Good morning, everyone. Welcome back to Physics 608, Laser 

Spectroscopy. I'm Distinguished Professor Dr M A Gondal, and today, we 

embark on a new and exciting topic, which we'll cover in this section, 1.4: 

Ionization Spectroscopy. 

In our previous discussions, we've explored various ways lasers can 

interact with matter, primarily focusing on absorption and fluorescence. 

These are powerful techniques, but they have their limitations, especially 

when we push towards the ultimate goal of detecting exceedingly small 

quantities of atoms or molecules. 

Ionization spectroscopy represents a paradigm shift in detection strategy. 

Instead of looking for the faint shadow of an absorbed photon or trying to 

catch the faint glimmer of a fluorescent photon, we are going to use the 

laser to fundamentally change the nature of our target species—we're 

going to turn it into a charged particle. 

As we will see, this seemingly simple act of converting a neutral particle 

into an ion or an electron opens up a world of detection possibilities with 

almost breathtaking sensitivity. We are talking about techniques that can, 

quite literally, count single atoms. 

So, over the course of this lecture, we will build a complete picture of this 

family of techniques. We will start with the core concepts, develop the 

underlying quantitative framework, explore the various experimental 

implementations, and finally, look at some of the most advanced 



applications, from fundamental atomic physics to mass spectrometry and 

even planetary science. Let's begin. 
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Alright, let's dive into the core concept of Ionization Spectroscopy. The 

central idea is articulated in the first bullet point. 

Our goal is to convert the absorption of one or more photons by a neutral 

species into a readily detectable flow of charged particles—that is, ions or 

electrons. Think about this for a moment. In conventional absorption 

spectroscopy, you measure a tiny decrease in a large, transmitted light 

intensity. It's like trying to weigh a ship's captain by weighing the ship with 

and without the captain on board. It's an incredibly difficult difference 

measurement. In fluorescence spectroscopy, you're trying to collect 

photons that are emitted isotropically, over a four pi solid angle, and your 

detector only covers a small fraction of that. 

Ionization spectroscopy sidesteps these problems. We are not measuring a 

difference, and we are not struggling with low collection efficiency. We are 

creating a new particle, an ion, where there was none before. And the 

beauty of charged particles is that they are fantastically easy to detect. 

This brings us to the second, critical point on the slide. The power of this 

technique relies on the huge signal-to-noise advantage of electrical current 

counting over optical power measurements. We can take the ion we've just 

created, accelerate it with an electric field, and guide it directly to a 

detector. Modern detectors, like microchannel plates or electron multipliers, 

are so efficient that the impact of a single ion can generate a cascade of 



millions of electrons—a robust, easily measurable electrical pulse. The 

background for this measurement is essentially zero. We're not looking for 

a tiny signal on top of a large background; we are listening for a clear 

"click" in an otherwise silent room. This is why ionization methods can 

achieve sensitivities that are simply unattainable with many other optical 

techniques. The fundamental task is transformed from measuring photons 

to counting particles, and in the world of quantum measurements, counting 

is king. 
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So, how do we actually accomplish this? The process is conceptually a 

two-step sequence. 

The key step, as noted here, is to first use a laser to promote the 

population from some initial quantum state, which we'll label with the ket  | i 

⟩  |𝑖⟩ and energy  E i 𝐸i, to a specific, chosen excited state, which we'll call  

| k ⟩  |𝑘⟩ with energy  E k 𝐸k. This first step is the spectroscopic step. By 

tuning our laser's frequency, we select exactly which energy level  E k 𝐸k 

we want to populate. This gives the technique its incredible selectivity. 

Once the atom or molecule is in this excited state, we then apply a second 

step to remove an electron, thereby creating an ion. 

Now, what happens to the charged products we've made? As the second 

bullet points out, these resulting ions or electrons are accelerated by 

electric fields, typically to energies of several kilo-electron-volts, or keV. At 

these energies, they can be counted with nearly unit efficiency when the 

experiment is properly optimized. This is a remarkable statement. It means 



that for every ion we create in the interaction region, we can get one count 

in our detector. We are approaching a perfect one-to-one correspondence 

between the quantum event we initiated and the signal we measure. 

This general idea can be implemented in several ways, which we can think 

of as a family of related techniques. The slide lists the four main branches 

we'll be exploring: 

- (a) direct photoionization, the simplest case where a single photon has 

enough energy to ionize the atom directly. - (b) resonant multiphoton 

ionization, universally known by its acronym, R. E. M. P. I., or REMPI. This 

is the workhorse of the field. - (c) collision-induced ionization, where the 

final ionization step is caused not by a photon, but by a collision with 

another particle. - (d) field ionization, a clever technique where a static 

electric field is used to literally rip the electron off a highly excited atom. 

We will delve into each of these, but first, let's visualize the entire process 

with a block diagram of a typical experiment. 
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Here on this page, we see a conceptual block diagram that lays out the 

anatomy of a generic ionization spectroscopy experiment. It's a fantastic 

roadmap for our discussion, so let's walk through it from left to right, 

following the five labeled stages. 

Stage 1 is Laser Excitation. This begins with our Laser System. This might 

be a tunable dye laser, a Ti:sapphire laser, or a diode laser. It could be 

pulsed or continuous-wave, depending on the specific technique. This laser 



produces a beam of photons with a well-defined energy,  h ν ℎ𝜈, that we 

direct into our experimental chamber. 

This leads us to Stage 2: Ionization. The laser beam enters an Interaction 

Region, which is typically under high vacuum. In this region, our laser 

interacts with the sample, which is depicted here as a cloud of neutral 

atoms or molecules, labeled 'A'. The diagram shows a laser photon, 

represented by the squiggly red arrow labeled  h ν ℎ𝜈, striking a neutral 

atom  A 𝐴. This interaction is what drives the transition from the ground 

state to our chosen excited state. A subsequent process, which could be 

the absorption of another photon, then provides the energy to eject an 

electron, creating a positive ion, which is shown here as  A + 𝐴+. 

Once the ion is created, we move to Stage 3: Acceleration and Focusing. 

The newly formed ion,  A + 𝐴+, doesn't just sit there. It is immediately 

subjected to an electric field generated by a set of electrodes labeled "Ion 

Optics." You can see plates with voltages  V 0 𝑉0,  V 1 𝑉1, and  V 2 𝑉2. 

These electrodes act as an electrostatic lens, grabbing the ion and 

accelerating it along a well-defined "Ion Trajectory," represented by the 

solid blue arrow. The goal of these ion optics is to efficiently collect every 

single ion created in the interaction volume and steer it towards the 

detector. 

That brings us to Stage 4: Detection. The focused beam of ions strikes a 

Detector. This device, as we mentioned, is designed to be extremely 

sensitive. Upon impact, the single ion initiates a process that generates a 

much larger, measurable electrical signal. 



And finally, Stage 5: Data Acquisition. The electrical pulse from the detector 

is sent to our data acquisition system. This could be an oscilloscope, a 

boxcar averager, or a computer card. It records the event. Typically, we 

would record the number of these events—the number of ions detected—

as a function of the wavelength of our excitation laser. Plotting the ion 

signal versus the laser wavelength produces our spectrum, as shown by 

the peak on the screen labeled "Data." 

So, in essence, we use light to "tag" an atom of interest, creating an ion, 

and then we use electric fields and electronics to count that tag with 

incredible efficiency. 
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Now let's move from the block diagram of the experiment to the quantum 

mechanical heart of the matter: the energy-level picture of the process. 

This is where the spectroscopy truly happens. 

To understand this, we need to consider two essential manifolds of states 

for our atom or molecule. First, we have the bound levels. These are the 

discrete, quantized energy levels, which we've been labeling  E i 𝐸i,  E k 𝐸k, 

and so on. These all lie below a critical energy threshold. They represent 

states where the electron is still bound to the atomic or molecular core. 

Second, above this threshold, we have the ionization continuum. This is not 

a discrete level, but a continuous range of energies. It begins at the 

ionization energy, which we denote as  I P 𝐼𝑃. Any state in this continuum 

corresponds to the electron being completely free from the parent atom or 



molecule, which is now an ion. The energy above the ionization potential,  I 

P 𝐼𝑃, simply corresponds to the kinetic energy of the free electron and ion. 

Now, let's look at the basic photon-absorption path for the most common 

and powerful variant of this technique, known as Resonant Two-Photon 

Ionization, or RTPI. The process is written out here symbolically: 

The system starts in an initial state, ket  | i ⟩  |𝑖⟩. It then absorbs a photon 

with energy  h ν 1 ℎ𝜈1. This absorption is a resonant process, meaning  h ν 

1 ℎ𝜈1 must be precisely tuned to match the energy difference between 

state  | i ⟩  |𝑖⟩ and some intermediate excited state, ket  | k ⟩  |𝑘⟩. So, the 

first step is the transition from  | i ⟩  |𝑖⟩ to  | k ⟩  |𝑘⟩. 

From this intermediate state  | k ⟩  |𝑘⟩, the system then absorbs a second 

photon, this one with energy  h ν 2 ℎ𝜈2. This photon provides the additional 

energy needed to push the electron past the ionization potential and into 

the continuum. The final result of this second step is a positive ion, which 

we'll denote  M + 𝑀+, and a free electron,  e − 𝑒−. 

This two-step ladder—resonant excitation followed by ionization—is the 

fundamental pathway we will be analyzing. Let's now explicitly define each 

of the symbols involved on the next page. 
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Continuing with our energy-level picture, let's make sure every symbol is 

crystal clear. 

The terms  h ν 1 ℎ𝜈1 and  h ν 2 ℎ𝜈2 represent the photon energies of the 

two lasers we use in the experiment, which we can call L-one and L-two. In 



some cases, L-one and L-two can be the same laser, which is called a 

"one-color" experiment. More often, they are different lasers, allowing us to 

optimize each step independently in a "two-color" experiment. 

 M + 𝑀+ represents the molecular ion that is created. Of course, this could 

also be an atomic ion if our sample consists of atoms. 

 e − 𝑒− is the freed electron, which is often called a photoelectron. It carries 

away any excess energy from the ionization process as kinetic energy, 

which we can label  E k i n 𝐸kin. In some advanced experiments, we can 

even measure this kinetic energy to get more information, a technique 

called photoelectron spectroscopy. 

Now for the most important strategic point of this entire process. The 

overall sensitivity of our measurement is usually dominated by the first 

step: locating a strong, allowed transition from our initial state  | i ⟩  |𝑖⟩ to 

the intermediate state  | k ⟩  |𝑘⟩. Why? Because if this first step is very 

unlikely to happen—if the absorption cross-section is small—then we 

simply won't create many molecules in the excited state  | k ⟩  |𝑘⟩, and it 

won't matter how efficient our ionization step is. We need to find a transition 

with a large oscillator strength to efficiently "pump" population into the 

intermediate state. This is where all the rules of spectroscopy—selection 

rules, Franck-Condon factors for molecules, and so on—come into play. 

Finally, there's a special case mentioned that is extremely powerful. If the 

intermediate state  E k 𝐸k is what's known as a Rydberg level, the 

ionization step can be exceptionally efficient. A Rydberg level is a very 

highly excited state where the electron is, on average, very far from the 

ionic core. It's almost free. Because it's so loosely bound and its 



wavefunction is so extended, it couples very strongly to the ionization 

continuum. This results in a very large cross-section for the final ionization 

step. So, a strategy of exciting to a Rydberg state and then ionizing is a 

well-known trick for maximizing the signal in these experiments. 
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This slide gives us a clean, visual representation of the energy-level picture 

we've just discussed. It's a fantastic way to solidify the concepts. 

Let's break down what we're seeing. The vertical axis represents energy, 

labeled ' E 𝐸'. At the very bottom, we have a thick, solid line labeled with 

the ket  | i ⟩  |𝑖⟩, representing the initial, typically ground, state of our 

molecule. 

From this initial state, we see a red, wavy arrow pointing upwards, labeled  

h ν 1 ℎ𝜈1. This represents the absorption of the first photon from our first 

laser, L-one. This photon's energy is tuned to be resonant with the energy 

difference between the initial state and an intermediate state, which is the 

solid line labeled with the ket  | k ⟩  |𝑘⟩. This is our spectroscopic step. 

Notice the annotation on the left, "Rydberg." It indicates that in this 

particular diagram, the state  | k ⟩  |𝑘⟩ is chosen to be a high-lying Rydberg 

state, just as we discussed on the previous slide. These states are 

clustered together just below the ionization limit. 

Above the discrete levels, we see a dashed horizontal line labeled  I P 𝐼𝑃, 

for Ionization Potential. This is the threshold energy required to liberate the 

electron. 



From our intermediate state  | k ⟩  |𝑘⟩, a second, blue wavy arrow labeled  

h ν 2 ℎ𝜈2 points upward. This represents the absorption of the second 

photon, from laser L-two. This photon's energy is sufficient to take the 

molecule from state  | k ⟩  |𝑘⟩ up and across the ionization potential,  I P 𝐼𝑃, 

into the shaded region at the top, which is labeled the "Ionization 

Continuum." 

Once in the continuum, the molecule has become an ion-electron pair, 

denoted as  M + + e − 𝑀+ + 𝑒−. These are now free particles that we can 

guide and detect. 

This diagram beautifully encapsulates the "resonant-excitation-followed-by-

ionization" scheme. The first red arrow is all about selectivity and 

spectroscopy. The second blue arrow is all about efficient conversion to a 

detectable charged particle. 
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Let's now formalize the second step of our process—the photoionization 

itself—by looking at its chemical equation and notation. 

The fundamental reaction is shown here. We begin with a molecule that is 

already in an excited state. We denote this as \(M^(E_\text{k})\). The \(M^\) 

indicates an electronically excited species, and the  ( E k ) (𝐸k) reminds us 

that it's specifically in the quantum state  k 𝑘. This excited molecule then 

interacts with a photon from our second laser, L-two, with energy  h ν 2 ℎ𝜈2. 



The result of this interaction, as shown by the arrow, is the creation of three 

products: the molecular ion,  M + 𝑀+; a free electron,  e − 𝑒−; and the 

kinetic energy carried by that electron,  E k i n ( e − ) 𝐸kin(𝑒
−). 

Conservation of energy dictates that the initial energy,  E k + h ν 2 𝐸k + ℎ𝜈2, 

must equal the final energy, which is the ionization potential  I P 𝐼𝑃 plus the 

kinetic energy  E k i n ( e − ) 𝐸kin(𝑒
−). 

The definitions below simply reiterate what we've been discussing.  M ∗  ( E 

k ) 𝑀∗(𝐸k) is our molecule excited to state  E k 𝐸k. And  h ν 2 ℎ𝜈2 is the 

photon from our ionizing laser, L-two. This equation is the defining event of 

the ionization step, taking us from a neutral, albeit excited, species to the 

charged particles that form our signal. 

Page 9: 

Continuing with the details of photoionization, a key experimental choice is 

the origin of this ionizing photon,  h ν 2 ℎ𝜈2. 

As the first two bullet points explain, this photon can come from one of two 

places. It might originate from the very same laser that was used to create 

the excited state  E k 𝐸k. This is what we call a "one-color experiment," 

because only one laser color, or wavelength, is used for both the excitation 

and ionization steps. This is simple and often sufficient. 

Alternatively, the ionizing photon can come from a separate laser or even a 

lamp. This is a "two-color experiment." This approach, while more complex 

as it requires two laser systems, offers a significant advantage, which is 

highlighted in the next bullet point. 



The ability to choose the photon energies  h ν 1 ℎ𝜈1 and  h ν 2 ℎ𝜈2 

independently allows for the optimization of both the excitation and 

ionization cross sections. For the first, resonant step, you might want a 

laser with a very narrow linewidth and low power to achieve high spectral 

resolution without broadening your transition. For the second, ionization 

step, you don't need a narrow linewidth, but you often want very high power 

to make the ionization as efficient as possible. A two-color setup lets you 

use the perfect laser for each job. For example, a tunable dye laser for the 

first step, and a high-power, fixed-frequency Nd:YAG laser for the second. 

Finally, to give you a feel for the numbers involved, the slide notes that for 

many molecules, the photoionization cross-section from an excited state, 

which we label  σ k I 𝜎𝑘𝐼, can be as high as  10 − 17 c m 2 10−17 cm2 when 

the ionizing photon energy is just above the threshold. This cross-section is 

a measure of the effective "target area" the excited molecule presents to 

the ionizing photon. A value of  10 − 17 c m 2 10−17 cm2 is quite large, 

which is fantastic news for us, as it means the ionization step can be made 

very efficient. 
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Now we are going to begin building a quantitative model to describe our ion 

signal. The first step is to determine the population of the intermediate 

level,  | k ⟩  |𝑘⟩, under the influence of our excitation laser. We'll start by 

considering the case of steady-state excitation. 

The first thing we need is the rate of photon absorption on the  | i ⟩  |𝑖⟩ to  | 

k ⟩  |𝑘⟩ transition. This is the rate at which our laser pumps molecules from 



the initial state into the excited state. This rate, which we'll call  n a 𝑛a, is 

given by the equation you see on the slide. 

Let's read and deconstruct this equation: 

 n a = N i n L 1 σ i k Δ x  

𝑛a = 𝑁i 𝑛𝐿1 𝜎𝑖𝑘 𝛥𝑥 

Let's break down each term: 

*  n a 𝑛a is the number of absorption events occurring per unit volume per 

second. Its units would be something like molecules per cubic centimeter 

per second. *  N i 𝑁i is the number density of molecules in the initial state  | 

i ⟩  |𝑖⟩. This has units of molecules per cubic centimeter. *  n L 1 𝑛𝐿1 is the 

photon flux density of our first laser, L-one. This is the number of photons 

from this laser passing through a unit area per unit time. Its units are 

photons per square centimeter per second. *  σ i k 𝜎𝑖𝑘 is the absorption 

cross-section for the  i 𝑖 to  k 𝑘 transition. This is the effective area that a 

molecule presents to the photons for this specific transition, with units of 

square centimeters. * And  Δ x 𝛥𝑥 is the illuminated path length, the length 

of the sample that the laser passes through, in centimeters. 

Let's check the units.  N i 𝑁i ( cm − 3 cm−3) times  n L 1 𝑛𝐿1 ( cm − 2 s − 1 

cm−2 s−1) times  σ i k 𝜎𝑖𝑘 ( cm 2 cm2) gives units of  cm − 3 s − 1 cm−3 s−1. 

So  n a 𝑛a as written here without the  Δ x 𝛥𝑥 term is the rate of absorption 

per unit volume. The way the slide has written it is slightly ambiguous; often 

this is formulated as a rate per unit area, where  N i 𝑁i is a column density. 

For our purposes, let's consider  n a 𝑛a as the volumetric rate of pumping, 



so  n a = N i n L 1 σ i k 𝑛a = 𝑁i 𝑛𝐿1 𝜎𝑖𝑘. This is the rate at which population 

is fed into our excited state  | k ⟩  |𝑘⟩. 
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Now that we have the rate at which population is pumped into the excited 

state  | k ⟩  |𝑘⟩, we need to consider the rates at which it leaves. In a 

steady-state situation, the population of level  | k ⟩  |𝑘⟩ will be constant, 

which means the rate in must exactly equal the rate out. This is the 

principle of population balance. 

The first equation on this slide expresses this balance mathematically. It's a 

simple rate equation for the population of the excited state,  N k 𝑁k. The 

rate of change of  N k 𝑁k with time,  d N k d t 
𝑑𝑁k

𝑑𝑡
, is equal to the pumping 

rate in,  n a 𝑛a, minus the total depopulation rate. 

The total rate of leaving is the sum of all possible decay channels, 

multiplied by the population  N k 𝑁k itself. Here, these channels are 

grouped into two terms:  P k I 𝑃𝑘𝐼 and  R k 𝑅k. 

*  P k I 𝑃𝑘𝐼 is the ionization probability per molecule per second. This is the 

rate at which a single excited molecule is ionized by our second laser, L-

two. This is the channel we want.  R k 𝑅k represents all other* relaxation 

rates combined. This includes things like spontaneous radiative decay 

(fluorescence), and collisional quenching where the molecule loses its 

energy by bumping into another particle. These are the competing loss 

channels. 

So, the total rate out is  ( P k I + R k ) N k (𝑃𝑘𝐼 + 𝑅k) 𝑁k. 



Under steady-state conditions, the population isn't changing, so  d N k d t = 

0 
𝑑𝑁k

𝑑𝑡
= 0. 

Setting the equation to zero and rearranging gives us a beautifully simple 

and powerful expression for the steady-state population of our excited 

level: 

 N k = n a P k I + R k  

𝑁k =
𝑛a

𝑃𝑘𝐼 + 𝑅k

 

This equation tells us something profound. The amount of excited state 

population we can build up,  N k 𝑁k, is determined by a competition. We're 

feeding population in at a rate  n a 𝑛a, and it's draining out through two 

channels: the desired ionization channel ( P k I 𝑃𝑘𝐼) and the undesired loss 

channels ( R k 𝑅k). To maximize  N k 𝑁k, we need to make the denominator 

as small as possible, but more importantly, as we'll see, the ratio of these 

two loss channels will determine our ultimate efficiency. 

Page 12: 

We have now calculated the steady-state population of the excited state,  N 

k 𝑁k. The next logical step is to calculate our actual, measurable ion signal, 

which we will denote as  S I 𝑆I. 

The ion signal, in units of counts per second, is simply the number of ions 

we successfully create and detect per second. This is given by the first 

equation: 

 S I = N k P k I δ η .  



𝑆I = 𝑁k𝑃𝑘𝐼𝛿𝜂. 

Let's break this down. 

The term  N k 𝑁k times  P k I 𝑃𝑘𝐼 gives us the total number of ions being 

created per unit volume per second. Remember,  N k 𝑁k is the number 

density of excited molecules, and  P k I 𝑃𝑘𝐼 is the probability per second 

that any one of those molecules gets ionized. 

However, just creating an ion isn't enough; we have to detect it. That's 

where the next two terms come in. 

 δ 𝛿 is the geometrical collection efficiency. This is a dimensionless number 

between 0 and 1 that represents the fraction of created ions that are 

successfully guided by our ion optics to the front face of the detector. If our 

ion optics are perfectly designed,  δ 𝛿 approaches 1. 

 η 𝜂 is the intrinsic detector efficiency. This is also a number between 0 and 

1, representing the probability that an ion striking the detector actually 

produces a measurable count. For modern detectors like microchannel 

plates,  η 𝜂 can also be very close to 1. 

So,  S I 𝑆I is the total rate of ion production, corrected for our instrument's 

real-world imperfections. 

Now, we perform a crucial substitution. We take the expression for the 

steady-state population  N k 𝑁k that we derived on the last Paage and 

substitute it into our equation for  S I 𝑆I. 

This gives us the second equation on the slide: 

 S I = n a P k I P k I + R k δ η .  



𝑆I = 𝑛a

𝑃𝑘𝐼
𝑃𝑘𝐼 + 𝑅k

𝛿𝜂. 

This is a very important result. It connects our final signal rate  S I 𝑆I back 

to the initial pumping rate  n a 𝑛a and clearly shows how the signal depends 

on the competition between ionization and other relaxation processes. Let's 

explore the physical meaning of this equation on the next page. 
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Let's continue our analysis and now connect everything back to the primary 

laser parameters and interpret the physical meaning of our final signal 

equation. 

First, we'll re-insert the expression for  n a 𝑛a, the initial absorption rate. 

Recall that  n a 𝑛a was equal to  N i 𝑁i times  n L 1 𝑛𝐿1 times  σ i k 𝜎𝑖𝑘 times  

Δ x 𝛥𝑥. Substituting this into our expression for  S I 𝑆I gives the final 

equation you see in the box. 

 S I 𝑆I equals  N i 𝑁i times  n L 1 𝑛𝐿1 times  σ i k 𝜎𝑖𝑘 times  Δ x 𝛥𝑥, all 

multiplied by the fraction  P k I P k I + R k 
𝑃𝑘𝐼

𝑃𝑘𝐼+𝑅k

, and finally multiplied by  δ 

𝛿 and  η 𝜂. 

 S I = N i n L 1 σ i k Δ x P k I P k I + R k δ η  

𝑆I = 𝑁i  𝑛𝐿1 𝜎𝑖𝑘 𝛥𝑥 
𝑃𝑘𝐼

𝑃𝑘𝐼 + 𝑅k

 𝛿 𝜂 

This equation contains the entire physics of the process, from the initial 

state of the sample to the final count registered by our computer. Now, let's 

do the most important thing: interpret it. 



The physical interpretation breaks down into two key parts. 

First, look at that fraction in the square brackets: [ P k I P k I + R k 
𝑃𝑘𝐼

𝑃𝑘𝐼+𝑅k

]. 

This term has a profound physical meaning. It is the quantum yield of 

ionization. It represents the fraction of all the molecules that we excite to 

state  | k ⟩  |𝑘⟩ that actually end up being ionized. It explicitly quantifies the 

competition between our desired process, ionization (with rate  P k I 𝑃𝑘𝐼), 

and all the other decay processes like fluorescence and collisions (with 

combined rate  R k 𝑅k). To get the maximum signal, we want the ionization 

rate  P k I 𝑃𝑘𝐼 to be much, much larger than the relaxation rate  R k 𝑅k, so 

that this fraction approaches one. 

Second, we have the product  δ 𝛿 times  η 𝜂. This term tells us how the 

design of our instrument—the ion optics and the detector—influences the 

ultimate sensitivity. Even if our ionization quantum yield is 100%, if we fail 

to collect the ions ( δ 𝛿 is small) or fail to detect them ( η 𝜂 is small), our 

signal will be poor. Achieving  δ 𝛿 and  η 𝜂 close to one is a primary goal of 

experimental design. 

So, to get a large signal, we need a large number of initial molecules ( N i 

𝑁i), a strong laser ( n L 1 𝑛𝐿1), a strong transition ( σ i k 𝜎𝑖𝑘), a long path 

length ( Δ x 𝛥𝑥), an ionization process that outcompetes decay, and an 

efficient instrument. Our equation lays it all out. 
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This slide presents the ideal, limiting case for our ion signal, the absolute 

best-case scenario that we strive for in an experiment. 



The condition is stated clearly: When the ionization probability per second,  

P k I 𝑃𝑘𝐼, is much, much greater than the rate of all other relaxation 

processes,  R k 𝑅𝑘, and when our instrumental efficiencies are perfect, 

meaning both the collection efficiency  δ 𝛿 and the detector efficiency  η 𝜂 

are equal to 1. 

Let’s look back at our signal equation from the previous page. If  P k I 𝑃𝑘𝐼 is 

much larger than  R k 𝑅𝑘, then the denominator  ( P k I + R k ) (𝑃𝑘𝐼 + 𝑅𝑘) is 

approximately just  P k I 𝑃𝑘𝐼. The entire fractional term,  P k I / ( P k I + R k ) 

𝑃𝑘𝐼/(𝑃𝑘𝐼 + 𝑅𝑘), becomes approximately equal to 1. This means our 

ionization quantum yield is  100 % 100%. Every single molecule we excite 

gets ionized. 

If we also have  δ = 1 𝛿 = 1 and  η = 1 𝜂 = 1, then our full signal equation,  

S I = n a ⋅  [ fraction ] ⋅  δ ⋅  η  

𝑆𝐼 = 𝑛𝑎 ⋅ [fraction] ⋅ 𝛿 ⋅ 𝜂 

simplifies dramatically. The fraction is one,  δ 𝛿 is one,  η 𝜂 is one. So,  S I 

𝑆𝐼 simply becomes equal to  n a 𝑛𝑎. 

The statement at the end of the slide summarizes this profound result: 

"every absorbed photon is observed." More precisely, every photon 

absorbed in the initial excitation step ( | i ⟩  |𝑖⟩ to  | k ⟩  |𝑘⟩) ultimately leads 

to a detected count. 

This establishes a perfect one-to-one correspondence between the primary 

spectroscopic event and our measured signal. This is the holy grail of 

sensitive detection, and as we will see next, it is a goal that is surprisingly 

achievable in a well-designed experiment. 
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So, is this ideal scenario of nearly  100 % 100% detection efficiency just a 

theorist's dream, or can we actually achieve it in the laboratory? This slide 

answers that question with a resounding "yes." 

In a carefully designed apparatus, particularly a molecular-beam apparatus 

where we have a lot of control over the environment, we can get very close 

to this ideal limit. 

The first bullet point addresses the collection efficiency,  δ 𝛿. By using well-

designed ion/electron extraction optics—those repeller and extractor plates 

we saw in the diagram—we can create electrostatic fields that guide 

virtually all of the charged particles from the interaction volume onto the 

detector. This allows us to achieve a collection efficiency,  δ 𝛿, that is 

approximately equal to  1 1. 

The second point addresses the detector efficiency,  η 𝜂. Modern detectors 

like Channeltrons or Microchannel Plates (MCPs) are incredibly effective. 

When a particle with kilo-electron-volt (keV) energy strikes their surface, 

they are almost guaranteed to trigger a large cascade of electrons, 

resulting in a detectable pulse. This gives us an intrinsic detector efficiency,  

η 𝜂, that is also approximately equal to  1 1 for these energetic particles. 

So, what happens to our signal under these optimized conditions? The final 

point shows the beautiful simplification. When the ionization rate  P k I 𝑃𝑘𝐼 

is much greater than the relaxation rate  R k 𝑅𝑘, and when  δ 𝛿 and  η 𝜂 are 

both essentially  1 1, our complex signal equation,  S I 𝑆𝐼, collapses to its 

simplest possible form: 



 S I = n a .  

𝑆𝐼 = 𝑛𝑎 . 

Let's recall what  n a 𝑛𝑎 is: it's the rate of photon absorption in the first 

excitation step. This confirms our conclusion from the previous slide. In an 

optimized experiment, the number of ions we count per second is equal to 

the number of photons per second that were resonantly absorbed by our 

sample to begin with. We have successfully built a machine that counts 

absorbed photons. 
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Now let's consider the powerful consequences of achieving this one-to-one 

correspondence. 

First, as we've stated, we have a direct, quantitative link between the 

number of photons absorbed and the number of counts we detect. This 

isn't just an academic point; it means our signal is directly proportional to 

the concentration of our target species, with a proportionality constant we 

can, in principle, know perfectly. This makes the technique not just 

sensitive, but also highly quantitative. 

The second point highlights the impact on sensitivity. The minimum 

detectable optical power is now limited only by dark counts. "Dark counts" 

are spurious signals from the detector that occur even when there's no real 

ion signal—perhaps from a stray cosmic ray or a random thermal electron 

in the multiplier. In a well-shielded, cooled detector, this dark count rate can 

be made incredibly low, often less than one count per second. This means 



our noise floor is practically zero. We are looking for a real signal against a 

backdrop of almost complete silence. 

The third bullet point provides a crucial comparison to a more conventional 

technique: fluorescence detection. In a fluorescence experiment, you're 

trying to collect photons emitted in all directions. Even with good optics, you 

rarely collect more than a few percent of the total emitted light due to the 

limited solid angle of your collection lens. Furthermore, the fluorescence 

quantum yield itself might be less than one due to competing non-radiative 

decay. The combined result is that fluorescence detection rarely exceeds a 

total efficiency of a few percent. In stark contrast, our optimized ionization 

experiment approaches an efficiency of one hundred percent. This 

represents an advantage of one to two orders of magnitude in raw signal, 

which can be the difference between seeing a signal and seeing nothing at 

all. 
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This slide delivers the final, powerful conclusion from the first part of our 

discussion. 

Given everything we've established—the ability to achieve a near-perfect 

ionization quantum yield and near-perfect detection efficiency—we can 

state the following: 

Hence, resonant two-step ionization is the most sensitive absorption probe 

for any species whose excited state ionizes readily. 

Let's unpack that statement. 



It is an "absorption probe" because the signal is directly proportional to the 

initial resonant absorption event. It is the "most sensitive" because of the 

near-unity detection efficiency, which allows us to reach the fundamental 

limit of counting single quantum events. And it applies to "any species 

whose excited state ionizes readily." 

This is the key condition. We must be able to find an efficient pathway to 

ionize the molecule once it's in the intermediate state. As we've seen, this 

can be achieved with a sufficiently powerful laser, or by accessing special 

states like Rydberg or autoionizing levels. 

When this condition is met, no other absorption-based technique can match 

the sensitivity of ionization spectroscopy. This is why it has become such 

an indispensable tool in fields like trace-gas analysis, reaction dynamics, 

and precision measurements. 
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Here we have a detailed schematic that brings our abstract discussion of 

ion extraction and detection to life. This diagram shows the key hardware 

components that are responsible for achieving the high collection and 

detection efficiencies,  δ 𝛿 and  η 𝜂, that are so critical to this technique. 

Let's trace the path of the experiment. From the left, an orange line 

represents our first laser, L-one, with photon energy  h ν 1 ℎ𝜈1. It enters the 

interaction region. Simultaneously, a second laser, L-two, with energy  h ν 

2 ℎ𝜈2 (represented by the blue beam) also enters this region. The diagram 

shows them crossing. 



In the center, where the lasers overlap with our sample molecules,  M 𝑀, 

the ionization event occurs:  M → M + + e −  

𝑀 → 𝑀+ + 𝑒− 

This happens in the space between two crucial electrodes. On the left is 

the Repeller plate, which is held at a positive voltage,  + V +𝑉. On the right 

is the Extractor plate, which is typically held at ground potential. 

The positive potential on the Repeller pushes the newly formed positive 

ion,  M + 𝑀+, to the right, away from the Repeller and towards the 

Extractor. The Extractor plate has a small hole in it, allowing the ion to pass 

through. The curved, dashed lines between the plates represent the electric 

field lines. Notice how they are shaped not just to push the ion, but also to 

gently focus it, ensuring it travels straight towards the detector. This is the 

electrostatic lens that gives us a collection efficiency,  δ 𝛿, close to one, as 

annotated. 

After passing the extractor, the now-energetic ion,  M 𝑀, travels in a 

straight line until it slams into the detector. In this diagram, the detector is 

an MCP Detector, or Microchannel Plate detector. The impact initiates an 

electron cascade, creating a large, negative pulse of charge. This pulse is 

our "Signal Output," shown as a sharp peak on an oscilloscope trace. The 

annotation "Detection  η ≈ 1 𝜂 ≈ 1" reminds us that these detectors are 

extremely efficient. This entire assembly, from the repeller to the MCP, is 

the heart of the detection system. 



Page 19: Schematic of Ion Extraction 

and Detection 

This slide provides a textual explanation for the beautiful diagram we just 

examined on the previous page, formally titling it a "Schematic of Ion 

Extraction and Detection." Let's walk through this description to ensure 

we've captured all the key ideas. 

The text begins by stating that the diagram illustrates the key components 

of a resonant two-photon ionization, or R2PI, experiment, with a focus on 

the high‐ efficiency collection and detection of ions. This is precisely what 

we've been discussing. 

It then reiterates the process: A molecule,  M 𝑀, is first excited by laser  L 1 

𝐿1 and then ionized by laser  L 2 𝐿2. The resulting ion,  M + 𝑀+, is 

accelerated by an electric field. 

Crucially, it names the components that create this field: the Repeller and 

Extractor electrodes. This assembly is often referred to as the "ion source" 

or "extraction region" of a mass spectrometer. 

The setup, as the text rightly emphasizes, visualizes the two critical 

parameters for achieving high sensitivity. 

First, Collection Efficiency, represented by the Greek letter  δ 𝛿. The text 

explains that the electrostatic lens formed by the electrodes guides nearly 

all ions to the detector, making  δ 𝛿 approximately equal to 1. This is the 

key to not losing the signal you worked so hard to create. 



Second, Detector Efficiency, represented by the Greek letter  η 𝜂. The text 

identifies the detector as a microchannel plate, or MCP. It gives a concise 

description of its function: it generates a large electron cascade from a 

single ion impact. This built-in amplification ensures a detectable electronic 

pulse for nearly every incident ion, making  η 𝜂 approximately equal to 1. 

Together, these two factors,  δ 𝛿 and  η 𝜂 both approaching unity, are what 

elevate R2PI to the status of a quantum-noise-limited detection technique. 
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Now we're going to broaden our scope beyond the simple two-photon case 

to a more general and powerful family of techniques called Resonant 

Multiphoton Ionization, or REMPI. This slide provides the motivation. 

The first bullet point addresses a common scenario: What if your second 

photon,  h ν 2 ℎ𝜈2, is simply not energetic enough to clear the ionization 

potential, IP? For example, you might be using a single laser for both steps 

(a one-color experiment), and two photons of that color get you to a nice 

resonant state, but don't quite have enough energy to ionize. The solution 

is simple in concept: add more photons! 

This leads to the general idea of REMPI: use one or more resonant 

intermediate states to dramatically boost the cross-section and selectivity of 

a multiphoton process. A non-resonant multiphoton absorption is an 

exceedingly rare event. But if you can make each step of the "photon 

ladder" land on a real, resonant energy level, the overall probability of the 

process increases by many, many orders of magnitude. 



This leads to a variety of popular laboratory schemes, which are often 

described using a simple " m + n 𝑚 + 𝑛" notation. The first scheme listed is 

" 1 + 1 1 + 1". This is exactly what we've been discussing as RTPI. It 

means one photon is absorbed to reach a resonant intermediate state, 

followed by a second, single photon to cause ionization. This is the 

simplest and often the most efficient REMPI scheme. But it's just the 

beginning. 
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Continuing with the different laboratory schemes for REMPI, we can build 

more complex "ladders" to climb up to the ionization continuum. 

A " 2 + 1 2 + 1" scheme, for example, involves a resonant two-photon 

absorption to reach a high-lying intermediate state, followed by one more 

photon for ionization. This is often necessary when a single-photon 

transition to a suitable intermediate state is forbidden by selection rules, but 

a two-photon transition is allowed. 

You can have even more complex schemes. The slide mentions " 3 + 1 3 +

1" or " 2 + 2 2 + 2." These are used in more difficult cases, often to 

navigate the strict parity selection rules in atoms and centrosymmetric 

molecules. Remember, a one-photon transition must change the parity of 

the state (gerade to ungerade, or vice-versa), while a two-photon transition 

must conserve it (gerade to gerade, or ungerade to ungerade). By 

combining parity-changing and parity-conserving steps, you can construct a 

pathway to almost any state. 



This brings us to the general nomenclature. An " m + n 𝑚 + 𝑛 REMPI" 

process is defined as a scheme where  m 𝑚 photons are absorbed to 

reach the first, or final, intermediate resonance, and then  n 𝑛 additional 

photons are absorbed to ionize the molecule from that state. So, a " 2 + 1 

2 + 1" scheme uses two photons for the resonant step and one for 

ionization, for a total of three photons. 

Finally, the slide summarizes the two key features of REMPI that make it so 

powerful. 

The Selectivity—the ability to pick out one specific molecule from a 

complex mixture—arises from the sharp, narrow nature of the resonant 

transitions. Only the laser wavelength that exactly matches the energy gap 

will produce a signal. 

The Sensitivity—the ability to detect tiny amounts—arises from the use of 

high peak laser fluxes, typically from pulsed lasers, which are necessary to 

drive the multiphoton steps efficiently. 
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This slide provides beautiful, clear energy-level diagrams illustrating the 

REMPI schemes we just discussed. Let's examine each of the three panels 

from left to right. The vertical axis in all of them is Energy. 

The first panel is labeled "1+1 REMPI". This is our familiar resonant two-

photon ionization. We start in the ground state, S-naught, which is labeled 

with a '(g)' for 'gerade' parity. A single photon, with energy  h ν ℎ𝜈, excites 

the molecule to a real intermediate electronic state, S-one, which has '(u)' 



or 'ungerade' parity, consistent with the one-photon selection rule. From S-

one, a second photon of the same energy  h ν ℎ𝜈 provides enough energy 

to cross the ionization potential, IP, and create a free electron,  e − 𝑒−. 

The middle panel shows "2+1 REMPI". Here, we again start in the ground 

state, S-naught (g). Now, a single long arrow represents the simultaneous 

absorption of two photons, each with energy  h ν ℎ𝜈. This two-photon 

absorption takes us to a higher-lying intermediate state, S-two. Notice that 

this state is labeled '(g)' for 'gerade'. This is consistent with the two-photon 

selection rule: g to g, parity is conserved. From this S-two state, a third 

photon  h ν ℎ𝜈 is absorbed to ionize the molecule. The dashed lines below 

S-two represent virtual states, emphasizing that the two-photon absorption 

is a single quantum process. 

The final panel shows "3+1 REMPI". It follows the same logic. We start in 

S-naught (g). Three photons are absorbed simultaneously to reach an even 

higher intermediate state, S-three, which is labeled '(u)' for 'ungerade'. This 

is again consistent with selection rules, as a three-photon process changes 

parity. From this S-three state, a fourth photon  h ν ℎ𝜈 causes ionization. 

These diagrams perfectly visualize how we can use different numbers of 

photons to "climb the ladder" of energy levels, using resonances to make 

the climb efficient. 

Page 23: Resonant Multiphoton 

Ionization (REMPI) Schemes 



This slide provides the caption and a crucial piece of context for the 

diagrams we just saw. It's titled "Resonant Multiphoton Ionization (REMPI) 

Schemes." 

The text reiterates the " m + n 𝑚 + 𝑛" pathway concept, stating that the  m 

𝑚 photons resonantly excite the molecule to an intermediate electronic 

state, and the subsequent  n 𝑛 photons provide the energy to ionize it. 

But it adds a critical piece of physical insight regarding selection rules. It 

explicitly states that "Parity rules often dictate the number of photons 

required for the initial excitation." This is a profoundly important point for 

anyone designing a REMPI experiment. It explains why we need these 

different " m + n 𝑚+ 𝑛" schemes. 

It spells out the rule: an odd number of photons (like in  1 + 1 1 + 1 or  3 + 

1 3 + 1 REMPI) connects states of different parity. For a molecule with a 

center of symmetry, this means a transition from a 'g' (gerade) state to a 'u' 

(ungerade) state, or vice versa. 

In contrast, an even number of photons (like in  2 + 1 2 + 1 REMPI) 

connects states of the same parity. This would be a 'g' to 'g' transition, or a 

'u' to 'u' transition. 

So, if you want to study a particular excited state, you must first determine 

its parity. That will tell you whether you need to use a one-photon or a two-

photon resonant step to access it from the ground state. These 

fundamental symmetry rules are not just textbook formalities; they are the 

practical guide to designing a successful experiment. 
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Now let’s discuss another clever strategy for making the ionization step 

extremely efficient: using Autoionizing Rydberg States. This is an elegant 

and powerful route to generating ions. 

The idea is as follows. From our intermediate state,  E k 𝐸k, we use our 

second laser to excite the molecule further. But instead of exciting it directly 

into the flat, unstructured ionization continuum, we tune the laser to be 

resonant with a very special type of state, which we’ll call \(M^{}\). 

This \(M^{}\) state is a doubly excited or core-excited Rydberg state. 

Energetically, it lies above the normal ionization potential,  I P IP. However, 

due to electron correlation effects, it is quasi-bound. It exists as a discrete 

resonance for a short period of time before it decays. 

And how does it decay? It decays by a process called autoionization. The 

state \(M^{}\) spontaneously rearranges its energy and ejects an electron, 

relaxing to the ground state of the ion,  M + 𝑀+, and a free electron,  e − 

𝑒−. 

The key parameter here is the autoionization width, which is represented 

by  Γ A I 𝛤AI. This is related to the lifetime of the autoionizing state by the 

uncertainty principle. The slide notes that this width is often very large, 

corresponding to lifetimes on the order of picoseconds or even 

femtoseconds. A large width in energy space translates directly to a very 

large apparent absorption cross-section for that transition. 

So, by tuning our ionizing laser to be resonant with one of these 

autoionizing states, we can make the ionization step thousands of times 

more probable than ionizing into the unstructured continuum next to it. It’s a 



way of using a resonance to dramatically enhance the ionization process 

itself. 
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Let's continue with the significant advantages of using an autoionization 

route. 

The first point is a direct consequence of the large cross-section we just 

discussed. The required ionizing laser intensity is orders-of-magnitude 

lower than what is needed for direct bound-to-continuum transitions. This is 

a huge practical benefit. You can get away with a much less powerful, and 

therefore often less expensive and complex, laser for your ionization step. 

It makes the experiment easier and more robust. 

The second bullet point details the practical advantages that stem from 

using lower laser power. You get reduced power broadening. Power 

broadening is the unwelcome widening of your spectral lines caused by 

very intense laser fields. By using lower power, your spectral features 

remain sharp and narrow, leading to higher resolution. You also get less 

fragmentation. Hitting a molecule with a very intense laser can be like using 

a sledgehammer; you can blast it into many different pieces. Using a more 

gentle, resonant autoionization pathway often leaves the parent ion intact, 

which is critical for mass spectrometry. Better molecular integrity leads 

directly to better mass resolution. 

Because of these compelling advantages, this technique is frequently 

exploited in two major areas. The first is trace-analysis, where you need the 

absolute highest sensitivity to find a needle in a haystack. The second is in 



high-resolution molecular-beam experiments, where preserving the spectral 

line shapes and the parent molecule identity is paramount for extracting 

detailed physical information about the molecule's structure and dynamics. 
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This slide shows us what an autoionizing resonance actually looks like in a 

spectrum. The graph is titled "Breit-Wigner Profile of an Autoionizing 

Resonance." This is the characteristic lineshape for such a resonance. 

Let's examine the plot. The horizontal axis is Energy, typically the energy of 

the ionizing photon. The vertical axis is the Ionization Cross-Section,  σ 𝜎. 

First, look at the flat, light blue line at the bottom, labeled "Direct Ionization 

Continuum." This represents the small, non-zero probability of ionizing the 

molecule directly into the continuum if you are not on resonance. It's the 

baseline signal. Its energy starts at the ionization potential, IP. 

Now, superimposed on this flat baseline is a large, sharp, bell-shaped 

peak. This is the autoionizing resonance, labeled here as \(M^{}\). When 

you tune your laser energy to match the energy of this quasi-bound state, 

the ionization cross-section increases dramatically. The annotation 

"Enhanced Absorption" points to this huge increase in probability. 

The width of this peak, measured at half its maximum height, is precisely 

the autoionization width,  Γ A I 𝛤AI, which we discussed earlier. The peak's 

shape is described by a Breit-Wigner, or sometimes a Fano, profile. The 

key takeaway is that by tuning your laser to the peak of this resonance, you 

can achieve a massive enhancement in your ion signal compared to the 



off-resonance baseline. This is the power of resonant enhancement in 

action, applied to the ionization step itself. 
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Now, for the sake of completeness and contrast, let's consider the case of 

Non-Resonant Two-Photon Ionization. This is what happens when you 

need two photons for the ionization step, but there is no convenient 

intermediate resonance to use. 

The reaction pathway is shown first. We start with our excited molecule,  M 

∗  ( E k ) 𝑀∗(𝐸k). It then absorbs two photons from our ionizing laser,  2 h ν 

2 2 ℎ𝜈2, to produce the ion  M + 𝑀+ and an electron  e − 𝑒−. This is a non-

linear optical process, fundamentally different from the sequential 

absorption of two photons in a  1 + 1 + 1 1 + 1 + 1 scheme. 

The second bullet point is the most important one. The cross-section for 

this process scales differently. It's a generalized cross-section,  σ ( 2 ) 𝜎(2), 

and it scales proportionally with the intensity of the laser itself,  I L 2 𝐼𝐿2. 

This means the more intense the laser, the more probable the transition. 

However, the intrinsic probability is incredibly low. The slide gives typical 

values for  σ ( 2 ) 𝜎(2) in the range of  10 − 50 10−50 to  10 − 48 10−48, with 

the unusual units of  c m 4 s cm4 s. This is an astronomically small number 

compared to a single-photon cross-section of  10 − 17 10−17. 

Because the cross-section is so tiny, this process is only viable with 

extremely intense pulsed lasers. The slide gives a benchmark of Gigawatts 

per square centimeter. This is the realm of Q-switched Nd:YAG lasers or 

amplified Ti:sapphire lasers and their harmonics. You simply cannot 



achieve this with continuous-wave lasers. This process is a testament to 

the brute force of high-peak-power lasers. 
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Even though non-resonant two-photon ionization is a very weak process, it 

has some specific uses and implications. 

The first point is that even without a resonance, it can provide background-

free detection. Why? Because the process requires the absorption of two 

photons simultaneously. This means the two photons must arrive at the 

molecule at the same time and in the same place. This strict requirement 

for temporal and spatial overlap means that the signal is generated only in 

the tiny volume where the laser is most intense, and only during the very 

brief laser pulse. This makes it highly resistant to background from stray 

light or other, linear processes. 

The second, and perhaps more important role, is that it serves as a 

benchmark. When you are performing a REMPI experiment and scanning 

your laser wavelength, you might see a spectrum that consists of sharp, 

intense peaks on top of a flat, weak baseline. Those sharp peaks are your 

resonant enhancements—the signal from your 1+1 or 2+1 REMPI process. 

The weak, flat baseline is the signal from the non-resonant multiphoton 

ionization process. Therefore, the strength of the non-resonant background 

provides a clear reference against which you can measure the 

enhancement factor of your resonant signal. It helps you distinguish the 

interesting spectroscopy from the uninteresting, brute-force ionization. 
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We will now shift gears and consider a completely different mechanism for 

the ionization step: Collision-Induced Ionization. Here, the energy required 

to dislodge the electron comes not from another photon, but from the 

kinetic or internal energy of a colliding particle. 

The first process shown is electron impact on an excited molecule. The 

reaction is: 

 M ∗  ( E k ) + e s l o w − → M + + 2 e −  

𝑀∗(𝐸k) + 𝑒𝑠𝑙𝑜𝑤
−  →  𝑀+ + 2 𝑒− 

Here, our laser creates the excited molecule \(M^\), which then collates with 

a background electron in the system. The electron transfers enough energy 

in the collision to knock out the valence electron of \(M^\). 

A second, very important collisional process is Penning ionization. This 

involves a metastable collision partner, which we'll call  A ∗  𝐴∗. The 

reaction is: 

 M + A ∗  → M + + A + e −  

𝑀 + 𝐴∗  →  𝑀+ + 𝐴 + 𝑒− 

In this case, the energy stored in the metastable \(A^\) is transferred to  M 

𝑀 during a collision, causing  M 𝑀 to be ionized. The laser's role here 

might be to produce the  M 𝑀 in a specific state, or in a related process 

called optogalvanic spectroscopy, to perturb the population of \(A^\). 

What are the requirements for these processes to be effective? 



The first requirement is an energy balance. The excited level, either  E k 𝐸k 

of the molecule or  E A 𝐸A of the metastable partner, must be close to or 

above the ionization potential of the target molecule. Specifically, the slide 

says the excited level should be within a few electron-volts of the  I P 𝐼𝑃. 

The closer it is, the more likely the process. 
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Continuing with collision-induced ionization, there are further requirements 

and contexts where this process becomes important. 

First and foremost, you need a sufficient density of the colliding particles. 

For electron impact, you need a source of free electrons. For Penning 

ionization, you need a high density of your metastable partner species. This 

is not a technique you would typically use in the ultra-high vacuum of a 

molecular beam experiment. 

Instead, this process is dominant in environments like gas discharges and 

hollow cathode lamps. These are plasmas, which are veritable soups of 

ions, electrons, and excited atoms. In such an environment, if you shine a 

laser in that is resonant with a transition, you can change the population of 

an excited state. This, in turn, changes the overall rate of collisional 

ionization in the plasma. A change in the ionization rate leads to a change 

in the plasma's conductivity or impedance. This change in electrical 

properties can be measured as a voltage or current change, and this is 

known as an optogalvanic signal. The signal is directly proportional to the 

change in the excited-state population you induced with your laser. 



So, how does this method stack up? The final bullet point provides the 

verdict. It is generally less sensitive than the purely photon-based methods 

like REMPI that we've been discussing. The cross-sections for collisions 

are often smaller, and it's harder to control the background. However, it is 

an extremely valuable tool for plasma diagnostics—for measuring 

temperatures, species concentrations, and energy transfer processes 

inside complex and important environments like discharges, flames, and 

industrial plasmas. 
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This slide gives us a clear schematic of a device where collision-induced 

ionization is the dominant process: a Hollow Cathode Lamp. This is the 

workhorse light source for atomic absorption spectroscopy, but it's also a 

fantastic environment for performing optogalvanic spectroscopy. 

Let's look at the components. The entire device is housed in a glass 

envelope, which is filled with a low-pressure noble gas, like neon or argon. 

It has transparent windows, here made of quartz, on both ends to allow a 

laser beam to pass straight through. 

Inside, we have two electrodes. The anode, on the right, is a simple pin 

held at a positive potential. The cathode, on the left, is the key component. 

It's a cylindrical cup made of the metal you want to study, and it's held at a 

negative potential. This is the "hollow cathode." 

When a voltage is applied, a gas discharge is initiated. Due to the geometry 

of the hollow cathode, the discharge is concentrated inside the cup, forming 

a bright region of plasma called the "negative glow." This glow is rich in 



electrons, ions of the noble gas, and, crucially, atoms of the cathode 

material that have been sputtered off the surface by ion bombardment. 

The laser beam, shown as a thick orange line, is directed right through the 

center of this negative glow. When the laser is tuned to a resonance of the 

sputtered atoms, it excites them. This changes their probability of being 

ionized by collisions with the surrounding electrons and ions. This change 

in the overall ionization rate of the plasma is measured as a change in the 

current flowing between the anode and cathode, giving us our optogalvanic 

signal. 
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We now turn to the last of the four ionization mechanisms we introduced: 

Field Ionization. This is a particularly elegant and powerful technique, 

especially for studying highly excited Rydberg states. This slide provides 

the qualitative picture. 

The fundamental principle is that an external electrostatic field can 

dramatically alter the potential energy landscape of an atom. Specifically, it 

"tilts" the atom's Coulomb potential. As we'll see in a diagram shortly, this 

tilting lowers the potential energy barrier on one side of the atom, creating a 

"saddle point." This lowered barrier provides an escape route for a weakly 

bound electron. 

This method is particularly effective for long-lived Rydberg states. These 

are states with a large principal quantum number,  n 𝑛. In such a state, the 

electron is, on average, very far from the nucleus and is only very weakly 



bound. It doesn't take much of a nudge to set it free, and the tilted potential 

from an external field provides exactly that nudge. 

How strong of a field do we need? A semiclassical derivation, which we'll 

look at in more detail, shows that the minimum field magnitude required 

depends on how close the Rydberg level is to the ionization potential,  I P 

𝐼𝑃. The remarkable result is that even modest electric fields can ionize 

levels that are lying only a few milli-electron-volts, or meV, below the  I P 

𝐼𝑃. This gives us a highly selective way to detect only those atoms that are 

in these very high-lying states. 
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practical aspects of Field Ionization 

How is this implemented experimentally? It's typically done using a set of 

parallel plates or fine wire grids that are placed in the vacuum chamber, 

situated directly after the laser excitation zone. The laser excites the atoms, 

and then they drift into the region between the plates where the electric 

field is applied. 

This leads to a crucial experimental advantage, highlighted in the second 

bullet point. This technique allows for zero-background detection. This is 

achieved by pulsing the electric field. The field is kept OFF during the laser 

excitation pulse. Then, after the laser is gone, a fast, high-voltage pulse is 

applied to the plates. The ions are only created and collected when the field 

is ON. So, any signal you get is perfectly synchronized with the field pulse, 

eliminating any background from stray ions or other processes. 



Perhaps even more importantly, this pulsed-field technique means that the 

initial laser excitation occurs in a completely field-free environment. This is 

critical for high-resolution spectroscopy. If an electric field were present 

during excitation, it would cause a Stark shift and broadening of the atomic 

energy levels, distorting the very spectrum you're trying to measure. By 

separating the excitation event in time from the ionization event, we get the 

best of both worlds: a clean, unperturbed spectrum from the excitation step, 

and a highly efficient, zero-background detection from the field ionization 

step. 
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This slide presents the essential qualitative picture of field ionization in a 

single, powerful graph. Let's walk through it carefully, as it visualizes the 

physics we've been describing. 

The plot shows Potential Energy on the vertical axis versus the distance 

from the nucleus,  r 𝑟, on the horizontal axis. 

First, let's identify the different potentials. The blue curve, which goes as  − 

1 / r −1/𝑟, is the pure, unperturbed Coulomb potential of the atom. This is 

the potential that binds the electron. The horizontal dashed line at the top 

represents the ionization potential,  I P 𝐼𝑃, which is the energy of a free 

electron at infinite distance. 

Next, the straight, downward-sloping red line represents the potential 

added by the external electric field, which is linear with distance,  − E r 

−𝐸 𝑟. 



The most important curve is the "Tilted Potential," which is the sum of the 

Coulomb potential and the external field potential. You can see that on the 

right side, this potential no longer goes up to the  I P 𝐼𝑃 at infinity. Instead, 

it reaches a maximum value at a certain distance, labeled  r s a d d l e 

𝑟saddle, and then rolls over and goes down. This maximum is the "Lowered 

Barrier" created by the field. 

Now, consider an atom in a high-lying Rydberg state, represented by the 

horizontal green line. This state has an energy that is below the zero-field  I 

P 𝐼𝑃, so in the absence of a field, the electron is bound forever. However, 

in the presence of the field, the electron in this state now sees a potential 

barrier of finite height and width in front of it. 

This opens up a new decay channel: quantum mechanical tunneling. As 

the orange arrow indicates, the electron has a non-zero probability of 

tunneling through this lowered barrier and escaping, becoming a free 

electron. This is field ionization. The higher the Rydberg state (the closer it 

is to the  I P 𝐼𝑃), or the stronger the electric field, the thinner and lower this 

barrier becomes, and the faster the tunneling and ionization will occur. 
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To understand field ionization quantitatively, we first need a good estimate 

for the energy of the Rydberg states themselves. This slide begins a semi-

classical, Bohr-model-based estimate for the ionization energy,  I P 𝐼𝑃, of a 

given Rydberg level. 

We consider a Rydberg electron, which is the single, highly excited outer 

electron. Because it's very far from the nucleus, it sees the nucleus and the 



inner "core" electrons as a single point charge. We can describe this with 

an effective charge,  Z e f f e 𝑍eff  𝑒. For a neutral atom,  Z e f f 𝑍eff will be 

close to 1. This electron has a certain mean orbital radius,  r 𝑟. 

The ionization potential,  I P 𝐼𝑃, of this electron is the energy required to 

move it from its orbital radius  r 𝑟 to infinity. This is the work done against 

the Coulomb force. So, we can write  I P 𝐼𝑃 as the integral of the Coulomb 

force from  r 𝑟 to infinity. The force is  Z e f f e 2 4 π ϵ 0 r 2 
𝑍eff 𝑒

2

4𝜋𝜖0  𝑟
2
. 

Integrating this expression gives the result shown: 

 I P = Z e f f e 2 4 π ϵ 0 r  

𝐼𝑃 =
𝑍eff  𝑒

2

4𝜋𝜖0 𝑟
 

This makes intuitive sense: it's just the potential energy of the electron at 

radius  r 𝑟. 

Now, to make this useful, we need to relate the radius  r 𝑟 to something we 

can measure spectroscopically, which is the principal quantum number,  n 

𝑛. As the last bullet point suggests, we relate  r 𝑟 to the effective quantum 

number,  n ∗  𝑛∗, which is defined as  n − δ 𝑛 − 𝛿. Here,  δ 𝛿 is the quantum 

defect, a correction factor that accounts for the fact that the Rydberg 

electron's orbit might slightly penetrate the inner electron core, making it 

more tightly bound than a simple hydrogenic model would predict. 
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Continuing our Bohr-model estimate, we now make the crucial link between 

the radius  r 𝑟 and the effective quantum number  n ∗  𝑛∗. 

From a simple Bohr model analysis, the radius of an electron orbit scales 

as  ( n ∗  ) 2 (𝑛∗)2 and is inversely proportional to the effective nuclear 

charge,  Z e f f 𝑍eff. This gives us the approximate relation shown: 

 r ≈ a 0 ( n ∗  ) 2 Z e f f .  

𝑟 ≈ 𝑎0  
(𝑛∗)2

𝑍eff
. 

Here,  a 0 𝑎0 is the Bohr radius, a fundamental constant of atomic physics. 

Now, we take this expression for  r 𝑟 and substitute it back into our 

equation for the ionization potential from the previous page,  I P = Z e f f e 

2 4 π ϵ 0 r 𝐼𝑃 =
𝑍eff𝑒

2

4𝜋𝜖0  𝑟
. 

After some algebra, this substitution leads to the famous Rydberg formula 

for energy levels, expressed here in terms of the ionization potential: 

 I P = R y ( n ∗  ) 2 .  

𝐼𝑃 =
𝑅𝑦

(𝑛∗)2
. 

Here,  R y 𝑅𝑦 is the Rydberg constant, which encapsulates all the 

fundamental constants ( e 𝑒,  ϵ 0 𝜖0,  a 0 𝑎0, etc.). Its value is given as 

13.6057 electron-volts. 

This final equation is extremely important. It tells us the binding energy—

the ionization potential—of any Rydberg state, just by knowing its effective 

quantum number \(n^\). This sets the quantitative baseline for our system 



before* we apply any external electric field. It’s the “zero-field”  I P 𝐼𝑃 that 

will be modified by the field. 
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Now that we have our zero-field ionization potential, let's add the external 

electric field back into the picture and calculate how it lowers the  I P IP. 

As the first point states, we apply an external field  E 0 𝐸0, which we'll say 

points in the minus  x 𝑥 direction. This adds a potential energy term of  − e 

E 0 x −𝑒𝐸0𝑥 to the total potential. 

The second point reminds us that a saddle point appears in the total 

potential. This is the point in space where the attractive Coulomb force from 

the nucleus is exactly balanced by the pulling force from the external 

electric field. 

The equation expresses this force balance: 

 Z e f f e 2 4 π ε 0 x 2 = e E 0 .  

𝑍eff𝑒
2

4𝜋𝜀0𝑥
2
= 𝑒𝐸0. 

We can now solve this equation for the position of the saddle point,  x s p 

𝑥sp. A little bit of rearrangement gives the result on the right: 

 x s p = Z e f f e 4 π ε 0 E 0 .  

𝑥sp = √
𝑍eff𝑒

4𝜋𝜀0𝐸0
. 



Now, the final step is to calculate the value of the potential energy at this 

saddle point. This value will be our new, effective ionization potential in the 

presence of the field. This is the energy an electron needs to have to 

simply spill over the top of the barrier. We'll see the final result on the next 

slide. 
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Here we see the final result for the effective ionization potential in the 

presence of the electric field. The total potential energy at the saddle point, 

which we call  I P e f f 𝐼𝑃eff, is the sum of the Coulomb potential and the 

field potential, both evaluated at the position  x s p 𝑥sp. 

After substituting the expression for  x s p 𝑥sp from the previous slide and 

simplifying, we arrive at the expression shown: 

 I P e f f = I P − Z e f f 3 e 3 E 0 π ϵ 0  

𝐼𝑃eff = 𝐼𝑃 − √
𝑍eff
3 𝑒3𝐸0
𝜋𝜖0

 

Whoops, let me re-read that. The slide has a typo. The term inside the 

square root should be  Z e f f e 3 E 0 / ( π ϵ 0 ) 𝑍eff𝑒
3𝐸0/(𝜋𝜖0). Let's 

assume the classic result, which is 

 I P e f f = I P − 2 Z e f f e E 0 4 π ϵ 0  

𝐼𝑃eff = 𝐼𝑃 − 2√
𝑍eff𝑒𝐸0
4𝜋𝜖0

 



The expression shown is off by a numerical factor, but the scaling is what's 

important. The key point is that the effective ionization potential is the zero-

field  I P 𝐼𝑃 minus a term that is proportional to the square root of the 

applied electric field,  E 0 𝐸0. This is the quantitative expression for the 

field-lowering of the ionization potential. 

Now, let's look at the key parameters and what this means for us. The most 

important relationship is highlighted: A larger effective quantum number 

\(n^\) means a smaller initial  I P 𝐼𝑃 (since  I P 𝐼𝑃 goes as \(1/n^{2}\)). A 

smaller  I P 𝐼𝑃 means that the energy difference,  I P − I P e f f 𝐼𝑃 − 𝐼𝑃eff, 

that needs to be overcome by the field is smaller. This, in turn, means that 

a weaker electric field,  E 0 𝐸0, will suffice to ionize the atom. 

This gives us a quantitative design rule for building detectors for high- n 𝑛 

Rydberg atoms. If we know what  n 𝑛 state we want to detect, we can 

calculate its  I P 𝐼𝑃 using the Rydberg formula, and then use the equation 

on this slide to calculate the exact electric field strength we need to apply to 

ionize it efficiently. 
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Let's make this concrete with a numerical example to calculate the required 

field strength. 

Suppose we have excited an atom to a level that lies 10 milli-electron-volts, 

or meV, below the ionization potential. This energy difference,  I P − E l e v 

e l IP − 𝐸level, is the energy that must be supplied by the field-lowering 

effect. We can call this  Δ I P 𝛥IP, so  Δ I P = 10 m e V 𝛥IP = 10 meV. 



For simplicity, let's consider a hydrogenic atom where the effective charge  

Z e f f 𝑍eff is equal to 1. 

We now take our formula for the field-lowering,  Δ I P = C E 0 𝛥IP = 𝐶√𝐸0, 

where  C 𝐶 is a constant, and we solve it for the required electric field,  E 0 

𝐸0. Rearranging gives  E 0 𝐸0 is greater than or equal to  ( Δ I P ) 2 (𝛥IP)2 

divided by some constants. The equation shown is 

 E 0 ≥ ( Δ I P ) 2 π ϵ 0 e 3 .  

𝐸0 ≥
(𝛥IP)2 𝜋 𝜖0

𝑒3
. 

Plugging in the values for  Δ I P 𝛥IP (10 meV converted to joules),  π 𝜋,  ϵ 0 

𝜖0, and the elementary charge  e 𝑒, yields a required field strength of 

approximately  1.7 × 10 4   V / m 1.7 × 104 V/m. 

This is a very reasonable electric field.  10 4   V / m 104 V/m is the same as  

100   V / c m 100 V/cm. 

However, the story gets even better. As the last bullet point notes, this 

calculation is semi-classical; it only considers an electron spilling over the 

potential barrier. Quantum mechanics allows the electron to tunnel through 

the barrier, even if it doesn't have enough energy to go over it. This 

tunneling effect further lowers the required field strength  E 0 𝐸0. 

The practical result is that fields of just a few kilovolts per centimeter, which 

are very easy to generate in the lab, are sufficient to efficiently ionize these 

high-lying Rydberg states. 
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Continuing with the practicalities of field ionization, the required fields are 

quite accessible. 

Modern micro-fabrication techniques allow for the construction of 

electrodes with very small, precise gaps. It's possible to generate very 

large electric fields over these sub-millimeter gaps without needing 

enormous voltages. The slide notes that fields of  10 5   V / m 105 V/m, or  

1000   V / c m 1000 V/cm, are readily achievable. This technology enables 

the design of very compact and efficient field ionization sensors. 

The conclusion is that field ionization is therefore a routine and robust 

technique in molecular and atomic beam experiments, particularly for 

studying Rydberg series in atoms like the alkalis, where it's commonly used 

for states with principal quantum number  n 𝑛 greater than or equal to 

about  25 25. For these states and higher, field ionization becomes one of 

the most efficient and cleanest detection methods available. 
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Let's now return to our general rate equation model and insert a more 

explicit expression for the ionization probability,  P k I 𝑃𝑘𝐼. 

We've been treating  P k I 𝑃𝑘𝐼 as a fundamental rate, but we can express it 

in a more intuitive way using the concept of a cross-section, just as we did 

for the initial absorption step. This is the photon-flux formulation for the 

ionization step, which uses laser L-two. 



The ionization probability per second,  P k I 𝑃𝑘𝐼, is given by the product of 

the photoionization cross-section,  σ k I 𝜎𝑘𝐼, and the photon flux density of 

the ionizing laser,  n L 2 𝑛𝐿2. 

 P k I = σ k I n L 2  

𝑃𝑘𝐼 = 𝜎𝑘𝐼  𝑛𝐿2 

This is a very intuitive formula. The rate of ionization depends on how big of 

a "target" the molecule presents ( σ k I 𝜎𝑘𝐼, in units of square centimeters) 

and how many "bullets" per second we are firing at it ( n L 2 𝑛𝐿2, in units of 

photons per square centimeter per second). 

The definitions are listed below for clarity: *  σ k I 𝜎𝑘𝐼 is the photoionization 

cross-section in square centimeters. *  n L 2 𝑛𝐿2 is the photon flux density 

of laser L2 in photons per square centimeter per second. 

The final step, as indicated, is to insert this more explicit expression for  P k 

I 𝑃𝑘𝐼 back into our master equation for the ion signal,  S I 𝑆𝐼. This will give 

us a final expression that shows the explicit dependence on the parameters 

of both lasers, L1 and L2. 
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Here we see the result of substituting our photon-flux formulation for  P k I 

𝑃𝑘𝐼 into the full signal equation. Let’s look at this final form carefully. 

The ion signal,  S I 𝑆I, is equal to  N i 𝑁i times a large fractional term, all 

multiplied by  Δ x 𝛥𝑥. 



The numerator of the fraction is  σ i k n L 1 δ η 𝜎𝑖𝑘  𝑛𝐿1 𝛿 𝜂. This contains all 

the parameters of the first excitation step and the detection efficiency. 

The denominator is  1 + R k σ k I n L 2 .  

1 +
𝑅k

𝜎𝑘𝐼  𝑛𝐿2
. 

This term captures the competition between relaxation ( R k 𝑅k) and 

ionization, now expressed explicitly in terms of the second laser’s flux ( n L 

2 𝑛𝐿2). 

What does this equation tell us? The first bullet point makes it clear: it 

displays the explicit dependence on both lasers. To maximize our signal  S 

I 𝑆I, we need to maximize the numerator, which means we need to 

maximize the flux of the first laser,  n L 1 𝑛𝐿1, to drive the excitation. And 

we need to minimize the denominator, which means we need to maximize 

the flux of the second laser,  n L 2 𝑛𝐿2, to drive the ionization. 

This leads to the condition in the second bullet point. If the term  σ k I n L 2 

𝜎𝑘𝐼  𝑛𝐿2—which is just our ionization rate  P k I 𝑃𝑘𝐼—is much, much greater 

than the relaxation rate  R k 𝑅k, then the ratio in the denominator becomes 

very small. The entire denominator then approaches unity. When this 

happens, the competition is won by ionization, and the maximum possible 

signal for a given excitation rate is reached. 

The final point is crucial for experimental design. The strategy difference 

between using pulsed lasers and continuous-wave, or CW, lasers lies 

entirely in how they achieve this inequality,  σ k I n L 2 ≫ R k 𝜎𝑘𝐼  𝑛𝐿2 ≫ 𝑅k. 

Pulsed lasers do it with enormous peak power (huge  n L 2 𝑛𝐿2) over a 



short time. CW lasers must do it with modest power but a 100% duty cycle, 

often requiring very tight focusing. 
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Let's revisit the maximum achievable ion rate, which we'll call  S I max 

𝑆𝐼
max, now with our full understanding of the process. 

The first point states the ideal conditions: perfect instrumental efficiency ( δ 

= η = 1 𝛿 = 𝜂 = 1) and a strong ionizing laser  L 2 𝐿2, meaning the 

ionization rate is much faster than any relaxation rate. 

Under these conditions, as we've seen, our signal equation simplifies 

dramatically. The maximum signal,  S I max 𝑆𝐼
max, is equal to  N i 𝑁𝑖 times  

σ i k 𝜎𝑖𝑘 times  n L 1 𝑛𝐿1 times  Δ x 𝛥𝑥. 

This product is simply  n a 𝑛𝑎, the initial rate of photon absorption. 

The interpretation, stated in the second bullet, is the most powerful 

takeaway: every photon that is absorbed in the first spectroscopic step 

eventually appears as a detected count. This is the absolute quantum limit 

of detection. We cannot do any better than this. 

So, if we want to improve our experiment, our design targets should 

therefore focus on maximizing this initial absorption rate,  n a 𝑛𝑎. The slide 

lists two key strategies for doing this. 

First, we need to enhance the absorption cross-section,  σ i k 𝜎𝑖𝑘. This is a 

spectroscopic choice. We must select a transition from the ground state to 

an intermediate state that is strongly "allowed" by quantum mechanical 

selection rules—a transition with a high oscillator strength. 



The second strategy involves the laser and the sample environment, and 

we'll see it on the next page. 
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targets for achieving the maximum 

signal rate: 

The second critical task is providing sufficient photon flux,  n L 1 𝑛𝐿1, from 

our first laser to drive the absorption, while simultaneously avoiding power 

broadening. This is a delicate balance. Turning up the laser power 

increases  n L 1 𝑛𝐿1 and thus the signal, but if the power becomes too high, 

it can saturate and broaden the transition, ruining our spectral resolution. 

Finding the "sweet spot" is a key part of optimizing any spectroscopy 

experiment. 

The third design target is to suppress the non-radiative relaxation rates,  R 

k 𝑅𝑘. These are the loss channels that compete with our ionization step. 

The main culprit here is often collisional de-excitation, or quenching. We 

can minimize this by working at very low pressures or, even better, by 

using a collision-free environment like a molecular beam. This ensures that 

once a molecule is excited, its primary fate is determined by interaction with 

photons (either fluorescing or being ionized), not by bumping into its 

neighbors. 

Finally, the ability to reach the theoretical maximum signal,  S I , max 𝑆𝐼,max, 

serves as the ultimate yardstick for evaluating the quality of an 



experimental geometry. If your measured signal is much lower than the 

calculated  S I , max 𝑆𝐼,max, it tells you that something in your experiment is 

not optimal. Perhaps your lasers are misaligned, your collection efficiency 

is poor, or you have unexpected relaxation channels. It provides a concrete 

goal for experimental optimization. 
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Let's now put some typical numbers to these parameters to get a feel for 

the real-world requirements. This slide on typical cross-sections and 

lifetime numbers is incredibly useful for planning an experiment. 

First, let's list some representative values. 

The photoionization cross-section from an excited state,  σ k I 𝜎𝑘𝐼, is on the 

order of  10 − 17 c m 2 10−17 cm2 for near-threshold ionization. This is a 

reasonably large cross-section. 

The radiative decay rate of a typical allowed electronic transition,  A k 𝐴k 

(which is a major component of  R k 𝑅k), is on the order of  10 8 s − 1 

108 s−1. This corresponds to a natural lifetime,  τ k 𝜏k, of about 10 

nanoseconds. This is a very important timescale to keep in mind. 

Now, let's look at the crucial inequality we need to satisfy for efficient 

ionization: the ionization rate,  σ k I × n L 2 𝜎𝑘𝐼 × 𝑛𝐿2, must be greater than 

the decay rate,  A k 𝐴k. 

Let's plug in our typical numbers. 

We need  ( 10 − 17 c m 2 ) n L 2 > 10 8 s − 1 .  



(10−17 cm2) 𝑛𝐿2 > 108 s−1. 

Solving this for the required photon flux density of our second laser,  n L 2 

𝑛𝐿2, we find that  n L 2 𝑛𝐿2 must be greater than  10 25 1025 photons per 

square centimeter per second. 

This is an enormous number. Can a typical laboratory laser actually deliver 

this kind of flux? Let's find out on the next slide. 
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So, the challenge is to achieve a photon flux of  10 25 1025 photons per 

square centimeter per second. Can a pulsed laser do it? 

The first bullet point gives us a typical set of parameters for a common 

pulsed laser system, like a Q-switched Nd:YAG-pumped dye laser. It can 

readily supply about 100 millijoules of energy in a 10 nanosecond pulse, 

spread over an area of 1 square centimeter. 

Let's calculate the photon flux,  n L 2 𝑛𝐿2, from these numbers. The 

equation is  n L 2 𝑛𝐿2 equals the total energy per pulse, divided by the 

energy of a single photon  ( h ν ) (ℎ𝜈), all divided by the pulse duration and 

the area. 

 n L 2 = 100   m J h ν 10   n s × 1   c m 2  

𝑛𝐿2 =

100 mJ
ℎ𝜈

10 ns × 1 cm2  



Assuming a visible photon with an energy of about 2 to 3 electron-volts, this 

calculation yields a photon flux of approximately  2 × 10 25 2 × 1025 

photons per square centimeter per second. 

This is fantastic news! Our typical pulsed laser does meet the required flux 

condition. 

Now, what does this mean for our ionization efficiency? The second bullet 

point shows the consequence. With this flux, our ionization rate  P k I 𝑃𝑘𝐼 

(which is  σ k I × n L 2 𝜎𝑘𝐼 × 𝑛𝐿2) is approximately  10 − 17 × 2 × 10 25 

10−17 × 2 × 1025, which equals  2 × 10 8 2 × 108 inverse seconds. This rate 

is of the same order of magnitude as the radiative decay rate  A k 𝐴𝑘, which 

was  10 8 108 inverse seconds. 

Our ionization yield, which is  P k I P k I + A k 
𝑃𝑘𝐼

𝑃𝑘𝐼+𝐴𝑘
, is therefore 

approximately  2 × 10 8 2 × 10 8 + 1 × 10 8 
2×108

2×108+1×108
, which is 2 divided 

by 3, or about 0.67. 

This means we are yielding an ion signal  S I 𝑆𝐼 that is approximately 67 

percent of the theoretical maximum,  S I max 𝑆𝐼max. This is exceptionally 

good efficiency. 

The final point is that these kinds of simple, back-of-the-envelope numerical 

checks are an essential part of experimental physics. They guide our 

choice of lasers and help us predict the feasibility and performance of an 

experiment before we even start building it. 
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This Paage is blank, likely serving as a separator. So we will proceed 

directly to the next topic. 
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We've just seen that pulsed lasers are very effective at providing the high 

photon flux needed for efficient ionization. This slide summarizes the key 

advantages of using pulsed lasers in Resonant Two-Photon Ionization, or 

RTPI. 

First, and most obviously, they provide extremely high peak power. This 

translates directly into a large photon flux for both the excitation laser  n L 1 

𝑛𝐿1 and the ionization laser  n L 2 𝑛𝐿2, which is the key to driving both steps 

of the process efficiently. 

Second, because the laser pulse is very short—typically on the order of 

nanoseconds—ionization can occur before the excited state has a chance 

to decay via spontaneous emission. We saw this in our numerical example: 

the 10 nanosecond pulse duration is comparable to the 10 nanosecond 

radiative lifetime. This ensures that we don't lose our excited state 

population to fluorescence, which maximizes the overall ionization 

efficiency. 

Third, there's a consideration of spectral bandwidth. Pulsed lasers are not 

perfectly monochromatic. Due to the Fourier uncertainty principle, a pulse 

of finite duration  Δ T 𝛥𝑇 must have a minimum spectral bandwidth  Δ ν 𝛥𝜈 

that is on the order of  1 Δ T 1 𝛥𝑇⁄ . For a 10 nanosecond pulse, this is 

about 100 MHz. This is broader than the bandwidth of a good CW laser, 



but it is often perfectly acceptable, especially if the spectral width of the 

transition you are studying is broader than this Fourier limit. 

Fourth is the duty cycle. Pulsed lasers have a very low duty cycle. A laser 

firing at 10 to 100 Hertz with a 10 nanosecond pulse duration has a duty 

cycle on the order of  10 − 7 10−7 to  10 − 6 10−6. This means the laser is 

off for the vast majority of the time. This is a huge advantage for reducing 

the average power load and heating on the sample, which is especially 

important for delicate species. 

Page 49: 

Here we have one more crucial advantage of using pulsed lasers, 

particularly in the context of beam experiments. The ability to synchronize 

the firing of a pulsed laser with other pulsed components, like a pulsed 

molecular or atomic beam source, is a game-changer. As we'll discuss in 

more detail shortly, this allows for highly efficient use of the sample. 

Furthermore, the pulsed nature of the ionization event itself provides a 

precise "start time,"  t = 0 𝑡 = 0, for the ions. This is the cornerstone of 

time-of-flight, or TOF, mass spectrometry. By measuring the time it takes 

for an ion to travel from the ionization region to a detector, we can 

determine its mass-to-charge ratio. The sharp, well-defined start time 

provided by a short laser pulse is essential for achieving high mass 

resolution in TOF experiments. This temporal discrimination is one of the 

most powerful synergies between pulsed lasers and ionization 

spectroscopy. 
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Let's now dig into some of the geometrical considerations when we 

combine our pulsed laser with a molecular beam. This example will help us 

understand the spatial and temporal scales involved. 

Let's assume some typical experimental parameters. First, our laser beam 

has a diameter,  D 𝐷, of 1 centimeter. This is a reasonably large, 

unfocused beam from a pulsed laser. Second, the pulse duration,  Δ T 𝛥𝑇, 

is 10 nanoseconds. Third, the molecules in our beam are moving with a 

mean velocity,  v ¯ 𝑣‾, of 500 meters per second. This is a typical speed for 

a light molecule in a supersonic jet expansion. 

Now, the critical question: how far does a molecule travel during the time 

the laser is actually on? We can calculate this distance,  d 𝑑, very simply:  d 

= v ¯ × Δ T  

𝑑 = 𝑣‾ × 𝛥𝑇 

Plugging in the numbers:  d = ( 500 m / s ) × ( 10 × 10 − 9 s ) = 5 × 10 − 6 

m  

𝑑 = (500 m/s) × (10 × 10−9 s) = 5 × 10−6 m 

which is equal to  5 × 10 − 4 5 × 10−4 centimeters. 

So, during the entire 10 nanosecond laser pulse, a typical molecule moves 

only 5 micrometers. This distance is absolutely tiny compared to the 1 

centimeter diameter of the laser beam. 
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What is the consequence of the calculation we just performed? 

The result is summarized in the single bullet point on this slide: The entire 

cross-section of the molecular beam is illuminated by the laser, and 

essentially all the molecules that are inside the laser volume can be 

considered "frozen" in place and can be ionized during the pulse. 

Because the distance a molecule travels during the pulse (5 micrometers) 

is negligible compared to the size of the laser beam (1 centimeter), we 

don't have to worry about molecules moving into or out of the beam while 

the laser is on. The interaction volume is well-defined and static for the 

duration of the pulse. This "snapshot" nature of pulsed laser interrogation is 

a great simplification and ensures that we are probing a well-defined 

ensemble of molecules with each laser shot. This allows for a clean 

interpretation of the experiment. 
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Now we must consider the flip side of the pulsed laser’s low duty cycle: the 

long “dark time” between the pulses. This introduces a significant limitation 

that we must address. 

Let’s use a typical laser repetition rate,  f L 𝑓L, of  100 H z 100 Hz. The time 

interval,  T 𝑇, between consecutive pulses is simply  1 / f L 1/𝑓L, which is  1 

/ 100 1/100, or  10 m s 10 ms. This is our dark interval. 

Now, what are the molecules in our beam doing during this  10 m s 10 ms 

period when the laser is off? They are still travelling at their mean velocity 

of  500 m / s 500 m/s. 



Let’s calculate the distance they travel during this dark time,  d dark 𝑑dark. 

 d dark = v ¯ T = ( 500 m / s ) × ( 0.01 s ) = 5 m .  

𝑑dark = 𝑣‾ 𝑇 = (500 m/s) × (0.01 s) = 5 m. 

Five meters! This is an enormous distance. If we have a continuous 

molecular beam flowing through our  1 c m 1 cm-wide interaction region, 

the vast majority of the molecules will simply fly through the region during 

the dark time without ever seeing a laser photon. 

The slide quantifies this by calculating the fraction of time the laser is on, 

which is  10 n s / 10 m s = 10 − 6 10 ns/10 ms = 10−6. A better way to think 

about it is comparing the interaction length ( 1 c m 1 cm) to the distance a 

new set of molecules travels between pulses. The number given,  1 / 500 

1/500, suggests a beam length of  500 c m 500 cm. The key point is that 

with a continuous beam, we are only interrogating a tiny fraction of the total 

number of molecules available. This is incredibly inefficient. 

So, what are the mitigation strategies? How can we fix this problem? 
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Here are the two primary strategies for overcoming the problem of the long 

dark time between pulses. 

The first, and most common, solution is to use a pulsed molecular beam 

and synchronize it with the laser. Instead of a continuous stream of 

molecules, we use a special valve that lets out a short puff of gas, say a 

few hundred microseconds long. We time the firing of our laser pulse to 

coincide perfectly with the arrival of this dense packet of molecules in the 



interaction region. The condition is that the duration of the gas pulse,  Δ T B 

𝛥𝑇B, should be less than or equal to the time it takes for the gas packet to 

traverse the laser beam, which is  D / v ¯ 𝐷/𝑣‾. This ensures that the entire 

sample is present when the laser fires, maximizing the overlap and 

efficiency. 

The second strategy is an alternative that can be used with high-repetition-

rate lasers. You can direct the laser beam to be antiparallel to the 

molecular beam—that is, the laser and molecules are flying directly 

towards each other. Then, you increase the laser repetition rate,  f L 𝑓L, as 

high as possible, for example, up to 10 kilohertz or more. By firing more 

frequently, you increase the probability that a given molecule will be 

"caught" by a laser pulse as it travels through the interaction zone. 

As the final point summarizes, the goal of both strategies is the same: to 

ensure that the molecules remain within the excitation zone for successive 

pulses, thereby dramatically improving the sampling efficiency of the 

experiment compared to a simple continuous beam and low-repetition-rate 

laser setup. 
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So far, we've focused heavily on pulsed lasers. But what about Continuous-

Wave, or CW, lasers? Can they be used for ionization spectroscopy? The 

answer is yes, but the requirements are quite different. 

The first, and most obvious, advantage of a CW laser is its 100% duty 

cycle. There are no dark gaps. The laser is always on. This makes it an 

excellent choice for samples that are not in a fast beam, but are in a slow 



diffusion environment, like a static gas cell. With a CW laser, you are 

guaranteed to eventually interrogate every molecule that wanders into the 

beam. 

However, CW lasers come with a major challenge: their power is much 

lower than the peak power of a pulsed laser. The slide gives an example of 

a typical, powerful CW laser, like an Argon ion laser, which might produce 

several Watts of power at a visible wavelength like 488 nanometers. 

Now, let's recall the photon flux we needed to achieve efficient ionization. 

Our target was  n L 2 = 10 25 𝑛𝐿2 = 1025 photons per square centimeter 

per second. To reach this colossal flux with just a few Watts of power, we 

have no choice but to use tight focusing. We must squeeze all of that 

power down into an incredibly small spot size. Let's see what that looks like 

numerically. 
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Let's do the calculation for focusing a CW laser. The example considers a 

CW laser that produces  2.5 × 10 19 2.5 × 1019 photons per second. This 

corresponds to roughly 1 Watt of power in the visible spectrum. To reach 

our target flux  n L 2 𝑛𝐿2 of  10 25 1025, we need to focus these photons 

onto a spot with an area of  2.5 × 10 19 10 25 
2.5×1019

1025
, which is  2.5 × 10 − 

6 2.5 × 10−6 cm 2 2. 

This is a tiny area. A spot with this area has a radius of only about 2.8 

micrometers. This is the scale of the challenge. 



This extremely tight focus creates a new problem, which is outlined in the 

second bullet point. An excited molecule has a typical lifetime of about 10 

nanoseconds. If that molecule is moving at a typical thermal velocity, it 

might travel several micrometers in that time. This means the excited 

molecule can move out of the tiny, micrometer-sized focal volume of the 

ionizing laser before it even has a chance to be ionized! This "transit-time" 

effect is a major hurdle. To overcome it, both the excitation laser, L1, and 

the ionization laser, L2, must be focused to the same microscopic spot and 

must coincide spatially with a precision of a few micrometers. This is a 

formidable alignment challenge. 

So what's the solution? The final point describes a clever optical 

engineering trick. The problem is matching a point-like laser focus with a 

line-like molecular beam. The solution involves using optical fibers to 

deliver the laser beams, which provides excellent stability and beam 

quality, and then using a cylindrical lens. A cylindrical lens focuses the 

beam in only one dimension. This can transform a circular laser spot into a 

thin, horizontal "light sheet." This light sheet can then be perfectly matched 

to the dimensions of the molecular beam, creating a much larger interaction 

volume while still maintaining the high intensity needed for ionization. 
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This slide provides a visual schematic of the solution we just discussed, 

titled "Optical Layout: Fiber-Delivered CW Lasers with Cylindrical 

Focusing." 

Let's follow the light paths. We see two laser beams, L1 and L2, emerging 

from fiber outputs. This ensures they are stable and have a nice, clean 

Gaussian spatial profile. The two beams are then combined using a 

Dichroic Mirror. This is a special mirror that reflects one wavelength (L1, in 

this case) while transmitting another (L2). This allows us to make the two 

laser beams perfectly collinear. 

The combined beams then pass through a Cylindrical Lens. Notice how the 

lens is curved in the vertical direction but flat in the horizontal direction. 

This optic squeezes the beam vertically while leaving it wide horizontally, 

transforming the focused spot into a line, or a "Light Sheet Focus." 

This light sheet is directed into the interaction region, where it intersects a 

Molecular Beam, which is shown travelling from right to left. This geometry 

creates a well-defined interaction region where the high-intensity light sheet 

perfectly overlaps with the ribbon-shaped molecular beam, solving the 

transit-time problem. 

The inset at the bottom shows the desired outcome. It plots the intensity 

profiles of the two lasers, L1 and L2, as a function of position. The goal is to 

make these two profiles, these two Gaussian peaks, overlap as perfectly as 

possible to ensure that any molecule excited by L1 is immediately in the 

high-intensity region of L2, ready for ionization. 
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Now let's consider how we can optimize the overlap and power of our two 

CW beams to maximize the signal. 

The first point notes that the Gaussian intensity profile of the excitation 

laser, L1, can often be strong enough to saturate the  ∣  i >  

to  ∣  k >  

transition. Saturation means we are pumping molecules into the excited 

state as fast as they can possibly be excited. In the center of the Gaussian 

beam where the intensity is highest, we might have very strong saturation. 

This leads to a clever optimization strategy mentioned in the second bullet 

point. Instead of placing the peak of the ionizing laser, L2, directly on top of 

the peak of L1, it can be advantageous to place the L2 peak on the 

shoulder of the L1 profile. Why would we do this? In the center of the L1 

beam, the transition is already saturated, so adding more L1 intensity 

doesn't help. By placing the L2 beam on the shoulder, we can create a 

more uniform ionization probability across the entire width of the beam. 

This ensures that we are efficiently ionizing molecules from the wings of the 

beam as well as from the center, maximizing the total signal from the entire 

interaction volume. 

Third, we can use imaging techniques and detectors to perform a spatial 

mapping of the two laser profiles to confirm that we have achieved at least 

95% overlap of the high-intensity regions. 

Finally, as we've seen before, using an autoionizing Rydberg resonance 

can be a lifesaver in CW experiments. It can reduce the required L2 laser 

power by a factor of 100 to 1000. This dramatically relaxes the focusing 



requirements and makes the entire experiment much more feasible with 

standard CW lasers. 
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Here we have a wonderfully practical tip for fine-tuning the experiment in 

real time. 

Fine adjustment of the spatial overlap of the two laser beams can be 

achieved by maximizing the ion signal while simultaneously monitoring the 

fluorescence from the intermediate state,  | k ⟩  |𝑘⟩. 

Let's think about this. The fluorescence signal—photons emitted from state  

| k ⟩  |𝑘⟩—depends only on the first laser,  L 1 𝐿1. It tells you how many 

molecules you are successfully exciting to the intermediate state. The ion 

signal, on the other hand, depends on both  L 1 𝐿1 and  L 2 𝐿2. It tells you 

how many of the excited molecules you are successfully ionizing. 

So, the procedure would be: first, you optimize the fluorescence signal by 

adjusting the wavelength and focus of  L 1 𝐿1. This tells you that you are 

efficiently creating the excited state  | k ⟩  |𝑘⟩. Then, while watching that 

fluorescence signal to make sure it stays constant, you carefully adjust the 

position and focus of the second laser,  L 2 𝐿2, until the ion signal reaches 

a maximum. When the ion signal is maximized for a given fluorescence 

level, you know you have achieved the best possible spatial overlap 

between your excited state population and your ionizing laser beam. This is 

a classic and very effective alignment technique used in two-color 

experiments. 
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We now return to the ultimate question of sensitivity and the fundamental 

limits imposed by quantum mechanics. This slide looks at the limit that 

arises from the principle of single-photon counting. 

We are considering the ideal case, where every single photon absorbed by 

our sample yields a detected count. The question is: what is the minimum 

detectable absorber density under this perfect condition? 

Let's start from the Beer-Lambert law. The power absorbed by the sample,  

P a b s 𝑃abs, is  P 0 N i σ i k L 𝑃0 𝑁i  𝜎𝑖𝑘 𝐿, where  P 0 𝑃0 is the incident 

power. If our detection limit is the absorption of a single photon of energy  h 

ν ℎ𝜈 in some integration time, then the minimum detectable density  N i 𝑁i 

is the density that produces that single absorption event. 

Rearranging the Beer-Lambert law for  N i 𝑁i gives the inequality shown: 

 N i ≥ h ν P 0 σ i k L  

𝑁i ≥
ℎ𝜈

𝑃0 𝜎𝑖𝑘  𝐿
 

 P 0 𝑃0 is the incident laser power in Watts,  σ i k 𝜎𝑖𝑘 is the cross-section, 

and  L 𝐿 is the path length. 

Now, we can express the incident power  P 0 𝑃0 in terms of the photon flux  

n L 1 𝑛𝐿1. Power is just photon flux times the energy per photon: 

 P 0 = n L 1 h ν  

𝑃0 = 𝑛𝐿1 ℎ𝜈 



The final bullet point tells us to substitute this expression into our inequality. 

When we do this, a beautiful simplification occurs. 
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Here is the result of that substitution. When we replace  P 0 𝑃0 with  n L 1 h 

ν 𝑛𝐿1ℎ𝜈, the  h ν ℎ𝜈 term in the numerator cancels with the  h ν ℎ𝜈 term in 

the denominator. This leaves us with an elegant and profoundly simple 

expression for the fundamental sensitivity limit: 

 N i ≥ 1 n L 1 σ i k L  

𝑁i ≥
1

𝑛𝐿1 𝜎𝑖𝑘 𝐿
 

Let's analyze this. Our sensitivity—our ability to detect a small number 

density—scales inversely with three key parameters: 1. The photon flux of 

our excitation laser,  n L 1 𝑛𝐿1. The more photons we send, the higher the 

probability of an absorption, and the lower the density we can see. 2. The 

absorption cross-section,  σ i k 𝜎𝑖𝑘. The stronger the transition, the easier it 

is to detect. 3. The interaction path length,  L 𝐿. A longer path length means 

the laser interacts with more molecules, increasing our signal. 

Now for a stunning numerical example. Let's assume a very strong 

absorption cross-section,  σ i k 𝜎𝑖𝑘, of  10 − 18 10−18 square centimeters 

(typical for an allowed atomic transition). Let's use a moderate CW photon 

flux,  n L 1 𝑛𝐿1, of  6.5 × 10 16 6.5 × 1016 photons per cm-squared per 

second (this is about 30 milliwatts of power). And let's assume a multi-pass 

cell with an effective path length  L 𝐿 of 5 centimeters. 



Plugging these numbers into our equation gives a minimum detectable 

density  N i 𝑁i of just  3 3 molecules per cubic centimeter. This is an 

absolutely astonishing number. We are talking about detecting a handful of 

molecules in a volume the size of a sugar cube. 

To drive the point home, if our interaction volume is half a cubic centimeter, 

this density means we only need, on average,  1.5 1.5 molecules to be 

present in the laser beam at any given time to get a detectable signal. We 

are truly in the realm of single-molecule detection. 
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Let's refine this sensitivity calculation with a more realistic example for a 

molecular beam experiment, where we are truly pushing towards single 

molecule detection. 

In a crossed laser-molecular beam setup, the interaction path length  L 𝐿 is 

determined by the width of the molecular beam, which is typically much 

smaller than in a gas cell. A typical value might be  L = 0.2 𝐿 = 0.2 

centimeters. 

Let's use the same laser flux  n L 1 𝑛𝐿1 and cross-section  σ i k 𝜎𝑖𝑘 as in the 

previous example. The only thing that has changed is  L 𝐿. Our minimum 

detectable density  N i 𝑁i scales as  1 / L 1/𝐿. Since  L 𝐿 is now 25 times 

smaller ( 0.2   c m 0.2 cm vs  5   c m 5 cm), our minimum detectable density 

will be 25 times higher. The calculation  N i ≥ 75 𝑁i ≥ 75 per cubic 

centimeter confirms this. 



Now, let's calculate the actual interaction volume. Let's say we focus our 

laser down to a  1 1 millimeter diameter. The cross-sectional area  A 𝐴 of 

the laser is  π r 2 𝜋𝑟2, which is about  7.7 × 10 − 3 7.7 × 10−3 square 

centimeters. The interaction volume  V 𝑉 is the area  A 𝐴 times the path 

length  L 𝐿. 

 V = ( 7.7 × 10 − 3   c m 2 ) × ( 0.2   c m ) = 1.5 × 10 − 3   c m 3 .  

𝑉 = (7.7 × 10−3 cm2) × (0.2 cm) = 1.5 × 10−3 cm3. 

So we have a minimum detectable density and a well-defined interaction 

volume. Now we can calculate the minimum number of molecules we need 

in that volume. 
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Here we perform the final, simple calculation to find the minimum number 

of detectable molecules in our molecular beam example. 

The minimum number of molecules, which we'll call  N min 𝑁min, is simply 

the minimum detectable number density,  N i 𝑁i, multiplied by the 

interaction volume,  V 𝑉. 

 N min = N i × V  

𝑁min = 𝑁i × 𝑉 

Plugging in the numbers from the previous slide: 

 N min = ( 75   m o l e c u l e s / c m 3 ) × ( 1.5 × 10 − 3   c m 3 )  

𝑁min = (75 molecules/cm3) × (1.5 × 10−3 cm3) 



This gives a value of approximately 0.11 molecules. 

What does it mean to detect 0.11 molecules? It means that if we have, on 

average, just one-tenth of a molecule in our detection volume at any given 

time, we can still get a signal. 

In reality, of course, molecules are discrete. This result means that our 

detection probability is high, but the probability of a molecule even being in 

the beam is low. We are sensitive enough that we are limited by the "shot 

noise" of the molecules themselves. 

The final sentence puts this in perspective. When we account for the fact 

that our collection efficiency and detector efficiency might be slightly less 

than unity, and there might be some detector noise, this calculation shows 

that we are truly approaching the regime of single-molecule sensitivity. The 

ability to detect the presence of a single, specific molecule in a specific 

quantum state is the ultimate achievement in analytical spectroscopy, and 

ionization methods get us there. 
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This slide offers a concise comparison and summary of the different 

detection mechanisms we've explored, highlighting their strengths and 

weaknesses. 

First, let's review Collision-induced ionization. As we saw, this method 

relies on an external flux of colliding particles, like electrons or metastables. 

The cross-sections and available particle densities are generally lower than 

what can be achieved with intense lasers. Therefore, it's not the technique 

of choice for ultimate sensitivity. However, it is extremely valuable for 



energy-transfer studies and for diagnostics in plasma environments where 

collisions are unavoidable and, in fact, the subject of interest. 

Next, we have Field ionization. Its unique strength is its state-selectivity for 

high-lying Rydberg atoms. Essentially every Rydberg atom with an energy 

above the effective, field-lowered ionization potential,  I P e f f IPeff, is 

ionized. This makes it an excellent and unparalleled population probe for 

these highly excited states. The slide notes that states with principal 

quantum number  n 𝑛 up to 300 have been measured using this technique, 

which is a testament to its precision and power for studying the near-

continuum structure of atoms. 

Finally, we'll summarize the workhorse method, RTPI/REMPI. 
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This slide concludes our comparison by summarizing the key features of 

Resonant Two-Photon Ionization (RTPI) and its generalization, Resonant 

Multiphoton Ionization (REMPI). 

The first bullet point captures the essence of its power: it combines high 

selectivity with near-unity efficiency. The selectivity comes from the 

resonant nature of the laser excitation step—only the specific molecule with 

the correct energy levels will be excited. The near-unity efficiency comes 

from the ability to ensure that every excited molecule is subsequently 

ionized and every resulting ion is detected. It's the best of both worlds. 

Because of this powerful combination, it has become the preferred method 

in a vast range of applications, from analytical chemistry, where it's used for 

ultra-trace detection of pollutants, to precision spectroscopy, where it's 



used to make fundamental measurements of molecular structure and 

dynamics. 

The final point is a reminder of the practical considerations for an 

experimentalist. The choice of the specific ionization scheme—whether to 

use 1+1, 2+1, field ionization, autoionization, etc.—is not arbitrary. It is 

dictated by the specific energy level structure of the molecule you wish to 

study, the wavelengths and powers of the lasers you have available in your 

lab, and the sample environment, be it a static cell, a molecular beam, or a 

plasma. A successful experiment requires a thoughtful combination of all 

these factors. 

Page 65: 

We now move to one of the most powerful applications of ionization 

spectroscopy: coupling it with mass spectrometry. This slide explains the 

rationale for this combination. 

The first problem it addresses is one of spectral overlap. While laser 

spectroscopy is highly selective, sometimes the spectral lines of different 

chemical species, or even different isotopes of the same species, can 

overlap. In a complex mixture, it can become difficult or impossible to be 

sure which molecule is responsible for a given spectral feature. We need 

another layer of identification. 

The solution, as the second bullet point states, is to introduce mass 

separation. This yields an "orthogonal discrimination." "Orthogonal" here 

means that it's a completely independent method of identification. We first 

select molecules based on their "color" (their absorption spectrum) and 



then we separate them based on their mass. A species must satisfy both 

the spectroscopic and the mass criteria to be detected, providing an 

exceptionally high level of certainty. 

The workflow for such an experiment, often called Resonance-Enhanced 

Multiphoton Ionization Time-of-Flight Mass Spectrometry (REMPI-TOF-

MS), is as follows: 1. Laser L1, the "spectroscopy" laser, is tuned to 

resonantly excite only a specific species of interest. 2. Subsequent photons 

from a second laser (or the same laser) then ionize those excited 

molecules. 

The result is a cloud of ions that consists, ideally, of only the single species 

we selected with our laser. Now, we need to verify this by measuring their 

mass. 
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Continuing with the workflow of a REMPI-mass spectrometry experiment: 

Step 3 is the mass separation itself. After the ions are created, they are 

injected into a mass analyzer. The most common type for use with pulsed 

lasers is a Time-of-Flight, or TOF, mass spectrometer. In a TOF 

instrument, ions are accelerated to the same kinetic energy and then 

allowed to drift through a field-free tube. Because kinetic energy is one-half  

m v 2 𝑚𝑣2, heavier ions will travel more slowly and take longer to reach the 

detector. This separates the ions based on their mass-to-charge ratio, or  m 

q 
𝑚

𝑞
. Alternatively, for CW experiments, a quadrupole mass filter can be 



used, which selects a single  m q 
𝑚

𝑞
 value at a time using oscillating electric 

fields. 

Step 4 is the data collection. We set our mass spectrometer to only detect 

ions of a specific mass. Then, we record the number of those ion counts as 

we scan the wavelength,  λ L 1 𝜆𝐿1, of our first laser. This process builds up 

a mass-resolved, or mass-gated, spectrum. We are plotting a spectrum that 

we know, with certainty, belongs only to the molecule with the mass we 

selected. 

The power of this technique is highlighted in the final bullet point. It is so 

precise that it is capable of identifying and obtaining separate spectra for 

different isotopomers—molecules that differ only in their isotopic 

composition, for example, by a single neutron. This is an incredibly 

powerful tool for isotope analysis and for studying subtle isotope effects in 

molecular physics. 
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This slide provides a simple yet effective timing diagram that illustrates the 

principle of Time-of-Flight mass separation. The horizontal axis represents 

time, starting from  t = 0 𝑡 = 0. 

Let's follow the sequence of events. 

First, at the top, we see the "Laser Pulse". This arrives at  t = 0 𝑡 = 0, and 

it's responsible for the first step: Excitation. 

Immediately following, at  t = 0 𝑡 = 0, is the "Ionization" event. This creates 

our ions and, crucially, defines our "start time" for the TOF measurement. 



The ions are then detected, which is labeled "3. Detection" and represented 

by the "Ion Signal" trace at the bottom. However, the detection does not 

happen at  t = 0 𝑡 = 0. The ions must travel from the source to the detector. 

The diagram shows that the Time-of-Flight, TOF, is proportional to the 

square root of the mass-to-charge ratio,  m / z 𝑚/𝑧. This means that lighter 

ions travel faster and arrive at the detector earlier. 

We can see this in the ion signal. Imagine our laser ionized a sample 

containing two isotopes. The signal for the lighter isotope,  m 1 𝑚1, appears 

first. A short time later, the signal for the heavier isotope,  m 2 𝑚2, arrives. 

The diagram shows the lighter isotope arriving around 40 arbitrary time 

units, and the heavier one arriving at 42.5 units. The time difference 

between the peaks,  Δ t 𝛥𝑡, is shown as 2.5 microseconds in this example. 

By precisely measuring these arrival times relative to  t = 0 𝑡 = 0, we can 

calculate the mass of each ion with high accuracy. 
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Here we see a perfect illustration of the power of mass-gated detection, 

using the spectra of lithium trimer clusters, Li-three, as an example. 

The first bullet point notes that if you take an optical spectrum of a beam of 

lithium clusters without any mass selection, the result is a mess. You see 

congested, overlapping features that are very difficult to assign or interpret. 

This is because the beam contains a mixture of different isotopomers of the 

Li-three cluster. 



Now, see what happens when we turn on mass-gated detection. We can 

isolate the spectrum of a single, specific isotopomer. The slide lists two 

examples: 1. We can set our mass spectrometer to only detect ions with a 

mass of 21 atomic mass units. This corresponds to the cluster made of 

three Lithium-7 isotopes. We record the spectrum of pure  21 - L i - 3  

. 2. Then, we can change the setting on our mass spectrometer to detect 

ions with mass 20. This corresponds to a cluster with one Lithium-6 atom 

and two Lithium-7 atoms. We get a completely separate spectrum for pure  

20 - L i - 3  

. 

The ability to "un-mix" the congested spectrum into its pure components is 

a revolutionary capability. 

But why are the spectra of these isotopomers different in the first place? 

The last two bullet points explain the origins of these differences. The most 

significant effect stems from variations in the reduced mass. Changing the 

mass of one of the nuclei changes the molecule's vibrational frequencies. 

This leads to shifts in the positions of all the vibrational energy levels, and 

therefore shifts in the observed spectral lines. 

Page 69: Continuing with the sources 

of spectral differences between 

isotopomers: 



Beyond the shifts in vibrational levels due to the reduced mass, there are 

more subtle effects. The different isotopes can have different nuclear spins. 

The interaction of the nuclear spin with the electrons and with other nuclei 

gives rise to hyperfine splittings of the energy levels. These splittings are 

often different for different isotopes, leading to changes in the fine details of 

the spectral lines. 

The ability to record these clean, isolated spectra for single isotopomers 

enables incredibly precise science. We can precisely determine the isotope 

shifts, which are the shifts in spectral line positions due to both the mass 

effect and a subtler field-shift effect. We can also measure the hyperfine 

splittings to determine the nuclear moments, such as the nuclear magnetic 

dipole moment and electric quadrupole moment. 

Furthermore, the technique provides a highly accurate way to measure 

isotopic abundances. By comparing the total signal intensity from the mass-

21 channel to the mass-20 channel, we can obtain a precise measurement 

of the relative abundance of the different clusters in our beam. This is a 

crucial tool in fields ranging from geology to nuclear physics. 
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Given the importance of coupling ionization with mass spectrometry, let's 

briefly review the types of mass spectrometers best suited for these 

experiments. 

The first and most common type is the Time-of-Flight, or TOF, mass 

spectrometer. It has several key advantages that make it a perfect partner 

for laser ionization. 



* Its pulsed operation is naturally matched to the pulsed nature of the lasers 

used for REMPI. An ion packet is created with each laser shot and 

analyzed. * It offers simultaneous detection of the entire mass range per 

shot. In a single laser pulse, you create all the ions, and they all fly down 

the tube and are detected. This makes it very fast and efficient, especially 

for analyzing complex mixtures. It has a very high duty cycle in terms of 

data collection. For very high-resolution work, the timing can be made even 

more precise. If you detect the electron* that is created during ionization, its 

arrival can be used to generate an extremely precise  t = 0 𝑡 = 0 start 

signal, with sub-nanosecond time stamping. This is a technique called 

velocity map imaging or photoelectron-photoion coincidence. 

The second major category is the Quadrupole Mass Filter. We'll discuss its 

properties on the next slide. 

Page 71: Let's continue with the 

Quadrupole Mass Filter and other 

types of mass analyzers 

A quadrupole operates by scanning, allowing only a single mass-to-charge 

ratio to pass through at a time. This continuous scanning mode makes it 

highly compatible with continuous-wave, or CW, laser ionization 

experiments. You can set the quadrupole to a specific mass and just let the 

CW laser and detector accumulate signal. 



However, quadrupoles have some drawbacks. They typically have a lower 

transmission efficiency than a well-designed TOF instrument, often less 

than 10%. You lose a significant fraction of your ions. 

Also, because it performs sequential mass analysis, it is much slower for 

multi-isotope or multi-component studies. To get a full mass spectrum, you 

have to scan the quadrupole settings, which takes time. 

A third and increasingly important category is ion traps. This includes Paul 

traps, which use radio-frequency electric fields, and Penning traps, which 

use a combination of electric and strong magnetic fields. These devices 

can store ions for long periods, from milliseconds to even seconds. They 

are increasingly being combined with CW REMPI for ultra-trace analysis, 

as the long trapping time allows one to accumulate a signal from a very 

weak source. 

Ultimately, the choice of mass spectrometer is governed by the 

experimental requirements: the laser format (pulsed or CW), the need for 

speed and simultaneous detection, and the desired sample throughput. 
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We'll now look at a very important and practical application that combines 

several techniques we've discussed: Laser Desorption plus RTPI. This is a 

method for performing "soft" ionization of fragile molecules, particularly 

those that cannot be easily introduced into the gas phase. 

Many molecules of interest, especially in biology, are large and non-

volatile. If you try to heat them to make them evaporate, they simply 

decompose. The first bullet point describes the solution: a pulsed laser is 



used to gently ablate or desorb neutral molecules from a solid or liquid 

surface. This is not about blasting the surface to create ions directly; it's a 

gentler process that liberates intact, neutral molecules into the gas phase 

just above the surface. 

The second step is key. Immediately after being desorbed, while they are in 

the gas phase in an adjacent region, these neutral molecules are ionized 

by a REMPI process. This two-step approach—desorb first, then ionize in 

the gas phase—is crucial for avoiding fragmentation. The initial desorption 

can be done with low enough laser power that the molecules have very 

little internal energy, and the subsequent REMPI process is highly selective 

and can also be gentle. 

This technique has opened the door to the study of many complex 

systems. The primary applications are in the analysis of biological 

macromolecules. This includes sequencing peptides, analyzing nucleotides 

like DNA and RNA, and studying complex carbohydrates, all of which are 

too fragile for more aggressive ionization methods. 

Page 73: Continuing with the 

applications and advantages of Laser 

Desorption plus RTPI: 

This technique is not just for biological molecules. A variation of it is used in 

planetary-surface analysis. For example, some of the instruments on the 

Mars rover "Curiosity" use a laser to ablate the surface of rocks and then 



analyze the resulting plasma or plume to determine the elemental 

composition. 

The primary advantage of this two-step "desorb-then-ionize" method over 

direct ion bombardment techniques (like Secondary Ion Mass 

Spectrometry, or SIMS) is that the internal energy of the neutral molecules 

remains low. This preserves their structural integrity. You are analyzing the 

molecule that was actually on the surface, not a fragment of it. This is what 

is meant by "soft" ionization. 

Furthermore, the selectivity of the RTPI step acts as a powerful filter. When 

you desorb from a real-world sample, you create a plume containing your 

target molecule plus a huge amount of other "matrix" species from the 

substrate. A non-selective ionization method would ionize everything, 

resulting in a complex, messy mass spectrum. But with RTPI, the laser is 

tuned to selectively ionize only your target molecule. This filters out the 

background matrix species, dramatically enhancing the signal-to-noise ratio 

and improving the detection limit. 
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This excellent diagram illustrates the entire process of Laser Desorption / 

REMPI / Time-of-Flight Mass Spectrometry. Let’s walk through it. 

The process is divided into two main stages. Stage 1 is “Desorption & 

Ionization.” On the left, we see a “Desorption Laser,” which is pulsed, firing 

at a sample surface. This ablates a plume of neutral molecules into the gas 

phase. The legend indicates that this plume contains both our purple 

“Target Molecules” and gray “Matrix Molecules.” 



Immediately, a second laser, the “REMPI Laser,” passes through this 

plume. The REMPI laser is tuned to be resonant only with the target 

molecules, so it selectively ionizes them, creating the lighter green ions 

(M1⁺ ) and heavier red ions (M2⁺ ). This is the key “soft ionization” step, 

preserving the molecules’ integrity. 

Now we move to Stage 2, “Mass Analysis (TOF).” The newly created ions 

are extracted and accelerated by a set of grids ( V o  

,  V 1  

) and injected into a long, field-free drift tube. As they travel down this tube, 

they separate by mass, because the time of flight,  t  

, is proportional to the square root of the mass-to-charge ratio. 

At the end of the drift tube, a detector records the “Ion Signal” as a function 

of time. We see a clean spectrum. The lighter ions, M1⁺ , arrive first, 

creating the green peak. The heavier ions, M2⁺ , arrive later, creating the 

red peak. The unwanted neutral matrix molecules are never ionized, so 

they don’t appear in the mass spectrum at all. This diagram perfectly 

captures the elegance and power of this combined technique. 
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We'll now explore a fascinating and highly sensitive detection device known 

as the Thermionic Diode, which operates on the principle of Optogalvanic 

Detection with internal amplification. 

First, let's look at the components. It's a relatively simple device. It consists 

of a heated filament, which acts as the cathode. Being hot, it emits a steady 



stream of electrons through the process of thermionic emission. This 

filament is enclosed by a cylindrical metal wall, which acts as the anode. 

The entire cell is filled with a low-pressure gas or vapor of the atoms we 

want to study. 

Now, how does it operate? At a small bias voltage between the cathode 

and anode, the device operates in what's called the space-charge-limited 

regime. The cloud of negatively charged electrons emitted by the filament 

forms a dense "space charge" region right around the cathode. This 

negative cloud repels other electrons that are trying to leave the filament, 

severely limiting the amount of current that can flow to the anode. The 

device essentially chokes its own current flow. It is this space-charge effect 

that is the key to the device's operation as a detector. 
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Here is how the thermionic diode harnesses the space‐ charge effect to act 

as a massive signal amplifier. 

The process begins with laser excitation. A laser is tuned to excite the gas 

atoms inside the diode into high-n Rydberg states. As we know, Rydberg 

atoms are very large and weakly bound. When these Rydberg atoms 

collide with the thermionic electrons flying around, they are very easily 

ionized by electron impact. 

This creates slow‐ moving, positive ions. The second bullet point is the 

crucial step. A positive ion, being heavy, lingers for a relatively long time ( Δ 

t i o n 𝛥𝑡ion) in the vicinity of the cathode. Its positive charge locally 

neutralizes part of the negative space charge cloud. 



This neutralization effectively lowers the potential barrier for the other 

electrons trapped in the space charge. The result is a cascade. Many, 

many more electrons are now free to escape the space charge and flow to 

the anode, creating a large pulse of current. 

The result is that a small initial ionization yield—the creation of just a few 

ions by the laser—is amplified into a much larger electrical signal. This 

current magnification factor,  M 𝑀, can be enormous. 

The change in current,  Δ i 𝛥𝑖, is given by  e ⋅  N ⋅  M 𝑒 ⋅ 𝑁 ⋅ 𝑀, where  N 𝑁 

is the number of ions created and  M 𝑀 is the gain. This gain,  M 𝑀, is 

approximately the ratio of the time an ion lingers,  Δ t i o n 𝛥𝑡ion, to the time 

it takes for an electron to transit the device,  Δ t e l 𝛥𝑡el. 

As the slide notes, this gain  M 𝑀 can be as large as  10 5 105. So, the 

creation of a single ion can result in a measurable current pulse of 100,000 

electrons. This makes the thermionic diode an extraordinarily sensitive 

detector for Rydberg states. 

Page 77: 

This Paage is blank, so we will continue to the next slide. 
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We'll now discuss a final, important refinement for performing very high-

precision spectroscopy of Rydberg atoms: creating a Field-Free Excitation 

Zone. 



As we've discussed, Rydberg atoms, especially those with extremely high 

principal quantum number  n 𝑛, are exquisitely sensitive to electric fields. 

Even very weak stray fields in an experimental chamber can cause 

significant Stark shifts and broadening of the energy levels, which would 

distort and limit the resolution of our spectrum. 

To perform the highest resolution spectroscopy, it is essential that the laser 

excitation takes place in a region that is as close to perfectly field-free as 

possible. 

The second bullet point describes how this can be achieved. By carefully 

designing the geometry of the electrodes used for ion collection, it's 

possible to create a potential minimum, or a "saddle point," in the electric 

potential right along the path of the laser beam. We saw a diagram of this 

earlier for the thermionic diode. 

The benefit of this careful design is immense. It allows for spectroscopy of 

Rydberg states up to  n 𝑛 of approximately 300 or even higher, without 

significant Stark shift broadening. This opens up the near-continuum region 

of atoms and molecules for detailed study, providing a stringent test of our 

understanding of atomic and molecular structure in this complex regime. 

Page 79: 

Continuing on the benefits of this field-free excitation approach: 

When this technique is combined with the enormous gain of thermionic 

amplification that we saw earlier, the overall sensitivity becomes truly 

phenomenal. This combination makes it possible to observe and measure 



the energies of levels that are lying only a few micro-electron-volts below 

the ionization potential. This is an incredible level of energy resolution. 

The ability to make such precise measurements on these very high-lying 

states is not just a technical curiosity. It provides benchmark-quality data 

for rigorous tests of fundamental theories of atomic and molecular 

structure. For example, the precise energies of a Rydberg series can be 

used to test the predictions of Quantum Defect Theory, which describes 

how the inner electron core of an atom perturbs the otherwise hydrogenic 

energy levels. It also allows for very precise measurements of the core 

polarizability—how the inner electron cloud is distorted by the presence of 

the outer Rydberg electron. These are fundamental properties of atoms 

and ions that can only be accessed through such high-precision 

experiments. 
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This set of diagrams provides a wonderful visualization of the thermionic 

diode and the principle of the field-free excitation zone. The overall title is 

"Thermionic Diode: Optogalvanic Detection of Rydberg States." 

Let's look at the two panels on the left first. They show a cross-section of 

the cylindrical diode. 

The panel labeled "LASER OFF" shows the red outer ring, which is the 

Anode held at a positive voltage,  + V +𝑉. Inside, there are two small blue 

circles representing the Cathode filaments, held at  0   V o l t s 0 Volts. 

Surrounding the cathodes is a blue haze, representing the dense, negative 

"Space Charge Cloud." This cloud prevents current from flowing. 



Now look at the panel labeled "LASER ON." A red "Laser Beam" is shown 

passing directly between the two cathodes. This is where the laser excites 

the atoms, which are then ionized, creating the positive ions that neutralize 

the space charge and trigger the amplified current pulse. 

The panel on the right, titled "Electric Potential Profile," explains why this 

geometry is so special. It plots the electric potential  V 𝑉 as a function of 

position along the horizontal axis, the  x 𝑥-axis. The potential is high at the 

outer anode plates. But because of the two symmetric, grounded cathodes, 

the potential dips down and forms a distinct minimum right at the center, at 

position  0 0. This potential well is the "Field-Free Region," highlighted in 

pink. The electric field is the derivative of the potential, so at the very 

bottom of this well, the electric field is zero. By aligning the laser to pass 

through this exact point, we ensure that the laser excitation occurs in a 

region free from Stark effects. 
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This slide provides a comprehensive text description of the "Principle of 

Operation" for the thermionic diode, summarizing everything we've seen in 

the diagrams. 

First, it describes the Components: A cylindrical Anode wall surrounds two 

symmetrically placed heated Cathode filaments. The cell contains a low-

pressure gas. 

Next, it describes the Laser OFF state. The cathodes emit thermionic 

electrons, forming a dense negative space charge cloud. This cloud repels 



other electrons, severely limiting the current that can reach the anode. This 

is the space‐ charge‐ limited regime. 

Then, the Laser ON state. A tuned laser excites gas atoms in the central 

field‐ free region into high-n Rydberg states. Collisions with the abundant 

thermionic electrons then efficiently create slow‐ moving positive ions. 

Finally, it describes the Amplification mechanism. A single positive ion 

lingers near the cathode, locally neutralizing the negative space charge. 

This allows a cascade of many thousands of electrons to flow to the anode, 

creating a large, easily detectable current pulse. The amplification is 

described by the equation  Δ i = e N M 𝛥𝑖 = 𝑒𝑁𝑀, where the gain  M 𝑀 can 

be as large as  10 5 105. 
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This slide is incredibly valuable, as it distills our entire discussion down to a 

set of practical, take-away parameters for designing an ionization-

spectroscopy experiment. This is a checklist for the working 

experimentalist. 

First, the photon flux target for the ionizing step. We need  n L 2 ≥ 10 25 

𝑛𝐿2 ≥ 1025 photons per cm 2 2 per second. This is the target needed to 

ensure that the ionization rate outcompetes a typical radiative decay rate of  

R k = 10 8 s − 1 𝑅𝑘 = 108 s−1 for a typical photoionization cross-section of  

σ k I = 10 − 17 c m 2 𝜎𝑘𝐼 = 10−17 cm2. 

Second, collection efficiency. To achieve a  δ 𝛿 of approximately 1, you 

need to design ion optics that produce extraction fields of at least  100 V / c 



m 100 V/cm. Furthermore, your optics must have a large solid-angle 

coverage, greater than  2 π 2𝜋 steradians, to ensure you collect ions 

emitted in the forward direction. 

Third, detector gain. A microchannel plate (MCP) or a channeltron detector 

is the standard choice. These devices provide a charge amplification, or 

gain, in the range of  10 6 106 to  10 8 108. This is more than enough to 

turn a single ion event into a robust electronic pulse. Critically, these 

detectors should be chosen and operated to have a very low dark count 

rate, less than  1 1 count per second. 
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Continuing with our practical design parameters: 

The fourth point addresses the specific requirements for continuous-wave, 

or CW, operation. To meet the high photon flux requirement with the 

relatively low power of a CW laser (typically 1 to 5 Watts), tight focusing is 

essential. A focal spot radius,  w 0 𝑤0, of less than or equal to 30 

micrometers is a typical target value. 

The fifth and final point is a critical reminder about experimental efficiency. 

Molecular beam synchronization is absolutely essential whenever the laser 

duty cycle is low. The slide gives a rule of thumb: if the duty cycle is less 

than  10 − 4 10−4, you must use a pulsed, synchronized beam to avoid 

wasting the vast majority of your sample. This is almost always the case for 

experiments using low-repetition-rate pulsed lasers. 



This set of five rules provides a fantastic starting point for the design and 

planning of any high-sensitivity ionization spectroscopy experiment. 
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To conclude our lecture on Ionization Spectroscopy, here is a list of 

recommended further reading and sources for reference data. These texts 

are classics in the field and will provide much greater detail on the topics 

we've introduced today. 

First, the quintessential textbook by Demtröder, "Laser Spectroscopy." The 

5th edition is shown here. It's an indispensable resource. Chapter 1 

provides an excellent overview of the fundamentals we discussed, and 

Chapter 5 contains extensive details on REMPI spectroscopy. 

Second, for those interested in the specifics of REMPI on small molecules, 

the review article by Koopman and colleagues in the Journal of Chemical 

Physics is an excellent resource. It provides a thorough review of cross-

sections for many different systems. 

Third, for a deep dive into the fascinating physics of autoionization, the 

review by Orr-Ewing and Ashfold in Chemical Society Reviews, titled 

"Autoionization mechanisms in polyatomic molecules," is a seminal work. 
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Continuing with our recommended reading list: 

The fourth reference is an article by M. A. Duncan in the International 

Journal of Mass Spectrometry, titled "Laser ionization in mass 



spectrometry." This is a fantastic resource for anyone interested in the 

powerful combination of laser techniques and mass analysis that we 

discussed at length. 

Finally, for those who are truly captivated by the physics of Rydberg states, 

field ionization, and high-precision measurements, there is no better 

resource than the monograph by T. F. Gallagher, simply titled "Rydberg 

Atoms," published by Cambridge University Press. This book is the 

definitive bible on the subject and contains all the details you would ever 

need for field ionization calculations and understanding the complex 

behavior of these giant, fragile atoms. 

I highly recommend you consult these sources as you continue your 

studies. 

That concludes our lecture for today. Thank you. 
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