Vol. 2







Page 1:

Good morning, everyone. Welcome back to Phys 608, Laser Spectroscopy.
I'm Distinguished Professor Dr M A Gondal, and Today, we begin a new
and critically important chapter, Chapter 1.2, where we will explore the

High-Sensitivity Methods of Absorption Spectroscopy.

In our previous discussions, we laid the theoretical groundwork for how
light interacts with matter. But today, we bridge the gap between that
fundamental theory and the cutting-edge reality of modern experimental
physics. The techniques we will discuss in this chapter are the workhorses
of research labs around the world, enabling scientists to detect minuscule
traces of substances and observe phenomena that would otherwise be

completely invisible.

This is where the true power and elegance of laser spectroscopy come to
life. We're going to move beyond the simple picture of sending a laser
through a sample and into the clever, sophisticated strategies that allow us

to measure the seemingly unmeasurable. So, let’s begin.
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Alright, let's start with the fundamental question: what is our motivation?
Why do we need to seek "ultra-sensitive" methods for measuring

absorption? Why isn't the basic experiment good enough?

The first bullet point gets to the heart of the matter. Many, if not most, real-
world samples of interest produce absorption signals that are incredibly

weak. Think about the challenges we face in science and technology.



An environmental scientist might need to detect a pollutant gas in the
atmosphere at a concentration of parts-per-billion or even parts-per-trillion.
An astrophysicist might be looking for the faint spectral signature of a
molecule in a distant interstellar cloud. Or, a fundamental physicist might
be searching for a so-called "forbidden” molecular transition—a transition
that is incredibly unlikely to happen but whose observation could test the
standard model of particle physics. In all these cases, the change in laser
power due to the absorption is minuscule, often several orders of
magnitude weaker than the inherent noise of even the best photodetectors.

The signal is, quite literally, buried in the noise.

This leads directly to our second point, which frames the problem
mathematically. Direct absorption measurements, which rely on the simple
Beer—Lambert law, often fail when the product of the absorption coefficient,

a a, and the path length, L L, is much, much less than 10 -3 1073,

This quantity, a L aL, is the absorbance, or optical depth. A value of 10 -
3 1073 means that only 0.1 % 0.1% of the light is absorbed as it passes
through the sample. When the absorption is this weak, or weaker, trying to
see that tiny dip in power is like trying to hear a single person whispering in
the middle of a roaring stadium. The random fluctuations of the background
noise will almost certainly drown it out. This is the central challenge that we

must overcome.
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So, let's be more specific about what's obscuring our signal. The tiny

change in power we are trying to detect, the differential signal, is A P AP,



which is the incident power, P 0 P,, minus the transmitted power, P T Pr.
This A P AP is our precious signal. The problem is that it gets swamped by
two primary sources of noise: first, source power fluctuations—even the
most stable laser has some inherent flicker or intensity noise, which we call
o P 0 §P,. Second, there is the fundamental noise of the detector itself.
These noise sources completely obscure the tiny A P AP we are looking

for.

This defines the goal of all high-sensitivity techniques. Our objective is to
design an experiment that can reliably detect fractional absorptions, which
is the ratioof AP AP to P 0 P,, down to fantastically small numbers. We're
talking about detecting fractional absorptions of 10 - 7 10~ 7—that’s one
part in ten million—all the way down to the truly mind-boggling regime of

10 = 17 10~17. That's one part in ten quadrillion.

How on earth can we achieve this? We need a strategy. The first and most
intuitive part of our strategy is stated here: we need to find a way to use
very long effective path lengths, which we denote as L e f f L. The logic
is simple. The total absorption is proportional to the product a a times L L.
If the absorption per unit length, a «a, is tiny, we can still make the total
absorption significant by making the path length, L L, enormous. If we can
make our laser beam travel not just a few centimeters, but perhaps a few
kilometers through the sample, our tiny signal will be greatly magnified. Of
course, we can'’t build a kilometer-long laboratory, so we will need to find

clever ways to fold that long path length into a very compact space.
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Building on the idea of increasing the path length, our overall strategy has

two other pillars.

The second, and perhaps most powerful, strategy is to implement noise-
rejection techniques. If we can't make our signal bigger, maybe we can
make our noise smaller, or at least, make our measurement insensitive to
it. The key idea here is modulation. Imagine again you're in a noisy room
trying to hear a whisper. It's impossible. But if that person starts singing
their message at a very high, specific pitch, your ear can easily pick it out
from the low-frequency rumble of the crowd. This is exactly what we do in
spectroscopy. We use techniques like frequency modulation or phase
modulation to encode our absorption signal onto a high-frequency carrier
wave. We then use a specialized electronic tool called a lock-in amplifier,
which is tuned to that exact frequency, to demodulate the signal. This
allows us to move our measurement away from the noisy, low-frequency
world of laser flicker and into a pristine, high-frequency domain where the

noise is fundamentally lower.

The third pillar of our strategy is careful optical mode engineering. This is
really the practical implementation of the first two ideas. It's about how we
design the physical hardware—the mirrors, the lenses, the cavities—to
achieve our goals. This includes designing clever multipass cells, like the
Herriott cells we'll see shortly, that use geometric optics to fold a long path
length. It also includes using high-Quality-factor, or high-Q, optical cavities,
which use resonance and wave optics to build up enormous light intensity
and achieve long effective path lengths. And it includes advanced
techniques like placing the sample directly inside the laser cavity itself to

exploit the laser's own internal dynamics.



These three strategies—long path lengths, noise rejection via modulation,
and clever optical engineering—form the complete toolkit for high-

sensitivity spectroscopy.
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This diagram provides a superb visual summary of the strategies we’ve just
discussed and the dramatic improvements they provide. Let’s walk through
it together.

On the far right, we have a vertical axis plotting the "Fractional Absorption™
we can detect. It's a logarithmic scale, ranging from 10 - 3 1073 at the top,
down to 10 - 13 10713 at the bottom. Higher on this scale is worse

sensitivity; lower is better.

Now, look at the top panel. This represents the simple, direct absorption
experiment. We have a source, a sample cell, and a detector. The product
a L aL is very small. The signal trace to its right shows the result: the tiny
signal, A P AP, is completely lost in the thick, fuzzy band of noise. A direct
measurement like this typically hits a wall at a sensitivity of about 10 - 3

1073, as indicated on the scale.

Next, let's move to the middle panel. This illustrates our first strategy:
Increasing the path length. The diagram shows a multipass cell, where the
laser beam, shown in red, bounces back and forth between two mirrors
many times. This greatly increases the effective path length, L e f f L.
Now look at the corresponding signal trace. Because the absorption has
been magnified by the long path, the "Enhanced signal" is now clearly

visible, poking out above the noise floor. This simple strategy can improve



our sensitivity by several orders of magnitude, getting us down to the

region of 10 —7 10~7 on our scale.

Finally, the bottom panel demonstrates the power of noise rejection. Here,
we’'ve introduced a lock-in amplifier into our detection scheme. The key
insight is shown in the graph on the right, which plots Power versus
Frequency. Most technical noise, what we call "one over f f noise", is
concentrated at low frequencies, or DC. This is shown by the pink shaded
area, which is very high near zero frequency and falls off rapidly. A simple
absorption measurement happens at DC, right in the heart of this noise.
The genius of modulation, as shown in the diagram, is to move our signal
away from DC to a high modulation frequency, f m f,. Out at this high
frequency, the technical noise is gone, and we are left with a much lower,
flat noise floor, which we call the Shot Noise Limit. This is the fundamental
quantum noise of light itself. By measuring in this quiet window, we can
achieve sensitivities that are truly phenomenal, pushing down to 10 - 11

10711 10 - 13 10713, or even lower, as shown on the scale.
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Alright, now that we have the conceptual framework, let's put down the
fundamental mathematical quantities we'll be working with, all of which

stem from the Beer-Lambert law.

First, we have the incident light. We describe this by its spectral power
density, denoted P 0 ( w ) Py(w), or P-naught of omega. Let's be very
careful about the units here: Watts per Hertz. This isn't just the total power

of the laser; it's the power per unit frequency interval. This is essential for



spectroscopy because our absorption features are, of course, frequency-
dependent. So, P 0 ( w ) Py(w) tells us how much power we have at the

specific angular frequency w w.

Next, we have the transmitted power density. After the light travels a
distance ' x x' through our absorbing medium, the power is attenuated. The
transmitted power density, P T ( w ) Py(w), is given by the famous Beer-

Lambert equation:
PT(w)=PO0(w)e-a(w)Xx.
Pr(w) = Py(w) e~ @)X,

This equation describes the exponential decay of light as it passes through

an absorber.

Now let's define the terms in that exponent, which is where the physics lies.
This is highlighted under "Symbols and units".

The most important term is a ( w ) a(w). This is the absorption coefficient.
It is a fundamental property of the material itself and it quantifies how
strongly the material absorbs light at that specific frequency w w. The fact
that a a is a function of frequency is the entire basis of spectroscopy—the
structure of a a versus w w is the unique spectral fingerprint of the atom
or molecule we are studying. The standard unit for a a is inverse
centimeters, or centimeters to the minus one (¢ m —= 1 cm™1). This can be

interpreted as the fractional loss of intensity per centimeter of path length.
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Continuing with our definitions, the symbol x x in the Beer-Lambert
equation represents the physical path length that the light travels through
the sample. Its unit is typically centimeters, to be consistent with the units
of the absorption coefficient. The symbol w w, as we've said, is the angular
frequency of the light, equal to 2 1 v 2mv, and its unit is radians per

second.

Now we come to a critically important tool that we will use repeatedly
throughout this course: the small-signal approximation. In all the high-
sensitivity scenarios we are interested in, the total absorption is extremely
weak. This means the exponent in the Beer-Lambert law, the product a ( w
) X a(w)x, is a very small, dimensionless number, much less than one.
When this condition holds, we can use the first-order Taylor series
expansion for the exponential function, which isthat e —y=1-ye™ =

1—y,forsmall yy.

Applying this to the Beer-Lambert law gives us a much simpler, linear
relationship: The transmitted power, P T Pr, is approximately equal to the
incident power, P 0 P,, multiplied by the quantity, in brackets, [1-a(w)
x][1—-alw)x].

This approximation makes it very easy to calculate the quantity we are
actually trying to measure: the differential signal, capital Delta P. This is
simply the light that was lost, which is the incident power P 0 P, minus the
transmitted power P T P;. Using our small-signal approximation, this

becomes:
AP(w)=P0-PT=PO0a(w)Xx.

AP(w) = Py — Pt = Py a(w)x.



This simple, linear relationship is beautiful. It tells us that the signal we
hope to measure is directly proportional to three things: the power of our
light source, P 0 P,; the strength of the absorption, a «; and the path
length through the sample, x x. This makes our strategies immediately
obvious: to get a bigger signal, we should use a brighter laser, a longer

path length, or find a stronger transition.
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Now, let's connect the macroscopic absorption coefficient, a a, to the
microscopic world of atoms and molecules. This brings us to the minimum

detectable number density.

For a dilute gas sample, which is often the case in high-sensitivity
measurements, the absorption coefficient a a is not just an abstract
number; it's directly proportional to how many absorbing molecules we

have. The relationship is given by the first equation on this slide:
a=N10oik
a = Ny o

Let's break this down. N 1 N; is the number density of our absorbing
species, specifically, the number of molecules per unit volume that are in

the correct lower energy state, state 'I', from which the absorption can

occur. Its units are typically molecules per cubic centimeter.

The term o ik gy is the absorption cross-section for the transition from the
initial state 'i' to the final state 'k'. You can think of this cross-section as the

effective "target area" that each molecule presents to the incoming



photons. It has units of area, typically square centimeters. A large cross-
section means a strong, or "allowed," transition, while a small cross-section

means a weak, or "forbidden," transition.

Now we can formulate the ultimate figure of merit for an entire
spectroscopic instrument. what is the minimum number density of a
substance, N 1, min N; iy, that we can possibly detect? The detectability
criterion incorporates all our instrumentation parameters into one powerful

equation:
N1, mn2NEPaPOoikL’

NEP

= ;
aPO O-ikL

Nl,min =

Here, N 1, min Ny, IS our goal — we want to make it as small as
possible. To do that, we need to understand the parameters on the right-
hand side, which we'll define on the next page. This equation beautifully
encapsulates the interplay between the properties of our sample ( o o), our
laser ( P 0 P,), our interaction length (L ' L"), and our detection system ( N
E P NEP).
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Let's now define the parameters from that crucial detectability criterion

equation.

First, we have N E P NEP, which stands for Noise-Equivalent Power. This

Is a fundamental figure of merit for any photodetector. Its units are W / H z

W/vHz. The N E P NEP is formally defined as the optical signal power that



produces a signal-to-noise ratio of one in a one-Hertz detection bandwidth.
In simpler terms, it's the faintest whisper of light that the detector can
distinguish from its own internal noise. A smaller N E P NEP means a

better, more sensitive detector.

Next is the lowercase a a. This is a dimensionless factor, typically with a
value close to one. It's a catch-all parameter that accounts for things like
the overlap between the laser lineshape and the absorption lineshape, as
well as the effective detection bandwidth of our system. For our strategic

thinking, we can treat it as a constant of order unity.

L L is the single-pass interaction length through the sample, in

centimeters.

With these definitions in hand, we can now clearly see our "strategy space”
emerge directly from the mathematics of the N min N,;, equation. To
make N min N.;, smaller, meaning to improve our sensitivity and detect

fewer molecules, we must do one or more of the following things:

- First, we can increase P 0 P,, the incident laser power. This is the brute
force approach: just use a brighter laser. This appears in the denominator,
so a larger P 0 P, makes N min N,;, smaller. - Second, we can increase
L L, the interaction length. This can be our physical length, or, as we've
discussed, an effective length, L e ff L., achieved using multipass cells or
cavities. Again, this is in the denominator. - Third, we can decrease the N
E P NEP of our detection system. This is in the numerator, so a smaller N
E P NEP leads to a smaller N min N,,;,. This can be achieved by choosing
a better detector with lower intrinsic noise, or by using clever techniques

like lock-in detection which dramatically reduce the effective noise



bandwidth, thereby reducing the effective N E P NEP of the entire system. -
And of course, there's a fourth strategy, related to the sigma term:
whenever possible, we should choose to probe the strongest possible
transition of our target molecule, the one with the largest absorption cross-

section, o ik g.
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Let's now dig deeper into exactly why direct absorption measurements fail
for tiny values of the absorbance, a L aL. This slide presents a simple but

devastating calculation.

As we've established, the signal we measure is the change in power, A P
AP, which is the incident power P 0 P, minus the transmitted power P T
Pr. And for small absorptions, we use the approximation that the
transmitted power P T Pris roughly P O P, times the quantity 1 —aL 1—
alL.

Now, consider the uncertainty, or error, in our measurement. The dominant
source of uncertainty is usually the fluctuation in the laser power itself,
which we call & P 0 §P,. The relative error in our signal is the uncertainty in
the signal, 6 (A P ) §(4P), divided by the signal itself, A P AP. What is this
ratio? Well, the uncertainty in our measurement, & ( A P ) §(4P), is going
to be driven primarily by the laser fluctuation, & P 0 §P,. The signal itself,

AP AP, is approximately P 0 a L PyalL.

So, the relative error in our measurement is approximately 6 POP O -alL

5P,
Py—alL’

We can regroup these terms to get the expression on the slide: The



fractional error, 8 (AP )AP %, is approximately equal to the fractional

laser noise, 6P OPO %, multiplied by a huge amplification factor of 1 a L

0
1

al’

This is the Kkiller. The inherent fractional noise of our laser source is
amplified by the reciprocal of our fractional absorption. If a L aL is very
small, say 10 - 4 107* then 1 a L i Is ten thousand. This means our

relative measurement error is ten thousand times larger than the stability of

our laser! Let's see what this means with a concrete example.
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Let's plug in some realistic numbers to see how catastrophic this effect is.

Suppose we are trying to measure a very weak absorption where the
absorbance, a L aL, is equal to 10 — 4 10~*. This means only zero-point-

zero-one percent of the light is absorbed.

Next, let's assume we have an excellent, research-grade laser with a
power stability, AP 0/P 0 AP,/P,, of 10 — 4 10~*. This means the laser
power only flickers by about zero-point-zero-one percent. This is very good,
but realistic.

Now, let's calculate the relative error in our signal using the formula from

6(AP)
AP’

the previous page. The relative error, 6 (AP )AP is approximately

the product of our laser stability and the amplification factor. That's 10 — 4

1

x110-4107"x —. Theresultis 11.




A relative error of one means that the uncertainty in our measurement is
the same size as the measurement itselfl Our signal is completely and
utterly masked by the noise. It is impossible to make a reliable

measurement under these conditions.

This leads us to two profound conclusions that will dictate the design of all
advanced spectroscopic techniques. We need approaches that do two

things:

- First, they must reduce our dependence on measuring the absolute power
of the laser. We need a measurement that is immune to the fluctuations A
PO A4P,.

- Second, they must find a way to convert the tiny absorption signal into a
different, larger, and more easily separated observable quantity. For
example, instead of measuring a tiny change in amplitude, perhaps we can
measure a change in the light's phase, or its frequency, or the decay rate of

light in a cavity. This is the path forward.
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So, having established the problem and the general principles for a
solution, this slide provides our road-map. It outlines the major categories

of high-sensitivity schemes that we will explore.

First, we have the most direct approach: the enhancement of the effective
path length, L. This directly attacks the 'L' in the alpha-L product to make
the total absorption larger. There are two main families of techniques here.
The first are geometric multipass cells, such as White cells or Herriott cells,

which use mirrors to fold the beam path many times. The second are



resonant cavities, specifically external Fabry-Pérot enhancement cavities,
which use the principle of constructive interference to achieve long effective

path lengths and build up very high optical power.

Second, we have modulation methodologies. This approach tackles the
noise problem head-on. By modulating some property of the light or the
sample, we shift our signal to a high frequency, away from the dominant
low-frequency noise. The key techniques here are Frequency Modulation,
or FM, and Phase Modulation, or PM, which are always used in conjunction
with lock-in detection. We'll also touch upon more advanced variants like
two-tone FM, which is a clever way to reap the benefits of very high-

frequency modulation while using more conventional electronics.

Third, we have a particularly powerful and elegant technique known as
Intracavity Laser Absorption Spectroscopy, or ICLAS. The core idea here is
to place the absorbing sample inside the laser cavity itself. This allows the
sample to interact with the enormous internal field of the laser.
Furthermore, it leverages the sensitive, non-linear dynamics of the laser,
such as mode competition, to produce a massively amplified signal. We'll
see that this technique has several variations, including single-mode,

multimode, and time-resolved methods.

Page 13:

The fourth category on our road-map consists of hybrid and derivative
techniques. These are often the most advanced methods, as they cleverly
combine principles from the other three categories to achieve the ultimate

in sensitivity. Classic examples include cavity-ring-down spectroscopy, or



C-R-D-S, which is a time-domain method that measures the decay rate of
light in a high-Q cavity, thereby becoming immune to laser power
fluctuations. Another example, often considered the pinnacle of sensitivity,
Is a technique with a famously long acronym: NICE-OHMS, which stands
for Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular
Spectroscopy. As its name implies, it combines a high-Q enhancement
cavity with frequency modulation techniques to achieve truly astonishing

detection limits.

So, as we explore this zoo of different techniques and acronymes, it’s crucial
to remember the final bullet point on this slide. It is the unifying principle of
this entire chapter. Every single one of these approaches, no matter how
complex it seems, ultimately solves the dilemma of weak absorption, where
a L «1al <1, in one of two fundamental ways: either by dramatically
increasing the effective path length, L e ff L., or by dramatically reducing
the effective noise bandwidth through modulation. The very best

techniques, of course, do both.
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This flowchart provides a perfect visual summary of our entire discussion
so far, laying out the strategies for overcoming the a L « 1 aL «< 1 limit.

Let's trace it from the top down.

At the very top, in the red box, is "The Challenge: Detecting Tiny
Absorption." The fundamental issue is stated clearly below it: our tiny
signal, A P AP, which is approximately P 0 a L P, aL, is masked by the

source noise, 0 P 0 6P,.



From this central problem, four main strategic branches emerge,

corresponding to the road-map we just outlined.

Branch 1 is Path Length Enhancement. Its physical principle is simple: use
multiple reflections to increase the effective L L. The examples given are
Multipass Cells, like White and Herriott cells, and resonant Fabry—Pérot

Cauvities.

Branch 2 is Modulation Methodologies. The physical principle here is more
subtle: it's derivative detection and noise rejection. By modulating, we
convert the absorption signal into its derivative and move it to a quiet
frequency region. The examples are Frequency Modulation (FM), Phase
Modulation (PM), and Two-Tone FM.

Branch 3 is Intracavity techniques, or ICLAS. The physical principle here is
to exploit the internal dynamics of the laser itself, namely mode competition
and the massive amplification of the intracavity field. Examples include

single-mode, multimode, and time-resolved ICLAS.

Finally, Branch 4 covers Hybrid and Time-Domain methods. The physical
principle for many of these, like Cavity Ring-Down, is to measure an
exponential decay in time, which is inherently insensitive to amplitude
fluctuations. Examples include Cavity Ring-Down Spectroscopy (CRDS)
and the ultimate hybrid, NICE-OHMS.

This chart is our guide. We will now proceed down the first branch and

explore the details of path length enhancement.
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Alright, let's begin with our first strategy: enhancing the path length using
multipass geometry. This slide gives a qualitative picture of how these

devices, such as a Herriott cell, work.

The basic setup consists of two concave, highly-reflective mirrors, each
with a radius of curvature r r. These mirrors are placed facing each other,
separated by a distance d d that is approximately equal to their radius of
curvature. This specific near-confocal or re-entrant configuration is key to

their stable operation.

The laser beam is then injected into this cell, typically through a small hole

bored into the center of the first mirror, mirror 1.

Because of the curvature of the mirrors, the beam doesn't simply reflect
back on itself. Instead, it hits the second mirror at a slight angle, which
directs it to a new spot on the first mirror, and so on. The beam bounces
back and forth between the two mirrors, tracing out a specific pattern of
spots on each mirror's surface. After a well-defined number of reflections,
which we'll call q g, the optical design ensures that the beam path lands on
the input hole of mirror 1 once again, but this time at a different angle,

which allows it to exit the cell and travel to a detector.

The result is a dramatic increase in the path length. The total effective path
length, L e ff L., is simply the number of passes, q g, multiplied by the

distance between the mirrors, L L.
Leff=qlL.

Legs = q L.



For example, a cell that is only 50 cm 50 cm long but provides 100 100
passes gives an effective path length of 50 m 50 m. This is a simple and
robust way to significantly boost our absorption signal. The angle between
adjacent spots on the mirror surface, 0 6, is determined by the precise

mirror separation, and as we'll see, this is a critical parameter.
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The geometry of the spot pattern is governed by the equation shown here:

@) =1——
cos(0) = 7

Here, 0 6 is the angle that separates the successive reflection spots as

they rotate around the mirror's center. ' r r' is the mirror's radius of
curvature, and ' d ' d" is an effective distance related to the mirror
separation ' d d'. The full derivation comes from ray- transfer matrix
analysis, which we won't go into here, but the important takeaway is that by
making very small adjustments to the physical distance ' d d' between the
mirrors, we can change the angle 6 6, and therefore change the number of

passes ' q q' and the specific pattern of spots.

This leads to the crucial practical point mentioned in the second bullet: we
design the cell such that there are no overlapping spots. Why is this so
important? We must remember that our laser beam is a coherent
electromagnetic wave. If the beam spots from different passes were to
overlap on the mirror surface, they would interfere with each other. This

interference would create unwanted intensity patterns, known as etalon



fringes or interference fringes. As we scan our laser's wavelength to
measure a spectrum, these fringes would cause large, rolling oscillations in
our baseline signal, which would completely swamp the tiny absorption
signal we are trying to detect. By ensuring the spots are spatially distinct,
we can treat the cell using simple geometric optics, effectively creating one

very long beam path and avoiding these destructive interference effects.
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This slide gives us a wonderful, clear visualization of a Herriott multipass

cell, illustrating the principles we've just discussed.

On the left, we see a side-on, cross-sectional view of the cell. We have the
two concave mirrors, M1 and M2. M1 has a small hole for the laser to enter
and exit. The mirrors have a radius of curvature r r and are separated by a
distance d d. The red lines trace the path of the laser beam as it is
injected, bounces back and forth dozens of times, and finally exits. You can
clearly see how a very long optical path is folded into a compact physical

volume.

The real elegance of the design is shown in the diagram on the right, which
depicts the spot pattern on the surface of one of the mirrors. The red dots
represent the points where the laser beam strikes the mirror. Instead of a
random mess, the spots form a well-defined, stable ellipse or circle. The
label indicates that for this particular configuration, we have q =26 q = 26
reflections. The angle 6 6, which we saw in the equation on the previous

page, is the angle between adjacent spots as viewed from the center of the



mirror. This stable, re-entrant pattern is the hallmark of a well-designed

Herriott cell.
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Of course, nothing in physics is perfectly efficient. Bouncing a laser beam
off mirrors dozens or hundreds of times comes with a cost in the form of

optical loss. This slide begins to build the "loss budget"” for a multipass cell.

First, let's consider the loss from the mirrors themselves, even with no
absorbing sample present. Even the best mirrors are not one hundred
percent reflective. Let's define the power reflectivity of each mirror as
capital R, which is a dimensionless number very close to one, for example,
0.999. A single round-trip for the light involves two reflections, one off each
mirror. The attenuation factor for a single round-trip due to mirror losses, A-

sub-mirror, is given by the equation:

Amirror = exp(—2(1 - R))

For reflectivities R very close to 1, this is approximately one minus two
times (one minus R). So, the fractional loss per round trip is just two times

the loss per mirror. This is the intrinsic, unavoidable loss of the empty cell.

Next, we include our sample. Let's say the sample fills the cell and has an
absorption coefficient alpha. A half-pass is the distance L from one mirror
to the other. In a single round-trip, the light travels a distance of 2L through
the sample. Therefore, the attenuation factor due to sample absorption per

round trip, A-sub-sample, is given by:



Asample = exp(—2al).

These are the fundamental loss components for each round trip the light

makes inside the cell.
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Now, let's combine these loss factors to find the total transmitted intensity
after the light has completed its full journey. If the light makes 'q' round-trips
inside the cell, we simply multiply the attenuation factors for each round-trip
'q' times. This means we add the terms in the exponent 'q' times. This gives
us the final equation for the transmitted intensity, I-sub-T: I-sub-T equals I-
naught times the exponential of, in brackets, minus two g times the quantity

one minus R, minus two q alpha L.
IT=10expivi(-2q(1-R)-2qal)
I+ = Iyexp(—2q(1 —R) — 2qal)

Let's dissect the exponent. The first term, minus two g times one minus R,
represents the total cumulative loss from all the mirror reflections. The
second term, minus two q alpha L, represents the total cumulative
absorption from the sample. Notice that the effective path length here is L-

eff equals two g L.
Leff=2qlL
Legs = 2qL

Now let's compute the numerical examples to get a feel for the numbers.



First, consider an empty cell, where alpha-L is zero.
aL=0
al =0

We use excellent mirrors with R equals 0.99, and we have g equals 100

passes.
R=0.99,q=100
R =099, gq=100

The ratio of transmitted to incident intensity, I-T over I-naught, is e to the
power of minus two times one hundred times (one minus zero point nine

nine), which is e to the power of minus two.

ITIO=e-2%x100%x(1-099)=e-2

I_T — —2X100X(1-0.99) — ,—2

Io
This is approximately zero point one four. This means that even with no
sample, we lose 86% of our light just due to the imperfections in our mirrors

over 100 passes.

Now, let's add a weakly absorbing sample. The slide uses a value of alpha-
L equals 0.01. Let's re-read the formula carefully. The absorption term is
2galphaL. This would be 2 100 0.01 = 2. This would make the exponent e
to the minus (2+2) = e to the minus 4. The slide shows an exponent of
minus (2 + 0.02). This implies that the product 2qgalphalL equals 0.02. This
means alpha*L must be 0.0001, or 10"-4. So let's assume this was the

intended value. In this case, the transmitted intensity I-T over I-naught is e



to the power of minus 2.02, which is approximately 0.133. The absorption

caused a drop in transmission from 14% to about 13.3%.
2qalL=2x%x100x0.01=2

2qal =2x100x0.01 =2
e-(2+2)=e-4

e~ (2+2) = o4

2qaL=002=aL=10-4

2qal =0.02 = aL =10"*
ITIO=e-2.02=0.133

I
T _ 202 1 133
Iy

The most important conclusion from this analysis is highlighted in the final
bullet point: High mirror reflectivity, R, is absolutely critical. If R were, say,
0.90 instead of 0.99, the term (1-R) would be ten times larger, and we
would lose nearly all of our light in just a few bounces. The performance of
a multipass cell is fundamentally limited by the quality of the mirror
coatings.
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We will now transition from the geometric optics of multipass cells to a
more powerful, wave-optics approach for path length enhancement: the

external Fabry-Pérot enhancement cavity.



A Fabry-Pérot cavity, in its simplest form, is an optical resonator consisting
of two highly parallel, highly reflective mirrors facing each other. It's
essentially a laser cavity, but without a gain medium inside. We define the
properties of the mirrors by their reflectivity. It's important to distinguish

between the amplitude reflectivity, denoted by a lowercase 'r', which
describes the reflection of the electric field, and the power reflectivity,
capital R, which describes the reflection of the optical intensity or power.

The two are related by R=r2 R = r2.

Now, for a cavity to work its magic, a crucial condition must be met, as
stated in the second bullet point: the incident single-mode laser must be
"mode-matched" to the cavity. A laser beam has a specific spatial intensity
profile, which is typically a Gaussian shape called the TEM-zero-zero
mode. The optical cavity also has a set of spatial modes that it naturally
supports. Mode-matching means using a set of lenses to carefully shape
our input laser beam so that its size and curvature perfectly match the
fundamental TEM-zero-zero mode of the cavity. If the modes are
mismatched, most of the light will simply reflect off the front surface of the
first mirror, and we won't get the power enhancement effect we're looking

for.

When the laser is both mode-matched and its frequency is on resonance
with the cavity, a remarkable buildup of power occurs inside. Let's look at

the expression for this intracavity power.
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When the conditions of mode-matching and frequency resonance are met,
the steady-state power inside the cavity, P i nt P, can become much,
much larger than the incident power, P 0 P,. The relationship is stunningly

simple:

Pint=P01-R

Here, capital R R is the power reflectivity of the cavity mirrors, which we
assume for simplicity are identical. Let's appreciate what this means. If we
use mirrors with a reflectivity R R of 0.99, then 1 - R 1—-R is 0.01. The
intracavity power is then P 0 P, divided by 0.01, which is 100 times the
incident power! This is an enormous amplification. The factor 1 /(1 -R)

1/(1 — R) is called the power enhancement factor of the cavity.

The derivation of this formula comes from summing the amplitudes of all
the partial waves that are transmitted and reflected inside the cavity. On
resonance, all the waves that have made multiple round trips interfere
constructively with the incoming wave, leading to this dramatic power

buildup. It's a classic geometric series problem.

This power enhancement only happens at very specific frequencies, known
as the cavity eigenfrequencies or longitudinal modes. These are the
frequencies for which an integer number of half-wavelengths fit perfectly

between the two mirrors. The formula for these resonant frequencies is:

vm=mc2d



Here, ' v m v, is the frequency of the m m-th mode, ' m m' is a large
integer called the mode index, ' ¢ c' is the speed of light, and ' d d' is the

physical separation between the mirrors.

This creates a major practical challenge. These resonance peaks are
extremely sharp for a high- R R cavity. To get the power enhancement, we
must keep our laser frequency, v L vy, perfectly tuned to the peak of one of
these modes. This requires an active feedback system, or a "lock". We
constantly monitor the cavity transmission and use a fast actuator, like a
piezo-electric transducer on one of the mirrors, to make tiny adjustments to
the cavity length ' d d' to keep it locked on resonance. The gold-standard
technique for generating the error signal for this lock is called the Pound-
Drever-Hall, or PDH, technique, which, as we'll see, is intimately related to

the FM spectroscopy methods we will discuss later.
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This diagram shows a complete, practical setup of an External Fabry-Pérot
Enhancement Cavity, putting together all the pieces we've just discussed.

Let's trace the path of the light and the control signals.
Starting on the far left, we have the "Incident Laser" with power P 0 P,.

The beam first passes through a set of "Mode-matching lenses." As we
discussed, these are essential for shaping the laser's T E M 00 TEM,,
Gaussian beam to perfectly match the fundamental mode of the optical

cavity.



The shaped beam then arrives at the cavity itself. The cavity is formed by
two mirrors: an input coupler and a high-reflector mirror, labeled M2,

separated by a distance d d.

If the system is locked, the power builds up inside the cavity, creating a
strong "Gaussian beam waist" with an internal power P i nt Py, that is
much, much greater than the incident power P 0 P,. This is where we

would place our sample to be interrogated by this intense field.

A very small fraction of the intracavity light leaks through the second mirror,
M2. This light is directed to a "Photodiode (PD)," which serves as the pick-
off for our locking system.

The electrical signal from this photodiode is fed into the "PDH Lock
Electronics” box. This is the brain of the feedback loop. It processes the
signal and generates a "Piezo Control Signal,” which is an error signal that

tells us if we are on or off resonance.

This control signal is then applied to a "PZT," or piezoelectric transducer,
that is physically attached to mirror M2. The PZT expands or contracts in
response to the voltage, making nanometer-scale adjustments to the cavity
length d d. This keeps the cavity’s resonance peak perfectly locked to the
laser’s frequency, ensuring maximum power enhancement at all times. This

entire system is a closed-loop feedback circuit.
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Let's now plug in some numbers to get a concrete feel for the incredible
power enhancement that a Fabry-Pérot cavity can provide. This slide gives

a simple numerical example.

First, the given parameters. Let's assume our mirrors have a power
reflectivity, capital R R, equal to 0.99 0.99. These are high-quality, but

commercially available, standard laser mirrors.

Second, let's assume our incident laser power, P 0 P, is 100 mW
100 mW. This is a very modest power level, easily achievable with a

common laboratory diode laser.

Now, we want to calculate the intracavity power, P int P, using the

formula we learned: Pint=P01-R. P, = i—"R.

Plugging in the numbers, we get: Pint=100mW 1-0.99. P = 110_00”;\2/.
This simplifies to 100 mW 0.01 . 1000:1'\/\/.

The resultis 10,000 mW 10,000 mW, which is equalto 10 W . 10W.

Let's pause and appreciate this result. We started with a modest, 100 mW
100 mW laser beam. By passing it into a simple resonant cavity made of
two mirrors, we have generated an internal optical field of 10 W 10W.
That's a power enhancement factor of 100 100. This is the incredible
power of constructive interference and resonance. And with even better
mirrors, say R = 0.999 R = 0.999, the enhancement factor would be 1000
1000, giving us 100 W 100W of intracavity power from the same input

laser. This is the key to many high-sensitivity techniques.
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Now, let's see what this enormous intracavity power does for our ability to

detect a weak absorption. We'll continue the numerical example.

Let's include a sample inside our cavity. We'll assume the sample has a
very weak absorption coefficient, a @, of 10 -5¢m -1 10">cm™. And
we'll assume the sample cell itself is very short, with a length L L of only
0.2cm 0.2 cm.

First, let's calculate the single-pass absorption factor for this sample, which
the slide labels a L aL. This is the product of the absorption coefficient and
the length: 10-5cm-1x0.2cm

107°cm™1 x 0.2 cm

gives a dimensionless absorption factor of 2 x 10 = 6 2 x 107°. This is a
tiny number, representing an absorption of just two parts per million on a

single pass.

Now, let's calculate the effective minimum detectable absorption
coefficient, which we'll call a min a,,;,. We can use a simplified formula: a
min a,i, IS approximately the Noise-Equivalent Power of our detector, N E
P NEP, divided by the product of the power interrogating the sample and

the sample length.

amin=NEPPintL.

NEP
min S e L



In our case, the power is the huge intracavity power, P int Pj;.

Let's plug in some typical values. A good detector might have an N E P
NEP of about 10 n W 10 nW. From the previous slide, our Pint P is 10
W 10 W, and our sample length L Lis 0.2 ¢ m 0.2 cm.

So, a min ay;, is approximately 10 n W 10 nW divided by the product of
1I0W 10Wand 0.2cm 0.2cm. This worksoutto 10x10-9W 2Wcm,

10 x 107°W
2Wcem

which gives an a min a,;, of 5x10-9¢cm-15x10"2cm™ L.

This is a remarkable sensitivity. To put it in perspective, what would our
sensitivity have been in a simple single-pass experiment using the same
100 m W 100 mW laser? We would use P 0 P, (0.1 W 0.1 W) instead of P
int Py (10 W 10W) in our calculation. This would give a sensitivity a

hundred times worse. The cavity provides a huge boost.

The slide notes an improvement of approximately one thousand times over
a single pass with the same P 0 P,. This is because the full analysis shows
that the cavity enhances not only the power but also the effective path
length. The total enhancement is related to a quantity called the cavity
finesse, which for these parameters is about 314 314. This, combined with
the power enhancement, readily leads to an overall sensitivity improvement
of a factor of 1000 1000 or more.
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We now pivot from our first strategy of path- length enhancement to our
second major strategy: noise rejection through modulation. We will begin
with the foundational technique of Frequency Modulation, or FM,

Spectroscopy.

The basic idea of FM spectroscopy is conceptually straightforward. Instead
of using a laser with a fixed, stable frequency, we intentionally modulate, or
"wobble," the laser's frequency back and forth in a sinusoidal pattern. This

modulation is centered on the frequency we wish to probe.

The instantaneous angular frequency of our laser, omega- sub- L of t, is

described by the equation:

w (t) = wy + asin(Nt).

Let's carefully define these terms. w 0 w, is the center frequency of our

laser, which we can tune slowly to scan across a spectral feature.

Lowercase ' a a' is the modulation index or modulation depth. It determines
how far in frequency the laser deviates from the center frequency. Its units

are radians per second.

Capital Q 2 is the modulation angular frequency. This is the rate at which
we wobble the frequency back and forth. Crucially, we choose Q 2 to be a
high frequency, typically in the kilohertz to megahertz range, for reasons

we will see shortly.

The core principle is this: as the laser's frequency sweeps back and forth
across an absorption feature, the transmitted power will be modulated in

response. If the laser's center frequency is on the side of an absorption



line, one side of the frequency swing will be absorbed more than the other.
This creates an imbalance, which results in a component of the transmitted
power oscillating at the modulation frequency, capital Q 2. This oscillating

signal is what we will detect.
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So, we've generated a tiny optical signal that's oscillating at a high
frequency, Q 0. How do we detect it? The key is an instrument called a
lock-in amplifier. A lock-in amplifier is a sophisticated electronic device that
acts as an extremely narrow bandpass filter combined with a phase-
sensitive detector. We provide it with a reference signal at our modulation
frequency, Q . The lock-in then looks at the signal from our photodetector
and extracts only the component that is oscillating at that exact frequency
and with a specific phase. It powerfully rejects noise at all other

frequencies.

Now, what is the nature of this signal that the lock-in amplifier measures? If
we use a small modulation depth a a—that is, a modulation depth much
smaller than the linewidth of our absorption feature—it can be shown that

the detected signal is proportional to the first derivative of the absorption
coefficient with respect to frequency, d a d w Z—Z. We have converted our

absorption measurement into a slope measurement.
This provides two enormous benefits:

First, as we've motivated, it makes our measurement largely immune to
broadband intensity noise. The dominant " 1 / f 1/f" noise of the laser is

concentrated at low frequencies, near DC. By modulating at a high



frequency, Q £, we move our signal far away from this noise, into a quiet

spectral region.

Second, it provides excellent background cancellation. Things like
absorption or reflection from cell windows, or slow drifts in laser power, are
all very slow, low-frequency effects. Since our lock-in amplifier is only
sensitive to signals at the high frequency Q 0, these slow background
effects are automatically rejected, leaving us with a clean, often near-zero,

baseline.
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This third benefit is really the ultimate consequence and the primary goal of
the first two. By moving our signal to a high-frequency region to escape
technical noise, and by using a lock-in amplifier to reject out-of-band noise,
frequency modulation spectroscopy enables us to achieve shot-noise-

limited detection.

Let's remind ourselves what this means. Shot noise is the fundamental
guantum noise that arises from the discrete, particle-like nature of photons.
Even a perfectly stable, classical light beam isn't truly constant; it's a
stream of random photon arrivals. This randomness sets an absolute
minimum noise floor for any optical measurement, a limit dictated by the

laws of quantum mechanics.

The statement here is that by using modulation techniques at frequencies
in the kilohertz to megahertz range—or even higher—we can effectively
eliminate all other "technical" sources of noise (like laser flicker, mechanical

vibrations, electronic interference) to such a degree that the only significant



noise source remaining is this fundamental shot noise. Reaching the shot
noise limit is the holy grail of sensitive optical measurements, as it means
your experiment is as sensitive as the laws of physics will allow for a given

optical power.
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This diagram provides a clear illustration of the principle of operation of FM
spectroscopy. It consists of two panels, plotting frequency and power as a

function of time.

Let's first look at the top panel. The vertical axis is Frequency, and the
horizontal axis is Time. The red curve shows the instantaneous frequency
of our laser, w L w . You can see it oscillating sinusoidally around a center
frequency, w 0 w,, with a modulation depth of ' a a'. In the background, the
broad, blue-shaded feature represents the absorption profile of our sample,
a ( w ) a(w), which has a characteristic linewidth, y y. As the red line

oscillates, it samples different parts of this absorption profile.

Now, look at the bottom panel. The vertical axis here is Transmitted Power,
Ptrans P, and the horizontal axis is again Time. This panel shows
the consequence of the frequency modulation. As the laser's frequency
sweeps across the absorption feature, the amount of light transmitted
through the sample changes. The blue curve shows this time-dependent
transmitted power. Notice that the power dips whenever the instantaneous
frequency passes through the region of high absorption. Because the
frequency is being modulated sinusoidally, the transmitted power is also

modulated in a periodic, though not perfectly sinusoidal, way.



This modulated signal, described by the equation Ptrans(t) « e - a(

WL (t)) Porans(t) x e~*@®) s what our photodetector sees. It is this
signal that we feed into the lock-in amplifier, which will then extract the

component oscillating at our chosen modulation frequency.
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To understand precisely where the derivative lineshape comes from, let’s

walk through a brief Taylor- series derivation of the modulated signal.

First, we begin with the fundamental expression for the transmitted power,
P T Py, at the instantaneous laser frequency, w L w;. This is simply the

Beer—Lambert law:
PT(wL)=POexp[-a(wL)L].

Pr(w) = Pyexp[—a(w) L].

The second step is the core of the derivation. We assume that our
modulation depth, a a, is small compared to the features of our spectrum.
This allows us to perform a Taylor- series expansion of the transmitted

power function, P T (w L) Py(w,), around the center frequency, w 0 w,.

asin(2t). The Taylor expansion states that the function is approximately

equal to its value at the center point, plus the first derivative at the center
point times the small displacement, plus 1 2 %the second derivative times

the displacement squared, and so on.

This gives us the expression on the slide:



2

a’?sin?(0t)

Wo

dP; | 1d
Pr(w)) = Pr(wg) + o o asin(2t) + 2 da2

+ higher-order terms.

This expansion breaks down our complex modulated signal into a series of

simpler components.
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Continuing our derivation, we now look at the terms in our Taylor

expansion.

The third step is to focus on the signal that our lock-in amplifier will detect
when it's tuned to the fundamental modulation frequency, Q Q. This signal
comes from the first-order term in the expansion, as it is the only one that
oscillates purely at sin i ( Q t ) sin(2t). We can therefore write that the
time-varying part of our transmitted power, A P T ( t ) 4P;(t), is

approximately equal to:

dPr .
AP;(t) = 7 a sin(2t).

Wy



This shows us that the amplitude of the signal at frequency Q 2 is directly
proportional to the slope, or derivative, of the transmitted power curve at

our chosen center frequency.

The fourth step is to relate this derivative of the transmitted power back to
the physical quantity we actually care about: the absorption coefficient, a
a. We can do this using the small-signal approximation of the Beer-Lambert
law, where P T=P 0 (1 -a L) Pr=Py(1—al). We then take the
derivative of this expression with respectto w w. P 0 P, and L L are

constants, so we find that:
The derivative, dP T d w %, is approximately equalto —POLdadw
da

dPTdw=-POLdadw.

The slope of the power curve is directly proportional to the negative of the

slope of the absorption curve.
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Now we arrive at the final step, where we put everything together to find the

output of our lock-in amplifier.

The lock-in amplifier measures the amplitude of the signal component that

oscillates at the modulation frequency, Q 0. From step 3, we know this

amplitude is 'a' times the derivative d P T d w %. From step 4, we know



that dP Tdw % is approximately —POLdad w —PyL z—z. However, the

signal itself also depends on P O P,. Let's revisit the previous slide. Ah, the
derivation on the slide is slightly simplified. A more rigorous derivation

would show that the final lock-in signal S ( Q) S(£2) is proportionalto P 0 a
Ldadw Pyal Z—Z. Let's assume the lowercase 'a’ in the final equation on

this slide is a combined constant. The key result is that the signal, S ( Q)

S(2), is proportional to:
S(Q)x-aLdadw|w=wO.

da
S() «x—al —
d W=wy
This is the central result of small-modulation FM spectroscopy. It states that
the signal measured by the lock-in amplifier is not the absorption profile

itself, but rather its first derivative.

Thus, the crucial conclusion is that FM detection mathematically converts
an absorption profile into a first derivative lineshape. In doing so, it has
shifted our signal from DC to a high frequency, Q 2, giving us all the

powerful noise-rejection benefits that we have discussed.
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What about the higher-order terms in that Taylor expansion, like the one
with a2 sin 2% (Q t) a?sin?(2t)? They don't just disappear; they produce
signals at higher harmonics of the modulation frequency. This leads to a

powerful set of techniques broadly known as "Derivative Spectroscopy."



A full Fourier analysis of the modulated signal reveals that it contains
frequency components at all integer multiples of the fundamental
modulation frequency, Q Q2. That is, at n Q nf, where n n can be one,

two, three, and so on.

We can use our lock-in amplifier to detect the signal at any of these
harmonics, not just the fundamental. The general rules for what we

measure are as follows, assuming a small modulation depth:

- If we detect at an odd harmonic, where n nis 1, 3, 5, and so on, the

signal will be proportional to the nth odd derivative of the absorption profile,
dnadwn %. These signals will be carried on sine terms, meaning they

are anti-symmetric about the line center. - If we detect at an even
harmonic, where n nis 2, 4, 6, and so on, the signal will be proportional to
the nth even derivative. These signals will be carried on cosine terms,

making them symmetric about the line center.

This gives us an incredible tool: by simply changing the detection frequency
of our lock-in amplifier, we can experimentally measure the first, second,
third, or even higher derivatives of our spectral line, each of which reveals

different information and has different advantages for analysis.

Page 33:

This slide presents the explicit mathematical forms for the signals at the
first three harmonics, which are the most commonly used in practice. Let's

examine them one by one.



First, the signal at the fundamental frequency, Q 2, which we denote S (

Q) S(2). This is the first harmonic, or 1-f signal. Its time-dependent form is:

S(Q)=-alLdadwsini@(Qt)

da
S(2) = —al — sin(Nt)
dw

The amplitude of this signal is proportional to the first derivative.

Next, the signal at the second harmonic, 2 Q 20, which we call the 2-f

signal. Its form is:

a’L d*«a

SED =+ 7 g2

cos(20t)

The amplitude here is proportional to the second derivative of the
absorption profile. Notice the prefactor contains an 'a-squared’, which
means for small modulation depths 'a’, the second harmonic signal is

generally smaller than the first.

Finally, the signal at the third harmonic, 3 Q 32, or the 3-f signal. Its form

IS:

3Ld3

S(3N) =+ ﬁ m sin(3.t)

This signal is proportional to the third derivative, and its amplitude is even

smaller, scaling as 'a-cubed'.



These results show how we can directly access the different derivatives of

our lineshape by tuning our detection electronics.
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So, why would we want to measure these different harmonics? They have
distinct shapes and properties that make them useful for different practical

applications.

The first derivative signal, obtained by detecting at n = 1 n =1, has that
characteristic dispersive or 'S'-shape. Its most important feature is that it
passes through zero exactly at the peak of the original absorption line. This
zero-crossing point provides a very sharp, unambiguous marker for the line
center. Furthermore, the signal around this zero-crossing is very steep,
making it an ideal "error signal" for frequency stabilization. If the laser
frequency drifts off the peak, a positive or negative voltage is generated,
which can be fed back to the laser to correct its frequency. This is the
fundamental principle behind many laser locking schemes, including the

Pound-Drever-Hall technique.

The second derivative signal, obtained by detecting at n =2 n =2, has a
very different character. It yields a symmetric peak that is centered
precisely at the absorption maximum. Unlike the original absorption profile,
however, this 2 f 2 f signal has a natural zero baseline away from the
resonance. The height of this central peak is directly proportional to the
absorber concentration. This combination of a sharp central feature and a

flat, zero baseline makes the second derivative signal excellent for



guantitative analysis—for accurately measuring how much of a substance

Is present. It's one of the most widely used techniques in trace gas sensing.
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These two graphs provide a perfect visual comparison between the

standard absorption profile and the first harmonic signal.

In the top plot, we see the absorption coefficient, a ( w ) a(w), plotted
against frequency. It's a simple, symmetric peak, perhaps a Lorentzian or a
Gaussian lineshape. The peak of the absorption is marked by the vertical

dashed red line.

In the bottom plot, we see the corresponding first harmonic signal, S ( Q)
S(2), which is proportional to the negative of the first derivative, —dad w
—Z—Z. As predicted by the mathematics, it has a dispersive, ‘S’-like shape.

The most crucial feature to observe is that it passes exactly through zero at
the precise frequency where the absorption is maximum. The steep, linear
slope around this zero-crossing is what makes it such a superb

discriminant for frequency locking applications.
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This slide continues our visual exploration, showing the shapes of the
second and third harmonic signals. The horizontal axis is labeled as
"Frequency Detuning," which is the frequency (w - w0 ) /T (w — wy)/T.

This allows us to see the universal shapes of these derivatives.



Let's look at the top plot, which shows the second harmonic signal,
proportional to the second derivative of alpha. As we discussed, this
lineshape is symmetric. It has a strong, negative-going central peak that
occurs exactly at the line center, at zero detuning. This central peak is
flanked by two smaller, positive-going lobes. The sharp central feature on a

zero baseline makes this ideal for quantitative measurements.

Now, let's examine the bottom plot, showing the third harmonic signal,
which is proportional to the third derivative. Like the first harmonic, this
lineshape is anti-symmetric. It has a zero-crossing at the line center, but it
exhibits more complex structure. It has a central positive lobe and two
negative side lobes. While less commonly used than the first and second
harmonics, the third derivative can sometimes be useful for resolving

closely spaced or overlapping spectral features.
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Now that we understand the power of frequency modulation, let's turn to
the practical question of how we actually implement it. How do we make a
laser's frequency wobble? This slide outlines the first of several common

techniques.

Technique 1 is resonator length modulation. This method is often used for
gas lasers, like Helium-Neon lasers, or for lasers that use an external cavity

for tuning, such as external cavity diode lasers.

The implementation is conceptually simple: we mount one of the laser's
end mirrors on a piezoelectric actuator, or PZT. A PZT is a ceramic

material that physically expands or contracts when a voltage is applied



across it. By applying a sinusoidal voltage to the PZT, we can make the
mirror vibrate back and forth, thus modulating the physical length d d of

the laser cavity.

Since the laser's output frequency is determined by the cavity length (recall

that v=qc2dv= %), modulating the length d d directly modulates the

frequency v v. The relationship between the change in frequency, A v Av,

and the change in cavity length, A d Ad, is given by the equation:
Av=-qc2d2Ad

__4c
Av = ZdzAd

This expression comes directly from differentiating the laser cavity

resonance condition.

The major limitation of this technique is speed. A PZT is a mechanical
object; it has mass and inertia. You cannot oscillate it at extremely high
frequencies. It has its own mechanical resonances that limit its useful
operating range. Typically, this method is restricted to modulation
frequencies, Q 0, of at most a few kilohertz. This is often good enough to
move away from the worst of the 1 /f 1/f noise, but it may not be fast

enough to reach the true shot-noise limit.
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For higher modulation frequencies, we need to employ faster, non-

mechanical methods. This slide introduces two more powerful techniques.



Technique 2 is direct injection current modulation, which is primarily used
for semiconductor diode lasers. The physics of a diode laser is such that its
output frequency is dependent on the density of charge carriers in the
semiconductor junction, which in turn is controlled by the injection current.
Therefore, a very simple way to modulate the frequency is to add a small,
high-frequency AC signal directly on top of the main DC drive current. This
can be done with a simple function generator and a bias-T circuit. This
method is incredibly effective and can achieve modulation frequencies up
to hundreds of megahertz or even into the gigahertz range. The one
significant drawback is that modulating the current also tends to modulate
the laser's output power or amplitude. This unwanted amplitude
modulation, known as residual amplitude modulation or RAM, can create

spurious background signals that may limit sensitivity.

Technique 3 is the cleanest and most versatile method: using an external
electro-optic phase modulator, or EOM. An EOM is a special crystal, such
as lithium niobate, whose refractive index changes in response to an
applied electric field (this is the Pockels effect). We take the stable, single-
frequency output from our laser and pass it through this crystal. We then
apply a high-frequency sinusoidal voltage across the crystal. This causes

the crystal's refractive index 'n' to oscillate according to the equation:

n(V) = no(l + bsin(.()t)).

This oscillation in the refractive index modulates the optical path length
through the crystal, which imposes a direct sinusoidal modulation on the

phase of the light wave. This generates a phase deviation, A ¢ m 4¢,,. As



we will see, a pure phase modulation is extremely desirable and can
operate at very high frequencies, well into the GHz range, with minimal

unwanted amplitude modulation.
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When we use an EOM to impose a phase modulation on our laser beam,
we are doing something more profound than just "wobbling" the frequency.
In the frequency domain, this action creates a whole family of new
frequency components called sidebands. These sidebands appear at
frequencies of w0+ n Q wy + nN. So, we have sidebandsat w0+ Q, w
0£2Q, ... wyx N2 wyt20,... The amplitudes of these sidebands are

described by Bessel functions of the first kind, J q J,, where the argument

is the phase modulation depth, A ¢ m 4A¢,,.

Now we arrive at a crucial distinction, as highlighted by the title of this slide:

Phase vs. Amplitude Modulation, and its role in Noise Cancellation.

Let's first consider Amplitude Modulation, or AM. In pure AM, the
modulation process creates a carrier and just a single pair of sidebands, at
w0 £ Q wyt 2. Crucially, in AM, these sidebands are created in-phase

with the carrier wave.

Now consider Phase Modulation, or PM, which is what an ideal EOM
produces. PM also creates sidebands. For small modulation depths, the
dominant sidebands are also at w 0 £+ Q w,+ 2. However, there is a
critical difference: PM vyields symmetric sidebands that have opposite
phase. That is, the electric field of the upper sideband (at w 0 + Q wy + )

is 180 o 180° out of phase with the electric field of the lower sideband (at



w 0 - Q wy — N2). This specific phase relationship is the key to the powerful

noise cancellation properties of FM spectroscopy.
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phase relationship N phase

modulation lead to such effective

noise cancellation? Let's walk

through the process.

Our photodetector is a square-law detector; it measures intensity, which is
the square of the electric field. When our phase-modulated light hits the
detector, several different frequency components beat against each other.
The lock-in amplifier, tuned to the modulation frequency Q 0, is sensitive
to the beat note created between the strong central carrier and the two

sidebands.

Specifically, the carrier beats with the upper sideband, producing an
electrical signal at their difference frequency, which is Q 2. At the same
time, the carrier beats with the lower sideband, also producing an electrical

signal at their difference frequency, Q Q.

Now, consider the case without any absorption. The two sidebands have
equal amplitude. Because their optical phases are opposite, the two
electrical beat notes they produce at frequency Q (2 are also 180 degrees

out of phase with each other. Since they have equal amplitude and



opposite phase, they sum together and perfectly cancel each other out.

The result is a zero baseline signal.

Now, let's introduce our sample, which absorbs some of the light at, say,
the upper sideband's frequency. This reduces the amplitude of the upper
sideband. Now, the two beat notes are no longer equal in magnitude. They
no longer cancel perfectly. This imbalance creates a net, non-zero signal at

the lock-in frequency Q 0. This imbalance is our absorption signal.

Here is the magic of the noise cancellation: any fluctuation in the intensity
of the main laser is a "common-mode" fluctuation. It affects the power of
the carrier and both sidebands equally and in phase. Since our detection
method is sensitive only to the imbalance or difference between the
sidebands, this common-mode noise is automatically subtracted out and

cancels to first order.

This is what provides the dramatic improvement in sensitivity.
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This diagram provides an excellent visual explanation of the concepts we
just discussed, comparing Amplitude Modulation on the left with Phase

Modulation on the right.
Let's start with the top row, which shows the case with no absorption.

In panel (a), for AM, we see the frequency spectrum consists of the strong
carrier at w 0 w, and two smaller sidebands at w 0 + Q w, £ 2. Crucially,

they are all drawn as upward arrows, indicating they are in-phase.



In panel (b), for PM, we see the carrier and two sidebands. But here, the
lower sideband is drawn as a downward arrow, representing its opposite
phase. Below this, the process at the detector is illustrated. The beat note
between the carrier and the upper sideband, Beat (C,U S B)
Beat(C, USB), is a sine wave. The beat note with the lower sideband, B e a
t(C,LSB) Beat(C,LSB), is a sine wave that is perfectly out of phase.
When these two are summed (indicated by the % X symbol), the result is a

flat line: "Perfect Cancellation — — Zero Baseline Signal.”

Now, let's look at the bottom row, which shows what happens when there is

absorption of the upper sideband.

In panel (a) for AM, the upper sideband's amplitude is reduced. This
imbalance in the total power is detected directly as an AM signal, which is

highly susceptible to laser intensity noise.

In panel (b) for PM, this is the key case. The absorption reduces the
amplitude of the upper sideband. Now, the two beat notes are no longer
equal in magnitude. When they are summed, they no longer cancel. A net
sinusoidal signal at frequency Q 2 appears. The diagram shows:
"Imbalance — — Non-Zero Signal at Q 2". This signal, born out of an
iImbalance on a zero background, is our highly sensitive, noise-immune

measurement.

Paqge 42:

We've established that modulating at a high frequency, capital Q 0, is
crucial for noise rejection. But how do we choose the optimal value for Q
n?



First, we must remember that technical noise sources, like laser flicker and
1/f1/f electronic noise, are most severe at low frequencies and decrease
rapidly as frequency increases. Therefore, the higher we can make Q 0,

the better our noise rejection will be.

The optimum region for Q 2 also depends on the properties of the spectral
line we are trying to measure. A good rule of thumb is given by the

inequality on the slide:
r<Q<10r
r<au0<i10or

The modulation frequency Q 2, in units of radians per second, should be
greater than or equal to the linewidth, I I', and less than or equal to about
ten times the linewidth. In terms of ordinary frequency in Hertz, this means
the modulation frequency should be comparable to or a few times larger
than the linewidth of the transition (I / (2 ) I'/(2m)). Modulating much
slower than the linewidth means you're not really measuring a derivative,

while modulating much faster can sometimes reduce the signal magnitude.

However, if ultimate sensitivity is the goal, we can push Q 2 to be very
high, greater than one gigahertz. At these very high frequencies, we are far
beyond the reach of almost all technical noise sources. This allows us to

suppress all technical noise and reach the fundamental shot-noise limit.
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Operating at very high modulation frequencies in the gigahertz range
presents a practical challenge: most standard laboratory photodetectors

and lock-in amplifiers are not designed to work at such high frequencies.

To get around this, a clever technique called "two-tone FM" spectroscopy is
often employed. This method allows us to get the noise-suppression
benefits of GHz-frequency sidebands while performing the final electronic
detection at a more manageable frequency, typically in the MHz range. It
requires a down-conversion step before the lock-in amplifier, which we will

touch on next.

So, with all these considerations, what is a good practical rule of thumb for
choosing the modulation frequency Q 027? A very common and effective
choice is to set the modulation frequency, capital Q (2, to be approximately
equal to the full-width-at-half-maximum, or FWHM, of the target absorption
line. This usually provides a good balance, yielding a strong derivative
signal while ensuring the modulation is fast enough to provide significant

noise rejection.

Page 44:

Let's briefly outline the principle of Two-Tone Frequency-Modulation
Spectroscopy. This is an elegant solution to the problem of wanting to use

GHz modulation frequencies without needing GHz detection electronics.

The process starts similarly to standard FM: a high-frequency carrier
modulation is imposed on the laser beam using an EOM. Let's say we
modulate at a few gigahertz. This creates the widely separated sidebands

that are key to avoiding low-frequency laser noise.



Here's the trick: the radio-frequency signal that drives the EOM is not a
pure, single-frequency sine wave. Instead, the gigahertz drive signal is
itself amplitude-modulated at a much lower frequency, for example, in the
megahertz range. This generates what are effectively two closely spaced
FM carriers, or "tones." The result on the optical beam is a more complex
pattern of sidebands, with two main clusters separated by the GHz
frequency, and within each cluster, sidebands separated by the MHz

frequency.

When this complex beam strikes the photodetector, a variety of beat notes
are produced. Crucially, a beat note is generated between the two main

tones. This beat note appears at the MHz difference frequency.

This MHz signal, which still carries the absorption information from the
widely spaced GHz sidebands, is now at a frequency that is perfectly

manageable for a standard lock-in amplifier.

The system still fully benefits from the gigahertz-scale separation of the
sidebands from the carrier, which places them in the shot-noise-limited

region, far from the 1/f noise of the laser.
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The ultimate benefit of the two-tone FM technique is summarized here. It
allows us to achieve the holy grail of shot-noise-limited detection, but it
cleverly sidesteps the practical difficulty and expense of using gigahertz-

bandwidth photodetectors and lock-in amplifiers in the demodulation chain.

It's a "best of both worlds" scenario. We get the supreme noise immunity

that comes from probing our sample with frequencies separated by



gigahertz, while performing all of our sensitive electronic detection and
signal processing in the much more convenient and accessible megahertz
frequency range. This makes it a powerful and widely used technique for

pushing the absolute limits of absorption spectroscopy.
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We now move to our third major strategy for high-sensitivity
measurements: Intracavity Laser Absorption Spectroscopy, or ICLAS. The

core principle of ICLAS is as simple as it is powerful.

Instead of taking the output of a laser and passing it through an external
sample cell, we place the sample directly inside the laser resonator itself,

between the two laser mirrors.

To understand why this is so powerful, we must recall how a laser works.
The light inside a laser cavity bounces back and forth, being amplified by
the gain medium on each pass. The intracavity field intensity builds up until
the round-trip gain provided by the medium exactly equals the total round-
trip losses. These losses include the light transmitted through the output

mirror and any absorption or scattering from components inside the cavity.

The crucial consequence is that each photon inside the cavity circulates
many, many times before it eventually leaks out. A typical photon might
make hundreds or even thousands of round trips. This means that if our
sample is inside the cavity, it is interrogated by the light not once, but
hundreds or thousands of times. This results in a huge effective path

length, which dramatically enhances the absorption signal.



There are several ways to detect the effect of this intracavity absorption.
The slide lists four key detection concepts. The first is to simply measure
the fluorescence emitted from the sample. As the sample absorbs the very
intense intracavity light, it will re-emit some of that energy as fluorescence,

which we can detect from the side of the cell with a separate detector.
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Let's continue with the other detection concepts for ICLAS.

The second method is to monitor the change in the laser’s output power,
which we would measure with a detector, detector 2, placed outside the
output coupler. If the intracavity sample introduces an absorption loss at
the laser’s frequency, the overall loss of the cavity increases. The laser will
then stabilize at a new, lower output power. As we will see, this effect can
be highly non-linear and extremely sensitive, especially when the laser is

operated near its lasing threshold.

The third method is to exploit the phenomenon of mode competition in
multimode lasers. Many lasers, such as dye lasers or Ti:sapphire lasers,
have a very broad gain profile and can oscillate on thousands of different
longitudinal modes, or frequencies, simultaneously. If our sample
introduces a narrow absorption loss that overlaps with just one of these
modes, that mode will be at a disadvantage in the competition for gain
against all the other modes. Its intensity can be drastically reduced, or even

completely extinguished.

The fourth concept is a powerful time-resolved method. Instead of letting

the laser reach a steady state, we use what's called a "step-function



pump.” We turn the laser on very quickly and observe how the different
modes build up from noise over a very short time. Modes that experience
absorption will grow much more slowly than their neighbors. In this dynamic
method, the effective path length, L e ff L, is simply the speed of light, ¢
¢, multiplied by the generation time, t t. This can lead to astonishingly long

effective path lengths.
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This schematic provides a clear block diagram of a generic Intracavity

Laser Absorption Spectroscopy, or ICLAS, experiment.

At its core, we have a laser resonator, defined by a High Reflector (HR)

mirror on the left and an Output Coupler (OC) mirror on the right.

Inside this resonator, we have two key components. The first is the Gain
Medium, which provides the optical amplification that makes the laser lase.
This gain medium is energized by an external Pump Source. The diagram
notes that this pump source could be a step-function for time-resolved

experiments.

The second, and most crucial, component inside the cavity is our Sample

Cell. This contains the atoms or molecules we wish to study.

The Intracavity Laser Field, represented by the red beam, circulates back
and forth, passing through both the gain medium and the sample cell on
every round trip. As we've discussed, this leads to an enormous Effective

Path Length. In the time-resolved case, this is

Leff=ct.



Leff = ct.

The diagram shows two possible ways to get a signal. Detector 1 is placed
to the side of the sample cell and measures the fluorescence that is emitted
as the sample absorbs the intense intracavity light. The second detection
path is to measure the light that transmits through the Output Coupler. This
measures the final output power of the laser, which, as we've discussed, is

also sensitive to the intracavity absorption.
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Let's now develop a more quantitative understanding of ICLAS, starting
with the simplest case: a single-mode laser operating in a steady state.

We'll perform a simple power balance analysis.

First, let's define the properties of our laser mirrors. The back mirror is a
high reflector, so its reflectivity, R 1 R,, is very close to one. The front
mirror is the output coupler, which is designed to transmit a small fraction of
the light. We'll call its transmission T 2 T,. Therefore, its reflectivity, R 2
R,,is 1-T21-T,.

Now, let's consider the relationship between the power inside the cavity, P
I nt Py, and the power that we measure coming out of the laser, Po ut
P,.:- The output power is simply the fraction T 2 T, of the intracavity power

that hits the output mirror. Therefore, we can write:

Pint=PoutT?2.

POl.lt

Py =



We can define an intracavity power enhancement factor, q g, as being

equalto 1/T 2 1/T,. This gives the simple relation:
Pint=qPout.
Pint = q Poyt-

For a typical laser with a 2% output coupler ( T 2 = 0.02 T, = 0.02), this
enhancement factor q g is 50. The power inside is 50 times the power

outside.

Now, what is the total power absorbed by our sample per second? The
absorbed power, A P ( w ) 4P(w), is the single-pass absorption factor,
which is a ( w ) a(w) times the sample length L L, multiplied by the power
that is actually interrogating the sample. That power is the huge intracavity

power, Pint Py.
Substituting our expression for Pint Py, we find:
AP(w)=qa(w)LPout.

AP(w) = q a(w) L Pyy;.

The power absorbed by the sample is enhanced by this same factor q q.
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So, the power absorbed by the sample is enhanced by this factor q g,
which is equal to one over the output coupler transmission, T 2 T,. For
typical lasers, T 2 T, can range from a few percent down to a fraction of a
percent. This means the enhancement factor g g can readily be in the

range of 50 to 500. This is a very significant enhancement.



This leads to several possible measurement modalities. We can aim to
detect the absorbed power, A P AP, directly. Since this absorbed power is
enhanced by the large factor g g, any detection method sensitive to

absorbed energy will also have its sensitivity enhanced.

For example, the absorbed energy heats the sample. In a gas, this heating
will cause a pressure rise. We can detect this pressure rise with a sensitive
microphone. This is the basis of photo-acoustic spectroscopy, and placing
the photo-acoustic cell inside a laser cavity is a well-known method for
boosting its sensitivity.

Alternatively, as mentioned before, we can detect the fluorescence that is
emitted after the molecule absorbs a photon. The amount of fluorescence
will be proportional to the absorbed power, A P AP, and will therefore also

be enhanced by the factor q q.
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Let's now analyze the second detection method: measuring the change in
the laser's output power. This approach is particularly sensitive when the

laser is operated very close to its lasing threshold.

First, let's review the fundamental condition for steady-state laser
operation. A laser reaches a stable output power when the gain it receives
per round trip exactly balances the total losses it experiences per round
trip. We call the saturated gain g-sub-s, and the total round-trip loss

gamma. So, the threshold condition is:

gs=y



gs =Y

The gain of a laser medium is not constant; it saturates. For a
homogeneously broadened gain medium, the saturated gain g-sub-s is

given by the formula:
gs=g01+PPs

Yo
1+

9s = P
123

Here, g 0 g, is the small-signal gain, which is the maximum gain available,
determined by how hard we are pumping the laser. P P is the intracavity
power, and P s E is the saturation power, which is a fundamental constant

of the gain medium. This equation shows that as the power P P inside the

laser builds up, the gain available for further amplification decreases.

The laser is a self-regulating system. The power P P will automatically
adjust itself until the saturated gain g s gs drops to a value that exactly

equals the total loss, v y.
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By setting the saturated gain equal to the loss ( g s =y gs = ¥) and solving
the equation from the previous slide for the power P P, we can find the

steady-state intracavity power of the laser:

P=Ps(g0y-1).



Now, let's introduce our weakly absorbing sample into the cavity. This
introduces a small additional loss, which we'll call Ay 4y. This additional
loss is equal to the absorption coefficient a a times the round-trip path

length through the sample, whichis 2 L 2 L:
Ay=a- 2L.
Ay = a -2 L.

This new loss will cause the laser power to drop to a new, lower value, P a

P,. We want to find the relative change in power, AP /P AP/P.

The full derivation is a bit tedious, but it involves taking the derivative of the
power expression with respect to the loss y y. The result, in the limit that A

y 4y is much smaller than vy y, is shown on the slide:

APP=(g0g0-y)2Ayy.

AP ( 9o YAV
P \go—v/ v
Actually, the formula on the slide is slightly simplified, the final expression

for the sensitivity enhancement factor Q is the key part. Let's focus on that.

The response of the laser is highly non-linear. The sensitivity enhancement
factor, Q Q, quantifies this non-linearity. It is the factor that multiplies our
fractional added loss, Ay /vy 4y/y, to give our measured fractional power

change, AP /P AP/P. This enhancement factor is given by:

Q=9g0y(g0-vy).

Yo

¢ =V(go_)/)'



This expression holds the key to the high sensitivity of this method.
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Let's take a close look at the behavior of this sensitivity enhancement

factor, Q Q, in two different operating regimes.

First, let's consider the case where we are operating the laser far above its
threshold. This means we are pumping it very hard, so the small-signal
gain, g 0 g,, is much, much larger than the round-trip loss, vy y. In this
limit, the term in the denominator, g 0 -y g, — v, is approximately equal to

g 0 g,. So, the expression for Q Q simplifies to:
Q=g0ygoO.

Yo

Q= :
Y Yo

The g 0 g,s cancel, and we are left with Q Q is approximately 1/vy 1/y.
Since the loss y y is dominated by the output coupling T 2 T,, this is
essentially the same power enhancement factor ' q q' that we saw earlier.
So, far above threshold, the enhancement is significant, but not

extraordinary.

Now for the exciting case: when we operate the laser very close to its
threshold. In this regime, we reduce the pump power so that the small-
signal gain g 0 g, becomes just barely larger than the loss vy y. This
means the term in the denominator, g 0 -y g, — y, becomes a very, very
small number. As this denominator term approaches zero, the

enhancement factor Q Q becomes huge, approaching infinity in principle.



This suggests we could achieve unlimited sensitivity by operating precisely
at the threshold. However, there is a catch. As we approach threshold, the
laser becomes extremely sensitive not just to our sample's absorption, but
to any small perturbation. It becomes highly susceptible to pump power
noise, mechanical vibrations, and temperature fluctuations, making the
output power very noisy and unstable. Therefore, in practice, there is
always a trade-off between achieving maximum sensitivity and maintaining

sufficient stability for a reliable measurement.
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The analysis we just performed was for a laser with a homogeneously
broadened gain medium, such as a dye, fiber, or solid-state laser. What
happens in the case of a laser with an inhomogeneously broadened gain
medium? A classic example is a gas laser, where the random thermal
motion of the atoms leads to Doppler broadening.

In an inhomogeneously broadened medium, the gain saturates differently

with power. The relationship for the saturated gain, g s gs, IS:

gs=9g01+1ls

where | I is the intracavity intensity.

We can perform an analogous derivation to find the sensitivity to a small
added loss. Without going through the detailed steps, the result for the

fractional change in power is given on the slide:



APP=g02y2Ayg0-y'

AP g3 Ay
P y2go—V

(Here y 'y’ is nearly identical to y y.)

The key feature to notice in this result is the even stronger dependence on
operating near threshold. The enhancement factor now contains a term that
looks like g 0 2 g3, and the denominator still contains the g0 -y go— vy
term that becomes very small near threshold. This even stronger non-
linearity demonstrates that ICLAS can be even more sensitive when
performed with an inhomogeneously broadened laser operating close to its
threshold.
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Now let's explore one of the most powerful ICLAS techniques: Multimode

ICLAS, which relies on the phenomenon of mode competition.

First, let's set the scene. We are now considering a laser with a very broad
gain profile, one that is wide enough to support lasing on a large number,
N N, of longitudinal modes simultaneously. Imagine the laser output as a
comb of thousands of discrete, sharp frequencies, all lasing at the same

time under the same broad gain curve.

Now, what happens if we place a sample inside this laser's cavity, and that
sample has a very narrow absorption line that happens to overlap with just

one of these thousands of modes? Let's call it mode k k. This absorption



introduces a small, additional loss, A y A4y, that is experienced only by
mode K k.

The immediate effect is that the intensity of mode k k, |k I, will begin to

drop. But that's not the whole story.

Because mode k k's intensity has dropped, it is now extracting less energy
from the shared gain medium. This means the overall gain saturation is
slightly reduced, and the gain medium "recovers" a little. This extra
available gain is now up for grabs. It doesn't help mode k k, which is being
actively suppressed by the absorption. Instead, this recovered gain is
distributed among all the other, non-absorbing modes, boosting their

intensities, | I;.

This process, where all the modes fight for a common pool of gain, is called
mode competition. The degree to which they are coupled is quantified by a
coupling parameter, K K, which ranges from 0 0 for no coupling to 1 1 for
strong coupling. In many lasers, like dye lasers, this coupling is very strong,

with K K close to one.
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The consequence of this strong mode competition is a truly dramatic

amplification of the effect of the absorption.

The relative power change for the single absorbing mode, mode Kk k, is

given by the equation on this slide. Let's look at it closely. The first part of

goly

, IS the same sensitivity
¥(Go-v)

the expression, g0 Ayy(g0-vy)

enhancement factor we saw for the single-mode laser operating near



threshold. But now, this is multiplied by a massive new factor: the quantity
1+KN1+KN.

Let's think about this new factor. K K is the coupling strength, which is
close to one. And N N is the number of competing modes, which can be in
the thousands. This means the initial sensitivity enhancement is multiplied

by an additional factor of several thousand.

In a laser with strong coupling (K= 1 K = 1) and many modes, the result is
an enormous contrast. Even a minuscule absorption on mode k k can
cause a catastrophic loss of power for that mode. The absorbing mode can
effectively vanish, as all of its energy is redistributed to the other modes.
This creates what is known as a "spectral hole" in the laser's output

spectrum,

The detection method is then elegant and straightforward. We take the
broadband output from our multimode ICLAS laser and disperse it using a
high-resolution monochromator or spectrograph with a detector array. The
recorded spectrum will show the broad profile of the laser, but with sharp,
dark lines appearing exactly at the frequencies where our intracavity
sample absorbs. By observing the positions and depths of these missing
mode intensities, we can map out the complete absorption spectrum with

incredible sensitivity, often in a single shot.
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Let's now turn to the final ICLAS variant we'll discuss: the powerful Time-
Resolved ICLAS method, also known as the "Step-Function Pump"

method. This is a dynamic technique, rather than a steady-state one.



First, we define a characteristic time for the cavity, t m t,,, which is the
mean lifetime of a photon in the empty cavity. This is related to the cavity's
Q-factor and losses, and is typically in the range of milliseconds to

microseconds.

The experiment proceeds as follows. We start with the laser pump turned
off. Then, attime t=0 t = 0, we apply the pump power very rapidly, ideally

as a perfect step-function.

At this moment, all of the possible laser modes within the gain profile begin
to grow from the background of spontaneous emission noise. They start a

race to build up their intensity, all competing for the same pool of gain.

Crucially, we do not wait for the laser to reach a steady state. Instead, we
use a fast optical switch, like an acousto-optic modulator or AOM, to act as
a gate. We open this gate for a very short time at a specific delay, t t, after
the pump was turned on. This delay time t t is chosen to be less than the

mode lifetime tm t,,.

This gated pulse of light, which represents a snapshot of the laser
spectrum at time t t, is then sent to a spectrometer for analysis. For each
mode q g in the spectrum, its intensity will depend on how quickly it was

able to grow in that short time interval.
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The growth of the power in each mode 'q’, P q (t) B (t), follows a specific

mathematical law. The equation is shown on the slide:



Pg(t)=Pqg(0), itsinitial noise power, xtmTtm x ( alarge

exponential term ) .

t
Py(t) = PRy(0), its initial noise power, X — X (a large exponential term).
m

Let's focus on the exponent, which contains two parts. The first part,
involving A w g 4wy, describes a process called spectral narrowing, where

the overall laser spectrum becomes narrower as time goes on. The second

part is the key to the sensitivity: it's e-a(wq)ct e~a(wq)ct,

This second term has the exact mathematical form of the Beer—Lambert
law, 1=10e-alL I =1I,e %. By comparing these forms, we can see that
in time-resolved ICLAS, the effective interaction length, L eff Ly, IS simply

the speed of light, ¢ ¢, multiplied by the generation time, t t.

Leff=ct.
Leff=Ct.

This leads to some astounding numbers. Let's take the numerical example.
Suppose we let the laser evolve for a generation time 't' of just 10 - 4 s
107*s, or 100 p s 100 us. The effective path lengthis Leff=ct Ly = ct,
whichis 3 x108 m /s x 10 -4 s 3x108m/sx 10~*s. This gives an
effective path length of 3 x 104 m 3 x 10*m, or 30 k m 30 km!

With a 30 k m 30 km effective path length, even a very weak absorption
becomes easily detectable. If our detection system can measure a 1 % 1%
dip in the intensity of a mode, this corresponds to a minimum detectable

absorption coefficient, a min a,,;,, of approximately 3 x10-9cm -1 3 X



10~%cm™!. This demonstrates the extraordinary sensitivity that can be

achieved with this time-domain approach.
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This diagram provides an excellent visualization of the Time-Resolved

ICLAS, or step-function pump, method.

The top graph illustrates the timing sequence. The horizontal axis is time.
The blue line shows the pump power, which is off before t= 0t =0, and
then instantly steps up to a constant value. Below this timeline, we see two
red and orange boxes representing two different detection windows, one at

an early time t 1 t;, and another at a later time t 2 t,.

The bottom graph shows the resulting laser spectrum at these two
moments in time. The vertical axis is intensity and the horizontal axis is
frequency. The red curve represents the laser spectrum as measured at
the early time, t 1 t;. At this point, the laser has just started to turn on. The
spectrum is still relatively broad. We can see two small dips in the
spectrum, which correspond to two absorption lines in our intracavity

sample.

The orange curve represents the spectrum measured at the later time, t 2
t,. Two important things have happened during the time interval between t
1t and t 2 t,. First, you can see that the overall width of the laser
spectrum has decreased. This is the "spectral narrowing" effect. Second,
and most importantly, look at the absorption dips. They have become
dramatically deeper and more pronounced. The effect of the absorption is

amplified over time, as the non-absorbing modes have had more time to



out-compete the absorbing modes. This diagram beautifully illustrates how
the absorption contrast grows over the generation time, leading to the
technique's high sensitivity.
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Let's now consider a classic and very elegant practical example that
showcases the power and selectivity of ICLAS: the detection and

differentiation of iodine isotopes.

The experiment is set up as follows. We place an intracavity cell that
contains a trace amount of the iodine isotope | 127 I,,,, in its molecular

form |2 I,. This cell is placed inside the cavity of a broadband dye laser.

This dye laser is designed to be multimode, with a gain profile so broad that
its output spectrum simultaneously covers the absorption bands of both the

stable isotope, 1127 I,,-, and another isotope, the radioactive 1129 I;,,.

Now, because of the powerful mode competition effect we discussed, the
specific laser modes whose frequencies coincide with the absorption lines

of the 1127 I,,- that is inside the cavity will be strongly suppressed.

To visualize this effect, we now use the output of this modified laser as a
probe beam. We send this beam to two external fluorescence cells. Cell A
contains a pure sample of | 127 I,,, vapor. Cell B contains a pure sample

of 1129 I,,9 vapor.

What will happen in Cell A? The light entering Cell A from our ICLAS laser
Is specifically missing the frequencies required to excite | 127 I,

molecules. The pump lines have been extinguished by the intracavity



absorption. Therefore, the | 127 I,,, in Cell A cannot be excited, and we

will observe no fluorescence.
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Now, what happens in the second external cell, Cell B, which contains pure

[-129 vapor?

The light coming from our ICLAS laser is only missing the frequencies
corresponding to 1-127 absorption. The laser is still oscillating strongly at all
the frequencies corresponding to the absorption lines of the 1-129 isotope.
Therefore, when this light passes through Cell B, the 1-129 molecules will
readily absorb the light and will be excited, leading to the emission of

strong fluorescence.

The final result is striking and demonstrates the incredible selectivity of the
technique. We see strong fluorescence from Cell B, but no fluorescence
from Cell A. This experiment demonstrates isotope-specific extinction. We
have effectively created a filter that removes light at the frequencies of one
isotope, while leaving the light at the frequencies of another isotope

untouched.

The enhancement factor, Q, in such experiments can be enormous, on the
order of 10 5 10°. This highlights the ability of ICLAS to detect and

differentiate species with extremely high sensitivity and specificity.
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This diagram provides a clear visual summary of the iodine isotope

selectivity experiment we've just described.



On the far left, we start with our "Broadband Dye Laser,” which has the
intracavity cell containing the 1-127 sample. This produces a "Modified

Laser Output.”

The spectrum of this modified output is shown in the graph at the top. The
overall shape is the broad gain profile of the dye laser. However,
superimposed on this are sharp, dark lines. These are the "Suppressed
modes at 127-1-2 frequencies.” The intracavity absorption has effectively
punched holes in the laser spectrum. Meanwhile, the "Modes still present at

129-1-2 frequencies" remain at full intensity.

This modified laser beam is then directed to the two "External Fluorescence
Cells." The beam enters Cell A, which contains pure [-127. Since the pump
lines for 1-127 are missing from the beam, the result is "NO
FLUORESCENCE." The beam then enters Cell B, which contains pure I-
129. The pump lines for 1-129 are present in the beam, so the result is
"STRONG FLUORESCENCE."

This simple and elegant diagram perfectly captures the power of multimode

ICLAS to act as an ultra-sensitive, species-specific filter.
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Like any experimental technique, ICLAS has a unique set of advantages

and limitations. Let's summarize the pros and cons.
First, the Pros:

The primary advantage is the enormous effective path length, L e ff Ly,

that can be achieved. As we saw in the time-resolved case, this can easily



reach tens or even thousands of kilometers, providing unparalleled

sensitivity for detecting weak absorptions.

Second, when using a multimode laser, ICLAS allows for simultaneous
broadband measurement. We can capture an entire spectral region in a
single laser shot, which makes the technique very fast and efficient for

spectroscopic surveys.

Third, because of its extreme sensitivity, ICLAS is an excellent tool for
studying very weak spectral features that are inaccessible with other
methods. This includes high overtone bands of molecules and quantum-
mechanically forbidden transitions, which are often of great interest for
fundamental physics and chemistry.

Now for the Cons:

The main drawback is that the technique's power is also its vulnerability.
Because it relies on the delicate balance of the laser's internal dynamics, it
requires a very stable laser cavity. The system is extremely sensitive to any
optical feedback from outside the cavity and requires meticulous alignment

and mechanical and thermal stability.
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Continuing with the limitations of ICLAS:

Near-threshold operation, while providing the highest theoretical sensitivity,
Is also the regime where the laser is most prone to intensity noise and to
"mode hops," where the laser frequency jumps uncontrollably between

different longitudinal modes.



Furthermore, the sample itself can perturb the laser's operation in ways
beyond simple absorption. A sample that is highly scattering, or one that
causes significant gain depletion, can disrupt the lasing process itself,

making the measurement unreliable.

A significant practical limitation is that the laser's gain medium and the
sample cell must coexist within the same optical cavity. This often means
they must share the same pressure and thermal environment, which can
limit the range of conditions that can be studied. For example, it is difficult
to perform ICLAS on high-pressure samples if the gain medium requires

low pressure to operate.

Fortunately, there are mitigations for these problems. A major one is to
move from an active ICLAS setup to a passive cavity setup. Instead of
placing the sample inside the active laser cavity, we can use an external
passive enhancement cavity, like the Fabry-Pérot systems we discussed
earlier. We can then use an optical isolator between the laser and the
passive cavity to completely prevent any destabilizing feedback from
reaching the laser, giving us the best of both worlds: a stable laser and a

high-power environment for our sample.
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Here are a couple more advanced mitigation strategies to overcome the
limitations of ICLAS.

One issue with standard linear laser cavities is a phenomenon called
"spatial hole burning." The counter-propagating beams inside a linear

cavity create a standing wave pattern of the electric field, which has nodes



(points of zero intensity) and antinodes (points of maximum intensity). If our
absorbing atoms or molecules happen to be located at the nodes, they will
not interact with the laser field, reducing the sensitivity. A very effective way
to avoid this is to employ a ring-laser geometry. In a ring laser, the light is
constrained to travel in only one direction around a closed loop. This
creates a traveling wave, not a standing wave, which has a uniform
intensity profile. This ensures that all the absorbers within the beam path

interact equally with the laser field.

Another mitigation, which is essential for any high-performance system, is
to implement active stabilization. Instead of just trying to build a passively
stable system, we can use electronic feedback loops to actively control the
critical parameters. This includes stabilizing the power of the pump source
and actively stabilizing the length of the laser cavity using the very locking
techniques we've already discussed. By actively fighting against sources of

noise and drift, we can achieve robust, high-sensitivity operation.
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This slide provides an excellent summary of the enhancement factors for
the various techniques we have discussed, allowing us to compare their

power and effectiveness on a common scale.

Let's start with our baseline: a simple, single-pass absorption
measurement. Here, the effective path length, L e f f L., is just the
physical length, L L. We define its enhancement factor, Q @, as being

equalto 1 1.



Next, the multipass cell. Here, L eff Lysis qL gL, where q g, the number
of passes, is typically in the range of 50 to 200. This is a simple, robust,
and significant improvement.

Third, the external high-Q cavity. Here, the power gain inside the cavity is

approximately 11 - R ﬁ. The effective path length enhancement is on

the orderof 2R 1-R %. For a typical high-quality mirror, this also results
in an enhancement factor of a few hundred, similar to a multipass cell, but

with the added benefit of a massive power buildup.

Fourth, FM derivative detection. This enhances sensitivity in a different
way. It doesn't increase the path length, but it reduces the noise bandwidth
by using a lock-in amplifier. This results in an effective signal-to-noise ratio,
or SNR, improvement of typically 10 to 1000 times, depending on the

modulation frequency.

Finally, intracavity technigues. For a single-mode ICLAS system, the

enhancement factor Q Q isequalto 1 T 2 Ti the output coupling, which is
2

typically in the range of 50 to 500. This can be even higher when operated

near the laser's threshold.
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Continuing our summary of enhancement factors, we now come to the

most powerful techniques.

For an intracavity system that is multimode and strongly coupled, we start
with the basic intracavity enhancement factor, but this is then multiplied by

the additional mode competition factor, whichis 1 + KN 1 4+ KN. This can



provide an additional multiplicative factor of 10 3 103 to 10 4 10*. This

combination leads to truly enormous overall enhancement factors.

Finally, for time-resolved intracavity spectroscopy, the enhancement comes
from the effective path length being equal to ct ct. This can result in a path
length enhancement of 10 5 10° to 10 8 102 times that of a single pass.
These numbers are staggering and represent the pinnacle of path-length

enhancement techniques.

This summary clearly shows the hierarchy of techniques, from simple
multipass cells providing modest gains to advanced intracavity methods

that push sensitivities into truly extraordinary regimes.
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This slide transitions us from theory to the practical reality of building an
ultra-sensitive spectroscopic setup. It provides an excellent and
comprehensive design checklist that anyone embarking on such a project

should consider.
Let's go through the main categories:

First, the Source. You need a high-quality laser that is single-mode, has a
narrow linewidth, and is tunable over the spectral range of interest.
Critically, you must use an output isolator to prevent any back-reflections

from destabilizing the laser.

Second, the Optics. For any cavity-based method, precise mode-matching
Is absolutely essential. You should aim for a coupling efficiency of 95% or

better. And your mirror coatings must be superb, with very high reflectivity



and, just as importantly, extremely low scattering loss, as scattered light

can create spurious interference fringes.

Third, the Electronics. If using an EOM, you need a high-frequency driver
with low phase noise. Your detection chain—the photodiode and the
transimpedance amplifier—must be low-noise and have sufficient
bandwidth for your modulation frequency. And a modern, digital lock-in

amplifier with a selectable time constant is an indispensable tool.

Fourth, Sample Handling. You need a well-designed sample cell, perhaps
one that is pressure-tunable and has temperature control. You also need to
be meticulous about gas purification to remove any parasitic absorbers, like

water vapor, that could create interfering signals.

Finally, Data Processing. Your job isn't done when you acquire the data.
You need robust software to perform a simultaneous fit of your data,
perhaps using multiple derivative orders, to accurately extract the
absorption coefficient a ( w ) a(w). And crucially, you must always perform
a calibration of your system using a known reference gas, such as

acetylene, which has a well-characterized and strong absorption spectrum.
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To bring all these concepts together, let's walk through an example
experimental workflow for a state-of-the-art experiment, such as a Noise-

Immune Cavity-Enhanced FM spectroscopy setup.

Step 1: Alignment. This is often the most painstaking part. First, you must
align your laser beam to pass cleanly through your electro-optic modulator,

or EOM. Then, it goes through the mode-matching telescope. Finally, you



must align this shaped beam to perfectly couple into your high-finesse

enhancement cavity, which contains your absorption cell.

Step 2: Lock the cavity. Once you have light successfully building up inside
the cavity, you need to engage the feedback lock to keep it on resonance.
You would typically use the Pound-Drever-Hall, or PDH, technique. This
method cleverly leverages the existing FM sidebands that are generated by
your EOM to create a very robust error signal, so this step integrates

naturally into an FM experiment.

Step 3: Set the modulation index. With the cavity locked, you now need to
optimize the modulation parameters. You would adjust the radio-frequency
power going to your EOM to set the modulation index, a a, to an optimal
value. A common strategy is to set it such that the power in the carrier
(related to the Bessel function J 0 (a) J,(a)) is approximately equal to the
power in the first-order sidebands (related to J 1 (a) J;(a)). This provides

a good balance for generating a strong signal.
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experimental workflow

Step 4: Sweep and record. With the system aligned, locked, and optimized,
you are now ready to acquire data. You would program your laser to sweep
its center frequency slowly across the target molecular transition. While the
laser is sweeping, you record the output signal from your lock-in amplifier.
This will trace out the characteristic derivative-shaped spectrum of your

absorption line.



Step 5: Convert the signal. The raw data you record is a voltage from the
lock-in amplifier as a function of laser frequency. The next crucial step is to
convert this derivative signal back into an absolute absorption spectrum, a
( w ) a(w). This requires a calibrated physical model of your experiment.
You need to know your modulation index a a, the effective path length L e
f f Lesr provided by your cavity, and the responsivity of your detector and
electronics. By fitting your derivative data to a theoretical model, you can

extract the quantitative absorption coefficient.

Step 6: Validate. This is the final and most important step for any
quantitative measurement. You must validate your entire system and your
analysis model. This is typically done by injecting a calibrated gas mixture
with a precisely known concentration into your cell. You then perform the
measurement and check if your result matches the known value. If there is
a discrepancy, you can refine your model and your noise-equivalent power

(NEP) budget until your system provides accurate and reliable results.
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As we draw this chapter to a close, let's reflect on some concluding

remarks.

The first, and perhaps most important, takeaway is that high-sensitivity
absorption spectroscopy is not a single discipline. It is a deeply multi-
disciplinary optimisation problem. To design, build, and operate a state-of-
the-art experiment, one must be an expert in three distinct but

interconnected fields:



1. Photonics: This includes the design and alignment of high-Q optical
cavities, understanding Gaussian beam optics for mode-matching, and

selecting and characterizing low-noise, narrow-linewidth lasers.

2. Electronics: This involves the world of radio-frequency and microwave
engineering for generating fast and stable modulation, designing low-noise
detection circuits, and mastering the theory and practice of phase-sensitive

lock-in detection.

3. Spectroscopic theory: This is the physics of interpreting the data. It
requires a deep understanding of lineshape theory, the ability to model the
complex derivative signals generated by modulation techniques, and the
statistical methods required to fit experimental data to these models to

extract meaningful, quantitative results.

It is the synergy and mastery of all three of these areas that allows

experimentalists to push the frontiers of what is detectable.
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The second major conclusion is that the powerful combination of our two
main  strategies—path-length  enhancement and  noise-rejection
modulation—routinely achieves detection limits that were previously
thought to be impossible. These are not just incremental improvements;
they represent many orders of magnitude in progress, allowing us to move
from detecting parts-per-million to parts-per-billion, parts-per-trillion, and in

some cases, even parts-per-quadrillion.

Mastery of these techniques is far more than just an academic exercise in

pushing instrumental limits. It opens the doors to transformative research



and new capabilities across a vast range of scientific and technological
fields.

For example:

1. In climate science, these methods are used for ultra-trace detection of
greenhouse gases, atmospheric pollutants, and reactive chemical

intermediates that govern the chemistry of our atmosphere.

2. In fundamental physics, they are used to perform some of the most
precise tests of our physical laws, by searching for tiny, parity-violating
energy shifts in chiral molecules, or by measuring the frequencies of
forbidden transitions in simple atoms to test the predictions of quantum

electrodynamics.

3. In medical diagnostics, there is a burgeoning field of breath analysis,
where the trace volatile organic compounds in a patient's breath are
measured to provide a non-invasive signature of metabolic processes and

diseases.
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The applications of these powerful techniques extend even further.

4. In engineering, they are used for combustion and plasma monitoring.
These methods allow us to peer inside the harsh environment of an internal
combustion engine or an industrial plasma reactor to monitor chemical

reactions and optimize efficiency in real-time.



Finally, let's look to the future. This field is by no means static. Continual
technological advances promise to deliver even greater sensitivity and

functionality in the coming yeatrs.

For example, the development of optical frequency combs provides a way
to perform massively parallel, broadband spectroscopy with thousands of
ultra-precise laser lines at once. The development of whispering-gallery-
mode micro-cavities allows us to create resonators with astronomical Q-
factors on the scale of a microchip. And the field of integrated photonics
promises to move these complex, table-sized experiments onto a single,

compact, and robust photonic chip.

These advances promise a new generation of ultra-sensitive spectrometers
that will find applications we haven't even dreamed of yet. The quest to
measure the smallest sighals and to detect the undetectable is a journey

that continues to be at the very heart of experimental physics.

Thank you.



