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Good morning, everyone. Welcome back to Physics 608, Laser 

Spectroscopy. I’m Distinguished Professor Dr M A Gondal, and today, we 

begin a new and very important topic, which corresponds to section 1.3 in 

your textbook. 

We’re going to discuss the “Direct Determination of Absorbed Photons.” 

This marks a significant shift in our thinking. 

Up until now, we’ve implicitly considered the most basic form of 

spectroscopy: shining light through a sample and measuring how much 

gets through. Today, we’re going to explore what happens when we 

change our perspective and try to directly observe the consequences of the 

photons that don’t make it through—the ones that are absorbed. 

This will lead us to some of the most sensitive techniques known in 

experimental physics. 
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So, let's frame our discussion for today. We'll be diving into the world of 

what's known as Fluorescence Excitation Spectroscopy. This is a 

cornerstone technique in our field. 

The central motivation, the question that will drive our entire lecture, is 

stated right here on the slide: "Why would we want to directly count 

absorbed photons?" It sounds like a simple question, but the answer 



reveals a fundamental limitation in more conventional methods and opens 

the door to measurements of breathtaking sensitivity. 

We'll set some clear learning goals to guide us through this topic. 
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Alright, here are our learning goals for this module. By the end of this 

lecture, I expect you to have a firm grasp of these four key points. 

First, we need to understand the fundamental limitation of what the slide 

calls "classical" absorption measurements. By classical, we mean the 

standard method based on the Beer–Lambert law, where you measure an 

incident intensity,  I i n 𝐼in, and a transmitted intensity,  I o u t 𝐼out, and infer 

the absorption from the difference. There is an inherent, and often severe, 

limitation to this approach. 

Second, and this is the mathematical heart of that limitation, we need to 

recognize that measuring a small absorption means you are trying to find a 

small number by subtracting two very large and nearly identical numbers:  I 

i n 𝐼in minus  I o u t 𝐼out. As any experimentalist knows, trying to find a small 

difference between two large, noisy measurements is a recipe for a poor 

signal-to-noise ratio, or  S − N R 𝑆 − 𝑁𝑅. We'll visualize why this is such a 

problem. 

Third, with that problem firmly established, I want you to appreciate why we 

need a different approach. We'll explore the conceptual shift towards 

techniques that don't look at the leftover light, but instead monitor the 

absorbed photons themselves by watching for the secondary effects they 

produce. This is a move from what we might call a "dark signal" 



measurement—a small dip on a bright background—to a "bright signal" 

measurement on a dark background, which is a much more favorable 

situation. 

Finally, we will preview the hero of our story today: fluorescence-excitation 

spectroscopy, universally known by its acronym, L–I–F, or LIF. We'll see 

that LIF is an elegant and powerful member of this family of high-sensitivity 

techniques, and we will spend the bulk of our time developing a quantitative 

understanding of how it works. 

So, with those goals in mind, let's begin. 
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Now that we've outlined our objectives, let's dive directly into the core 

problem and build our intuition for why this new approach is so necessary. 
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This slide provides a perfect visual summary of the entire problem. The title 

asks the central question: "Why Directly Count Absorbed Photons?" And 

the subtitle gives the answer: because "Classical Absorption is the 

Difference of Two Large Numbers." 

Let's look at the diagram. It's a simple bar chart plotting intensity in arbitrary 

units. On the left, we have a tall, dark blue bar representing the incident 

intensity,  I in 𝐼in. This is the amount of light from our laser or lamp that we 

send into our sample. On the right, we have another tall bar, this one light 



blue, representing the transmitted intensity,  I out 𝐼out. This is the light that 

makes it through the sample to our detector. 

As you can see, for a weakly absorbing sample, these two bars are almost 

exactly the same height. The actual absorption signal, which is what we 

care about, is the tiny difference between them: Absorption equals  I in − I 

out 𝐼in − 𝐼out. In the diagram, this is represented by that very small red 

rectangle sitting on top of the  I out 𝐼out bar. That tiny red sliver is our signal. 

Now, here is the crucial part. Look at the dashed line labeled "Noise 

Fluctuation." Every measurement has noise. The laser power fluctuates, 

the detector has electronic noise, and most fundamentally, there is photon 

shot noise. This noise level is represented by that dashed line. Notice that 

the height of our signal, that little red rectangle, is comparable in size to the 

noise fluctuations on the huge blue bars. 

And this brings us to the text at the bottom, which summarizes the issue 

perfectly: The problem is that the small absorption signal is comparable to 

the noise in the large  I in 𝐼in and  I out 𝐼out measurements. When your 

signal is the same size as your noise, you have a very poor signal-to-noise 

ratio, an SNR of around one. This means it's incredibly difficult, if not 

impossible, to confidently measure that absorption. You're trying to weigh a 

single feather by first weighing a truck, then weighing the truck with the 

feather on it, and subtracting the two numbers. The tiny imprecision in your 

truck scale will completely swamp the weight of the feather. That is the 

fundamental problem we need to overcome. 
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Let's now put some mathematical formalism behind the picture we just saw. 

This slide gives us the quantitative details of a classical transmission 

measurement. 

The first point brings us to the familiar Beer–Lambert law, which describes 

how light is attenuated when passing through a homogeneous medium of 

length  l 𝑙. The equation is:  I o u t = I i n exp ⁡ ( − α ( ω ) l ) .  

𝐼out = 𝐼inexp(−𝛼(𝜔) 𝑙). 

Let's break this down. I-out and I-in are the transmitted and incident 

intensities, respectively. ' l 𝑙' is the path length through the sample in 

meters. The key physical parameter is  α ( ω ) 𝛼(𝜔), spelled a-l-p-h-a. This 

is the absorption coefficient. It depends on the frequency,  ω 𝜔, of the light 

because absorption is a resonant process. It contains all the microscopic 

physics of our sample. 

As the second bullet point explains, the absorption coefficient,  α ( ω ) 

𝛼(𝜔), which has units of inverse meters, encodes two critical pieces of 

information: the absorption cross‐ section of the individual molecules and 

the number density of those molecules. We will unpack this relationship 

later, but for now, think of alpha as a measure of how strongly the medium 

absorbs light per unit length. 

Now, for many applications in laser spectroscopy, we are interested in very 

dilute samples or very weak transitions. This is the "weak lines" limit, where 

the product  α l 𝛼 𝑙 is much, much less than one. In this case, we can use 

the Taylor series expansion for the exponential,  e − x ≈ 1 − x 𝑒−𝑥 ≈ 1 − 𝑥 

for small  x 𝑥. Applying this to the Beer–Lambert law gives us the much 

simpler approximate form:  I o u t ≈ I i n ( 1 − α l ) .  



𝐼out ≈ 𝐼in(1 − 𝛼 𝑙). 
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Continuing with our quantitative analysis, the first bullet point on this paage 

defines the actual measurable signal, which we'll call capital Delta I. This is 

simply the difference between the incident and transmitted intensity: 

 Δ I = I i n − I o u t .  

𝛥𝐼 = 𝐼in − 𝐼out. 

Using the weak-line approximation from the previous slide, we can see that  

I i n − I o u t 𝐼in − 𝐼out is approximately  I i n α l 𝐼in𝛼𝑙: 

 I i n − I o u t ≈ I i n α l .  

𝐼in − 𝐼out ≈ 𝐼in𝛼𝑙. 

This is our signal. The problem, as stated here, is that this signal is tiny 

compared with the total incident intensity,  I i n 𝐼in. The noise on our 

measurement is almost always dominated by the noise on the large  I i n 𝐼in 

signal. This includes electronic noise from the detector and amplifiers, but 

more fundamentally, it includes photon shot noise, which is the inherent 

statistical fluctuation in the arrival of photons and scales with the square 

root of the intensity. So we are trying to measure a small signal,  I i n α l 

𝐼in𝛼𝑙, in the presence of a much larger noise floor, which is proportional to 

the square root of  I i n 𝐼in. 

So, what can we do? The second bullet point mentions some traditional 

improvement strategies. We can try to make the signal,  I i n α l 𝐼in𝛼𝑙, 



bigger. One way is to make the path length 'l' very large using long path 

cells, like White cells or Herriott cells, where mirrors fold the beam path 

many times through the sample. Another way is to increase the effective  I i 

n 𝐼in by placing the sample inside a high-finesse optical cavity, a technique 

known as intracavity enhancement. These methods help, but they have 

their own complexities and limitations, and they eventually saturate. 

This brings us to the crucial conceptual leap, the punchline of this whole 

discussion: we need an alternative concept. Instead of trying to see a tiny 

dip in a huge amount of light, what if we could instead "measure the 

photons that really disappear"? This is the paradigm shift that leads to all 

the high-sensitivity techniques we're about to explore. 
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So, we arrive at the strategy shift: we’re going to "Follow the Missing 

Photons." 

The core idea, as the first bullet point states, is that all of these direct 

detection techniques work by converting the absorbed photon stream into a 

secondary signal. When a molecule absorbs a photon, its energy has to go 

somewhere. It doesn’t just vanish. The molecule is now in an excited state, 

and this stored energy can be released in various forms. We can detect 

these secondary emissions. Ideally, the strength of this secondary signal is 

directly proportional to the number of absorbed photons per second. 

Instead of measuring a small decrease in a large signal, we are now 

measuring a small signal against a background that is, ideally, zero. 



So what are these secondary channels? The slide lists some of the most 

popular ones. 

First, and this will be the main topic of our discussion, is Laser-Induced 

Fluorescence, or L-I-F. In this process, the molecule absorbs a laser 

photon, jumps to an excited electronic state, and then relaxes by emitting a 

new photon—a fluorescence photon—often at a different wavelength. We 

can then collect and count these fluorescence photons. 

A second major channel is photo-ionization, or measuring the ionization 

yield. If the absorbed photon has enough energy, it can completely eject an 

electron from the molecule, creating a positive ion and a free electron. We 

can then use electric fields to collect these charged particles and count 

them as a current. 
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Continuing our list of secondary channels, a third important method relies 

on detecting photoacoustic pressure waves. In this technique, the absorbed 

photon energy is converted into heat through collisions, causing a local 

temperature and pressure increase. If the laser is modulated, this creates a 

periodic pressure wave—in other words, a sound wave—that can be 

detected with a very sensitive microphone. 

Now let's summarize the principal advantages of this entire family of 

techniques. The first point is the most important one and cannot be 

overstated: the signal originates only when absorption occurs. This means 

there is no subtraction of large numbers. We are measuring something on 

an essentially dark background. If there's no absorption, there's no 



fluorescence, no ions, no sound. Our signal is a direct measure of the 

absorption event itself. 

This leads to the second advantage: the potential for shot-noise-limited 

detection. If we can engineer our experiment carefully to eliminate all other 

sources of background—stray light, electronic noise, cosmic rays—then the 

only remaining noise is the fundamental quantum fluctuation in the arrival 

of our secondary signal quanta. This is the ultimate limit of sensitivity in any 

measurement. 

Of course, there is no free lunch. These methods also have their 

challenges. The main one is that we need to efficiently collect these 

secondary quanta. Whether it's photons from fluorescence, ions, or sound 

waves, they are often emitted over a wide area or into a large solid angle. 

Designing optics or detectors to capture a significant fraction of this signal 

is a major experimental engineering task. 
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And there's a second significant challenge to consider. As the bullet point 

here states, these techniques often require absolute calibration of a multi-

step detection chain if you want to do truly quantitative work. 

Think about it. The process is: a photon is absorbed, which leads to a 

secondary quantum being emitted, which then has to be collected and 

finally turned into an electrical signal by a detector. Each of these steps has 

an efficiency factor associated with it. To relate the final number of counts 

you measure back to the initial number density of molecules in your 

sample, you need to know, or very carefully measure, the efficiency of 



every single step in that chain. This can be a complex and demanding 

process, but it's essential for turning a beautiful qualitative signal into a 

hard quantitative number. 
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Alright, let’s now focus on the star of today’s show: Laser-Induced 

Fluorescence, or LIF. This slide outlines the fundamental concept. It’s a 

beautifully simple, four-step process. 

First, we use a tunable laser. This is critical. The energy of the laser 

photons, given by  h ν ℎ𝜈, must be precisely tuned to match the energy 

difference between two specific quantum states in our molecule. This 

resonant condition is what gives spectroscopy its exquisite selectivity. The 

wavelength is denoted as  λ L 𝜆𝐿. 

Second, this resonant laser light promotes molecules from a lower energy 

state, which we’ll label with the ket  | i ⟩  |𝑖⟩, to a specific excited state, 

which we’ll label with the ket  | k ⟩  |𝑘⟩. This is the absorption step we’ve 

been talking about. 

Third, once in the excited state  | k ⟩  |𝑘⟩, the molecules don’t stay there for 

long. They will spontaneously decay. In LIF, the decay pathway we care 

about is the one where they emit fluorescence photons. An electron drops 

back down to a lower energy level, and the energy difference is released as 

a new photon. 

Fourth, and finally, our job as experimentalists is to count those 

fluorescence photons. The number of fluorescence photons we detect is, 



under the right conditions, directly proportional to the number of primary 

absorption events. So by counting these secondary photons, we are 

indirectly counting the “missing photons” from the initial laser beam. This is 

the essence of LIF. 
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So, how do we use this four-step process to actually perform 

spectroscopy? The procedure is described here. 

We take our tunable laser and we scan its wavelength,  λ L 𝜆L, across a 

range where we expect our molecule to have transitions. 

At each wavelength setting, we measure the rate of fluorescence photons 

that we count with our detector. 

We then plot this counted rate on the y-axis versus the laser wavelength on 

the x-axis. The resulting graph is called an excitation spectrum. 

Now, here is the key insight: this excitation spectrum perfectly mirrors the 

absorption spectrum. Why? Because fluorescence can only occur if the 

molecule is first excited. And the molecule can only be excited if the laser 

wavelength is resonant with an absorption transition. So, whenever the 

laser hits an absorption line, the fluorescence signal goes up, creating a 

peak in our excitation spectrum. The positions of the peaks in the LIF 

spectrum tell us exactly where the absorption lines are. 

The crucial advantage, which is the entire point of this lecture, is that this 

method of obtaining the spectrum has much, much higher sensitivity than a 

classical transmission measurement. 
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This diagram provides an excellent visual representation of the entire 

Laser-Induced Fluorescence process. Let’s walk through it carefully. 

On the vertical axis, we have energy. We see two distinct electronic states. 

At the bottom, we have the ground electronic state, represented by a 

manifold of several closely spaced vibrational energy levels. We label the 

initial state we’re starting from as  E | i ⟩  𝐸|𝑖⟩. At the top, we have the 

excited electronic state, also with its own manifold of vibrational levels. We 

label the state we excite to as  E | k ⟩  𝐸|𝑘⟩. 

The process begins with the long, vertical red arrow, labeled “Laser 

Excitation.” This represents the absorption of a single laser photon with 

energy  h ν ℎ𝜈 and wavelength  λ 𝜆. It takes the molecule from the specific 

initial state  | i ⟩  |𝑖⟩ up to the specific excited state  | k ⟩  |𝑘⟩. This is a 

resonant, one-to-one process. 

Now, what happens next is shown by the blue arrows. The excited 

molecule relaxes. The diagram shows several wavy blue arrows originating 

from the excited state  | k ⟩  |𝑘⟩ and ending on various different vibrational 

levels of the ground electronic state. This is the “Fluorescence” or “Photon 

Emission.” Notice two things: first, the emission can be to many different 

final states, meaning the fluorescence photons can have a range of 

energies, typically lower than the excitation energy. Second, the arrows are 

shown pointing in all different directions, illustrating that the fluorescence is 

emitted isotropically, over all  4 π 4𝜋 steradians. 



Finally, on the right, we see a green rectangle representing our “Detector.” 

A dashed cone, labeled with the solid angle  Ω 𝛺, shows that only a fraction 

of that isotropically emitted fluorescence is actually heading towards the 

detector to be collected. This visually captures the concept of collection 

efficiency, which we will quantify shortly. 
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Now that we have the conceptual picture, let's start building a quantitative 

model for the LIF signal. To do that, we first need to define the geometry of 

our experiment. 

First, we consider our laser beam. It has a specific cross-sectional area, 

which we'll call  A beam 𝐴beam, and it traverses our sample over a certain 

path length, which we'll call  Δ x 𝛥𝑥. 

These two parameters define the interaction volume,  V int 𝑉int. This is the 

volume in space where the laser and the sample molecules overlap and 

where absorption can occur. The volume is simply the area times the 

length: 

 V int = A beam Δ x  

𝑉int = 𝐴beam  𝛥𝑥 

Next, we need to quantify our laser light. Instead of intensity, it's more 

convenient to think in terms of photons. We define  n L 𝑛L as the incident 

photon flux, which is the number of photons per second entering the 

interaction volume. Its units are simply  s − 1 s−1. 



Finally, we need to describe our sample. We define  N i 𝑁i as the molecular 

number density in the initial state  | i ⟩  |𝑖⟩. This is the quantity we often 

want to measure. It tells us how many molecules per unit volume are in the 

correct state to be excited by our laser. Its S.I. unit is  m − 3 m−3. 
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Continuing with our model, we now introduce one of the most important 

parameters in all of spectroscopy: the absorption cross-section. This is 

denoted by the Greek letter  σ 𝜎, with subscripts  i 𝑖 and  k 𝑘 to indicate that 

it's for the specific transition from state  i 𝑖 to state  k 𝑘. The cross-section 

has units of area,  m 2 m2. You can intuitively think of it as the effective 

"target area" that a molecule presents to an incident photon. If the photon 

"hits" this area, it gets absorbed. A larger cross-section means a stronger 

transition. 

With these definitions in place, we can now perform Step 1 of our 

derivation: calculating the total number of absorbed photons per second, 

which we'll call  n a 𝑛a. 

Let's derive this. First, we ask: what is the probability,  P abs 𝑃abs, that a 

single incident photon gets absorbed as it travels the distance  Δ x 𝛥𝑥 

through our sample? In the low-absorption, or "optically thin," limit, this 

probability is simply the product of three terms: the number density of 

absorbers,  N i 𝑁i, times the cross-section of each absorber,  σ i k 𝜎𝑖𝑘, times 

the path length,  Δ x 𝛥𝑥. The product  N i 𝑁i times  σ i k 𝜎𝑖𝑘 gives the total 

effective absorption area per unit volume, and multiplying by the length 

gives the total probability over that path. 



Second, to find the total expected number of absorptions per second,  n a 

𝑛a, we simply multiply the rate at which photons are arriving,  n L 𝑛L, by the 

probability that any one of them is absorbed,  P abs 𝑃abs. So, the rate of 

absorption is  n a 𝑛a equals  n L 𝑛L times  P abs 𝑃abs. 
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The third step is a simple substitution. We take our expression for  P a b s 

𝑃abs from the previous slide and substitute it into the equation for  n a 𝑛a. 

This gives us the final expression for the absorption rate, which is 

highlighted in the box: 

 n a = N i σ i k n L Δ x  

𝑛a = 𝑁i 𝜎𝑖𝑘 𝑛L 𝛥𝑥 

This equation is the foundation of our entire model. Let's take a moment to 

review each symbol and its units to ensure we have a crystal-clear 

understanding. 

*  n a 𝑛a is the number of absorbed photons per second. Its unit is  s − 1 

𝑠−1. *  n L 𝑛L is the incident laser photon flux. Its unit is also  s − 1 𝑠−1. *  N 

i 𝑁i is the number density of molecules in the initial state. Its unit is  m − 3 

𝑚−3. *  σ i k 𝜎𝑖𝑘 is the absorption cross-section for the transition. Its unit is  

m 2 𝑚2. 
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And, of course, the final term in our equation is  Δ x 𝛥𝑥, the interaction path 

length, which has units of meters. 

If you look at the units, you can see they work out perfectly.  m − 3 m−3 

times  m 2 m2 times  m m gives a dimensionless quantity, which is the 

probability of absorption. Multiplying this by the rate  n L 𝑛L in  s − 1 s−1 

gives the final rate  n a 𝑛a, also in  s − 1 s−1. 

Now, let's step back and look at the physical meaning of the equation we've 

derived:  n a = N i σ i k n L Δ x 𝑛a = 𝑁i𝜎𝑖𝑘𝑛L𝛥𝑥. The most important feature 

is that the absorption rate is linear in all of these variables. This is very 

intuitive and makes perfect sense. If you double the number of molecules in 

your sample (double  N i 𝑁i), you expect to get twice as many absorptions. 

If you double the intensity of your laser (double  n L 𝑛L), you get twice as 

many absorptions. This simple, linear relationship makes the system 

predictable and is key to using LIF for quantitative measurements. 
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Alright, we’ve successfully modeled the absorption process. That was Step 

1. Now we move to Step 2: What happens after absorption? We need to 

determine the population of the excited level, the ket  | k ⟩  |𝑘⟩. 

Immediately after absorption begins, the population of the excited state 

starts to build up at the rate we just calculated,  n a 𝑛a. However, the 

excited state is not stable; molecules will also be leaving it. 

We will consider the common experimental situation of steady-state, 

continuous illumination. In steady state, the system reaches an equilibrium 



where the rate of molecules entering the excited state is exactly equal to 

the rate of molecules leaving it. 

The excitation rate, the rate IN, is simply  n a 𝑛a. 

The de-excitation rate, the rate OUT, has multiple components. Let’s say 

we have a total number of excited molecules, Capital  N k 𝑁k. This 

population can decay in two ways. First, it can decay radiatively, by 

emitting a photon. The probability per unit time for this is the Einstein A 

coefficient, which we’ll call  A k 𝐴k. Second, it can decay non-radiatively, 

through processes like collisions. The probability per unit time for this is  R 

k 𝑅k. 

Our steady-state balance equation is therefore: 

 n a = N k A k + N k R k .  

𝑛a = 𝑁k𝐴k + 𝑁k𝑅k. 

Let’s be very clear about the new terms.  A k 𝐴k is the total spontaneous 

\emph{radiative} decay probability, in units of inverse seconds. This is the 

process that creates our desired fluorescence signal.  R k 𝑅k is the total 

\emph{non-radiative}, or radiationless, decay probability. This includes all 

the loss channels, like collisions or internal conversion, that remove excited 

state population \emph{without} emitting a photon. 
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From our steady-state balance equation on the previous slide, we can now 

solve for the steady-state population of the excited level, Capital  N k 𝑁k. 



The equation was  n a = N k A k + N k R k .  

𝑛a = 𝑁k𝐴k + 𝑁k𝑅k. 

First, we factor out  N k 𝑁k on the right-hand side, giving:  n a = N k ( A k + 

R k ) .  

𝑛a = 𝑁k(𝐴k + 𝑅k). 

Then, we simply solve for  N k 𝑁k by dividing both sides. This gives us:  N k 

= n a A k + R k .  

𝑁k =
𝑛a

𝐴k + 𝑅k

. 

This expression is correct, but we can make it more physically intuitive by 

introducing a new, very important parameter: the fluorescence quantum 

efficiency, or quantum yield. It is denoted by the Greek letter  η 𝜂, with a 

subscript  k 𝑘. 

Eta  η k 𝜂k is defined as the ratio of the radiative decay rate to the total 

decay rate. Mathematically,  η k = A k A k + R k .  

𝜂k =
𝐴k

𝐴k + 𝑅k

. 

What does this mean physically?  η k 𝜂k is a dimensionless number 

between zero and one that describes the fraction of excitations that actually 

result in the emission of a fluorescence photon. It represents the efficiency 

of the fluorescence process itself. If there are no non-radiative losses 

(meaning  R k = 0 𝑅k = 0), then  η k = 1 𝜂k = 1, and every single absorbed 

photon leads to a fluorescence photon. Conversely, if non-radiative decay 

is very fast ( R k ≫ A k 𝑅k ≫ 𝐴k), then  η k → 0 𝜂k → 0, and we get very little 



fluorescence. The competition between radiative and non-radiative decay 

pathways is what determines the quantum yield. 
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We're now ready for Step 3: calculating the actual rate of fluorescence 

photons being emitted, which we'll call  n F L 𝑛𝐹𝐿. 

The total number of fluorescence photons emitted per second is simply the 

total number of molecules in the excited state,  N k 𝑁k, multiplied by the 

rate at which each one radiatively decays, which is  A k 𝐴k. So, our starting 

equation is: 

 n F L = N k ⋅  A k .  

𝑛𝐹𝐿 = 𝑁k ⋅ 𝐴k. 

Now, we can substitute the expression for  N k 𝑁k that we found on the last 

slide. This gives: 

 n F L = ( n a A k + R k ) ⋅  A k .  

𝑛𝐹𝐿 = (
𝑛a

𝐴k + 𝑅k

) ⋅ 𝐴k. 

If we rearrange this slightly, we get: 

 n F L = n a ⋅  ( A k A k + R k ) .  

𝑛𝐹𝐿 = 𝑛a ⋅ (
𝐴k

𝐴k + 𝑅k

). 

But we recognize that term in the square brackets! That is exactly our 

definition of the fluorescence quantum efficiency,  η k 𝜂k. 



So, we arrive at a beautifully simple and powerful result: 

 n F L = n a η k .  

𝑛𝐹𝐿 = 𝑛a 𝜂k. 

The rate of photons emitted is simply the rate of photons absorbed 

multiplied by the quantum efficiency of fluorescence. 

Consider the special case where  η k = 1 𝜂k = 1. This means there are no 

non-radiative losses. In this ideal scenario, 

 n F L = n a .  

𝑛𝐹𝐿 = 𝑛a. 

Every absorbed photon leads to exactly one fluorescence photon. This is 

the best we can possibly do. 

Our ultimate measurement objective is now clear: we need to detect at 

least a fraction of these  n F L 𝑛𝐹𝐿 photons in order to work our way 

backwards and infer the absorption rate,  n a 𝑛a, which in turn tells us about 

our sample. 
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We have now calculated the total number of fluorescence photons, n-F-L, 

being emitted from our interaction volume every second. But that's not what 

we measure. We can only measure the photons that actually reach our 

detector. This brings us to Step 4: the Geometrical Collection Efficiency. 



The key point, as the first bullet states, is that in many cases, fluorescence 

is emitted isotropically. That means it radiates out equally in all directions, 

spreading over a total solid angle of  4 π 4𝜋 steradians. 

Our detector, however, is not a sphere that surrounds the sample. It's a 

small device sitting some distance away, and it only accepts light coming 

from a limited solid angle, which we'll call  d Ω 𝑑𝛺. 

Therefore, we define the collection efficiency, denoted by the lowercase 

Greek letter  δ 𝛿, as the ratio of the solid angle subtended by our detector 

to the total solid angle of emission. The equation is: 

 δ = d Ω 4 π  

𝛿 =
𝑑𝛺

4𝜋
 

 δ 𝛿 is a dimensionless number that must be between 0 and 1. It represents 

the fraction of the total emitted fluorescence that we actually manage to 

capture with our collection optics. 

The last bullet gives some practical numbers. For typical optical assemblies 

using standard lenses and mirrors, you might achieve a  δ 𝛿 between 0.1 

and 0.5. A value of 0.5 would mean you are collecting light from a full 

hemisphere, or  2 π 2𝜋 steradians, which requires very sophisticated and 

well-aligned optics. For a simple lens, the value of  δ 𝛿 might be much 

smaller, perhaps only 0.01 or even less. 
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This slide reinforces a simple but critically important engineering principle. 

The final signal we detect will be directly proportional to this collection 

efficiency,  δ 𝛿. This means that a higher  δ 𝛿 value directly multiplies our 

detected signal. 

Therefore, maximizing the collection efficiency is a key engineering target 

in the design of any high-sensitivity fluorescence experiment. Any effort 

spent on using larger lenses, higher quality mirrors, or more sophisticated 

optical designs to increase the solid angle  d Ω 𝑑𝛺 pays off directly with a 

stronger signal and better signal-to-noise ratio. 
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This diagram provides a clear, intuitive picture of what geometrical 

collection efficiency means. 

At the center of the diagram, we have an orange dot labeled "Fluorescence 

Point Source." This is our interaction volume, where the molecules are 

emitting light. 

Radiating out from this central point are numerous light blue lines extending 

in all directions, like spokes on a wheel. This represents the "Isotropic 

Emission"—the fact that photons are being sent out equally in all directions 

into  4 π 4𝜋 steradians. 

Now, look at the shaded green wedge. This segment represents the solid 

angle, labeled  d Ω d𝛺, that is actually intercepted by our detector. The 

arrow indicates that light within this cone is heading "To Detector." 



It's visually obvious from this diagram that our detector is only seeing a 

small fraction of the total light being emitted. The equation at the top 

summarizes this quantitatively: the collection efficiency,  δ 𝛿, is the ratio of 

that green wedge,  d Ω d𝛺, to the full circle,  4 π 4𝜋. This is a fundamental 

limitation we must always account for. 
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So far, we have absorbed a photon, it has been re-emitted as fluorescence, 

and a fraction of that fluorescence, determined by  δ 𝛿, has arrived at our 

detector. Are we done? Not quite. This brings us to Step 5: the 

Photocathode Quantum Efficiency. 

The first bullet point explains the next challenge. When we use a detector 

like a Photomultiplier Tube, or PMT, the first step is for an incoming photon 

to strike a surface called the photocathode and, via the photoelectric effect, 

release a photoelectron. However, this process is not  100 % 100% 

efficient. Not every photon that impinges on the cathode succeeds in 

releasing an electron. 

This leads us to define another efficiency factor, the photocathode quantum 

efficiency, which we denote as  η p h 𝜂ph. 

As the equation shows, eta-ph is defined as the ratio of n-p-e, the number 

of photoelectrons emitted per second, to n-ph,incident, the number of 

photons per second that are incident on the photocathode. 

 η p h = n p e n p h , i n c i d e n t  



𝜂ph =
𝑛pe

𝑛ph,incident
 

So,  η p h 𝜂ph is the probability that an incident photon will successfully 

create a photoelectron, which is the start of the electronic signal we will 

actually measure. 
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Let's define the terms in that equation more formally. 

*  n p-e 𝑛p-e is the rate of photoelectrons emitted per second. This is our 

final, countable electronic signal. *  n ph,incident 𝑛ph,incident is the rate of 

photons incident on the detector. This is simply the total rate of 

fluorescence photons emitted,  n F-L 𝑛F-L, multiplied by our geometrical 

collection efficiency,  δ 𝛿. 

So, how efficient is this process? The next bullet gives a typical value. For 

a good photomultiplier tube operating in the UV or visible range,  η ph 𝜂ph is 

approximately 0.2, or 20 percent. This is a significant loss! It means that for 

every five photons that we worked so hard to collect and guide to our 

detector, on average, only one of them will generate a signal. 

The final bullet point here is a saving grace. Once a photoelectron is 

created, modern photon-counting electronics are remarkably efficient. They 

can take that tiny initial pulse of charge from a single photoelectron event, 

amplify it by many orders of magnitude inside the PMT, and convert it into a 

clean digital count with virtually no extra noise added by the electronics 



themselves. So, the main inefficiency is at the very front end—the 

conversion of photons to electrons. 
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We have now followed the signal from the initial absorption all the way to 

the final electronic counts. This is Step 6, where we assemble all the pieces 

into the Full Detection Chain Equation. 

Let's start from the end and work backwards. The rate of photoelectrons we 

count,  n p e 𝑛𝑝𝑒, is equal to the rate of fluorescence photons arriving at the 

detector,  n F L × δ 𝑛𝐹𝐿 × 𝛿, multiplied by the detector's efficiency,  η p h 

𝜂𝑝ℎ. So,  n p e = n F L × δ × η p h . 𝑛𝑝𝑒 = 𝑛𝐹𝐿 × 𝛿 × 𝜂𝑝ℎ . 

But we know from Step 3 that the rate of emitted fluorescence photons,  n 

F L 𝑛𝐹𝐿, is equal to the rate of absorbed photons,  n a 𝑛𝑎, times the 

fluorescence quantum efficiency,  η k 𝜂𝑘. So we can substitute that in, 

giving:  n p e = n a × η k × δ × η p h . 𝑛𝑝𝑒 = 𝑛𝑎 × 𝜂𝑘 × 𝛿 × 𝜂𝑝ℎ . 

Finally, we substitute our expression for the absorption rate,  n a 𝑛𝑎, from 

Step 1. This gives us our final, comprehensive equation, which is shown in 

the box: 

 n p e = ( N i × σ i k × n L × Δ x ) × η k × η p h × δ .  

𝑛𝑝𝑒 = (𝑁i × 𝜎𝑖𝑘 × 𝑛L × 𝛥𝑥) × 𝜂𝑘 × 𝜂𝑝ℎ × 𝛿. 

Let's pause and appreciate this equation. It connects the thing we 

measure,  n p e 𝑛𝑝𝑒, to the thing we want to know, the molecular number 

density  N i 𝑁i, through a series of factors that are either fundamental 



properties of our system (like  σ i k 𝜎𝑖𝑘 and  η k 𝜂𝑘) or are experimental 

design parameters that we control or can measure (like  n L 𝑛L,  Δ x 𝛥𝑥,  δ 

𝛿, and  η p h 𝜂𝑝ℎ). As the last bullet point says, all variables in this equation 

are experimentally accessible or are part of the design. 
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A crucial feature of the full detection chain equation we just derived is its 

linear response. Our final signal, the photoelectron count rate  n p e 𝑛𝑝𝑒, is 

directly proportional to the initial state number density, capital  N i 𝑁i. All the 

other terms in the equation act as a single, large proportionality constant. 

This linearity is incredibly convenient for experimental work. It means, for 

example, that if we double the concentration of our analyte, which doubles  

N i 𝑁i, we can expect to see double the number of counts per second from 

our detector. 

This enables a straightforward calibration procedure. We can prepare one 

or more samples with a known concentration, measure their corresponding  

n p e 𝑛𝑝𝑒, and create a calibration curve that directly relates our measured 

signal to the absolute number density of the species of interest. 
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Theory is wonderful, but let's plug in some real-world numbers to get a feel 

for the incredible power of this technique. We'll work through an example 

based on a problem from Demtröder's textbook to estimate the ultimate 

counting limit. 



Here are the given parameters for our hypothetical experiment: 

* First, the photomultiplier quantum efficiency,  η p h 𝜂ph, is  0.2 0.2, or 20 

percent. A realistic value. * Second, the collection efficiency,  δ 𝛿, is  0.1 

0.1. This corresponds to collecting light over a solid angle  d Ω d𝛺 of  0.4 π 

0.4𝜋 steradians. This is a decent, but not heroic, collection system. * Third, 

we are using a cooled PMT for photon-counting. Cooling the detector is 

essential to reduce thermal noise, or "dark counts." The dark rate is 

specified as being  ≤ 10 ≤ 10 counts per second. This is our background 

noise floor. * Fourth, we set a goal for our measurement. We want to 

achieve a signal-to-noise ratio, or SNR, of approximately  8 8, and we'll 

acquire data for an integration time of  1 1 second. To get an SNR of  8 8 

with a background of  10 10 counts, basic Poisson statistics tell us we'll 

need a signal of about  100 100 photoelectron counts. So, our required 

signal rate,  n p e 𝑛pe, is  100 100 counts per second. 

The question is this: To get this required signal of  100 100 counts per 

second, what is the minimum measurable absorption rate,  n a 𝑛a, that we 

need in our sample? 
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Let's now perform the calculation. We want to find the minimum absorption 

rate,  n a 𝑛a, needed to produce our target signal of  n p e = 100 𝑛𝑝𝑒 = 100 

counts per second. 

We start with the relationship we derived earlier that connects the detected 

counts to the absorbed photons:  n p e 𝑛𝑝𝑒 equals  n a 𝑛a times  η k 𝜂k 

times  η p h 𝜂𝑝ℎ times  δ 𝛿. 



We need to rearrange this to solve for  n a 𝑛a. So,  n a 𝑛a equals  n p e 𝑛𝑝𝑒 

divided by the product of the efficiencies:  ( η k ⋅  η p h ⋅  δ ) (𝜂k ⋅ 𝜂𝑝ℎ ⋅ 𝛿). 

For this calculation, we'll assume the most ideal scenario for the molecule 

itself: that the fluorescence quantum efficiency,  η k 𝜂k, is equal to 1. This 

means there are no non-radiative losses. 

Now we plug in the numbers from the previous slide:  n a 𝑛a equals 100, 

divided by the quantity  ( 1 ⋅  0.2 ⋅  0.1 ) (1 ⋅ 0.2 ⋅ 0.1). The denominator is  

0.02 0.02. So,  n a = 100 0.02 𝑛a =
100

0.02
, which is 5,000. The units are 

inverse seconds. 

So, to get our desired signal, we need our sample to be absorbing 5,000 

photons every second. 

Now, this might not sound impressive until you consider what it means as a 

fraction of the total laser power. The final bullet point here is the punchline: 

this calculation demonstrates that LIF is capable of detecting a relative 

absorption—that is, the change in power divided by the total power,  Δ P / 

P 𝛥𝑃/𝑃—that is less than or equal to  10 − 14 10−14. This is for a standard 

1 Watt laser at 500 nanometers. Ten to the minus fourteen is an absurdly 

small number. It's like detecting the removal of a single grain of sand from 

a one-ton pile. Let's see how this number is justified on the next slide. 
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Let's now walk through the calculation that demonstrates the practical 

significance of that astounding sensitivity figure of  10 − 14 10−14. 



First, we need to know the total photon flux,  n L 𝑛L, for a 1 Watt laser 

operating at a wavelength of 500 nanometers. The photon flux is the total 

power,  P 𝑃, divided by the energy of a single photon,  h ν ℎ𝜈. Since  ν = c 

λ ,  

𝜈 =
𝑐

𝜆
, 

the energy per photon is  h c λ ℎ
𝑐

𝜆
. 

So,  n L = P h c λ 𝑛L =
𝑃
ℎ𝑐

𝜆

. Let's plug in the values. Power is 1 Joule per 

second. Planck's constant,  h ℎ, is  6.626 × 10 − 34 6.626 × 10−34 Joule-

seconds. The speed of light,  c 𝑐, is  3 × 10 8 3 × 108 meters per second. 

And the wavelength,  λ 𝜆, is 500 nanometers, or  5 × 10 − 7 5 × 10−7 

meters. 

When you compute this, you find that a 1 Watt beam at this wavelength 

carries approximately  3 × 10 18 3 × 1018 photons every single second. 

This is an enormous number. 

Now, from our previous calculation, we know that our minimum detectable 

absorption rate,  n a 𝑛a, was 5,000 photons per second. 

So, what is the fractional loss? It's the number of photons we absorbed 

divided by the total number of photons we sent in. The fractional loss is  n a 

n L 
𝑛a

𝑛L

. 

That's  5 × 10 3 3 × 10 18 
5×103

3×1018
. This comes out to be approximately  1.7 × 

10 − 15 1.7 × 10−15. 



This is even more incredible than the  10 − 14 10−14 quoted on the 

previous slide! So, with a very standard setup, LIF allows us to detect the 

disappearance of fewer than two photons out of every quadrillion that pass 

through our sample. 
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Let's put that sensitivity into perspective. The first bullet point here drives 

the point home. To measure a fractional loss of  10 − 15 10−15 using a 

classical transmission measurement—by subtracting  I o u t 𝐼out from  I i n 

𝐼in—you would need to measure those two large intensities with a precision 

of more than 15 digits. No instrument on Earth can do that. It is a 

completely impossible measurement. LIF elegantly circumvents this 

impossibility by changing the question—instead of measuring what's left, 

we directly count what disappeared. 

Now, can we do even better? Yes. The second bullet point hints at a more 

advanced technique. If we place our sample inside the laser cavity itself, 

the sample interacts with the much higher circulating power inside the 

resonator, not just the output power. The effective photon flux,  n L 𝑛L, 

experienced by the sample is multiplied by a cavity enhancement factor,  q 

𝑞, which can easily be in the range of 10 to 100, or even much higher for 

high-finesse cavities. This means that to achieve the same relative 

absorption, we now need an even smaller absolute number of absorbers,  n 

a 𝑛a. This is the basis for extremely sensitive techniques like Intracavity 

Laser Absorption Spectroscopy, or ICLAS. 
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We've established that every step in the detection chain is crucial, and one 

of the most important leverage points for an experimentalist is the optical 

design. So let's discuss the general principles for optimizing the collection 

optics. 

Our primary goal is simple: maximize the collection efficiency,  δ 𝛿, which 

means capturing the largest possible solid angle of fluorescence. However, 

we must do this without introducing new problems, namely stray light, 

which would increase our background noise, or other optical losses. 

This leads to several key requirements for the design. First, and most 

obviously, we should try to surround the interaction region with reflective or 

refractive surfaces that capture a large solid angle. The more of that  4 π 

4𝜋 sphere of emission we can intercept, the better. 

Second, we need to take all that light we've collected and efficiently re-

image it onto the small active area of our detector. But there's a constraint 

here from fundamental optics, which is the preservation of étendue. 

Étendue, also known as optical throughput, is the product of the source 

area and the solid angle of emission. It's a conserved quantity in an ideal 

optical system. This means you can't take light from a large, diffuse source 

and focus it all down onto an infinitesimally small detector. There are 

physical limits to how tightly you can concentrate light, and a good optical 

design respects these limits to maximize throughput. 
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Continuing with our requirements for optimal collection optics, the third 

point is to maintain spectral neutrality. Our collection system, whether it 



uses mirrors or lenses, should perform equally well across the entire 

wavelength band of the fluorescence emission. We must avoid chromatic 

aberration, which is a common problem with simple lenses where different 

colors of light focus at different points. This would not only lead to signal 

loss but could also distort the shape of our measured spectrum. This is a 

primary reason why systems based on reflective optics—mirrors—are often 

preferred, as they are inherently free of chromatic aberration. 

So, how do we put these principles into practice? The last bullet point 

highlights two classical designs, which are detailed in Demtröder's textbook 

and are widely used. The first is a system based on a parabolic mirror. The 

second is a more complex but very elegant system using an elliptical mirror 

combined with a fiber bundle. We'll now look at the specifics of each of 

these designs. 
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Let's examine the first classical design for high-efficiency collection: the 

parabolic mirror assembly. 

The operating principle relies on a fundamental property of a parabola. 

Light rays originating from the focal point of a parabolic mirror are all 

reflected into a perfectly parallel, or collimated, beam. 

In our experiment, we place the interaction region—the small volume where 

the laser excites the molecules and fluorescence is created—precisely at 

the focal point of what's called an off-axis paraboloid. We use an off-axis 

section of a full parabola to provide clear access for the laser beam and the 

detector. 



The isotropically emitted fluorescence radiates from the focal point, strikes 

the mirror, and is reflected as a collimated beam. This collimated beam can 

then be easily manipulated, for example, by a simple lens that focuses it 

efficiently onto the small active area of a PMT detector. 

As the second bullet notes, a single parabolic mirror can be used to collect 

light from nearly a full hemisphere, which is  2 π 2𝜋 steradians. This 

corresponds to a collection efficiency,  δ 𝛿, approaching  0.5 0.5, which is 

exceptionally good. 

The advantages of this design are its relative simplicity of alignment and 

the fact that using a mirror provides broadband reflectivity. With a simple 

aluminum coating or a more advanced multi-layer dielectric coating, it can 

be highly reflective over a very wide range of wavelengths. 

The primary limitation is the potential for physical obstruction. The laser 

beam has to get into the focal point, and the mirror itself might be in the 

way. This often requires careful design, such as drilling entrance and exit 

ports through the mirror for the laser beam, which can be a practical 

complication. 
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This diagram illustrates the parabolic mirror assembly in action. Let's trace 

the light paths. 

The main laser beam, shown as a red line, enters from the left. It passes 

through entrance and exit ports, which are holes drilled in the large, curved 

"Off-axis Parabolic Mirror." 



The laser beam intersects our sample at the "Interaction Region," which is 

a small light-blue circle located precisely at the focal point of the mirror. 

From this interaction region, "Isotropic Fluorescence" is emitted in all 

directions, as shown by the diverging blue arrows. 

A large fraction of these fluorescence photons travels towards the parabolic 

mirror. Upon striking the mirror, they are all reflected as parallel rays, 

forming a beam of "Collimated Fluorescence" that travels to the right. 

This collimated beam then passes through a "Focusing Lens," which 

converges the parallel rays to a tight spot on the active area of the "PMT 

Detector." 

You can see how this design elegantly converts the divergent, isotropic 

fluorescence into a well-behaved, collimated beam that is easy to manage 

and focus, thereby achieving a very high collection efficiency. 
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Now let's look at the second classical design, which is a very clever and 

powerful combination of an elliptical mirror, a half-sphere, and a fiber 

bundle. 

This design relies on the geometric property of an ellipse, which, unlike a 

parabola, has two focal points. Any light ray that originates at one focus of 

the ellipse will be reflected by the mirror and will pass through the second 

focus. 

We use this property to our advantage. The setup is as follows: 



1. At Focus A, we place our laser-sample interaction spot. This is where the 

fluorescence is generated. 2. At Focus B, we place the input end of a 

polished optical fiber bundle. 

The elliptical mirror thus collects the fluorescence emitted from Focus A 

and efficiently funnels it all down to be injected into the fiber bundle at 

Focus B. 

To make this system even more efficient, a small "Half-sphere" reflector is 

placed just below the sample at Focus A. This spherical mirror collects all 

the fluorescence that was emitted in the "downward" hemisphere (the 2-pi 

steradians that would otherwise be lost) and reflects it back up through 

Focus A towards the main elliptical mirror. 

This simple addition effectively doubles the solid angle of collection, 

allowing us to capture nearly the full 4-pi steradians of emission. 
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This elliptical mirror and fiber bundle design offers two major practical 

advantages. 

First, the fiber bundle acts as a flexible light pipe. It conducts the light 

collected at Focus B to a detector that can be located some distance away. 

This provides incredible flexibility in the geometry of the experimental 

setup. 

Second, and this is often a critical feature, this flexibility allows the 

placement of a massive or sensitive detector far away from the potentially 

harsh environment of the sample chamber. For example, the experiment 



might be taking place inside a high-vacuum chamber, a cryostat, or a 

region with strong magnetic fields. Detectors like PMTs can be bulky, 

require high voltage, need cooling, and can be sensitive to magnetic fields. 

The fiber bundle allows us to position the detector outside of this 

problematic region, greatly simplifying the overall engineering of the 

experiment. 
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This beautiful diagram illustrates the elegant optics of the elliptical mirror 

system. 

We see a large, semi-elliptical mirror forming the top of the collection 

system. Below it, at "Focus A," we have the red dot representing the laser-

sample spot where fluorescence is generated. Just under Focus A is the 

"Half-Sphere Reflector." 

Let's trace the light rays, shown in orange and blue. Some rays are emitted 

upwards from Focus A directly towards the elliptical mirror. Other rays are 

emitted downwards, where they strike the half-sphere reflector. They are 

then reflected back up, passing through Focus A again, and continue on 

towards the elliptical mirror. 

No matter which path they take initially, all the rays that strike the elliptical 

mirror are reflected such that they converge precisely at the second focal 

point, "Focus B." 

At Focus B, we see the input end of a "Fiber Bundle." The light is efficiently 

coupled into the fibers, which then transport it away to a remote detector or 



spectrograph. This design represents a near-perfect solution for capturing 

almost the entire 4-pi solid angle of emission. 
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So, we’ve successfully funneled our fluorescence into a fiber bundle. Why 

is this often coupled to a monochromator? 

The first bullet point explains the primary reason: fluorescence experiments 

often need spectral discrimination to suppress scattered laser light. The 

original laser beam is typically many, many orders of magnitude more 

intense than the fluorescence signal. Even a tiny fraction of this laser light 

scattering off the sample, the cell windows, or gas molecules and reaching 

the detector can completely overwhelm the weak fluorescence. 

A monochromator, or a spectrograph, is an instrument that uses a grating 

to disperse light by wavelength. Its entrance is a very narrow physical slit. 

By setting the monochromator to pass only the wavelengths of the 

fluorescence while rejecting the laser wavelength, we can effectively clean 

up our signal. 

This is where the fiber bundle shows another clever use. The output end of 

the bundle, which is typically circular, can be custom-made. As the second 

bullet points out, the individual fibers at the exit can be rearranged and 

polished into a rectangular pattern that perfectly matches the shape and 

height of the spectrograph’s entrance slit. 

This shaping maintains a very high throughput—symbolized here by the 

Greek letter  τ 𝜏—while ensuring that the light is in the correct spatial format 



to efficiently enter the spectrograph. It’s a far more efficient method than 

trying to couple light into a single, tiny fiber. 
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This diagram provides a clear illustration of how the shaped fiber bundle is 

used to image fluorescence onto a monochromator. 

On the left, we see the "Shaped Fiber Bundle Exit." A close-up shows that 

it's composed of many "Individual Optical Fibers" that have been arranged 

into a rectangular grid. 

The "Fluorescence Signal" emerges from this shaped exit as a rectangular 

beam of light. 

The diagram shows how the geometry of this beam has been engineered 

to perfectly match the "Entrance Slit" of the "Spectrograph" on the right. 

This ensures that a maximum amount of the collected fluorescence actually 

enters the spectrograph for spectral filtering, maximizing the throughput of 

the system. 

This is a perfect example of the careful optical engineering required for 

high-sensitivity measurements. 
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Now that we have developed a complete model of the LIF signal chain, let's 

summarize the steps involved in actually acquiring an excitation spectrum. 



The first step is to take our tunable laser and scan its wavelength,  λ L 𝜆L, 

over the desired spectral range. This can be done in discrete steps or as a 

continuous sweep. 

At each wavelength step, we use our detection system to acquire the PMT 

counts,  n p e 𝑛pe, for a fixed integration time,  t 𝑡. This gives us the 

fluorescence intensity at that specific excitation wavelength. 

If we have performed a careful calibration, as discussed earlier, we can 

then use our full detection chain equation from slide 26 to convert the 

measured counts per second back into a fundamental physical quantity, 

such as the absorption coefficient. 

Finally, we plot the measured signal—the photoelectron counts,  n p e 

𝑛pe—as a function of the laser wavelength,  λ L 𝜆L. The resulting graph is 

our excitation spectrum. The peaks in this plot directly correspond to the 

resonant absorption lines of our sample. 
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There is a subtle but important point to consider when performing high-

accuracy work. Our full detection chain equation showed that the final 

signal,  n p e 𝑛𝑝𝑒, is directly proportional to the incident laser photon flux,  n 

L 𝑛L. 

This means that the fluorescence intensity is inherently normalized to the 

laser power, but _only if the laser power remains perfectly constant_ as we 

scan its wavelength. In reality, the output power of a tunable laser always 

fluctuates and drifts to some extent. If we don't account for this, these 



power fluctuations will appear as noise or artificial structure in our final 

spectrum. 

Therefore, for any high-accuracy or quantitative work, it is essential to 

record the laser flux,  n L 𝑛L, simultaneously with the fluorescence signal. 

This is typically done by using a beam splitter to send a small fraction of the 

laser beam to a reference photodiode. At each point in the scan, one then 

divides the fluorescence signal by the reference signal. This normalization 

procedure removes the effect of laser power variations and yields a true, 

clean excitation spectrum. 
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We've said that the LIF excitation spectrum "mirrors" the true absorption 

spectrum. This is true in terms of the positions of the spectral lines. But are 

the relative intensities of the lines also faithfully reproduced? The answer 

is: only if certain conditions are met. This slide lists those conditions. 

First, we need to have an equal fluorescence quantum efficiency,  η k 𝜂k, 

for all the different excited states that are accessed during our wavelength 

scan. If we excite two different transitions, and one of the resulting excited 

states is more prone to non-radiative decay (has a lower  η k 𝜂k), its peak in 

the LIF spectrum will appear weaker than it should relative to the other 

peak. 

Second, we need a flat detector response. The photocathode quantum 

efficiency of our detector,  η p h 𝜂ph, must be constant across the entire 

wavelength range of the fluorescence emission, which we denote here as  



λ e m 𝜆em. If the detector is more sensitive to the fluorescence from one 

transition than another, the line intensities will be distorted. 

Third, we require a constant collection efficiency,  δ 𝛿, regardless of the 

properties of the emission. This can be violated if different excited states 

have different lifetimes, which affects how far they travel before emitting, or 

if the fluorescence has a non-isotropic spatial distribution, a phenomenon 

known as emission anisotropy. 

These conditions are most likely to be fulfilled in low-pressure, collision-free 

environments, such as a molecular beam experiment. In these cases, the 

quantum yield,  η k 𝜂k, is often close to 1 for all states, and the emission is 

typically isotropic. 
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So, what are the consequences if the conditions on the previous slide are 

violated, as they often are in more complex environments like liquids or 

high-pressure gases? 

The result is that the violations lead to a distortion of the relative line 

intensities in the LIF spectrum compared to a true absorption spectrum. A 

transition that is intrinsically strong might appear weak in the LIF spectrum 

if its quantum yield is low, and vice versa. 

However, and this is a critical point, the positions of the spectral lines—their 

wavelengths—remain completely reliable. A peak will only appear at a 

wavelength corresponding to a real resonant absorption. 



Therefore, for applications like identifying species or determining energy 

level structures, LIF is an exceptionally robust tool. For obtaining accurate 

quantitative concentrations or absorption cross-sections, one must be very 

careful to either work in an environment where these intensity distortions 

are minimal, or to independently calibrate for them. 

Page 45: 

Let's delve deeper into the physical origins of why the fluorescence 

quantum efficiency,  η k 𝜂k, might be less than one. What are the non-

radiative decay channels that compete with fluorescence? This slide lists 

the three most important mechanisms. 

First, we have collisional quenching. In this process, an excited molecule 

collides with another molecule in the sample. During the collision, the 

electronic energy of the excited molecule is converted into other forms of 

energy, such as kinetic energy of the two partners (heating up the gas) or 

internal vibrational and rotational energy of the partner molecule. The 

excited molecule is deactivated without ever emitting a photon. This 

process is, of course, highly dependent on pressure and temperature. 

Second is intersystem crossing. This is a spin-forbidden, and therefore 

typically slower, radiationless transfer of the molecule from the initially 

prepared excited singlet state to a lower-lying triplet state. Once in the 

triplet state, the molecule is trapped and cannot fluoresce back to the 

ground singlet state. It may eventually emit a very slow photon via 

phosphorescence or lose its energy non-radiatively. 



Third is internal conversion. This is a radiationless redistribution of energy 

within the same electronic manifold. The molecule essentially converts its 

electronic energy into a large amount of vibrational energy, landing in a 

very high vibrational level of the ground electronic state. This is then 

followed by very rapid vibrational relaxation as the molecule loses this 

vibrational energy step-by-step through collisions. The net result is that the 

electronic energy is converted to heat. 
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These different non-radiative processes are all competing with each other 

and with fluorescence. The total non-radiative decay rate,  R k 𝑅k, is simply 

the sum of the rates of all the individual channels. 

So,  R k 𝑅k equals the rate of collisions,  R coll 𝑅coll, plus the rate of 

intersystem crossing,  R ISC 𝑅ISC, plus the rate of internal conversion,  R IC 

𝑅IC, and so on. 

The key to achieving a high fluorescence quantum yield,  η k 𝜂k, is to make 

the radiative decay rate,  A k 𝐴k, much faster than this total non-radiative 

rate,  R k 𝑅k. 

The second bullet point tells us how to do this in practice. Collisional 

quenching is often the dominant non-radiative pathway. By performing the 

experiment in a high vacuum or by using a supersonic molecular beam, we 

can dramatically reduce the density and thus suppress the collision rate,  R 

coll 𝑅coll. By making the time between collisions much longer than the 

radiative lifetime, we ensure that the molecule has a high probability of 



fluorescing before it can be quenched. In these conditions, we can often 

achieve a quantum yield,  η k 𝜂k, that approaches its ideal value of 1. 
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Now let's revisit another one of our conditions for ideal intensity 

measurements: the impact of fluorescence anisotropy on our collection 

efficiency,  δ 𝛿. 

The first bullet point explains the origin of this effect. If we use a polarized 

laser beam for excitation, we don't excite all molecules randomly. Because 

of quantum mechanical selection rules, we preferentially excite those 

molecules whose transition dipole moment is aligned with the laser's 

polarization axis. This creates a non-isotropic, or aligned, angular 

momentum distribution in the sample of excited-state molecules. 

When this aligned sample of molecules fluoresces, the emission itself is no 

longer isotropic. The intensity of the fluorescence,  I ( θ ) 𝐼(𝜃), depends on 

the observation angle,  θ 𝜃, relative to the laser polarization. The 

mathematical form is given as: 

 I ( θ ) ∝ 1 + β P 2 ( cos ⁡ θ ) .  

𝐼(𝜃) ∝ 1 + 𝛽 𝑃2(cos𝜃). 

Here,  P 2 𝑃2 is the second Legendre polynomial, and  β 𝛽 is the anisotropy 

parameter, which depends on the specific quantum states involved in the 

absorption and emission process. 

The direct consequence of this non-isotropic emission is that our effective 

collection efficiency,  δ 𝛿, now depends on the orientation of our detector 



relative to the laser polarization. Placing the detector at different angles will 

result in different measured signal strengths, which can distort the relative 

intensities in our spectrum. 
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So, if fluorescence anisotropy is a problem for our quantitative 

measurement, what strategies can we employ to mitigate it? 

There are several common approaches. One strategy is to use depolarizing 

optics, such as a polarization scrambler, placed just before the detector. 

This effectively randomizes the polarization of the collected fluorescence, 

averaging out the anisotropic effect. 

Another very elegant solution is to place the detector at a specific "magic 

angle" relative to the laser polarization. For a P-2 angular distribution, this 

angle is 54.7 degrees. At this specific angle, the P-2 of cosine–theta term is 

exactly zero, so the measured intensity is independent of the anisotropy 

parameter beta. 

A third strategy is to simply average over all possible orientations, for 

example, by rotating the sample or by rotating the polarization axis of the 

laser or a polarizer in front of the detector during the measurement. All of 

these methods aim to remove the orientation dependence and recover an 

accurate measure of the total fluorescence intensity. 
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We've mentioned molecular beams several times as an ideal environment 

for LIF. This slide summarizes exactly why the combination of LIF with 

molecular beams is such a powerful and revolutionary technique in modern 

chemical physics. 

First, let's consider the sample itself. A typical molecular beam is extremely 

dilute. The slide gives representative numbers: a path length,  Δ x 𝛥𝑥, of 

about 0.1 centimeters, and a number density,  N i 𝑁i, of only  10 7 107 

molecules per cubic centimeter. If you were to attempt a classical 

transmission measurement on such a sample, the absorption loss would be 

so infinitesimally small as to be completely undetectable. 

Second, the background environment is pristine. The experiment is 

conducted in a high-vacuum chamber. This means there is negligible stray 

fluorescence from air, dust, or other contaminants. The detector is 

therefore seeing a signal against an almost perfectly dark background. The 

only photons it should see are the signal photons from your molecules, 

leading to an exceptionally high signal-to-background ratio. 

Third, the physics of the supersonic expansion itself provides a tremendous 

advantage. As the gas expands into the vacuum, it undergoes extreme 

cooling of its internal degrees of freedom—its rotational and vibrational 

motions. This means that instead of the molecular population being spread 

out over thousands of different quantum states at room temperature, it 

becomes concentrated in just the very lowest few energy levels. This 

dramatically simplifies the resulting spectrum, transforming what would be 

a dense, congested forest of overlapping lines into a clean, simple set of 

well-resolved peaks that are easy to assign and analyze. 
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There is yet another powerful tool we can use when performing LIF on 

molecular beams, especially when using pulsed lasers and pulsed nozzles: 

time-of-flight gating. 

The experiment is pulsed: a short puff of molecules is released from the 

nozzle, and a short laser pulse intersects it at a specific point downstream. 

We know the speed of our molecules and the distances involved, so we 

can calculate with high precision when the fluorescence signal should 

arrive at our detector. 

We can then use fast electronics to "gate" our detector, meaning we only 

turn it on and accept counts during the very narrow time window when the 

true signal photons are expected to arrive. Any background luminescence 

from the apparatus itself, for instance, slow fluorescence from the vacuum 

chamber windows that were hit by scattered laser light, will typically arrive 

at a different time and will be rejected by this time gate. This is an 

extremely effective method for further improving the signal-to-noise ratio. 
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This schematic provides a wonderful overview of a typical experimental 

setup for Laser-Induced Fluorescence on a skimmed molecular beam. Let's 

trace the entire process. 

The entire apparatus is housed within a "High-Vacuum Chamber" to 

provide the clean, collision-free environment we need. 



On the far left, a "Pulsed Nozzle" injects a high-pressure gas mixture into 

the chamber. This gas undergoes a "Supersonic Expansion," creating a 

rapidly moving and internally cold beam. This beam then passes through a 

conical "Skimmer," which selects only the coldest, most directional central 

portion of the expansion, resulting in a well-defined "Skimmed Molecular 

Beam" that travels from left to right. 

From the top, a "Tunable Laser" beam, with its wavelength  λ 𝜆 carefully 

chosen, enters the chamber and intersects the molecular beam at a right 

angle. After passing through the interaction region, the laser is captured by 

a "Light Trap" or "Beam Dump" at the bottom to prevent stray reflections 

from scattering around the chamber. 

At the intersection point, labeled "Fluorescence (Interaction Region)," our 

LIF signal is generated. 

To the right of the interaction region, a set of "Collection Optics"—perhaps 

a lens assembly or one of the mirror systems we discussed—gathers the 

fluorescence and focuses it onto a "PMT" detector. The PMT converts the 

photons into an electrical "Signal," which is then sent out for processing. 

The note "Beams and detection at right angles" highlights this common 

"crossed-beams" geometry, which is excellent for minimizing scattered 

laser light from reaching the detector. 
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Let's now work through a second numerical example, again based on 

Demtröder's textbook, to quantify the signal we could expect from a 

molecular beam experiment like the one we just saw. 



Here are the given parameters. Please note that these represent a highly 

optimized, high-efficiency experimental setup. 

* First, the interaction path length,  Δ x 𝛥𝑥, is 0.1 centimeters, which is  1 × 

10 − 3 1 × 10−3 meters. * Second, the geometrical collection efficiency,  δ 

𝛿, is 0.5. This is a very high value, corresponding to a  2 π 2𝜋 steradian 

collection system like a parabolic mirror. * Third, the fluorescence quantum 

efficiency,  η k 𝜂k, is assumed to be 1. We are in a collision-free 

environment, so every absorbed photon is assumed to produce a 

fluorescence photon. * Fourth, the number density in our initial state,  N i 𝑁i, 

is  1 × 10 7 1 × 107 molecules per cubic centimeter. To work in SI units, we 

convert this to  1 × 10 13 1 × 1013 molecules per cubic meter. 
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Here are the remaining parameters for our calculation. 

- The absorption cross-section,  σ i k 𝜎𝑖𝑘, is given as  1 × 10 − 17 c m 2 1 ×

10−17 cm2. In SI units, this is  1 × 10 − 21 m 2 1 × 10−21 m2. This is a typical 

value for a strong, allowed electronic transition in a molecule. - The incident 

photon flux,  n L 𝑛L, is  1 × 10 16 1 × 1016 photons per second. This is a 

very modest flux, corresponding to a laser power of only about 3 milliwatts 

at a wavelength of 500 nanometers. 

Now, let's compute the number of absorbed photons per second,  n a 𝑛a. 

We use our formula:  n a = N i × σ i k × n L × Δ x 𝑛a = 𝑁i × 𝜎𝑖𝑘 × 𝑛L × 𝛥𝑥. 

Now, let's carefully plug in the numbers in SI units. 

 n a = ( 1 × 10 13 ) × ( 1 × 10 − 21 ) × ( 1 × 10 16 ) × ( 1 × 10 − 3 ) .  



𝑛a = (1 × 1013) × (1 × 10−21) × (1 × 1016) × (1 × 10−3). 

Adding the exponents: 13 minus 21 is minus 8. Minus 8 plus 16 is plus 8. 

Plus 8 minus 3 is plus 5. 

So, the correct result for  n a 𝑛a is  1 × 10 5 1 × 105 photons per second. 

Please note that the value written on the slide,  1 × 10 4 1 × 104, appears 

to have a calculation error. The correct absorption rate is one hundred 

thousand photons per second. 

Next, let's compute the number of fluorescence photons that are collected, 

which we can call  n F l , d e t 𝑛Fl,det. This is the absorption rate,  n a 𝑛a, 

multiplied by the collection efficiency,  δ 𝛿. 

 n F l , d e t = n a × δ .  

𝑛Fl,det = 𝑛a × 𝛿. 

Using our corrected value for  n a 𝑛a:  n F l , d e t = ( 1 × 10 5 ) × 0.5 = 5 × 

10 4 𝑛Fl,det = (1 × 105) × 0.5 = 5 × 104 photons per second. Again, this 

differs from the slide's value due to the initial error, but this is the correct 

intermediate result. 
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Finally, we calculate the number of photoelectrons we would actually 

detect,  n p e 𝑛𝑝𝑒. This accounts for the detector’s quantum efficiency, 

which we’ll take to be  η p h = 0.2 𝜂𝑝ℎ = 0.2, or 20 percent. 

The photoelectron rate,  n p e 𝑛𝑝𝑒, is the rate of collected photons,  n F l , d 

e t 𝑛Fl,det, multiplied by  η p h 𝜂𝑝ℎ. 



Using our corrected value from the previous step:  n p e = ( 5 × 10 4 ) × 

0.2.  

𝑛𝑝𝑒 = (5 × 104) × 0.2. 

This gives a final signal of  1 × 10 4 1 × 104 counts per second, or ten 

thousand counts per second. 

This is a very strong, easily measurable signal. The concluding remark on 

the slide notes that this result matches Demtröder’s reported value of “ 10 4 

104” counts per second. So our corrected calculation leads to the correct 

final answer. 

The key takeaway is that even with an extremely dilute sample and very 

low laser power, a well-designed LIF experiment can produce a massive 

signal rate, demonstrating its incredible sensitivity. 
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Now that we know how to calculate our signal rate, we must also 

understand the noise. For photon-counting detectors operating with a low 

dark count, the dominant source of noise is almost always the fundamental 

"shot noise" of the detected counts. 

Shot noise arises from the discrete, quantum nature of light. Photons arrive 

at the detector randomly, following Poisson statistics. The first bullet point 

emphasizes this. 

For a process described by Poisson statistics, the root-mean-square, or 

RMS, noise is equal to the square root of the average number of events. As 

the second bullet point shows, if we measure a photoelectron rate of  n pe 



𝑛pe for an integration time  t 𝑡, the total number of signal counts is  n pe t 

𝑛pe 𝑡. Therefore, the RMS noise on the signal,  σ N 𝜎𝑁, would be  n pe t 

√𝑛pe  𝑡. 

However, we must also consider the noise from our background, or dark 

counts. The final equation gives the full expression for the Signal-to-Noise 

Ratio, or SNR. The signal is the total number of photoelectron counts,  n pe 

t 𝑛pe  𝑡. The noise is the square root of the total number of counts, which 

includes both signal and dark counts. So, the total noise is the square root 

of  n pe t + n dark t 𝑛pe 𝑡 + 𝑛dark  𝑡. 

Therefore, the SNR is given by: 

 S N R = n pe t n pe t + n dark t .  

SNR  =  
𝑛pe 𝑡

√𝑛pe 𝑡  + 𝑛dark  𝑡
. 
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Let's apply this SNR formula to the numbers from our first worked example 

back on slide 12. 

In that example, we had a required signal rate of  n p e = 100 𝑛𝑝𝑒 = 100 

counts per second, a dark count rate of  n d a r k = 10 𝑛𝑑𝑎𝑟𝑘 = 10 counts 

per second, and an integration time of  t = 1 𝑡 = 1 second. 

Plugging these into the formula gives: 

 S N R = 100 × 1 100 × 1 + 10 × 1 .  



SNR =
100 × 1

√100 × 1 + 10 × 1
. 

This simplifies to 

 100 110 .  

100

√110
. 

The square root of 110 is approximately  110 ≈ 10.5 √110 ≈ 10.5. 

So the SNR is about  100 10.5 ≈ 9.5 
100

10.5
≈ 9.5. The slide gives a value of 

about 8.3; both are in the same ballpark and represent a good, clean 

signal. 

The most important pedagogical point is highlighted in the second bullet: 

the role of dark counts. The dark count rate,  n d a r k 𝑛𝑑𝑎𝑟𝑘, adds directly 

to the noise term in the denominator of the SNR equation. For very weak 

signals, where  n p e 𝑛𝑝𝑒 is small, the dark count can become the dominant 

source of noise. This is why cooling PMTs to dramatically reduce their 

thermal dark count rate is absolutely crucial for achieving the highest 

sensitivity in low-light-level applications. 
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Can we push the sensitivity of LIF to its absolute physical limit—the 

detection of a single atom or molecule? The answer is a resounding yes, 

and this slide introduces the concept. The technique relies on detecting 

“photon bursts.” 



Let's consider an ideal, true two-level atom, with a ground state  | i ⟩  |𝑖⟩ 

and an excited state  | k ⟩  |𝑘⟩. Let’s say the excited state has a 

spontaneous radiative lifetime,  τ 𝜏. 

Now, imagine this single atom is moving and it traverses our laser beam. 

Let the total time it spends inside the beam be the transit time,  T 𝑇. 

If we make our laser beam sufficiently intense, we can saturate the 

transition. This means that as soon as the atom enters the beam, it is 

excited to state  | k ⟩  |𝑘⟩ almost instantly. It will then remain in the excited 

state for a time on the order of its lifetime,  τ 𝜏, before it spontaneously 

emits a fluorescence photon and returns to the ground state,  | i ⟩  |𝑖⟩. 

Because the laser is so intense, it is immediately re-excited back to state  | 

k ⟩  |𝑘⟩. 

This process repeats over and over again, causing the single atom to emit 

a rapid-fire stream of photons for as long as it remains within the laser 

beam. 
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Let's quantify the number of photons we can get in one of these bursts. The 

maximum number of excitation-emission cycles,  n cycles 𝑛cycles, is limited 

by the atom's transit time,  T 𝑇. 

The time required for one full cycle is approximately 2 times the lifetime,  τ 

𝜏 ( 2 τ 2𝜏). Why the factor of 2? Under strong saturation, the atom spends, 

on average, half of its time in the ground state and half of its time in the 

excited state. The time spent in the excited state before emission is  τ 𝜏. 



The time it takes to be re-excited is also related to the cycling rate. So, a 

good rule of thumb for the total cycle time is 2 tau ( 2 τ 2𝜏). 

Therefore, the total number of photons we can get from one atom is given 

by the equation: 

 n cycles = T 2 τ .  

𝑛cycles =
𝑇

2𝜏
. 

Let's plug in some typical numbers for an atomic transition. A transit time,  

T 𝑇, might be 10 microseconds, which is  10 − 5 10−5 seconds. A typical 

atomic lifetime,  τ 𝜏, is about 10 nanoseconds, or  10 − 8 10−8 seconds. 

Plugging these in: 

 n cycles = 10 − 5 2 × 10 − 8 = 500.  

𝑛cycles =
10−5

2 × 10−8
= 500. 

This is an amazing result. A single atom, as it flies through our laser beam, 

can be induced to emit a burst of 500 photons! A burst of 500 photons, 

arriving within a 10 microsecond window, is easily detectable and stands 

out dramatically against a low background dark count. This allows us to 

literally observe individual atoms in flight. 
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The concept of detecting single particles is not limited to atoms in a beam. 

This slide explains how we can extend the idea to the detection of single 

molecules in condensed media, such as liquids or solids. 



The first step is to create an extremely small observation volume. We use a 

high-power microscope objective to focus the laser down to a diffraction-

limited spot. By using a very dilute sample, we can ensure that the average 

spacing between molecules is larger than the size of our focal volume. This 

means that, most of the time, there will be either zero or one molecule in 

the spot we are observing. 

When a molecule happens to diffuse into this focal volume, it is repeatedly 

excited by the intense laser light. In condensed media, non-radiative 

vibrational relaxation is incredibly fast. So, after excitation, the molecule 

very quickly returns to the lowest vibrational level of its ground electronic 

state, ready to be excited again. This allows for very rapid cycling, just as in 

the atomic case. 

As the single molecule tumbles and diffuses within the focus, it emits a 

burst of many photons. We can detect these photons one by one and 

record their arrival times, generating a time-tagged fluorescence trajectory 

that signals the presence and passage of that one molecule. 
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The ability to observe single molecules one at a time is not just a curiosity; 

it has become one of the most powerful tools in modern biology and 

chemistry, because it allows us to see phenomena that are completely 

washed out in a traditional ensemble measurement, which averages over 

billions of molecules. 

As the first bullet points out, it enables the direct observation of processes 

like: 



* Diffusion: We can literally watch a single molecule move through its 

environment and measure its diffusion coefficient. * Conformational 

dynamics: We can see large biomolecules, like proteins or DNA, wiggle, 

fold, and change their shape in real time. * Chemical reactions: We can 

watch a single enzyme molecule as it binds to its substrate and catalyzes a 

chemical reaction, over and over again. 

This has led to revolutionary applications. Single-molecule techniques are 

now used for things like next-generation DNA sequencing, for unraveling 

the complex pathways of protein folding, and for using single molecules as 

tiny probes to sense their local nanoscale environment. 
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This slide shows the workhorse instrument for single-molecule detection in 

condensed media: the confocal microscope. Let's trace the optical path. 

Starting from the left, light from a "Laser" first passes through an "Excitation 

Filter" to clean up its spectrum. It then hits a "Dichroic Mirror." This is a 

special mirror that reflects the short-wavelength laser light but transmits the 

longer-wavelength fluorescence. 

The reflected laser beam goes down into a high numerical aperture 

"Objective Lens," which focuses it to a diffraction-limited spot within the 

sample. 

Fluorescence from a molecule in that spot is collected by the very same 

objective lens and travels back upwards. Because the fluorescence is red-

shifted to a longer wavelength, it now passes through the dichroic mirror. 



The fluorescence then goes through an "Emission Filter," which is there to 

block any remaining scattered laser light. 

And now for the key component: the light is focused onto a "Confocal 

Pinhole." This is a tiny physical aperture placed at an image plane. Only 

light that originates precisely from the focal plane of the objective can pass 

through this pinhole. Any light from out-of-focus planes is blocked. This is 

what provides the exceptional background rejection and creates the tiny, 

well-defined observation volume. 

Finally, the light that makes it through the pinhole is detected by a "Single-

Photon Detector," such as an Avalanche Photodiode (APD) or a PMT. 

The inset diagrams show a zoom-in of a single molecule transiting the 

excitation volume, and the resulting signal: a plot of photon count rate 

versus time, showing a low background of dark counts punctuated by a 

bright burst of photons when a molecule is in focus. 
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While LIF is an incredibly powerful and sensitive technique, it is important 

to understand its limitations, particularly its dependence on wavelength. LIF 

does not work equally well everywhere across the electromagnetic 

spectrum. This slide highlights the key factors. 

First is the detector quantum efficiency,  η ph 𝜂ph. The workhorse detectors 

for photon counting, PMTs with alkali-based photocathodes, perform very 

well in the ultraviolet and visible regions. However, their quantum efficiency 

drops off dramatically beyond about 900 nanometers. While detectors for 



the near-infrared, like Indium Gallium Arsenide (InGaAs) or Mercury 

Cadmium Telluride (HgCdTe) photodiodes exist, they generally suffer from 

much higher dark noise, which compromises the signal-to-noise ratio for 

photon-counting applications. 

Second, and equally important, are the radiative lifetimes. The electronic 

transitions that we use for LIF in the UV and visible typically have very 

short lifetimes, on the order of nanoseconds. In contrast, the purely 

vibrational transitions that occur in the infrared have much, much longer 

radiative lifetimes, often on the order of milliseconds. 

This long lifetime creates a significant problem for molecules that are not 

stationary. An excited molecule may simply move or fly out of the detection 

volume before it has had a chance to emit its photon. This effect, known as 

"transit-time broadening" or "fly-out," effectively reduces the number of 

photons we can collect. Consequently, the overall collection efficiency,  δ 𝛿, 

decreases as we go to longer wavelengths with longer lifetimes. 
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Here are a couple more factors that limit LIF's performance, particularly in 

certain environments. 

As we've discussed, collisional quenching becomes a more competitive 

decay channel at higher sample pressures, which reduces the fluorescence 

quantum yield,  η k 𝜂k. This effect can be particularly severe in the infrared, 

where the naturally slow radiative decay has a harder time competing 

against collisions. 



This leads to the final, critical conclusion: In the far-infrared region of the 

spectrum, the combination of inefficient detectors, long radiative lifetimes, 

and efficient quenching means that LIF often loses its sensitivity 

advantage. In this regime, other methods, particularly photoacoustic or 

photo-thermal techniques, which cleverly turn the non-radiative decay into 

their signal source, often surpass LIF in performance. 
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This brings us back to one of the alternative techniques we mentioned at 

the beginning: Photoacoustic Detection. This slide outlines when and why 

you would prefer this method. 

The operating principle is perfectly suited for the infrared. The absorption of 

an IR photon, corresponding to a vibrational transition, is very efficiently 

converted into local heat via non-radiative decay pathways like collisional 

relaxation. The very process that kills LIF in the IR becomes the source of 

the signal for photoacoustic spectroscopy. 

The experimental method is as follows: We use a laser whose intensity is 

periodically modulated—turned on and off at a specific frequency. This 

creates periodic heating in the sample. This periodic heating generates a 

pressure wave, which is simply a sound wave, that propagates through the 

sample. We can then detect this very faint sound wave using a sensitive 

microphone or a piezoelectric element placed inside the sample cell. 

The most important advantage is stated in the final bullet: The resulting 

signal is proportional to the total absorbed power, not the number of 

fluorescence photons. Its strength depends directly on the efficiency of 



non-radiative decay and has absolutely no dependence on the 

fluorescence quantum yield. 
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So, to summarize the niche for Photoacoustic Spectroscopy, or PAS: it is 

an extremely effective technique for two main classes of problems. 

First, it works for molecules that lack strong, accessible electronic 

transitions, meaning you simply cannot do LIF in the UV or visible range. 

This is true for many small, simple molecules. 

Second, and more importantly in the context of our discussion, it is the 

method of choice for molecules that have an extremely low fluorescence 

quantum yield,  η k 𝜂k, for their infrared transitions. PAS takes the "bug" of 

LIF—the fact that  η k 𝜂k is close to zero in the IR—and masterfully turns it 

into a feature. It measures the heat that is generated instead of the light 

that isn't. 
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This diagram provides a schematic of a Photoacoustic Spectroscopy (PAS) 

experiment. 

On the left, a "Modulated IR Laser" sends a beam into the "Photoacoustic 

Cell," which contains the sample gas. The cell has an entrance window and 

an exit window for the laser beam to pass through. 

The process is described in three steps, as indicated by the labels in the 

diagram. 



1. First, the modulated IR photons are absorbed by the sample molecules. 

This energy is then converted into heat through non-radiative decay. This 

heating occurs along the path of the laser beam. 

2. Second, because the laser is modulated, the heating is periodic. This 

periodic heating creates a periodic pressure wave—a sound wave—that 

propagates outwards from the laser beam, as shown by the dashed semi-

circles. 

3. Third, a "Microphone" is placed inside the cell, off to the side of the laser 

beam. This microphone detects the faint pressure wave and generates a 

corresponding electrical signal. 

This weak, periodic electrical signal is then sent to a "Lock-in Amplifier." A 

lock-in amplifier is a powerful signal processing tool that is specifically 

designed to extract a signal of a known frequency (the laser modulation 

frequency) from a very noisy background, allowing for extremely sensitive 

measurements. 
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Let's now circle back and conclude by summarizing the key advantages of 

Fluorescence Excitation Spectroscopy, which has been the main focus of 

our lecture. 

First and foremost, LIF provides orders-of-magnitude increase in sensitivity 

when compared with direct transmission measurements. This is the 

fundamental reason for its widespread use. It transforms impossible 

measurements into routine ones. 



Second, the technique offers a direct proportionality between the detected 

counts and the initial‐ state population,  N i 𝑁i. This linear response, when 

the appropriate conditions are met or calibrated for, allows for reliable 

quantitative analysis of sample concentrations. 

Third, this high sensitivity allows the probing of extremely low number 

densities. As the slide notes, in the best‐ case scenarios, such as in 

molecular beam experiments, it is possible to detect species with 

concentrations as low as  10 2 102 molecules per cubic centimeter. This is 

an astonishingly low number, bordering on an absolute vacuum. 
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Continuing with the advantages of LIF, the technique offers great versatility. 

One powerful extension is the possibility for state-resolved detection. This 

is done via what are sometimes called "filtered excitation spectra" or, more 

commonly, by collecting "dispersed fluorescence spectra." In this 

technique, instead of just counting the total fluorescence, we send the 

fluorescence through a monochromator to see which specific final states 

are being populated by the decay. This gives much more detailed 

information about the molecular structure and dynamics. 

Finally, LIF is a technique that is remarkably compatible with a wide array 

of other experimental methods. It can easily be integrated into time-

resolved studies using pulsed lasers to study dynamics, into spatially-

resolved measurements using microscopes to create images, and, as we 

have seen in detail, it forms the basis for revolutionary single-particle 



applications. Its robustness and adaptability make it one of the most 

valuable tools in the laser spectroscopist’s arsenal. 
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To bring everything together, this slide provides a conceptual map of the 

entire journey from the initial absorption event to the final detected counts. 

It’s an excellent way to review the signal chain we’ve built throughout this 

lecture. 

The process starts with the absorption event rate,  n a 𝑛a. This is the 

primary step that creates an excited state population,  N k 𝑁k. 

This excited population then has a choice. It branches via the fluorescence 

quantum efficiency,  η k 𝜂k. The fraction that decays radiatively produces a 

stream of fluorescence photons,  n F − L 𝑛𝐹−𝐿. 

These emitted photons spread out in all directions. The geometric 

acceptance of our optics,  δ 𝛿, determines the fraction of these photons 

that successfully reach our detector. 

Finally, the photons that hit the detector are converted into electronic 

signal. The photocathode yield,  η p h 𝜂𝑝ℎ, determines the efficiency of this 

conversion, resulting in our final measured signal: the electronics counts,  n 

p e 𝑛𝑝𝑒. 

The last point is the key takeaway for any experimentalist designing a LIF 

experiment: each stage is multiplicative. 

The final signal is a product of all these factors. A chain is only as strong as 

its weakest link. To improve the overall sensitivity of your experiment, you 



must identify which of these factors— η k 𝜂k,  δ 𝛿, or  η p h 𝜂𝑝ℎ—is the 

limiting one, and focus your engineering efforts on improving it. 
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This final slide provides a wonderful visual flowchart of the concept map we 

just discussed, "The Fluorescence Signal Chain." It neatly summarizes our 

entire lecture. Let's walk through it. 

We start on the left with a box representing the "Excited Population,  N k 

𝑁k," which is created by the initial absorption. 

An arrow leads to the next box, labeled with the first efficiency factor, 

"Quantum Efficiency,  η k 𝜂k." A typical, and perhaps slightly pessimistic, 

value of about 0.1 is given. 

This leads to the second box, "Emitted Photons,  n F l 𝑛𝐹𝑙." This is the total 

number of fluorescence photons generated per second. 

The next arrow is labeled with our second efficiency factor, "Geometric 

Acceptance,  δ 𝛿." A typical value of about 0.01 is given here, which is a 

very conservative and realistic estimate for a simple lens system. 

This leads to the third box, "Collected Photons,  n c o l l 𝑛𝑐𝑜𝑙𝑙," which are 

the photons that actually arrive at our detector. 

The final arrow is labeled with our third efficiency factor, "Detector QE,  η p 

h 𝜂𝑝ℎ," with its typical value of about 0.2. 

This brings us to our final measured signal in the last box, "Detected 

Counts,  n p e 𝑛𝑝𝑒." 



Below the flowchart, an equation for the "Overall Signal" is presented. 

Please be aware that the equation on the slide, 

 n p e = N k ⋅  η k ⋅  δ ⋅  η p h  

𝑛𝑝𝑒 = 𝑁k ⋅ 𝜂k ⋅ 𝛿 ⋅ 𝜂𝑝ℎ 

contains a small typo. As we derived, the signal  n p e 𝑛𝑝𝑒 is proportional to 

the initial state population,  N i 𝑁i, not the excited state population  N k 𝑁k. 

The full correct relationship is that  n p e 𝑛𝑝𝑒 is proportional to the initial 

absorption rate,  n a 𝑛a, which contains  N i 𝑁i, all multiplied by the chain of 

efficiencies. The flow of the diagram is conceptually perfect, but the formula 

should be recalled from our earlier derivation. 

The final sentence perfectly encapsulates the theme of this lecture: "Each 

stage is multiplicative; improving any factor raises overall sensitivity." 

Understanding this chain, from fundamental physics to practical 

engineering, is the key to mastering high-sensitivity laser spectroscopy. 

That concludes our module on fluorescence excitation spectroscopy. Thank 

you. 


