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Good morning, everyone. Welcome back to Physics 608, Laser
Spectroscopy. I'm Distinguished Professor Dr M A Gondal, and today, we
begin a new and very important topic, which corresponds to section 1.3 in

your textbook.

We're going to discuss the “Direct Determination of Absorbed Photons.”

This marks a significant shift in our thinking.

Up until now, we've implicitly considered the most basic form of
spectroscopy: shining light through a sample and measuring how much
gets through. Today, we're going to explore what happens when we
change our perspective and try to directly observe the consequences of the

photons that don’t make it through—the ones that are absorbed.

This will lead us to some of the most sensitive techniqgues known in

experimental physics.
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So, let's frame our discussion for today. We'll be diving into the world of
what's known as Fluorescence Excitation Spectroscopy. This is a

cornerstone technique in our field.

The central motivation, the question that will drive our entire lecture, is
stated right here on the slide: "Why would we want to directly count

absorbed photons?" It sounds like a simple question, but the answer



reveals a fundamental limitation in more conventional methods and opens

the door to measurements of breathtaking sensitivity.

We'll set some clear learning goals to guide us through this topic.
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Alright, here are our learning goals for this module. By the end of this

lecture, | expect you to have a firm grasp of these four key points.

First, we need to understand the fundamental limitation of what the slide
calls “"classical® absorption measurements. By classical, we mean the
standard method based on the Beer—Lambert law, where you measure an
incident intensity, 1in [;,, and a transmitted intensity, 1 o ut I,,, and infer
the absorption from the difference. There is an inherent, and often severe,

limitation to this approach.

Second, and this is the mathematical heart of that limitation, we need to
recognize that measuring a small absorption means you are trying to find a
small number by subtracting two very large and nearly identical numbers: |
in I, mnus loutl,,;. As any experimentalist knows, trying to find a small
difference between two large, noisy measurements is a recipe for a poor
signal-to-noise ratio, or S - N R S — NR. We'll visualize why this is such a

problem.

Third, with that problem firmly established, | want you to appreciate why we
need a different approach. We'll explore the conceptual shift towards
techniques that don't look at the leftover light, but instead monitor the
absorbed photons themselves by watching for the secondary effects they

produce. This is a move from what we might call a "dark signal"



measurement—a small dip on a bright background—to a "bright signal®
measurement on a dark background, which is a much more favorable

situation.

Finally, we will preview the hero of our story today: fluorescence-excitation
spectroscopy, universally known by its acronym, L—I-F, or LIF. We'll see
that LIF is an elegant and powerful member of this family of high-sensitivity
techniques, and we will spend the bulk of our time developing a quantitative

understanding of how it works.

So, with those goals in mind, let's begin.
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Now that we've outlined our objectives, let's dive directly into the core

problem and build our intuition for why this new approach is so necessary.

Page 5:

This slide provides a perfect visual summary of the entire problem. The title
asks the central question: "Why Directly Count Absorbed Photons?" And
the subtitle gives the answer: because "Classical Absorption is the

Difference of Two Large Numbers."

Let's look at the diagram. It's a simple bar chart plotting intensity in arbitrary
units. On the left, we have a tall, dark blue bar representing the incident
intensity, |in Ii,. This is the amount of light from our laser or lamp that we

send into our sample. On the right, we have another tall bar, this one light



blue, representing the transmitted intensity, | out I,,. This is the light that

makes it through the sample to our detector.

As you can see, for a weakly absorbing sample, these two bars are almost
exactly the same height. The actual absorption signal, which is what we
care about, is the tiny difference between them: Absorption equals | in — |
out [, — I,y In the diagram, this is represented by that very small red

rectangle sitting on top of the | out I, bar. That tiny red sliver is our signal.

Now, here is the crucial part. Look at the dashed line labeled "Noise
Fluctuation." Every measurement has noise. The laser power fluctuates,
the detector has electronic noise, and most fundamentally, there is photon
shot noise. This noise level is represented by that dashed line. Notice that
the height of our signal, that little red rectangle, is comparable in size to the

noise fluctuations on the huge blue bars.

And this brings us to the text at the bottom, which summarizes the issue
perfectly: The problem is that the small absorption signal is comparable to
the noise in the large I in [, and | out I,,; measurements. When your
signal is the same size as your noise, you have a very poor signal-to-noise
ratio, an SNR of around one. This means it's incredibly difficult, if not
iImpossible, to confidently measure that absorption. You're trying to weigh a
single feather by first weighing a truck, then weighing the truck with the
feather on it, and subtracting the two numbers. The tiny imprecision in your
truck scale will completely swamp the weight of the feather. That is the

fundamental problem we need to overcome.
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Let's now put some mathematical formalism behind the picture we just saw.
This slide gives us the quantitative details of a classical transmission

measurement.

The first point brings us to the familiar Beer—Lambert law, which describes

how light is attenuated when passing through a homogeneous medium of

lout = Iinexp(_a((‘)) D).

Let's break this down. l-out and I-in are the transmitted and incident
intensities, respectively. ' | ' is the path length through the sample in
meters. The key physical parameteris a (w ) a(w), spelled a-l-p-h-a. This
is the absorption coefficient. It depends on the frequency, w w, of the light
because absorption is a resonant process. It contains all the microscopic

physics of our sample.

As the second bullet point explains, the absorption coefficient, a ( w )
a(w), which has units of inverse meters, encodes two critical pieces of
information: the absorption cross- section of the individual molecules and
the number density of those molecules. We will unpack this relationship
later, but for now, think of alpha as a measure of how strongly the medium

absorbs light per unit length.

Now, for many applications in laser spectroscopy, we are interested in very
dilute samples or very weak transitions. This is the "weak lines" limit, where
the product a | al is much, much less than one. In this case, we can use
the Taylor series expansion for the exponential, e = x=1-xe™* =1—-x
for small x x. Applying this to the Beer—Lambert law gives us the much

simpler approximate form: lout=Ilin(1-al).



Iowt = in(1 = a D).
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Continuing with our quantitative analysis, the first bullet point on this paage
defines the actual measurable signal, which we'll call capital Delta I. This is

simply the difference between the incident and transmitted intensity:
Al=lin-lout.
Al = Iin = Iout.

Using the weak-line approximation from the previous slide, we can see that

lin-loutl,— I, isapproximately linal ,al:
lin-lout=linal.
Iin_lout zlinal-

This is our signal. The problem, as stated here, is that this signal is tiny
compared with the total incident intensity, | i n I[;,. The noise on our
measurement is almost always dominated by the noise on the large 1in I,
signal. This includes electronic noise from the detector and amplifiers, but
more fundamentally, it includes photon shot noise, which is the inherent
statistical fluctuation in the arrival of photons and scales with the square
root of the intensity. So we are trying to measure a small signal, linal
Iipal, in the presence of a much larger noise floor, which is proportional to

the square root of lin [,.

So, what can we do? The second bullet point mentions some traditional

improvement strategies. We can try to make the signal, |in al [,al,



bigger. One way is to make the path length 'I' very large using long path
cells, like White cells or Herriott cells, where mirrors fold the beam path
many times through the sample. Another way is to increase the effective i
n I;, by placing the sample inside a high-finesse optical cavity, a technique
known as intracavity enhancement. These methods help, but they have

their own complexities and limitations, and they eventually saturate.

This brings us to the crucial conceptual leap, the punchline of this whole
discussion: we need an alternative concept. Instead of trying to see a tiny
dip in a huge amount of light, what if we could instead "measure the
photons that really disappear"? This is the paradigm shift that leads to all

the high-sensitivity techniques we're about to explore.
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So, we arrive at the strategy shift: we’re going to "Follow the Missing

Photons."

The core idea, as the first bullet point states, is that all of these direct
detection techniques work by converting the absorbed photon stream into a
secondary signal. When a molecule absorbs a photon, its energy has to go
somewhere. It doesn'’t just vanish. The molecule is now in an excited state,
and this stored energy can be released in various forms. We can detect
these secondary emissions. Ideally, the strength of this secondary signal is

directly proportional to the number of absorbed photons per second.

Instead of measuring a small decrease in a large signal, we are now

measuring a small signal against a background that is, ideally, zero.



So what are these secondary channels? The slide lists some of the most

popular ones.

First, and this will be the main topic of our discussion, is Laser-Induced
Fluorescence, or L-I-F. In this process, the molecule absorbs a laser
photon, jJumps to an excited electronic state, and then relaxes by emitting a
new photon—a fluorescence photon—often at a different wavelength. We

can then collect and count these fluorescence photons.

A second major channel is photo-ionization, or measuring the ionization
yield. If the absorbed photon has enough energy, it can completely eject an
electron from the molecule, creating a positive ion and a free electron. We
can then use electric fields to collect these charged particles and count

them as a current.
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Continuing our list of secondary channels, a third important method relies
on detecting photoacoustic pressure waves. In this technique, the absorbed
photon energy is converted into heat through collisions, causing a local
temperature and pressure increase. If the laser is modulated, this creates a
periodic pressure wave—in other words, a sound wave—that can be

detected with a very sensitive microphone.

Now let's summarize the principal advantages of this entire family of
techniques. The first point is the most important one and cannot be
overstated: the signal originates only when absorption occurs. This means
there is no subtraction of large numbers. We are measuring something on

an essentially dark background. If there's no absorption, there's no



fluorescence, no ions, no sound. Our signal is a direct measure of the

absorption event itself.

This leads to the second advantage: the potential for shot-noise-limited
detection. If we can engineer our experiment carefully to eliminate all other
sources of background—stray light, electronic noise, cosmic rays—then the
only remaining noise is the fundamental quantum fluctuation in the arrival
of our secondary signal quanta. This is the ultimate limit of sensitivity in any

measurement.

Of course, there is no free lunch. These methods also have their
challenges. The main one is that we need to efficiently collect these
secondary quanta. Whether it's photons from fluorescence, ions, or sound
waves, they are often emitted over a wide area or into a large solid angle.
Designing optics or detectors to capture a significant fraction of this signal

is a major experimental engineering task.
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And there's a second significant challenge to consider. As the bullet point
here states, these techniques often require absolute calibration of a multi-

step detection chain if you want to do truly quantitative work.

Think about it. The process is: a photon is absorbed, which leads to a
secondary quantum being emitted, which then has to be collected and
finally turned into an electrical signal by a detector. Each of these steps has
an efficiency factor associated with it. To relate the final number of counts
you measure back to the initial number density of molecules in your

sample, you need to know, or very carefully measure, the efficiency of



every single step in that chain. This can be a complex and demanding
process, but it's essential for turning a beautiful qualitative signal into a

hard quantitative number.
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Alright, let's now focus on the star of today’s show: Laser-Induced
Fluorescence, or LIF. This slide outlines the fundamental concept. It's a

beautifully simple, four-step process.

First, we use a tunable laser. This is critical. The energy of the laser
photons, given by h v hv, must be precisely tuned to match the energy
difference between two specific quantum states in our molecule. This
resonant condition is what gives spectroscopy its exquisite selectivity. The

wavelength is denoted as AL 4;.

Second, this resonant laser light promotes molecules from a lower energy
state, which we’ll label with the ket | i) |i), to a specific excited state,
which we’ll label with the ket | k ) |k). This is the absorption step we've

been talking about.

Third, once in the excited state | k) |k), the molecules don'’t stay there for
long. They will spontaneously decay. In LIF, the decay pathway we care
about is the one where they emit fluorescence photons. An electron drops
back down to a lower energy level, and the energy difference is released as

a new photon.

Fourth, and finally, our job as experimentalists is to count those

fluorescence photons. The number of fluorescence photons we detect is,



under the right conditions, directly proportional to the number of primary
absorption events. So by counting these secondary photons, we are
indirectly counting the “missing photons” from the initial laser beam. This is

the essence of LIF.
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So, how do we use this four-step process to actually perform

spectroscopy? The procedure is described here.

We take our tunable laser and we scan its wavelength, A L A, across a

range where we expect our molecule to have transitions.

At each wavelength setting, we measure the rate of fluorescence photons

that we count with our detector.

We then plot this counted rate on the y-axis versus the laser wavelength on

the x-axis. The resulting graph is called an excitation spectrum.

Now, here is the key insight: this excitation spectrum perfectly mirrors the
absorption spectrum. Why? Because fluorescence can only occur if the
molecule is first excited. And the molecule can only be excited if the laser
wavelength is resonant with an absorption transition. So, whenever the
laser hits an absorption line, the fluorescence signal goes up, creating a
peak in our excitation spectrum. The positions of the peaks in the LIF

spectrum tell us exactly where the absorption lines are.

The crucial advantage, which is the entire point of this lecture, is that this
method of obtaining the spectrum has much, much higher sensitivity than a

classical transmission measurement.
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This diagram provides an excellent visual representation of the entire

Laser-Induced Fluorescence process. Let’'s walk through it carefully.

On the vertical axis, we have energy. We see two distinct electronic states.
At the bottom, we have the ground electronic state, represented by a
manifold of several closely spaced vibrational energy levels. We label the
initial state we'’re starting from as E | i ) E|i). At the top, we have the
excited electronic state, also with its own manifold of vibrational levels. We

label the state we excite to as E | k) E|k).

The process begins with the long, vertical red arrow, labeled “Laser
Excitation.” This represents the absorption of a single laser photon with
energy h v hv and wavelength A A. It takes the molecule from the specific
initial state | i) |i) up to the specific excited state | k ) |k). This is a

resonant, one-to-one process.

Now, what happens next is shown by the blue arrows. The excited
molecule relaxes. The diagram shows several wavy blue arrows originating
from the excited state | k ) |k) and ending on various different vibrational
levels of the ground electronic state. This is the “Fluorescence” or “Photon
Emission.” Notice two things: first, the emission can be to many different
final states, meaning the fluorescence photons can have a range of
energies, typically lower than the excitation energy. Second, the arrows are
shown pointing in all different directions, illustrating that the fluorescence is

emitted isotropically, over all 4 1 4 steradians.



Finally, on the right, we see a green rectangle representing our “Detector.”
A dashed cone, labeled with the solid angle Q 2, shows that only a fraction
of that isotropically emitted fluorescence is actually heading towards the
detector to be collected. This visually captures the concept of collection

efficiency, which we will quantify shortly.
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Now that we have the conceptual picture, let's start building a quantitative
model for the LIF signal. To do that, we first need to define the geometry of

our experiment.

First, we consider our laser beam. It has a specific cross-sectional area,
which we'll call A beam Apeam, and it traverses our sample over a certain

path length, which we'll call A x Ax.

These two parameters define the interaction volume, V int V. This is the
volume in space where the laser and the sample molecules overlap and
where absorption can occur. The volume is simply the area times the

length:

Vint = A beam A x
Vint = Apeam 4x

Next, we need to quantify our laser light. Instead of intensity, it's more
convenient to think in terms of photons. We define n L n, as the incident
photon flux, which is the number of photons per second entering the

interaction volume. Its units are simply s — 1 s,



Finally, we need to describe our sample. We define N i N; as the molecular
number density in the initial state | i ) |i). This is the quantity we often
want to measure. It tells us how many molecules per unit volume are in the

correct state to be excited by our laser. Its S.I. unitis m = 3 m~3.
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Continuing with our model, we now introduce one of the most important
parameters in all of spectroscopy: the absorption cross-section. This is
denoted by the Greek letter o o, with subscripts ii and k k to indicate that
it's for the specific transition from state i i to state k k. The cross-section
has units of area, m 2 m?2. You can intuitively think of it as the effective
"target area" that a molecule presents to an incident photon. If the photon
"hits" this area, it gets absorbed. A larger cross-section means a stronger

transition.

With these definitions in place, we can now perform Step 1 of our
derivation: calculating the total number of absorbed photons per second,

which we'll call n a n,.

Let's derive this. First, we ask: what is the probability, P abs P,,, that a
single incident photon gets absorbed as it travels the distance A x A4x
through our sample? In the low-absorption, or "optically thin,"” limit, this
probability is simply the product of three terms: the number density of
absorbers, N i N, times the cross-section of each absorber, o ik g, times
the path length, A x Ax. The product N i N; times o i k g, gives the total
effective absorption area per unit volume, and multiplying by the length

gives the total probability over that path.



Second, to find the total expected number of absorptions per second, n a
ng, we simply multiply the rate at which photons are arriving, n L n, by the
probability that any one of them is absorbed, P abs P,s. So, the rate of

absorptionis nan, equals nL n_times P abs Py.
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The third step is a simple substitution. We take our expression for Pab s

P,us from the previous slide and substitute it into the equation for n a n,.

This gives us the final expression for the absorption rate, which is
highlighted in the box:

na=NioiknLAX
ng = N, o, n Ax

This equation is the foundation of our entire model. Let's take a moment to
review each symbol and its units to ensure we have a crystal-clear

understanding.

* n an, is the number of absorbed photons per second. Its unitis s — 1
s~ * n L n_ is the incident laser photon flux. Its unitisalso s -1 s 1. * N
I N; is the number density of molecules in the initial state. Its unitis m — 3
m~3.* oik oy is the absorption cross-section for the transition. Its unit is

m 2 m?2.
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And, of course, the final term in our equation is A x Ax, the interaction path

length, which has units of meters.

If you look at the units, you can see they work out perfectly. m — 3 m™3
times m 2 m? times m m gives a dimensionless quantity, which is the
probability of absorption. Multiplying this by the rate nL n_  in s -1 s7?!

gives the final rate nan,, alsoin s—1s71

Now, let's step back and look at the physical meaning of the equation we've
derived: na=NioiknLAXn,; = No;,n_4x. The most important feature
is that the absorption rate is linear in all of these variables. This is very
intuitive and makes perfect sense. If you double the number of molecules in
your sample (double N i N;), you expect to get twice as many absorptions.
If you double the intensity of your laser (double n L n;), you get twice as
many absorptions. This simple, linear relationship makes the system

predictable and is key to using LIF for quantitative measurements.
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Alright, we've successfully modeled the absorption process. That was Step
1. Now we move to Step 2: What happens after absorption? We need to

determine the population of the excited level, the ket | k) |k).

Immediately after absorption begins, the population of the excited state
starts to build up at the rate we just calculated, n a n,. However, the

excited state is not stable; molecules will also be leaving it.

We will consider the common experimental situation of steady-state,

continuous illumination. In steady state, the system reaches an equilibrium



where the rate of molecules entering the excited state is exactly equal to

the rate of molecules leaving it.
The excitation rate, the rate IN, is simply n a n,.

The de-excitation rate, the rate OUT, has multiple components. Let's say
we have a total number of excited molecules, Capital N k N,. This
population can decay in two ways. First, it can decay radiatively, by
emitting a photon. The probability per unit time for this is the Einstein A
coefficient, which we’ll call A k Ax. Second, it can decay non-radiatively,
through processes like collisions. The probability per unit time for this is R
K Ry.

Our steady-state balance equation is therefore:
na=NkAk+NkRKk.
ng = NkAk + NkRk'

Let’'s be very clear about the new terms. A k Ay is the total spontaneous
\emph{radiative} decay probability, in units of inverse seconds. This is the
process that creates our desired fluorescence signal. R k Ry is the total
\emph{non-radiative}, or radiationless, decay probability. This includes all
the loss channels, like collisions or internal conversion, that remove excited

state population \emph{without} emitting a photon.
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From our steady-state balance equation on the previous slide, we can now

solve for the steady-state population of the excited level, Capital N k Ny.



The equationwas na=NkAk+NkRK.
ng = NkAk + NkRk'

First, we factor out N k N, on the right-hand side, giving: na=Nk (Ak +
Rk).

ng = Nk(Ak + Rk)-

Then, we simply solve for N k N, by dividing both sides. This gives us: N k
=naAk+RKk.

Ng
A+ R

Ny

This expression is correct, but we can make it more physically intuitive by
introducing a new, very important parameter: the fluorescence quantum
efficiency, or quantum yield. It is denoted by the Greek letter n n, with a

subscript K k.

Eta n k n¢ is defined as the ratio of the radiative decay rate to the total
decay rate. Mathematically, nk=AkAk+RK.

A+ R

Nk

What does this mean physically? n k n, is a dimensionless number
between zero and one that describes the fraction of excitations that actually
result in the emission of a fluorescence photon. It represents the efficiency
of the fluorescence process itself. If there are no non-radiative losses
(meaning Rk =0 R, =0),then nk =1 n =1, and every single absorbed
photon leads to a fluorescence photon. Conversely, if non-radiative decay

is very fast (R k > A k R, » Ay), then nk — 0 n = 0, and we get very little



fluorescence. The competition between radiative and non-radiative decay

pathways is what determines the quantum yield.
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We're now ready for Step 3: calculating the actual rate of fluorescence

photons being emitted, which we'll call n F L ng;.

The total number of fluorescence photons emitted per second is simply the
total number of molecules in the excited state, N k N, multiplied by the
rate at which each one radiatively decays, which is A k A,. So, our starting

equation is:
nFL=Nk- Ak.
nFL = Nk Ak

Now, we can substitute the expression for N k N, that we found on the last

slide. This gives:

nFL=(naAk+Rk):- Ak.

e = ()
FL= 4+ R/ K

If we rearrange this slightly, we get:

nFL=na- (AKAkKk+RKk).

— - (5%
ML= e\ g TR

But we recognize that term in the square brackets! That is exactly our

definition of the fluorescence quantum efficiency, nk ny.



So, we arrive at a beautifully simple and powerful result:
nFL=nank.

Ngp = Ng Nk-

The rate of photons emitted is simply the rate of photons absorbed

multiplied by the quantum efficiency of fluorescence.

Consider the special case where n k =1 n, = 1. This means there are no

non-radiative losses. In this ideal scenario,
nNFL=na.
TlFL = Tla.

Every absorbed photon leads to exactly one fluorescence photon. This is

the best we can possibly do.

Our ultimate measurement objective is now clear: we need to detect at
least a fraction of these n F L ng, photons in order to work our way
backwards and infer the absorption rate, n a ng,, which in turn tells us about

our sample.
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We have now calculated the total number of fluorescence photons, n-F-L,
being emitted from our interaction volume every second. But that's not what
we measure. We can only measure the photons that actually reach our

detector. This brings us to Step 4: the Geometrical Collection Efficiency.



The key point, as the first bullet states, is that in many cases, fluorescence
is emitted isotropically. That means it radiates out equally in all directions,

spreading over a total solid angle of 4 1 4w steradians.

Our detector, however, is not a sphere that surrounds the sample. It's a
small device sitting some distance away, and it only accepts light coming

from a limited solid angle, which we'll call d Q d..

Therefore, we define the collection efficiency, denoted by the lowercase
Greek letter © §, as the ratio of the solid angle subtended by our detector

to the total solid angle of emission. The equation is:
6=dQ4m

dn
 4m
0 6 is a dimensionless number that must be between 0 and 1. It represents

the fraction of the total emitted fluorescence that we actually manage to

capture with our collection optics.

The last bullet gives some practical numbers. For typical optical assemblies
using standard lenses and mirrors, you might achieve a & § between 0.1
and 0.5. A value of 0.5 would mean you are collecting light from a full
hemisphere, or 2 1 2m steradians, which requires very sophisticated and
well-aligned optics. For a simple lens, the value of & § might be much

smaller, perhaps only 0.01 or even less.
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This slide reinforces a simple but critically important engineering principle.
The final signal we detect will be directly proportional to this collection
efficiency, ® §. This means that a higher & § value directly multiplies our

detected signal.

Therefore, maximizing the collection efficiency is a key engineering target
in the design of any high-sensitivity fluorescence experiment. Any effort
spent on using larger lenses, higher quality mirrors, or more sophisticated
optical designs to increase the solid angle d Q df pays off directly with a

stronger signal and better signal-to-noise ratio.
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This diagram provides a clear, intuitive picture of what geometrical
collection efficiency means.

At the center of the diagram, we have an orange dot labeled "Fluorescence
Point Source.” This is our interaction volume, where the molecules are
emitting light.

Radiating out from this central point are numerous light blue lines extending
in all directions, like spokes on a wheel. This represents the "Isotropic
Emission"—the fact that photons are being sent out equally in all directions

into 4 1T 41 steradians.

Now, look at the shaded green wedge. This segment represents the solid
angle, labeled d Q dq, that is actually intercepted by our detector. The

arrow indicates that light within this cone is heading "To Detector."



It's visually obvious from this diagram that our detector is only seeing a
small fraction of the total light being emitted. The equation at the top
summarizes this quantitatively: the collection efficiency, & §, is the ratio of
that green wedge, d Q df, to the full circle, 4 1 4m. This is a fundamental

limitation we must always account for.
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So far, we have absorbed a photon, it has been re-emitted as fluorescence,
and a fraction of that fluorescence, determined by & §, has arrived at our
detector. Are we done? Not quite. This brings us to Step 5: the

Photocathode Quantum Efficiency.

The first bullet point explains the next challenge. When we use a detector
like a Photomultiplier Tube, or PMT, the first step is for an incoming photon
to strike a surface called the photocathode and, via the photoelectric effect,
release a photoelectron. However, this process is not 100 % 100%
efficient. Not every photon that impinges on the cathode succeeds in

releasing an electron.

This leads us to define another efficiency factor, the photocathode quantum

efficiency, which we denote as n p h .

As the equation shows, eta-ph is defined as the ratio of n-p-e, the number
of photoelectrons emitted per second, to n-ph,incident, the number of

photons per second that are incident on the photocathode.

nph=npenph,incident



n
_ pe
Nph =
nph,incident

So, n p h npy is the probability that an incident photon will successfully

create a photoelectron, which is the start of the electronic signal we will

actually measure.
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Let's define the terms in that equation more formally.

* n p-e ny is the rate of photoelectrons emitted per second. This is our
final, countable electronic signal. * n ph,incident ng incigent is the rate of
photons incident on the detector. This is simply the total rate of

fluorescence photons emitted, n F-L ng, multiplied by our geometrical

collection efficiency, 0 6.

So, how efficient is this process? The next bullet gives a typical value. For

a good photomultiplier tube operating in the UV or visible range, n ph 7, is

approximately 0.2, or 20 percent. This is a significant loss! It means that for
every five photons that we worked so hard to collect and guide to our

detector, on average, only one of them will generate a signal.

The final bullet point here is a saving grace. Once a photoelectron is
created, modern photon-counting electronics are remarkably efficient. They
can take that tiny initial pulse of charge from a single photoelectron event,
amplify it by many orders of magnitude inside the PMT, and convert it into a

clean digital count with virtually no extra noise added by the electronics



themselves. So, the main inefficiency is at the very front end—the

conversion of photons to electrons.
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We have now followed the signal from the initial absorption all the way to
the final electronic counts. This is Step 6, where we assemble all the pieces
into the Full Detection Chain Equation.

Let's start from the end and work backwards. The rate of photoelectrons we
count, np e n,,, is equal to the rate of fluorescence photons arriving at the
detector, n F L x & ng, X §, multiplied by the detector's efficiency, n p h

Mpn-S0, Npe=nFLxdxnph.n, =ng X§Xn,,.

But we know from Step 3 that the rate of emitted fluorescence photons, n
F L ng, is equal to the rate of absorbed photons, n a n,, times the
fluorescence quantum efficiency, n k n,. So we can substitute that in,

giving: npe=naxnkxdxnph.n,, =ng Xn X Xn,.

Finally, we substitute our expression for the absorption rate, n a n,, from
Step 1. This gives us our final, comprehensive equation, which is shown in
the box:

npe=(NixocikxnLxAx)xnkxnphx?9.
Npe = (Ni X 0 X N X Ax) X 1y X pp X 6.

Let's pause and appreciate this equation. It connects the thing we

measure, n p e n,,, to the thing we want to know, the molecular number

density N i N;, through a series of factors that are either fundamental



properties of our system (like o ik og;, and n k n,) or are experimental
design parameters that we control or can measure (like nL n , A Xx 4Ax, &
8, and n p hn,y). As the last bullet point says, all variables in this equation

are experimentally accessible or are part of the design.
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A crucial feature of the full detection chain equation we just derived is its
linear response. Our final signal, the photoelectron count rate n p e n,,, is
directly proportional to the initial state number density, capital N i N;. All the

other terms in the equation act as a single, large proportionality constant.

This linearity is incredibly convenient for experimental work. It means, for
example, that if we double the concentration of our analyte, which doubles
N i N;, we can expect to see double the number of counts per second from

our detector.

This enables a straightforward calibration procedure. We can prepare one
or more samples with a known concentration, measure their corresponding

np e n,., and create a calibration curve that directly relates our measured

signal to the absolute number density of the species of interest.
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Theory is wonderful, but let's plug in some real-world numbers to get a feel
for the incredible power of this technique. We'll work through an example
based on a problem from Demtrdder's textbook to estimate the ultimate

counting limit.



Here are the given parameters for our hypothetical experiment:

* First, the photomultiplier quantum efficiency, n p h ny,, is 0.2 0.2, or 20

percent. A realistic value. * Second, the collection efficiency, & §,is 0.1
0.1. This corresponds to collecting light over a solid angle d Q d2 of 0.4 1
0.4m steradians. This is a decent, but not heroic, collection system. * Third,
we are using a cooled PMT for photon-counting. Cooling the detector is
essential to reduce thermal noise, or "dark counts." The dark rate is
specified as being < 10 < 10 counts per second. This is our background
noise floor. * Fourth, we set a goal for our measurement. We want to
achieve a signal-to-noise ratio, or SNR, of approximately 8 8, and we'll
acquire data for an integration time of 1 1 second. To get an SNR of 8 8
with a background of 10 10 counts, basic Poisson statistics tell us we'll
need a signal of about 100 100 photoelectron counts. So, our required

signal rate, n p e nge, is 100 100 counts per second.

The question is this: To get this required signal of 100 100 counts per
second, what is the minimum measurable absorption rate, n a n,, that we

need in our sample?
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Let's now perform the calculation. We want to find the minimum absorption

rate, n a n,, needed to produce our target signal of np e =100 n,, = 100

counts per second.

We start with the relationship we derived earlier that connects the detected

counts to the absorbed photons: n p e n,, equals n a n, times n k

times np hn,, times 8 4.



We need to rearrange this to solve for nan,. So, nan, equals npe ny,

divided by the product of the efficiencies: (nk- nph- &) (g npn - 6).

For this calculation, we'll assume the most ideal scenario for the molecule
itself: that the fluorescence quantum efficiency, n k 7y, is equal to 1. This

means there are no non-radiative losses.

Now we plug in the numbers from the previous slide: n a n, equals 100,

divided by the quantity (1- 0.2- 0.1) (1-0.2-0.1). The denominator is

0.02 0.02. So, n a = 100 0.02 n, ==, which is 5,000. The units are

inverse seconds.

So, to get our desired signal, we need our sample to be absorbing 5,000

photons every second.

Now, this might not sound impressive until you consider what it means as a
fraction of the total laser power. The final bullet point here is the punchline:
this calculation demonstrates that LIF is capable of detecting a relative
absorption—that is, the change in power divided by the total power, A P/
P AP/P—that is less than or equal to 10 — 14 10~1%. This is for a standard
1 Watt laser at 500 nanometers. Ten to the minus fourteen is an absurdly
small number. It's like detecting the removal of a single grain of sand from

a one-ton pile. Let's see how this number is justified on the next slide.
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Let's now walk through the calculation that demonstrates the practical

significance of that astounding sensitivity figure of 10 — 14 1071%,



First, we need to know the total photon flux, n L n, for a 1 Watt laser
operating at a wavelength of 500 nanometers. The photon flux is the total
power, P P, divided by the energy of a single photon, hv hv. Since v =c
A,

>0

the energy per photonis hcA h%.

So, nL=PhcAn = %. Let's plug in the values. Power is 1 Joule per

A
second. Planck's constant, h h, is 6.626 x 10 — 34 6.626 x 1073* Joule-

seconds. The speed of light, ¢ ¢, is 3 x 10 8 3 x 10 meters per second.
And the wavelength, A A, is 500 nanometers, or 5 x 10 = 7 5x 1077

meters.

When you compute this, you find that a 1 Watt beam at this wavelength
carries approximately 3 x 10 18 3 x 10'® photons every single second.

This is an enormous number.

Now, from our previous calculation, we know that our minimum detectable

absorption rate, n a n,, was 5,000 photons per second.

So, what is the fractional loss? It's the number of photons we absorbed

divided by the total number of photons we sent in. The fractional lossis n a

nLZe
nL

5%x103
3x1018°

That's 5x1033 x 1018 This comes out to be approximately 1.7 x

10 -151.7 x 10715,



This is even more incredible than the 10 - 14 107'* quoted on the
previous slide! So, with a very standard setup, LIF allows us to detect the
disappearance of fewer than two photons out of every quadrillion that pass
through our sample.
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Let's put that sensitivity into perspective. The first bullet point here drives
the point home. To measure a fractional loss of 10 — 15 107° using a
classical transmission measurement—by subtracting | o ut Iy, from lin
I;,—Yyou would need to measure those two large intensities with a precision
of more than 15 digits. No instrument on Earth can do that. It is a
completely impossible measurement. LIF elegantly circumvents this
impossibility by changing the question—instead of measuring what's left,

we directly count what disappeared.

Now, can we do even better? Yes. The second bullet point hints at a more
advanced technique. If we place our sample inside the laser cavity itself,
the sample interacts with the much higher circulating power inside the
resonator, not just the output power. The effective photon flux, n L nf,
experienced by the sample is multiplied by a cavity enhancement factor, q
q, which can easily be in the range of 10 to 100, or even much higher for
high-finesse cavities. This means that to achieve the same relative
absorption, we now need an even smaller absolute number of absorbers, n
a ny. This is the basis for extremely sensitive techniques like Intracavity

Laser Absorption Spectroscopy, or ICLAS.
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We've established that every step in the detection chain is crucial, and one
of the most important leverage points for an experimentalist is the optical
design. So let's discuss the general principles for optimizing the collection

optics.

Our primary goal is simple: maximize the collection efficiency, & §, which
means capturing the largest possible solid angle of fluorescence. However,
we must do this without introducing new problems, namely stray light,

which would increase our background noise, or other optical losses.

This leads to several key requirements for the design. First, and most
obviously, we should try to surround the interaction region with reflective or
refractive surfaces that capture a large solid angle. The more of that 4 1

41 sphere of emission we can intercept, the better.

Second, we need to take all that light we've collected and efficiently re-
image it onto the small active area of our detector. But there's a constraint
here from fundamental optics, which is the preservation of étendue.
Etendue, also known as optical throughput, is the product of the source
area and the solid angle of emission. It's a conserved quantity in an ideal
optical system. This means you can't take light from a large, diffuse source
and focus it all down onto an infinitesimally small detector. There are
physical limits to how tightly you can concentrate light, and a good optical

design respects these limits to maximize throughput.
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Continuing with our requirements for optimal collection optics, the third

point is to maintain spectral neutrality. Our collection system, whether it



uses mirrors or lenses, should perform equally well across the entire
wavelength band of the fluorescence emission. We must avoid chromatic
aberration, which is a common problem with simple lenses where different
colors of light focus at different points. This would not only lead to signal
loss but could also distort the shape of our measured spectrum. This is a
primary reason why systems based on reflective optics—mirrors—are often

preferred, as they are inherently free of chromatic aberration.

So, how do we put these principles into practice? The last bullet point
highlights two classical designs, which are detailed in Demtréder's textbook
and are widely used. The first is a system based on a parabolic mirror. The
second is a more complex but very elegant system using an elliptical mirror
combined with a fiber bundle. We'll now look at the specifics of each of

these designs.
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Let's examine the first classical design for high-efficiency collection: the

parabolic mirror assembly.

The operating principle relies on a fundamental property of a parabola.
Light rays originating from the focal point of a parabolic mirror are all

reflected into a perfectly parallel, or collimated, beam.

In our experiment, we place the interaction region—the small volume where
the laser excites the molecules and fluorescence is created—yprecisely at
the focal point of what's called an off-axis paraboloid. We use an off-axis
section of a full parabola to provide clear access for the laser beam and the

detector.



The isotropically emitted fluorescence radiates from the focal point, strikes
the mirror, and is reflected as a collimated beam. This collimated beam can
then be easily manipulated, for example, by a simple lens that focuses it

efficiently onto the small active area of a PMT detector.

As the second bullet notes, a single parabolic mirror can be used to collect
light from nearly a full hemisphere, which is 2 1 2m steradians. This
corresponds to a collection efficiency, © &, approaching 0.5 0.5, which is

exceptionally good.

The advantages of this design are its relative simplicity of alignment and
the fact that using a mirror provides broadband reflectivity. With a simple
aluminum coating or a more advanced multi-layer dielectric coating, it can

be highly reflective over a very wide range of wavelengths.

The primary limitation is the potential for physical obstruction. The laser
beam has to get into the focal point, and the mirror itself might be in the
way. This often requires careful design, such as drilling entrance and exit
ports through the mirror for the laser beam, which can be a practical

complication.
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This diagram illustrates the parabolic mirror assembly in action. Let's trace

the light paths.

The main laser beam, shown as a red line, enters from the left. It passes
through entrance and exit ports, which are holes drilled in the large, curved

"Off-axis Parabolic Mirror."



The laser beam intersects our sample at the "Interaction Region," which is

a small light-blue circle located precisely at the focal point of the mirror.

From this interaction region, "Isotropic Fluorescence" is emitted in all

directions, as shown by the diverging blue arrows.

A large fraction of these fluorescence photons travels towards the parabolic
mirror. Upon striking the mirror, they are all reflected as parallel rays,

forming a beam of "Collimated Fluorescence" that travels to the right.

This collimated beam then passes through a "Focusing Lens,"” which
converges the parallel rays to a tight spot on the active area of the "PMT

Detector."

You can see how this design elegantly converts the divergent, isotropic
fluorescence into a well-behaved, collimated beam that is easy to manage

and focus, thereby achieving a very high collection efficiency.
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Now let's look at the second classical design, which is a very clever and
powerful combination of an elliptical mirror, a half-sphere, and a fiber

bundle.

This design relies on the geometric property of an ellipse, which, unlike a
parabola, has two focal points. Any light ray that originates at one focus of
the ellipse will be reflected by the mirror and will pass through the second

focus.

We use this property to our advantage. The setup is as follows:



1. At Focus A, we place our laser-sample interaction spot. This is where the
fluorescence is generated. 2. At Focus B, we place the input end of a

polished optical fiber bundle.

The elliptical mirror thus collects the fluorescence emitted from Focus A
and efficiently funnels it all down to be injected into the fiber bundle at

Focus B.

To make this system even more efficient, a small "Half-sphere" reflector is
placed just below the sample at Focus A. This spherical mirror collects all
the fluorescence that was emitted in the "downward" hemisphere (the 2-pi
steradians that would otherwise be lost) and reflects it back up through

Focus A towards the main elliptical mirror.

This simple addition effectively doubles the solid angle of collection,

allowing us to capture nearly the full 4-pi steradians of emission.
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This elliptical mirror and fiber bundle design offers two major practical

advantages.

First, the fiber bundle acts as a flexible light pipe. It conducts the light
collected at Focus B to a detector that can be located some distance away.
This provides incredible flexibility in the geometry of the experimental

setup.

Second, and this is often a critical feature, this flexibility allows the
placement of a massive or sensitive detector far away from the potentially

harsh environment of the sample chamber. For example, the experiment



might be taking place inside a high-vacuum chamber, a cryostat, or a
region with strong magnetic fields. Detectors like PMTs can be bulky,
require high voltage, need cooling, and can be sensitive to magnetic fields.
The fiber bundle allows us to position the detector outside of this
problematic region, greatly simplifying the overall engineering of the

experiment.
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This beautiful diagram illustrates the elegant optics of the elliptical mirror

system.

We see a large, semi-elliptical mirror forming the top of the collection
system. Below it, at "Focus A," we have the red dot representing the laser-
sample spot where fluorescence is generated. Just under Focus A is the

"Half-Sphere Reflector.”

Let's trace the light rays, shown in orange and blue. Some rays are emitted
upwards from Focus A directly towards the elliptical mirror. Other rays are
emitted downwards, where they strike the half-sphere reflector. They are
then reflected back up, passing through Focus A again, and continue on

towards the elliptical mirror.

No matter which path they take initially, all the rays that strike the elliptical
mirror are reflected such that they converge precisely at the second focal

point, "Focus B."

At Focus B, we see the input end of a "Fiber Bundle." The light is efficiently

coupled into the fibers, which then transport it away to a remote detector or



spectrograph. This design represents a near-perfect solution for capturing

almost the entire 4-pi solid angle of emission.
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So, we've successfully funneled our fluorescence into a fiber bundle. Why

Is this often coupled to a monochromator?

The first bullet point explains the primary reason: fluorescence experiments
often need spectral discrimination to suppress scattered laser light. The
original laser beam is typically many, many orders of magnitude more
intense than the fluorescence signal. Even a tiny fraction of this laser light
scattering off the sample, the cell windows, or gas molecules and reaching

the detector can completely overwhelm the weak fluorescence.

A monochromator, or a spectrograph, is an instrument that uses a grating
to disperse light by wavelength. Its entrance is a very narrow physical slit.
By setting the monochromator to pass only the wavelengths of the
fluorescence while rejecting the laser wavelength, we can effectively clean

up our signal.

This is where the fiber bundle shows another clever use. The output end of
the bundle, which is typically circular, can be custom-made. As the second
bullet points out, the individual fibers at the exit can be rearranged and
polished into a rectangular pattern that perfectly matches the shape and

height of the spectrograph’s entrance slit.

This shaping maintains a very high throughput—symbolized here by the

Greek letter 1 t—while ensuring that the light is in the correct spatial format



to efficiently enter the spectrograph. It's a far more efficient method than

trying to couple light into a single, tiny fiber.
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This diagram provides a clear illustration of how the shaped fiber bundle is

used to image fluorescence onto a monochromator.

On the left, we see the "Shaped Fiber Bundle Exit." A close-up shows that
it's composed of many "Individual Optical Fibers" that have been arranged

into a rectangular grid.

The "Fluorescence Signal” emerges from this shaped exit as a rectangular

beam of light.

The diagram shows how the geometry of this beam has been engineered
to perfectly match the "Entrance Slit" of the "Spectrograph” on the right.
This ensures that a maximum amount of the collected fluorescence actually
enters the spectrograph for spectral filtering, maximizing the throughput of

the system.

This is a perfect example of the careful optical engineering required for

high-sensitivity measurements.
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Now that we have developed a complete model of the LIF signal chain, let's

summarize the steps involved in actually acquiring an excitation spectrum.



The first step is to take our tunable laser and scan its wavelength, AL A,
over the desired spectral range. This can be done in discrete steps or as a

continuous sweep.

At each wavelength step, we use our detection system to acquire the PMT
counts, n p e ny, for a fixed integration time, t t. This gives us the

fluorescence intensity at that specific excitation wavelength.

If we have performed a careful calibration, as discussed earlier, we can
then use our full detection chain equation from slide 26 to convert the
measured counts per second back into a fundamental physical quantity,

such as the absorption coefficient.

Finally, we plot the measured signal—the photoelectron counts, n p e
npe.—as a function of the laser wavelength, A L 4. The resulting graph is

our excitation spectrum. The peaks in this plot directly correspond to the

resonant absorption lines of our sample.
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There is a subtle but important point to consider when performing high-
accuracy work. Our full detection chain equation showed that the final

signal, n p e n,,, is directly proportional to the incident laser photon flux, n

L ne.

This means that the fluorescence intensity is inherently normalized to the
laser power, but _only if the laser power remains perfectly constant_ as we
scan its wavelength. In reality, the output power of a tunable laser always

fluctuates and drifts to some extent. If we don't account for this, these



power fluctuations will appear as noise or artificial structure in our final

spectrum.

Therefore, for any high-accuracy or quantitative work, it is essential to
record the laser flux, n L n, simultaneously with the fluorescence signal.
This is typically done by using a beam splitter to send a small fraction of the
laser beam to a reference photodiode. At each point in the scan, one then
divides the fluorescence signal by the reference signal. This normalization
procedure removes the effect of laser power variations and vyields a true,

clean excitation spectrum.
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We've said that the LIF excitation spectrum "mirrors” the true absorption
spectrum. This is true in terms of the positions of the spectral lines. But are
the relative intensities of the lines also faithfully reproduced? The answer

is: only if certain conditions are met. This slide lists those conditions.

First, we need to have an equal fluorescence quantum efficiency, n k 7,
for all the different excited states that are accessed during our wavelength
scan. If we excite two different transitions, and one of the resulting excited
states is more prone to non-radiative decay (has a lower n k ny), its peak in
the LIF spectrum will appear weaker than it should relative to the other

peak.

Second, we need a flat detector response. The photocathode quantum

efficiency of our detector, n p h n,,, must be constant across the entire

wavelength range of the fluorescence emission, which we denote here as



A e m A.,. If the detector is more sensitive to the fluorescence from one

transition than another, the line intensities will be distorted.

Third, we require a constant collection efficiency, & §, regardless of the
properties of the emission. This can be violated if different excited states
have different lifetimes, which affects how far they travel before emitting, or
if the fluorescence has a non-isotropic spatial distribution, a phenomenon

known as emission anisotropy.

These conditions are most likely to be fulfilled in low-pressure, collision-free
environments, such as a molecular beam experiment. In these cases, the
quantum yield, n k 7, is often close to 1 for all states, and the emission is

typically isotropic.
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So, what are the consequences if the conditions on the previous slide are
violated, as they often are in more complex environments like liquids or

high-pressure gases?

The result is that the violations lead to a distortion of the relative line
intensities in the LIF spectrum compared to a true absorption spectrum. A
transition that is intrinsically strong might appear weak in the LIF spectrum

if its quantum yield is low, and vice versa.

However, and this is a critical point, the positions of the spectral lines—their
wavelengths—remain completely reliable. A peak will only appear at a

wavelength corresponding to a real resonant absorption.



Therefore, for applications like identifying species or determining energy
level structures, LIF is an exceptionally robust tool. For obtaining accurate
guantitative concentrations or absorption cross-sections, one must be very
careful to either work in an environment where these intensity distortions

are minimal, or to independently calibrate for them.
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Let's delve deeper into the physical origins of why the fluorescence
quantum efficiency, n k ny, might be less than one. What are the non-
radiative decay channels that compete with fluorescence? This slide lists

the three most important mechanisms.

First, we have collisional quenching. In this process, an excited molecule
collides with another molecule in the sample. During the collision, the
electronic energy of the excited molecule is converted into other forms of
energy, such as kinetic energy of the two partners (heating up the gas) or
internal vibrational and rotational energy of the partner molecule. The
excited molecule is deactivated without ever emitting a photon. This

process is, of course, highly dependent on pressure and temperature.

Second is intersystem crossing. This is a spin-forbidden, and therefore
typically slower, radiationless transfer of the molecule from the initially
prepared excited singlet state to a lower-lying triplet state. Once in the
triplet state, the molecule is trapped and cannot fluoresce back to the
ground singlet state. It may eventually emit a very slow photon via

phosphorescence or lose its energy non-radiatively.



Third is internal conversion. This is a radiationless redistribution of energy
within the same electronic manifold. The molecule essentially converts its
electronic energy into a large amount of vibrational energy, landing in a
very high vibrational level of the ground electronic state. This is then
followed by very rapid vibrational relaxation as the molecule loses this
vibrational energy step-by-step through collisions. The net result is that the

electronic energy is converted to heat.
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These different non-radiative processes are all competing with each other
and with fluorescence. The total non-radiative decay rate, R Kk Ry, is simply

the sum of the rates of all the individual channels.

So, R k Ry equals the rate of collisions, R coll Ry, plus the rate of
intersystem crossing, R ISC R\gc, plus the rate of internal conversion, R IC

Ric, and so on.

The key to achieving a high fluorescence quantum yield, n k 7, is to make
the radiative decay rate, A k Ay, much faster than this total non-radiative
rate, R k Ry.

The second bullet point tells us how to do this in practice. Collisional
guenching is often the dominant non-radiative pathway. By performing the
experiment in a high vacuum or by using a supersonic molecular beam, we
can dramatically reduce the density and thus suppress the collision rate, R
coll R.,. By making the time between collisions much longer than the

radiative lifetime, we ensure that the molecule has a high probability of



fluorescing before it can be quenched. In these conditions, we can often

achieve a quantum yield, n k n,, that approaches its ideal value of 1.

Page 47/:

Now let's revisit another one of our conditions for ideal intensity
measurements: the impact of fluorescence anisotropy on our collection

efficiency, 0 4.

The first bullet point explains the origin of this effect. If we use a polarized
laser beam for excitation, we don't excite all molecules randomly. Because
of quantum mechanical selection rules, we preferentially excite those
molecules whose transition dipole moment is aligned with the laser's
polarization axis. This creates a non-isotropic, or aligned, angular

momentum distribution in the sample of excited-state molecules.

When this aligned sample of molecules fluoresces, the emission itself is no
longer isotropic. The intensity of the fluorescence, | ( 0 ) I(6), depends on
the observation angle, © 6, relative to the laser polarization. The

mathematical form is given as:

1(0) x 1+ B P,(cosh).

Here, P 2 P, is the second Legendre polynomial, and B S is the anisotropy
parameter, which depends on the specific quantum states involved in the

absorption and emission process.

The direct consequence of this non-isotropic emission is that our effective

collection efficiency, © §, now depends on the orientation of our detector



relative to the laser polarization. Placing the detector at different angles will
result in different measured signal strengths, which can distort the relative

Intensities in our spectrum.
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So, if fluorescence anisotropy is a problem for our quantitative

measurement, what strategies can we employ to mitigate it?

There are several common approaches. One strategy is to use depolarizing
optics, such as a polarization scrambler, placed just before the detector.
This effectively randomizes the polarization of the collected fluorescence,

averaging out the anisotropic effect.

Another very elegant solution is to place the detector at a specific "magic
angle" relative to the laser polarization. For a P-2 angular distribution, this
angle is 54.7 degrees. At this specific angle, the P-2 of cosine—theta term is
exactly zero, so the measured intensity is independent of the anisotropy

parameter beta.

A third strategy is to simply average over all possible orientations, for
example, by rotating the sample or by rotating the polarization axis of the
laser or a polarizer in front of the detector during the measurement. All of
these methods aim to remove the orientation dependence and recover an

accurate measure of the total fluorescence intensity.
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We've mentioned molecular beams several times as an ideal environment
for LIF. This slide summarizes exactly why the combination of LIF with
molecular beams is such a powerful and revolutionary technique in modern

chemical physics.

First, let's consider the sample itself. A typical molecular beam is extremely
dilute. The slide gives representative numbers: a path length, A x Ax, of
about 0.1 centimeters, and a number density, N i N;, of only 10 7 107
molecules per cubic centimeter. If you were to attempt a classical
transmission measurement on such a sample, the absorption loss would be

so infinitesimally small as to be completely undetectable.

Second, the background environment is pristine. The experiment is
conducted in a high-vacuum chamber. This means there is negligible stray
fluorescence from air, dust, or other contaminants. The detector is
therefore seeing a signal against an almost perfectly dark background. The
only photons it should see are the signal photons from your molecules,

leading to an exceptionally high signal-to-background ratio.

Third, the physics of the supersonic expansion itself provides a tremendous
advantage. As the gas expands into the vacuum, it undergoes extreme
cooling of its internal degrees of freedom—its rotational and vibrational
motions. This means that instead of the molecular population being spread
out over thousands of different quantum states at room temperature, it
becomes concentrated in just the very lowest few energy levels. This
dramatically simplifies the resulting spectrum, transforming what would be
a dense, congested forest of overlapping lines into a clean, simple set of

well-resolved peaks that are easy to assign and analyze.
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There is yet another powerful tool we can use when performing LIF on
molecular beams, especially when using pulsed lasers and pulsed nozzles:

time-of-flight gating.

The experiment is pulsed: a short puff of molecules is released from the
nozzle, and a short laser pulse intersects it at a specific point downstream.
We know the speed of our molecules and the distances involved, so we
can calculate with high precision when the fluorescence signal should

arrive at our detector.

We can then use fast electronics to "gate" our detector, meaning we only
turn it on and accept counts during the very narrow time window when the
true signal photons are expected to arrive. Any background luminescence
from the apparatus itself, for instance, slow fluorescence from the vacuum
chamber windows that were hit by scattered laser light, will typically arrive
at a different time and will be rejected by this time gate. This is an

extremely effective method for further improving the signal-to-noise ratio.
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This schematic provides a wonderful overview of a typical experimental
setup for Laser-Induced Fluorescence on a skimmed molecular beam. Let's

trace the entire process.

The entire apparatus is housed within a "High-Vacuum Chamber" to

provide the clean, collision-free environment we need.



On the far left, a "Pulsed Nozzle" injects a high-pressure gas mixture into
the chamber. This gas undergoes a "Supersonic Expansion,” creating a
rapidly moving and internally cold beam. This beam then passes through a
conical "Skimmer," which selects only the coldest, most directional central
portion of the expansion, resulting in a well-defined "Skimmed Molecular

Beam" that travels from left to right.

From the top, a "Tunable Laser" beam, with its wavelength A A carefully
chosen, enters the chamber and intersects the molecular beam at a right
angle. After passing through the interaction region, the laser is captured by
a "Light Trap" or "Beam Dump" at the bottom to prevent stray reflections

from scattering around the chamber.

At the intersection point, labeled "Fluorescence (Interaction Region)," our

LIF signal is generated.

To the right of the interaction region, a set of "Collection Optics"—perhaps
a lens assembly or one of the mirror systems we discussed—gathers the
fluorescence and focuses it onto a "PMT" detector. The PMT converts the

photons into an electrical "Signal,” which is then sent out for processing.

The note "Beams and detection at right angles" highlights this common
"crossed-beams" geometry, which is excellent for minimizing scattered

laser light from reaching the detector.
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Let's now work through a second numerical example, again based on
Demtroder's textbook, to quantify the signal we could expect from a

molecular beam experiment like the one we just saw.



Here are the given parameters. Please note that these represent a highly

optimized, high-efficiency experimental setup.

* First, the interaction path length, A x Ax, is 0.1 centimeters, which is 1 x
10 - 3 1 x 10~3 meters. * Second, the geometrical collection efficiency, d
§, is 0.5. This is a very high value, corresponding to a 2 1 2m steradian
collection system like a parabolic mirror. * Third, the fluorescence quantum
efficiency, n k ng, i1s assumed to be 1. We are in a collision-free
environment, so every absorbed photon is assumed to produce a
fluorescence photon. * Fourth, the number density in our initial state, N i N;,
is 1 x 107 1 x 107 molecules per cubic centimeter. To work in S| units, we

convert this to 1 x 10 13 1 x 1013 molecules per cubic meter.

Page 53:

Here are the remaining parameters for our calculation.

- The absorption cross-section, ik gj,,isgivenas 1x10-17cm2 1 X
1077 cm?. In Sl units, thisis 1 x 10 =21 m 2 1 x 1072 m2. This is a typical
value for a strong, allowed electronic transition in a molecule. - The incident
photon flux, nL n,is 1 x 10 16 1 x 10® photons per second. This is a
very modest flux, corresponding to a laser power of only about 3 milliwatts

at a wavelength of 500 nanometers.

Now, let's compute the number of absorbed photons per second, n a n,.
We use our formula: na=NixoikxnlLxAXng=N,Xoag; Xn_XAx.

Now, let's carefully plug in the numbers in Sl units.

na=(1x1013)x(1x10-21)x(1x1016)x(1x10-3).



ng = (1x1013) x (1 x1072Y) x (1 x 101%) x (1 x 1073).

Adding the exponents: 13 minus 21 is minus 8. Minus 8 plus 16 is plus 8.

Plus 8 minus 3 is plus 5.

So, the correct result for nan, is 1 x 10 5 1 x 10> photons per second.
Please note that the value written on the slide, 1 x 10 4 1 x 10*, appears
to have a calculation error. The correct absorption rate is one hundred

thousand photons per second.

Next, let's compute the number of fluorescence photons that are collected,

which we can call n F |, d et nggq4e. This is the absorption rate, n a n,,

multiplied by the collection efficiency, & 6.
nFl,det=naxd.
NELdet = Mg X 0.

Using our corrected value for nan,: nFl,det=(1x105)x05=5x
10 4 npger = (1 X 10°) x 0.5 =5 x 10* photons per second. Again, this
differs from the slide's value due to the initial error, but this is the correct

intermediate result.
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Finally, we calculate the number of photoelectrons we would actually

detect, n p e n,.. This accounts for the detector's quantum efficiency,

which we’ll take to be np h=0.2 n,, = 0.2, or 20 percent.

The photoelectron rate, n p e n,,, is the rate of collected photons, nF 1|, d

e t nppger, Multiplied by n p h ;.



Using our corrected value from the previous step: npe=(5x104) x
0.2.

e = (5 % 10%) x 0.2.

This gives a final signal of 1 x 10 4 1 x 10* counts per second, or ten

thousand counts per second.

This is a very strong, easily measurable signal. The concluding remark on
the slide notes that this result matches Demtroder’s reported value of “ 10 4
10*” counts per second. So our corrected calculation leads to the correct

final answer.

The key takeaway is that even with an extremely dilute sample and very
low laser power, a well-designed LIF experiment can produce a massive

signal rate, demonstrating its incredible sensitivity.
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Now that we know how to calculate our signal rate, we must also
understand the noise. For photon-counting detectors operating with a low
dark count, the dominant source of noise is almost always the fundamental
"shot noise" of the detected counts.

Shot noise arises from the discrete, quantum nature of light. Photons arrive
at the detector randomly, following Poisson statistics. The first bullet point

emphasizes this.

For a process described by Poisson statistics, the root-mean-square, or
RMS, noise is equal to the square root of the average number of events. As

the second bullet point shows, if we measure a photoelectron rate of n pe



npe for an integration time t t, the total number of signal counts is n pe t

npe t. Therefore, the RMS noise on the signal, o N gy, would be n pe t
JMpe t.

However, we must also consider the noise from our background, or dark
counts. The final equation gives the full expression for the Signal-to-Noise
Ratio, or SNR. The signal is the total number of photoelectron counts, n pe
t nye t. The noise is the square root of the total number of counts, which
includes both signal and dark counts. So, the total noise is the square root

of npet+ndarktmnyt+ nggyt.

Therefore, the SNR is given by:

SNR=npetnpet+ndarkt.

\/npe t + Ngark t

SNR =
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Let's apply this SNR formula to the numbers from our first worked example
back on slide 12.

In that example, we had a required signal rate of n p e = 100 n,, = 100

counts per second, a dark count rate of ndark =10 ng,+ = 10 counts

per second, and an integration time of t=1 ¢t = 1 second.
Plugging these into the formula gives:

SNR=100x1100x1+10x1.



100 x 1

SNR =
VIOO X1 +10x 1

This simplifies to
100 110.

100

110

The square root of 110 is approximately 110=10.5 V110 = 10.5.

100

So the SNR is about 100 10.5 = 9.5 o ® 9.5. The slide gives a value of

about 8.3; both are in the same ballpark and represent a good, clean

signal.

The most important pedagogical point is highlighted in the second bullet:
the role of dark counts. The dark count rate, nd ar k ng«, adds directly
to the noise term in the denominator of the SNR equation. For very weak
signals, where n p e n,, is small, the dark count can become the dominant
source of noise. This is why cooling PMTs to dramatically reduce their
thermal dark count rate is absolutely crucial for achieving the highest

sensitivity in low-light-level applications.
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Can we push the sensitivity of LIF to its absolute physical limit—the
detection of a single atom or molecule? The answer is a resounding yes,
and this slide introduces the concept. The technique relies on detecting

“‘photon bursts.”



Let's consider an ideal, true two-level atom, with a ground state |i ) |[i)
and an excited state | k ) |k). Let's say the excited state has a

spontaneous radiative lifetime, T 1.

Now, imagine this single atom is moving and it traverses our laser beam.

Let the total time it spends inside the beam be the transit time, T T.

If we make our laser beam sufficiently intense, we can saturate the
transition. This means that as soon as the atom enters the beam, it is
excited to state | k) |k) almost instantly. It will then remain in the excited
state for a time on the order of its lifetime, T 7, before it spontaneously
emits a fluorescence photon and returns to the ground state, | i) |[i).

Because the laser is so intense, it is immediately re-excited back to state |
k) k).

This process repeats over and over again, causing the single atom to emit
a rapid-fire stream of photons for as long as it remains within the laser

beam.
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Let's quantify the number of photons we can get in one of these bursts. The

maximum number of excitation-emission cycles, n cycles ngges, is limited

by the atom's transit time, T T.

The time required for one full cycle is approximately 2 times the lifetime, 71
T (2 1 21). Why the factor of 2? Under strong saturation, the atom spends,
on average, half of its time in the ground state and half of its time in the

excited state. The time spent in the excited state before emission is T 7.



The time it takes to be re-excited is also related to the cycling rate. So, a

good rule of thumb for the total cycle time is 2 tau ( 2 T 21).

Therefore, the total number of photons we can get from one atom is given

by the equation:
ncycles=T2T.

T

Neycles = o
Let's plug in some typical numbers for an atomic transition. A transit time,
T T, might be 10 microseconds, which is 10 — 5 107> seconds. A typical

atomic lifetime, T 7, is about 10 nanoseconds, or 10 - 8 108 seconds.
Plugging these in:

ncycles=10-52x 10 - 8 = 500.

1073

Meydles = 55 70-8 — >00-

This is an amazing result. A single atom, as it flies through our laser beam,
can be induced to emit a burst of 500 photons! A burst of 500 photons,
arriving within a 10 microsecond window, is easily detectable and stands
out dramatically against a low background dark count. This allows us to

literally observe individual atoms in flight.
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The concept of detecting single particles is not limited to atoms in a beam.
This slide explains how we can extend the idea to the detection of single

molecules in condensed media, such as liquids or solids.



The first step is to create an extremely small observation volume. We use a
high-power microscope objective to focus the laser down to a diffraction-
limited spot. By using a very dilute sample, we can ensure that the average
spacing between molecules is larger than the size of our focal volume. This
means that, most of the time, there will be either zero or one molecule in

the spot we are observing.

When a molecule happens to diffuse into this focal volume, it is repeatedly
excited by the intense laser light. In condensed media, non-radiative
vibrational relaxation is incredibly fast. So, after excitation, the molecule
very quickly returns to the lowest vibrational level of its ground electronic
state, ready to be excited again. This allows for very rapid cycling, just as in
the atomic case.

As the single molecule tumbles and diffuses within the focus, it emits a
burst of many photons. We can detect these photons one by one and
record their arrival times, generating a time-tagged fluorescence trajectory

that signals the presence and passage of that one molecule.
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The ability to observe single molecules one at a time is not just a curiosity;
it has become one of the most powerful tools in modern biology and
chemistry, because it allows us to see phenomena that are completely
washed out in a traditional ensemble measurement, which averages over

billions of molecules.

As the first bullet points out, it enables the direct observation of processes
like:



* Diffusion: We can literally watch a single molecule move through its
environment and measure its diffusion coefficient. * Conformational
dynamics: We can see large biomolecules, like proteins or DNA, wiggle,
fold, and change their shape in real time. * Chemical reactions: We can
watch a single enzyme molecule as it binds to its substrate and catalyzes a

chemical reaction, over and over again.

This has led to revolutionary applications. Single-molecule techniques are
now used for things like next-generation DNA sequencing, for unraveling
the complex pathways of protein folding, and for using single molecules as

tiny probes to sense their local nanoscale environment.
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This slide shows the workhorse instrument for single-molecule detection in

condensed media: the confocal microscope. Let's trace the optical path.

Starting from the left, light from a "Laser" first passes through an "Excitation
Filter" to clean up its spectrum. It then hits a "Dichroic Mirror." This is a
special mirror that reflects the short-wavelength laser light but transmits the

longer-wavelength fluorescence.

The reflected laser beam goes down into a high numerical aperture
"Objective Lens," which focuses it to a diffraction-limited spot within the

sample.

Fluorescence from a molecule in that spot is collected by the very same
objective lens and travels back upwards. Because the fluorescence is red-

shifted to a longer wavelength, it now passes through the dichroic mirror.



The fluorescence then goes through an "Emission Filter," which is there to

block any remaining scattered laser light.

And now for the key component: the light is focused onto a "Confocal
Pinhole." This is a tiny physical aperture placed at an image plane. Only
light that originates precisely from the focal plane of the objective can pass
through this pinhole. Any light from out-of-focus planes is blocked. This is
what provides the exceptional background rejection and creates the tiny,

well-defined observation volume.

Finally, the light that makes it through the pinhole is detected by a "Single-
Photon Detector," such as an Avalanche Photodiode (APD) or a PMT.

The inset diagrams show a zoom-in of a single molecule transiting the
excitation volume, and the resulting signal: a plot of photon count rate
versus time, showing a low background of dark counts punctuated by a

bright burst of photons when a molecule is in focus.
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While LIF is an incredibly powerful and sensitive technique, it is important
to understand its limitations, particularly its dependence on wavelength. LIF
does not work equally well everywhere across the electromagnetic

spectrum. This slide highlights the key factors.

First is the detector quantum efficiency, n ph n,,. The workhorse detectors
for photon counting, PMTs with alkali-based photocathodes, perform very
well in the ultraviolet and visible regions. However, their quantum efficiency

drops off dramatically beyond about 900 nanometers. While detectors for



the near-infrared, like Indium Gallium Arsenide (InGaAs) or Mercury
Cadmium Telluride (HgCdTe) photodiodes exist, they generally suffer from
much higher dark noise, which compromises the signal-to-noise ratio for

photon-counting applications.

Second, and equally important, are the radiative lifetimes. The electronic
transitions that we use for LIF in the UV and visible typically have very
short lifetimes, on the order of nanoseconds. In contrast, the purely
vibrational transitions that occur in the infrared have much, much longer

radiative lifetimes, often on the order of milliseconds.

This long lifetime creates a significant problem for molecules that are not
stationary. An excited molecule may simply move or fly out of the detection
volume before it has had a chance to emit its photon. This effect, known as
"transit-time broadening” or "fly-out,” effectively reduces the number of
photons we can collect. Consequently, the overall collection efficiency, & &,

decreases as we go to longer wavelengths with longer lifetimes.
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Here are a couple more factors that limit LIF's performance, particularly in

certain environments.

As we've discussed, collisional quenching becomes a more competitive
decay channel at higher sample pressures, which reduces the fluorescence
quantum yield, n k nx. This effect can be particularly severe in the infrared,
where the naturally slow radiative decay has a harder time competing

against collisions.



This leads to the final, critical conclusion: In the far-infrared region of the
spectrum, the combination of inefficient detectors, long radiative lifetimes,
and efficient quenching means that LIF often loses its sensitivity
advantage. In this regime, other methods, particularly photoacoustic or
photo-thermal techniques, which cleverly turn the non-radiative decay into

their signal source, often surpass LIF in performance.
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This brings us back to one of the alternative techniques we mentioned at
the beginning: Photoacoustic Detection. This slide outlines when and why

you would prefer this method.

The operating principle is perfectly suited for the infrared. The absorption of
an IR photon, corresponding to a vibrational transition, is very efficiently
converted into local heat via non-radiative decay pathways like collisional
relaxation. The very process that kills LIF in the IR becomes the source of

the signal for photoacoustic spectroscopy.

The experimental method is as follows: We use a laser whose intensity is
periodically modulated—turned on and off at a specific frequency. This
creates periodic heating in the sample. This periodic heating generates a
pressure wave, which is simply a sound wave, that propagates through the
sample. We can then detect this very faint sound wave using a sensitive

microphone or a piezoelectric element placed inside the sample cell.

The most important advantage is stated in the final bullet: The resulting
signal is proportional to the total absorbed power, not the number of

fluorescence photons. lts strength depends directly on the efficiency of



non-radiative decay and has absolutely no dependence on the

fluorescence quantum yield.
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So, to summarize the niche for Photoacoustic Spectroscopy, or PAS: it is

an extremely effective technique for two main classes of problems.

First, it works for molecules that lack strong, accessible electronic
transitions, meaning you simply cannot do LIF in the UV or visible range.

This is true for many small, simple molecules.

Second, and more importantly in the context of our discussion, it is the
method of choice for molecules that have an extremely low fluorescence
quantum yield, n k ny, for their infrared transitions. PAS takes the "bug" of
LIF—the fact that n k 7y is close to zero in the IR—and masterfully turns it
into a feature. It measures the heat that is generated instead of the light

that isn't.
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This diagram provides a schematic of a Photoacoustic Spectroscopy (PAS)

experiment.

On the left, a "Modulated IR Laser" sends a beam into the "Photoacoustic
Cell," which contains the sample gas. The cell has an entrance window and

an exit window for the laser beam to pass through.

The process is described in three steps, as indicated by the labels in the

diagram.



1. First, the modulated IR photons are absorbed by the sample molecules.
This energy is then converted into heat through non-radiative decay. This

heating occurs along the path of the laser beam.

2. Second, because the laser is modulated, the heating is periodic. This
periodic heating creates a periodic pressure wave—a sound wave—that
propagates outwards from the laser beam, as shown by the dashed semi-

circles.

3. Third, a "Microphone" is placed inside the cell, off to the side of the laser
beam. This microphone detects the faint pressure wave and generates a

corresponding electrical signal.

This weak, periodic electrical signal is then sent to a "Lock-in Amplifier." A
lock-in amplifier is a powerful signal processing tool that is specifically
designed to extract a signal of a known frequency (the laser modulation
frequency) from a very noisy background, allowing for extremely sensitive

measurements.
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Let's now circle back and conclude by summarizing the key advantages of
Fluorescence Excitation Spectroscopy, which has been the main focus of

our lecture.

First and foremost, LIF provides orders-of-magnitude increase in sensitivity
when compared with direct transmission measurements. This is the
fundamental reason for its widespread use. It transforms impossible

measurements into routine ones.



Second, the technique offers a direct proportionality between the detected
counts and the initial- state population, N i N;. This linear response, when
the appropriate conditions are met or calibrated for, allows for reliable

guantitative analysis of sample concentrations.

Third, this high sensitivity allows the probing of extremely low number
densities. As the slide notes, in the best- case scenarios, such as in
molecular beam experiments, it is possible to detect species with
concentrations as low as 10 2 102 molecules per cubic centimeter. This is

an astonishingly low number, bordering on an absolute vacuum.
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Continuing with the advantages of LIF, the technique offers great versatility.

One powerful extension is the possibility for state-resolved detection. This
is done via what are sometimes called "filtered excitation spectra" or, more
commonly, by collecting "dispersed fluorescence spectra." In this
technique, instead of just counting the total fluorescence, we send the
fluorescence through a monochromator to see which specific final states
are being populated by the decay. This gives much more detailed

information about the molecular structure and dynamics.

Finally, LIF is a technique that is remarkably compatible with a wide array
of other experimental methods. It can easily be integrated into time-
resolved studies using pulsed lasers to study dynamics, into spatially-
resolved measurements using microscopes to create images, and, as we

have seen in detail, it forms the basis for revolutionary single-particle



applications. Its robustness and adaptability make it one of the most

valuable tools in the laser spectroscopist’s arsenal.
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To bring everything together, this slide provides a conceptual map of the
entire journey from the initial absorption event to the final detected counts.
It's an excellent way to review the signal chain we’ve built throughout this

lecture.

The process starts with the absorption event rate, n a n,. This is the

primary step that creates an excited state population, N k Ny.

This excited population then has a choice. It branches via the fluorescence
quantum efficiency, n k n,. The fraction that decays radiatively produces a

stream of fluorescence photons, nF - L ng_;.

These emitted photons spread out in all directions. The geometric
acceptance of our optics, © §, determines the fraction of these photons

that successfully reach our detector.

Finally, the photons that hit the detector are converted into electronic

signal. The photocathode yield, n p h n,,, determines the efficiency of this

conversion, resulting in our final measured signal: the electronics counts, n

p e nye.

The last point is the key takeaway for any experimentalist designing a LIF

experiment: each stage is multiplicative.

The final signal is a product of all these factors. A chain is only as strong as

its weakest link. To improve the overall sensitivity of your experiment, you



must identify which of these factors— n k n,, & &, or n p h n,,—is the

limiting one, and focus your engineering efforts on improving it.
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This final slide provides a wonderful visual flowchart of the concept map we
just discussed, "The Fluorescence Signal Chain." It neatly summarizes our

entire lecture. Let's walk through it.

We start on the left with a box representing the "Excited Population, N k

Ni," which is created by the initial absorption.

An arrow leads to the next box, labeled with the first efficiency factor,
"Quantum Efficiency, n k ny." A typical, and perhaps slightly pessimistic,

value of about 0.1 is given.

This leads to the second box, "Emitted Photons, n F | ng." This is the total

number of fluorescence photons generated per second.

The next arrow is labeled with our second efficiency factor, "Geometric
Acceptance, & §." A typical value of about 0.01 is given here, which is a

very conservative and realistic estimate for a simple lens system.

This leads to the third box, "Collected Photons, nc o || n.,;," which are

the photons that actually arrive at our detector.

The final arrow is labeled with our third efficiency factor, "Detector QE, n p

h npn," With its typical value of about 0.2.

This brings us to our final measured signal in the last box, "Detected

Counts, np e ny."



Below the flowchart, an equation for the "Overall Signal" is presented.

Please be aware that the equation on the slide,
npe=Nk- nk- &- nph
Nype =Nk'77k'6°77ph

contains a small typo. As we derived, the signal n p e n,, is proportional to
the initial state population, N i Nj, not the excited state population N k Ny.
The full correct relationship is that n p e n,, is proportional to the initial
absorption rate, n a n,, which contains N i N;, all multiplied by the chain of

efficiencies. The flow of the diagram is conceptually perfect, but the formula

should be recalled from our earlier derivation.

The final sentence perfectly encapsulates the theme of this lecture: "Each
stage is multiplicative; improving any factor raises overall sensitivity."
Understanding this chain, from fundamental physics to practical

engineering, is the key to mastering high-sensitivity laser spectroscopy.

That concludes our module on fluorescence excitation spectroscopy. Thank

you.



