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Good morning, everyone. Welcome back to Phys 608, Laser Spectroscopy. 

I'm Distinguished Professor Dr M A Gondal, and Today, we begin a new 

and critically important chapter, Chapter 1.2, where we will explore the 

High-Sensitivity Methods of Absorption Spectroscopy. 

In our previous discussions, we laid the theoretical groundwork for how 

light interacts with matter. But today, we bridge the gap between that 

fundamental theory and the cutting-edge reality of modern experimental 

physics. The techniques we will discuss in this chapter are the workhorses 

of research labs around the world, enabling scientists to detect minuscule 

traces of substances and observe phenomena that would otherwise be 

completely invisible. 

This is where the true power and elegance of laser spectroscopy come to 

life. We're going to move beyond the simple picture of sending a laser 

through a sample and into the clever, sophisticated strategies that allow us 

to measure the seemingly unmeasurable. So, let’s begin. 
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Alright, let's start with the fundamental question: what is our motivation? 

Why do we need to seek "ultra-sensitive" methods for measuring 

absorption? Why isn't the basic experiment good enough? 

The first bullet point gets to the heart of the matter. Many, if not most, real-

world samples of interest produce absorption signals that are incredibly 

weak. Think about the challenges we face in science and technology. 



An environmental scientist might need to detect a pollutant gas in the 

atmosphere at a concentration of parts-per-billion or even parts-per-trillion. 

An astrophysicist might be looking for the faint spectral signature of a 

molecule in a distant interstellar cloud. Or, a fundamental physicist might 

be searching for a so-called "forbidden" molecular transition—a transition 

that is incredibly unlikely to happen but whose observation could test the 

standard model of particle physics. In all these cases, the change in laser 

power due to the absorption is minuscule, often several orders of 

magnitude weaker than the inherent noise of even the best photodetectors. 

The signal is, quite literally, buried in the noise. 

This leads directly to our second point, which frames the problem 

mathematically. Direct absorption measurements, which rely on the simple 

Beer–Lambert law, often fail when the product of the absorption coefficient,  

α 𝛼, and the path length,  L 𝐿, is much, much less than  10 − 3 10−3. 

This quantity,  α L 𝛼𝐿, is the absorbance, or optical depth. A value of  10 − 

3 10−3 means that only  0.1 % 0.1% of the light is absorbed as it passes 

through the sample. When the absorption is this weak, or weaker, trying to 

see that tiny dip in power is like trying to hear a single person whispering in 

the middle of a roaring stadium. The random fluctuations of the background 

noise will almost certainly drown it out. This is the central challenge that we 

must overcome. 
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So, let’s be more specific about what’s obscuring our signal. The tiny 

change in power we are trying to detect, the differential signal, is  Δ P 𝛥𝑃, 



which is the incident power,  P 0 𝑃0, minus the transmitted power,  P T 𝑃T. 

This  Δ P 𝛥𝑃 is our precious signal. The problem is that it gets swamped by 

two primary sources of noise: first, source power fluctuations—even the 

most stable laser has some inherent flicker or intensity noise, which we call  

δ P 0 𝛿𝑃0. Second, there is the fundamental noise of the detector itself. 

These noise sources completely obscure the tiny  Δ P 𝛥𝑃 we are looking 

for. 

This defines the goal of all high-sensitivity techniques. Our objective is to 

design an experiment that can reliably detect fractional absorptions, which 

is the ratio of  Δ P 𝛥𝑃 to  P 0 𝑃0, down to fantastically small numbers. We’re 

talking about detecting fractional absorptions of  10 − 7 10−7—that’s one 

part in ten million—all the way down to the truly mind-boggling regime of  

10 − 17 10−17. That’s one part in ten quadrillion. 

How on earth can we achieve this? We need a strategy. The first and most 

intuitive part of our strategy is stated here: we need to find a way to use 

very long effective path lengths, which we denote as  L e f f 𝐿eff. The logic 

is simple. The total absorption is proportional to the product  α 𝛼 times  L 𝐿. 

If the absorption per unit length,  α 𝛼, is tiny, we can still make the total 

absorption significant by making the path length,  L 𝐿, enormous. If we can 

make our laser beam travel not just a few centimeters, but perhaps a few 

kilometers through the sample, our tiny signal will be greatly magnified. Of 

course, we can’t build a kilometer-long laboratory, so we will need to find 

clever ways to fold that long path length into a very compact space. 
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Building on the idea of increasing the path length, our overall strategy has 

two other pillars. 

The second, and perhaps most powerful, strategy is to implement noise-

rejection techniques. If we can't make our signal bigger, maybe we can 

make our noise smaller, or at least, make our measurement insensitive to 

it. The key idea here is modulation. Imagine again you're in a noisy room 

trying to hear a whisper. It's impossible. But if that person starts singing 

their message at a very high, specific pitch, your ear can easily pick it out 

from the low-frequency rumble of the crowd. This is exactly what we do in 

spectroscopy. We use techniques like frequency modulation or phase 

modulation to encode our absorption signal onto a high-frequency carrier 

wave. We then use a specialized electronic tool called a lock-in amplifier, 

which is tuned to that exact frequency, to demodulate the signal. This 

allows us to move our measurement away from the noisy, low-frequency 

world of laser flicker and into a pristine, high-frequency domain where the 

noise is fundamentally lower. 

The third pillar of our strategy is careful optical mode engineering. This is 

really the practical implementation of the first two ideas. It's about how we 

design the physical hardware—the mirrors, the lenses, the cavities—to 

achieve our goals. This includes designing clever multipass cells, like the 

Herriott cells we'll see shortly, that use geometric optics to fold a long path 

length. It also includes using high-Quality-factor, or high-Q, optical cavities, 

which use resonance and wave optics to build up enormous light intensity 

and achieve long effective path lengths. And it includes advanced 

techniques like placing the sample directly inside the laser cavity itself to 

exploit the laser's own internal dynamics. 



These three strategies—long path lengths, noise rejection via modulation, 

and clever optical engineering—form the complete toolkit for high-

sensitivity spectroscopy. 
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This diagram provides a superb visual summary of the strategies we’ve just 

discussed and the dramatic improvements they provide. Let’s walk through 

it together. 

On the far right, we have a vertical axis plotting the "Fractional Absorption" 

we can detect. It’s a logarithmic scale, ranging from  10 − 3 10−3 at the top, 

down to  10 − 13 10−13 at the bottom. Higher on this scale is worse 

sensitivity; lower is better. 

Now, look at the top panel. This represents the simple, direct absorption 

experiment. We have a source, a sample cell, and a detector. The product  

α L 𝛼𝐿 is very small. The signal trace to its right shows the result: the tiny 

signal,  Δ P 𝛥𝑃, is completely lost in the thick, fuzzy band of noise. A direct 

measurement like this typically hits a wall at a sensitivity of about  10 − 3 

10−3, as indicated on the scale. 

Next, let’s move to the middle panel. This illustrates our first strategy: 

increasing the path length. The diagram shows a multipass cell, where the 

laser beam, shown in red, bounces back and forth between two mirrors 

many times. This greatly increases the effective path length,  L e f f 𝐿eff. 

Now look at the corresponding signal trace. Because the absorption has 

been magnified by the long path, the "Enhanced signal" is now clearly 

visible, poking out above the noise floor. This simple strategy can improve 



our sensitivity by several orders of magnitude, getting us down to the 

region of  10 − 7 10−7 on our scale. 

Finally, the bottom panel demonstrates the power of noise rejection. Here, 

we’ve introduced a lock-in amplifier into our detection scheme. The key 

insight is shown in the graph on the right, which plots Power versus 

Frequency. Most technical noise, what we call "one over  f 𝑓 noise", is 

concentrated at low frequencies, or DC. This is shown by the pink shaded 

area, which is very high near zero frequency and falls off rapidly. A simple 

absorption measurement happens at DC, right in the heart of this noise. 

The genius of modulation, as shown in the diagram, is to move our signal 

away from DC to a high modulation frequency,  f m 𝑓𝑚. Out at this high 

frequency, the technical noise is gone, and we are left with a much lower, 

flat noise floor, which we call the Shot Noise Limit. This is the fundamental 

quantum noise of light itself. By measuring in this quiet window, we can 

achieve sensitivities that are truly phenomenal, pushing down to  10 − 11 

10−11,  10 − 13 10−13, or even lower, as shown on the scale. 
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Alright, now that we have the conceptual framework, let's put down the 

fundamental mathematical quantities we'll be working with, all of which 

stem from the Beer-Lambert law. 

First, we have the incident light. We describe this by its spectral power 

density, denoted  P 0 ( ω ) 𝑃0(𝜔), or P-naught of omega. Let's be very 

careful about the units here: Watts per Hertz. This isn't just the total power 

of the laser; it's the power per unit frequency interval. This is essential for 



spectroscopy because our absorption features are, of course, frequency-

dependent. So,  P 0 ( ω ) 𝑃0(𝜔) tells us how much power we have at the 

specific angular frequency  ω 𝜔. 

Next, we have the transmitted power density. After the light travels a 

distance ' x 𝑥' through our absorbing medium, the power is attenuated. The 

transmitted power density,  P T ( ω ) 𝑃T(𝜔), is given by the famous Beer-

Lambert equation: 

 P T ( ω ) = P 0 ( ω ) e − α ( ω ) x .  

𝑃T(𝜔) = 𝑃0(𝜔) 𝑒
−𝛼(𝜔) 𝑥. 

This equation describes the exponential decay of light as it passes through 

an absorber. 

Now let's define the terms in that exponent, which is where the physics lies. 

This is highlighted under "Symbols and units". 

The most important term is  α ( ω ) 𝛼(𝜔). This is the absorption coefficient. 

It is a fundamental property of the material itself and it quantifies how 

strongly the material absorbs light at that specific frequency  ω 𝜔. The fact 

that  α 𝛼 is a function of frequency is the entire basis of spectroscopy—the 

structure of  α 𝛼 versus  ω 𝜔 is the unique spectral fingerprint of the atom 

or molecule we are studying. The standard unit for  α 𝛼 is inverse 

centimeters, or centimeters to the minus one ( c m − 1 cm−1). This can be 

interpreted as the fractional loss of intensity per centimeter of path length. 
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Continuing with our definitions, the symbol  x 𝑥 in the Beer-Lambert 

equation represents the physical path length that the light travels through 

the sample. Its unit is typically centimeters, to be consistent with the units 

of the absorption coefficient. The symbol  ω 𝜔, as we've said, is the angular 

frequency of the light, equal to  2 π ν 2𝜋𝜈, and its unit is radians per 

second. 

Now we come to a critically important tool that we will use repeatedly 

throughout this course: the small-signal approximation. In all the high-

sensitivity scenarios we are interested in, the total absorption is extremely 

weak. This means the exponent in the Beer-Lambert law, the product  α ( ω 

) x 𝛼(𝜔)𝑥, is a very small, dimensionless number, much less than one. 

When this condition holds, we can use the first-order Taylor series 

expansion for the exponential function, which is that  e − y ≈ 1 − y 𝑒−𝑦 ≈

1 − 𝑦, for small  y 𝑦. 

Applying this to the Beer-Lambert law gives us a much simpler, linear 

relationship: The transmitted power,  P T 𝑃T, is approximately equal to the 

incident power,  P 0 𝑃0, multiplied by the quantity, in brackets,  [ 1 − α ( ω ) 

x ] [1 − 𝛼(𝜔)𝑥]. 

This approximation makes it very easy to calculate the quantity we are 

actually trying to measure: the differential signal, capital Delta P. This is 

simply the light that was lost, which is the incident power  P 0 𝑃0 minus the 

transmitted power  P T 𝑃T. Using our small-signal approximation, this 

becomes: 

 Δ P ( ω ) = P 0 − P T ≈ P 0 α ( ω ) x .  

𝛥𝑃(𝜔) = 𝑃0 − 𝑃T ≈ 𝑃0 𝛼(𝜔)𝑥. 



This simple, linear relationship is beautiful. It tells us that the signal we 

hope to measure is directly proportional to three things: the power of our 

light source,  P 0 𝑃0; the strength of the absorption,  α 𝛼; and the path 

length through the sample,  x 𝑥. This makes our strategies immediately 

obvious: to get a bigger signal, we should use a brighter laser, a longer 

path length, or find a stronger transition. 
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Now, let's connect the macroscopic absorption coefficient,  α 𝛼, to the 

microscopic world of atoms and molecules. This brings us to the minimum 

detectable number density. 

For a dilute gas sample, which is often the case in high-sensitivity 

measurements, the absorption coefficient  α 𝛼 is not just an abstract 

number; it's directly proportional to how many absorbing molecules we 

have. The relationship is given by the first equation on this slide: 

 α = N 1 σ i k  

𝛼 = 𝑁1 𝜎𝑖𝑘 

Let's break this down.  N 1 𝑁1 is the number density of our absorbing 

species, specifically, the number of molecules per unit volume that are in 

the correct lower energy state, state 'i', from which the absorption can 

occur. Its units are typically molecules per cubic centimeter. 

The term  σ i k 𝜎𝑖𝑘 is the absorption cross-section for the transition from the 

initial state 'i' to the final state 'k'. You can think of this cross-section as the 

effective "target area" that each molecule presents to the incoming 



photons. It has units of area, typically square centimeters. A large cross-

section means a strong, or "allowed," transition, while a small cross-section 

means a weak, or "forbidden," transition. 

Now we can formulate the ultimate figure of merit for an entire 

spectroscopic instrument: what is the minimum number density of a 

substance,  N 1 , min 𝑁1,min, that we can possibly detect? The detectability 

criterion incorporates all our instrumentation parameters into one powerful 

equation: 

 N 1 , min ≥ N E P a P 0 σ i k L ′  

𝑁1,min ≥
NEP

𝑎 𝑃0 𝜎𝑖𝑘  𝐿′
 

Here,  N 1 , min 𝑁1,min is our goal – we want to make it as small as 

possible. To do that, we need to understand the parameters on the right-

hand side, which we'll define on the next page. This equation beautifully 

encapsulates the interplay between the properties of our sample ( σ 𝜎), our 

laser ( P 0 𝑃0), our interaction length ( L ′ 𝐿′), and our detection system ( N 

E P NEP). 
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Let's now define the parameters from that crucial detectability criterion 

equation. 

First, we have  N E P NEP, which stands for Noise-Equivalent Power. This 

is a fundamental figure of merit for any photodetector. Its units are  W / H z 

W/√Hz. The  N E P NEP is formally defined as the optical signal power that 



produces a signal-to-noise ratio of one in a one-Hertz detection bandwidth. 

In simpler terms, it's the faintest whisper of light that the detector can 

distinguish from its own internal noise. A smaller  N E P NEP means a 

better, more sensitive detector. 

Next is the lowercase  a 𝑎. This is a dimensionless factor, typically with a 

value close to one. It's a catch-all parameter that accounts for things like 

the overlap between the laser lineshape and the absorption lineshape, as 

well as the effective detection bandwidth of our system. For our strategic 

thinking, we can treat it as a constant of order unity. 

 L 𝐿 is the single-pass interaction length through the sample, in 

centimeters. 

With these definitions in hand, we can now clearly see our "strategy space" 

emerge directly from the mathematics of the  N min 𝑁min equation. To 

make  N min 𝑁min smaller, meaning to improve our sensitivity and detect 

fewer molecules, we must do one or more of the following things: 

- First, we can increase  P 0 𝑃0, the incident laser power. This is the brute 

force approach: just use a brighter laser. This appears in the denominator, 

so a larger  P 0 𝑃0 makes  N min 𝑁min smaller. - Second, we can increase  

L 𝐿, the interaction length. This can be our physical length, or, as we've 

discussed, an effective length,  L e f f 𝐿eff, achieved using multipass cells or 

cavities. Again, this is in the denominator. - Third, we can decrease the  N 

E P NEP of our detection system. This is in the numerator, so a smaller  N 

E P NEP leads to a smaller  N min 𝑁min. This can be achieved by choosing 

a better detector with lower intrinsic noise, or by using clever techniques 

like lock-in detection which dramatically reduce the effective noise 



bandwidth, thereby reducing the effective  N E P NEP of the entire system. - 

And of course, there's a fourth strategy, related to the sigma term: 

whenever possible, we should choose to probe the strongest possible 

transition of our target molecule, the one with the largest absorption cross-

section,  σ i k 𝜎𝑖𝑘. 
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Let's now dig deeper into exactly why direct absorption measurements fail 

for tiny values of the absorbance,  α L 𝛼𝐿. This slide presents a simple but 

devastating calculation. 

As we've established, the signal we measure is the change in power,  Δ P 

𝛥𝑃, which is the incident power  P 0 𝑃0 minus the transmitted power  P T 

𝑃T. And for small absorptions, we use the approximation that the 

transmitted power  P T 𝑃T is roughly  P 0 𝑃0 times the quantity  1 − α L 1 −

𝛼𝐿. 

Now, consider the uncertainty, or error, in our measurement. The dominant 

source of uncertainty is usually the fluctuation in the laser power itself, 

which we call  δ P 0 𝛿𝑃0. The relative error in our signal is the uncertainty in 

the signal,  δ ( Δ P ) 𝛿(𝛥𝑃), divided by the signal itself,  Δ P 𝛥𝑃. What is this 

ratio? Well, the uncertainty in our measurement,  δ ( Δ P ) 𝛿(𝛥𝑃), is going 

to be driven primarily by the laser fluctuation,  δ P 0 𝛿𝑃0. The signal itself,  

Δ P 𝛥𝑃, is approximately  P 0 α L 𝑃0𝛼𝐿. 

So, the relative error in our measurement is approximately  δ P 0 P 0 − α L 

𝛿𝑃0

𝑃0−𝛼𝐿
. We can regroup these terms to get the expression on the slide: The 



fractional error,  δ ( Δ P ) Δ P 
𝛿(𝛥𝑃)

𝛥𝑃
, is approximately equal to the fractional 

laser noise,  δ P 0 P 0 
𝛿𝑃0

𝑃0
, multiplied by a huge amplification factor of  1 α L 

1

𝛼𝐿
. 

This is the killer. The inherent fractional noise of our laser source is 

amplified by the reciprocal of our fractional absorption. If  α L 𝛼𝐿 is very 

small, say  10 − 4 10−4, then  1 α L 
1

𝛼𝐿
 is ten thousand. This means our 

relative measurement error is ten thousand times larger than the stability of 

our laser! Let's see what this means with a concrete example. 
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Let's plug in some realistic numbers to see how catastrophic this effect is. 

Suppose we are trying to measure a very weak absorption where the 

absorbance,  α L 𝛼𝐿, is equal to  10 − 4 10−4. This means only zero-point-

zero-one percent of the light is absorbed. 

Next, let's assume we have an excellent, research-grade laser with a 

power stability,  Δ P 0 / P 0 𝛥𝑃0/𝑃0, of  10 − 4 10−4. This means the laser 

power only flickers by about zero-point-zero-one percent. This is very good, 

but realistic. 

Now, let's calculate the relative error in our signal using the formula from 

the previous page. The relative error,  δ ( Δ P ) Δ P 
𝛿(𝛥𝑃)

𝛥𝑃
, is approximately 

the product of our laser stability and the amplification factor. That's  10 − 4 

× 1 10 − 4 10−4 ×
1

10−4
. The result is  1 1. 



A relative error of one means that the uncertainty in our measurement is 

the same size as the measurement itself! Our signal is completely and 

utterly masked by the noise. It is impossible to make a reliable 

measurement under these conditions. 

This leads us to two profound conclusions that will dictate the design of all 

advanced spectroscopic techniques. We need approaches that do two 

things: 

- First, they must reduce our dependence on measuring the absolute power 

of the laser. We need a measurement that is immune to the fluctuations  Δ 

P 0 𝛥𝑃0. 

- Second, they must find a way to convert the tiny absorption signal into a 

different, larger, and more easily separated observable quantity. For 

example, instead of measuring a tiny change in amplitude, perhaps we can 

measure a change in the light's phase, or its frequency, or the decay rate of 

light in a cavity. This is the path forward. 
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So, having established the problem and the general principles for a 

solution, this slide provides our road-map. It outlines the major categories 

of high-sensitivity schemes that we will explore. 

First, we have the most direct approach: the enhancement of the effective 

path length, L. This directly attacks the 'L' in the alpha-L product to make 

the total absorption larger. There are two main families of techniques here. 

The first are geometric multipass cells, such as White cells or Herriott cells, 

which use mirrors to fold the beam path many times. The second are 



resonant cavities, specifically external Fabry-Pérot enhancement cavities, 

which use the principle of constructive interference to achieve long effective 

path lengths and build up very high optical power. 

Second, we have modulation methodologies. This approach tackles the 

noise problem head-on. By modulating some property of the light or the 

sample, we shift our signal to a high frequency, away from the dominant 

low-frequency noise. The key techniques here are Frequency Modulation, 

or FM, and Phase Modulation, or PM, which are always used in conjunction 

with lock-in detection. We'll also touch upon more advanced variants like 

two-tone FM, which is a clever way to reap the benefits of very high-

frequency modulation while using more conventional electronics. 

Third, we have a particularly powerful and elegant technique known as 

Intracavity Laser Absorption Spectroscopy, or ICLAS. The core idea here is 

to place the absorbing sample inside the laser cavity itself. This allows the 

sample to interact with the enormous internal field of the laser. 

Furthermore, it leverages the sensitive, non-linear dynamics of the laser, 

such as mode competition, to produce a massively amplified signal. We'll 

see that this technique has several variations, including single-mode, 

multimode, and time-resolved methods. 
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The fourth category on our road-map consists of hybrid and derivative 

techniques. These are often the most advanced methods, as they cleverly 

combine principles from the other three categories to achieve the ultimate 

in sensitivity. Classic examples include cavity-ring-down spectroscopy, or 



C-R-D-S, which is a time-domain method that measures the decay rate of 

light in a high-Q cavity, thereby becoming immune to laser power 

fluctuations. Another example, often considered the pinnacle of sensitivity, 

is a technique with a famously long acronym: NICE-OHMS, which stands 

for Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular 

Spectroscopy. As its name implies, it combines a high-Q enhancement 

cavity with frequency modulation techniques to achieve truly astonishing 

detection limits. 

So, as we explore this zoo of different techniques and acronyms, it’s crucial 

to remember the final bullet point on this slide. It is the unifying principle of 

this entire chapter. Every single one of these approaches, no matter how 

complex it seems, ultimately solves the dilemma of weak absorption, where  

α L ≪ 1 𝛼𝐿 ≪ 1, in one of two fundamental ways: either by dramatically 

increasing the effective path length,  L e f f 𝐿eff, or by dramatically reducing 

the effective noise bandwidth through modulation. The very best 

techniques, of course, do both. 
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This flowchart provides a perfect visual summary of our entire discussion 

so far, laying out the strategies for overcoming the  α L ≪ 1 𝛼𝐿 ≪ 1 limit. 

Let's trace it from the top down. 

At the very top, in the red box, is "The Challenge: Detecting Tiny 

Absorption." The fundamental issue is stated clearly below it: our tiny 

signal,  Δ P 𝛥𝑃, which is approximately  P 0 α L 𝑃0 𝛼𝐿, is masked by the 

source noise,  δ P 0 𝛿𝑃0. 



From this central problem, four main strategic branches emerge, 

corresponding to the road-map we just outlined. 

Branch 1 is Path Length Enhancement. Its physical principle is simple: use 

multiple reflections to increase the effective  L 𝐿. The examples given are 

Multipass Cells, like White and Herriott cells, and resonant Fabry–Pérot 

Cavities. 

Branch 2 is Modulation Methodologies. The physical principle here is more 

subtle: it's derivative detection and noise rejection. By modulating, we 

convert the absorption signal into its derivative and move it to a quiet 

frequency region. The examples are Frequency Modulation (FM), Phase 

Modulation (PM), and Two-Tone FM. 

Branch 3 is Intracavity techniques, or ICLAS. The physical principle here is 

to exploit the internal dynamics of the laser itself, namely mode competition 

and the massive amplification of the intracavity field. Examples include 

single-mode, multimode, and time-resolved ICLAS. 

Finally, Branch 4 covers Hybrid and Time-Domain methods. The physical 

principle for many of these, like Cavity Ring-Down, is to measure an 

exponential decay in time, which is inherently insensitive to amplitude 

fluctuations. Examples include Cavity Ring-Down Spectroscopy (CRDS) 

and the ultimate hybrid, NICE-OHMS. 

This chart is our guide. We will now proceed down the first branch and 

explore the details of path length enhancement. 
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Alright, let's begin with our first strategy: enhancing the path length using 

multipass geometry. This slide gives a qualitative picture of how these 

devices, such as a Herriott cell, work. 

The basic setup consists of two concave, highly-reflective mirrors, each 

with a radius of curvature  r 𝑟. These mirrors are placed facing each other, 

separated by a distance  d 𝑑 that is approximately equal to their radius of 

curvature. This specific near-confocal or re-entrant configuration is key to 

their stable operation. 

The laser beam is then injected into this cell, typically through a small hole 

bored into the center of the first mirror, mirror 1. 

Because of the curvature of the mirrors, the beam doesn't simply reflect 

back on itself. Instead, it hits the second mirror at a slight angle, which 

directs it to a new spot on the first mirror, and so on. The beam bounces 

back and forth between the two mirrors, tracing out a specific pattern of 

spots on each mirror's surface. After a well-defined number of reflections, 

which we'll call  q 𝑞, the optical design ensures that the beam path lands on 

the input hole of mirror 1 once again, but this time at a different angle, 

which allows it to exit the cell and travel to a detector. 

The result is a dramatic increase in the path length. The total effective path 

length,  L e f f 𝐿eff, is simply the number of passes,  q 𝑞, multiplied by the 

distance between the mirrors,  L 𝐿. 

 L e f f = q L .  

𝐿eff = 𝑞 𝐿. 



For example, a cell that is only  50  cm 50 cm long but provides  100 100 

passes gives an effective path length of  50  m 50 m. This is a simple and 

robust way to significantly boost our absorption signal. The angle between 

adjacent spots on the mirror surface,  θ 𝜃, is determined by the precise 

mirror separation, and as we'll see, this is a critical parameter. 
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The geometry of the spot pattern is governed by the equation shown here: 

 cos ⁡ ( θ ) = 1 − r d ′  

cos(𝜃) = 1 −
𝑟

𝑑′
 

Here,  θ 𝜃 is the angle that separates the successive reflection spots as 

they rotate around the mirror's center. ' r 𝑟' is the mirror's radius of 

curvature, and ' d ′ 𝑑′' is an effective distance related to the mirror 

separation ' d 𝑑'. The full derivation comes from ray‐ transfer matrix 

analysis, which we won't go into here, but the important takeaway is that by 

making very small adjustments to the physical distance ' d 𝑑' between the 

mirrors, we can change the angle  θ 𝜃, and therefore change the number of 

passes ' q 𝑞' and the specific pattern of spots. 

This leads to the crucial practical point mentioned in the second bullet: we 

design the cell such that there are no overlapping spots. Why is this so 

important? We must remember that our laser beam is a coherent 

electromagnetic wave. If the beam spots from different passes were to 

overlap on the mirror surface, they would interfere with each other. This 

interference would create unwanted intensity patterns, known as etalon 



fringes or interference fringes. As we scan our laser's wavelength to 

measure a spectrum, these fringes would cause large, rolling oscillations in 

our baseline signal, which would completely swamp the tiny absorption 

signal we are trying to detect. By ensuring the spots are spatially distinct, 

we can treat the cell using simple geometric optics, effectively creating one 

very long beam path and avoiding these destructive interference effects. 
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This slide gives us a wonderful, clear visualization of a Herriott multipass 

cell, illustrating the principles we've just discussed. 

On the left, we see a side-on, cross-sectional view of the cell. We have the 

two concave mirrors, M1 and M2. M1 has a small hole for the laser to enter 

and exit. The mirrors have a radius of curvature  r 𝑟 and are separated by a 

distance  d 𝑑. The red lines trace the path of the laser beam as it is 

injected, bounces back and forth dozens of times, and finally exits. You can 

clearly see how a very long optical path is folded into a compact physical 

volume. 

The real elegance of the design is shown in the diagram on the right, which 

depicts the spot pattern on the surface of one of the mirrors. The red dots 

represent the points where the laser beam strikes the mirror. Instead of a 

random mess, the spots form a well-defined, stable ellipse or circle. The 

label indicates that for this particular configuration, we have  q = 26 𝑞 = 26 

reflections. The angle  θ 𝜃, which we saw in the equation on the previous 

page, is the angle between adjacent spots as viewed from the center of the 



mirror. This stable, re-entrant pattern is the hallmark of a well-designed 

Herriott cell. 
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Of course, nothing in physics is perfectly efficient. Bouncing a laser beam 

off mirrors dozens or hundreds of times comes with a cost in the form of 

optical loss. This slide begins to build the "loss budget" for a multipass cell. 

First, let's consider the loss from the mirrors themselves, even with no 

absorbing sample present. Even the best mirrors are not one hundred 

percent reflective. Let's define the power reflectivity of each mirror as 

capital R, which is a dimensionless number very close to one, for example, 

0.999. A single round-trip for the light involves two reflections, one off each 

mirror. The attenuation factor for a single round-trip due to mirror losses, A-

sub-mirror, is given by the equation: 

 A m i r r o r = exp ⁡ ( − 2 ( 1 − R ) ) .  

𝐴mirror = exp(−2(1 − 𝑅)). 

For reflectivities R very close to 1, this is approximately one minus two 

times (one minus R). So, the fractional loss per round trip is just two times 

the loss per mirror. This is the intrinsic, unavoidable loss of the empty cell. 

Next, we include our sample. Let's say the sample fills the cell and has an 

absorption coefficient alpha. A half-pass is the distance L from one mirror 

to the other. In a single round-trip, the light travels a distance of 2L through 

the sample. Therefore, the attenuation factor due to sample absorption per 

round trip, A-sub-sample, is given by: 



 A s a m p l e = exp ⁡ ( − 2 α L ) .  

𝐴sample = exp(−2𝛼𝐿). 

These are the fundamental loss components for each round trip the light 

makes inside the cell. 
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Now, let's combine these loss factors to find the total transmitted intensity 

after the light has completed its full journey. If the light makes 'q' round-trips 

inside the cell, we simply multiply the attenuation factors for each round-trip 

'q' times. This means we add the terms in the exponent 'q' times. This gives 

us the final equation for the transmitted intensity, I-sub-T: I-sub-T equals I-

naught times the exponential of, in brackets, minus two q times the quantity 

one minus R, minus two q alpha L. 

 I T = I 0 exp ⁡ ( − 2 q ( 1 − R ) − 2 q α L )  

𝐼T = 𝐼0exp(−2 𝑞(1 − 𝑅) −  2 𝑞𝛼𝐿) 

Let's dissect the exponent. The first term, minus two q times one minus R, 

represents the total cumulative loss from all the mirror reflections. The 

second term, minus two q alpha L, represents the total cumulative 

absorption from the sample. Notice that the effective path length here is L-

eff equals two q L. 

 L e f f = 2 q L  

𝐿eff = 2 𝑞𝐿 

Now let's compute the numerical examples to get a feel for the numbers. 



First, consider an empty cell, where alpha-L is zero. 

 α L = 0  

𝛼𝐿 = 0 

We use excellent mirrors with R equals 0.99, and we have q equals 100 

passes. 

 R = 0.99 , q = 100  

𝑅 = 0.99, 𝑞 = 100 

The ratio of transmitted to incident intensity, I-T over I-naught, is e to the 

power of minus two times one hundred times (one minus zero point nine 

nine), which is e to the power of minus two. 

 I T I 0 = e − 2 × 100 × ( 1 − 0.99 ) = e − 2  

𝐼T
𝐼0
= 𝑒−2×100×(1−0.99) = 𝑒−2 

This is approximately zero point one four. This means that even with no 

sample, we lose 86% of our light just due to the imperfections in our mirrors 

over 100 passes. 

Now, let's add a weakly absorbing sample. The slide uses a value of alpha-

L equals 0.01. Let's re-read the formula carefully. The absorption term is 

2qalphaL. This would be 2 100 0.01 = 2. This would make the exponent e 

to the minus (2+2) = e to the minus 4. The slide shows an exponent of 

minus (2 + 0.02). This implies that the product 2qalphaL equals 0.02. This 

means alpha*L must be 0.0001, or 10^-4. So let's assume this was the 

intended value. In this case, the transmitted intensity I-T over I-naught is e 



to the power of minus 2.02, which is approximately 0.133. The absorption 

caused a drop in transmission from 14% to about 13.3%. 

 2 q α L = 2 × 100 × 0.01 = 2  

2 𝑞𝛼𝐿 = 2 × 100 × 0.01 = 2 

 e − ( 2 + 2 ) = e − 4  

𝑒−(2+2) = 𝑒−4 

 2 q α L = 0.02 ⟹ α L = 10 − 4  

2 𝑞𝛼𝐿 = 0.02  ⟹  𝛼𝐿 = 10−4 

 I T I 0 = e − 2.02 ≈ 0.133  

𝐼T
𝐼0
= 𝑒−2.02 ≈ 0.133 

The most important conclusion from this analysis is highlighted in the final 

bullet point: High mirror reflectivity, R, is absolutely critical. If R were, say, 

0.90 instead of 0.99, the term (1-R) would be ten times larger, and we 

would lose nearly all of our light in just a few bounces. The performance of 

a multipass cell is fundamentally limited by the quality of the mirror 

coatings. 
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We will now transition from the geometric optics of multipass cells to a 

more powerful, wave-optics approach for path length enhancement: the 

external Fabry-Pérot enhancement cavity. 



A Fabry-Pérot cavity, in its simplest form, is an optical resonator consisting 

of two highly parallel, highly reflective mirrors facing each other. It's 

essentially a laser cavity, but without a gain medium inside. We define the 

properties of the mirrors by their reflectivity. It's important to distinguish 

between the amplitude reflectivity, denoted by a lowercase 'r', which 

describes the reflection of the electric field, and the power reflectivity, 

capital R, which describes the reflection of the optical intensity or power. 

The two are related by  R = r 2 𝑅 = 𝑟2. 

Now, for a cavity to work its magic, a crucial condition must be met, as 

stated in the second bullet point: the incident single-mode laser must be 

"mode-matched" to the cavity. A laser beam has a specific spatial intensity 

profile, which is typically a Gaussian shape called the TEM-zero-zero 

mode. The optical cavity also has a set of spatial modes that it naturally 

supports. Mode-matching means using a set of lenses to carefully shape 

our input laser beam so that its size and curvature perfectly match the 

fundamental TEM-zero-zero mode of the cavity. If the modes are 

mismatched, most of the light will simply reflect off the front surface of the 

first mirror, and we won't get the power enhancement effect we're looking 

for. 

When the laser is both mode-matched and its frequency is on resonance 

with the cavity, a remarkable buildup of power occurs inside. Let's look at 

the expression for this intracavity power. 
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When the conditions of mode-matching and frequency resonance are met, 

the steady-state power inside the cavity,  P i n t 𝑃int, can become much, 

much larger than the incident power,  P 0 𝑃0. The relationship is stunningly 

simple: 

 P i n t = P 0 1 − R  

𝑃int =
𝑃0

1 − 𝑅
 

Here, capital  R 𝑅 is the power reflectivity of the cavity mirrors, which we 

assume for simplicity are identical. Let's appreciate what this means. If we 

use mirrors with a reflectivity  R 𝑅 of 0.99, then  1 − R 1 − 𝑅 is 0.01. The 

intracavity power is then  P 0 𝑃0 divided by 0.01, which is 100 times the 

incident power! This is an enormous amplification. The factor  1 / ( 1 − R ) 

1/(1 − 𝑅) is called the power enhancement factor of the cavity. 

The derivation of this formula comes from summing the amplitudes of all 

the partial waves that are transmitted and reflected inside the cavity. On 

resonance, all the waves that have made multiple round trips interfere 

constructively with the incoming wave, leading to this dramatic power 

buildup. It's a classic geometric series problem. 

This power enhancement only happens at very specific frequencies, known 

as the cavity eigenfrequencies or longitudinal modes. These are the 

frequencies for which an integer number of half-wavelengths fit perfectly 

between the two mirrors. The formula for these resonant frequencies is: 

 ν m = m c 2 d  

𝜈𝑚 =
𝑚 𝑐

2 𝑑
 



Here, ' ν m 𝜈𝑚' is the frequency of the  m 𝑚-th mode, ' m 𝑚' is a large 

integer called the mode index, ' c 𝑐' is the speed of light, and ' d 𝑑' is the 

physical separation between the mirrors. 

This creates a major practical challenge. These resonance peaks are 

extremely sharp for a high- R 𝑅 cavity. To get the power enhancement, we 

must keep our laser frequency,  ν L 𝜈L, perfectly tuned to the peak of one of 

these modes. This requires an active feedback system, or a "lock". We 

constantly monitor the cavity transmission and use a fast actuator, like a 

piezo-electric transducer on one of the mirrors, to make tiny adjustments to 

the cavity length ' d 𝑑' to keep it locked on resonance. The gold-standard 

technique for generating the error signal for this lock is called the Pound-

Drever-Hall, or PDH, technique, which, as we'll see, is intimately related to 

the FM spectroscopy methods we will discuss later. 
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This diagram shows a complete, practical setup of an External Fabry-Pérot 

Enhancement Cavity, putting together all the pieces we've just discussed. 

Let's trace the path of the light and the control signals. 

Starting on the far left, we have the "Incident Laser" with power  P 0 𝑃0. 

The beam first passes through a set of "Mode-matching lenses." As we 

discussed, these are essential for shaping the laser’s  T E M 00 𝑇𝐸𝑀00 

Gaussian beam to perfectly match the fundamental mode of the optical 

cavity. 



The shaped beam then arrives at the cavity itself. The cavity is formed by 

two mirrors: an input coupler and a high-reflector mirror, labeled M2, 

separated by a distance  d 𝑑. 

If the system is locked, the power builds up inside the cavity, creating a 

strong "Gaussian beam waist" with an internal power  P i n t 𝑃int that is 

much, much greater than the incident power  P 0 𝑃0. This is where we 

would place our sample to be interrogated by this intense field. 

A very small fraction of the intracavity light leaks through the second mirror, 

M2. This light is directed to a "Photodiode (PD)," which serves as the pick-

off for our locking system. 

The electrical signal from this photodiode is fed into the "PDH Lock 

Electronics" box. This is the brain of the feedback loop. It processes the 

signal and generates a "Piezo Control Signal," which is an error signal that 

tells us if we are on or off resonance. 

This control signal is then applied to a "PZT," or piezoelectric transducer, 

that is physically attached to mirror M2. The PZT expands or contracts in 

response to the voltage, making nanometer-scale adjustments to the cavity 

length  d 𝑑. This keeps the cavity’s resonance peak perfectly locked to the 

laser’s frequency, ensuring maximum power enhancement at all times. This 

entire system is a closed-loop feedback circuit. 
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Let's now plug in some numbers to get a concrete feel for the incredible 

power enhancement that a Fabry-Pérot cavity can provide. This slide gives 

a simple numerical example. 

First, the given parameters. Let's assume our mirrors have a power 

reflectivity, capital  R 𝑅, equal to  0.99 0.99. These are high-quality, but 

commercially available, standard laser mirrors. 

Second, let's assume our incident laser power,  P 0 𝑃0, is  100 mW 

100 mW. This is a very modest power level, easily achievable with a 

common laboratory diode laser. 

Now, we want to calculate the intracavity power,  P int 𝑃int, using the 

formula we learned:  P int = P 0 1 − R . 𝑃int =
𝑃0

1−𝑅
. 

Plugging in the numbers, we get:  P int = 100 mW 1 − 0.99 . 𝑃int =
100 mW

1−0.99
. 

This simplifies to  100 mW 0.01 . 
100 mW

0.01
. 

The result is  10,000 mW 10,000 mW, which is equal to  10 W . 10 W. 

Let's pause and appreciate this result. We started with a modest,  100 mW 

100 mW laser beam. By passing it into a simple resonant cavity made of 

two mirrors, we have generated an internal optical field of  10 W 10 W. 

That's a power enhancement factor of  100 100. This is the incredible 

power of constructive interference and resonance. And with even better 

mirrors, say  R = 0.999 𝑅 = 0.999, the enhancement factor would be  1000 

1000, giving us  100 W 100 W of intracavity power from the same input 

laser. This is the key to many high-sensitivity techniques. 
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Now, let's see what this enormous intracavity power does for our ability to 

detect a weak absorption. We'll continue the numerical example. 

Let's include a sample inside our cavity. We'll assume the sample has a 

very weak absorption coefficient,  α 𝛼, of  10 − 5 c m − 1 10−5 cm−1. And 

we'll assume the sample cell itself is very short, with a length  L 𝐿 of only  

0.2 c m 0.2 cm. 

First, let's calculate the single-pass absorption factor for this sample, which 

the slide labels  α L 𝛼𝐿. This is the product of the absorption coefficient and 

the length:  10 − 5 c m − 1 × 0.2 c m  

10−5 cm−1 × 0.2 cm 

gives a dimensionless absorption factor of  2 × 10 − 6 2 × 10−6. This is a 

tiny number, representing an absorption of just two parts per million on a 

single pass. 

Now, let's calculate the effective minimum detectable absorption 

coefficient, which we'll call  α min 𝛼min. We can use a simplified formula:  α 

min 𝛼min is approximately the Noise-Equivalent Power of our detector,  N E 

P NEP, divided by the product of the power interrogating the sample and 

the sample length. 

 α min ≈ N E P P i n t L .  

𝛼min ≈
NEP

𝑃int 𝐿
. 



In our case, the power is the huge intracavity power,  P i n t 𝑃int. 

Let's plug in some typical values. A good detector might have an  N E P 

NEP of about  10 n W 10 nW. From the previous slide, our  P i n t 𝑃int is  10 

W 10 W, and our sample length  L 𝐿 is  0.2 c m 0.2 cm. 

So,  α min 𝛼min is approximately  10 n W 10 nW divided by the product of  

10 W 10 W and  0.2 c m 0.2 cm. This works out to  10 × 10 − 9 W 2 W c m ,  

10 × 10−9 W

2 W cm
, 

which gives an  α min 𝛼min of  5 × 10 − 9 c m − 1 5 × 10−9 cm−1. 

This is a remarkable sensitivity. To put it in perspective, what would our 

sensitivity have been in a simple single-pass experiment using the same  

100 m W 100 mW laser? We would use  P 0 𝑃0 ( 0.1 W 0.1 W) instead of  P 

i n t 𝑃int ( 10 W 10 W) in our calculation. This would give a sensitivity a 

hundred times worse. The cavity provides a huge boost. 

The slide notes an improvement of approximately one thousand times over 

a single pass with the same  P 0 𝑃0. This is because the full analysis shows 

that the cavity enhances not only the power but also the effective path 

length. The total enhancement is related to a quantity called the cavity 

finesse, which for these parameters is about  314 314. This, combined with 

the power enhancement, readily leads to an overall sensitivity improvement 

of a factor of  1000 1000 or more. 
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We now pivot from our first strategy of path‐ length enhancement to our 

second major strategy: noise rejection through modulation. We will begin 

with the foundational technique of Frequency Modulation, or FM, 

Spectroscopy. 

The basic idea of FM spectroscopy is conceptually straightforward. Instead 

of using a laser with a fixed, stable frequency, we intentionally modulate, or 

"wobble," the laser's frequency back and forth in a sinusoidal pattern. This 

modulation is centered on the frequency we wish to probe. 

The instantaneous angular frequency of our laser, omega‐ sub‐ L of t, is 

described by the equation: 

 ω L ( t ) = ω 0 + a sin ⁡ ( Ω t ) .  

𝜔L(𝑡) = 𝜔0 + 𝑎 sin(𝛺𝑡). 

Let's carefully define these terms.  ω 0 𝜔0 is the center frequency of our 

laser, which we can tune slowly to scan across a spectral feature. 

Lowercase ' a 𝑎' is the modulation index or modulation depth. It determines 

how far in frequency the laser deviates from the center frequency. Its units 

are radians per second. 

Capital  Ω 𝛺 is the modulation angular frequency. This is the rate at which 

we wobble the frequency back and forth. Crucially, we choose  Ω 𝛺 to be a 

high frequency, typically in the kilohertz to megahertz range, for reasons 

we will see shortly. 

The core principle is this: as the laser's frequency sweeps back and forth 

across an absorption feature, the transmitted power will be modulated in 

response. If the laser's center frequency is on the side of an absorption 



line, one side of the frequency swing will be absorbed more than the other. 

This creates an imbalance, which results in a component of the transmitted 

power oscillating at the modulation frequency, capital  Ω 𝛺. This oscillating 

signal is what we will detect. 
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So, we've generated a tiny optical signal that's oscillating at a high 

frequency,  Ω 𝛺. How do we detect it? The key is an instrument called a 

lock-in amplifier. A lock-in amplifier is a sophisticated electronic device that 

acts as an extremely narrow bandpass filter combined with a phase-

sensitive detector. We provide it with a reference signal at our modulation 

frequency,  Ω 𝛺. The lock-in then looks at the signal from our photodetector 

and extracts only the component that is oscillating at that exact frequency 

and with a specific phase. It powerfully rejects noise at all other 

frequencies. 

Now, what is the nature of this signal that the lock-in amplifier measures? If 

we use a small modulation depth  a 𝑎—that is, a modulation depth much 

smaller than the linewidth of our absorption feature—it can be shown that 

the detected signal is proportional to the first derivative of the absorption 

coefficient with respect to frequency,  d α d ω 
𝑑𝛼

𝑑𝜔
. We have converted our 

absorption measurement into a slope measurement. 

This provides two enormous benefits: 

First, as we've motivated, it makes our measurement largely immune to 

broadband intensity noise. The dominant " 1 / f 1/𝑓" noise of the laser is 

concentrated at low frequencies, near DC. By modulating at a high 



frequency,  Ω 𝛺, we move our signal far away from this noise, into a quiet 

spectral region. 

Second, it provides excellent background cancellation. Things like 

absorption or reflection from cell windows, or slow drifts in laser power, are 

all very slow, low-frequency effects. Since our lock-in amplifier is only 

sensitive to signals at the high frequency  Ω 𝛺, these slow background 

effects are automatically rejected, leaving us with a clean, often near-zero, 

baseline. 
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This third benefit is really the ultimate consequence and the primary goal of 

the first two. By moving our signal to a high-frequency region to escape 

technical noise, and by using a lock-in amplifier to reject out-of-band noise, 

frequency modulation spectroscopy enables us to achieve shot-noise-

limited detection. 

Let's remind ourselves what this means. Shot noise is the fundamental 

quantum noise that arises from the discrete, particle-like nature of photons. 

Even a perfectly stable, classical light beam isn't truly constant; it's a 

stream of random photon arrivals. This randomness sets an absolute 

minimum noise floor for any optical measurement, a limit dictated by the 

laws of quantum mechanics. 

The statement here is that by using modulation techniques at frequencies 

in the kilohertz to megahertz range—or even higher—we can effectively 

eliminate all other "technical" sources of noise (like laser flicker, mechanical 

vibrations, electronic interference) to such a degree that the only significant 



noise source remaining is this fundamental shot noise. Reaching the shot 

noise limit is the holy grail of sensitive optical measurements, as it means 

your experiment is as sensitive as the laws of physics will allow for a given 

optical power. 
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This diagram provides a clear illustration of the principle of operation of FM 

spectroscopy. It consists of two panels, plotting frequency and power as a 

function of time. 

Let's first look at the top panel. The vertical axis is Frequency, and the 

horizontal axis is Time. The red curve shows the instantaneous frequency 

of our laser,  ω L 𝜔L. You can see it oscillating sinusoidally around a center 

frequency,  ω 0 𝜔0, with a modulation depth of ' a 𝑎'. In the background, the 

broad, blue-shaded feature represents the absorption profile of our sample,  

α ( ω ) 𝛼(𝜔), which has a characteristic linewidth,  γ 𝛾. As the red line 

oscillates, it samples different parts of this absorption profile. 

Now, look at the bottom panel. The vertical axis here is Transmitted Power,  

P t r a n s 𝑃trans, and the horizontal axis is again Time. This panel shows 

the consequence of the frequency modulation. As the laser's frequency 

sweeps across the absorption feature, the amount of light transmitted 

through the sample changes. The blue curve shows this time-dependent 

transmitted power. Notice that the power dips whenever the instantaneous 

frequency passes through the region of high absorption. Because the 

frequency is being modulated sinusoidally, the transmitted power is also 

modulated in a periodic, though not perfectly sinusoidal, way. 



This modulated signal, described by the equation  P t r a n s ( t ) ∝ e − α ( 

ω L ( t ) ) 𝑃trans(𝑡) ∝ 𝑒−𝛼(𝜔L(𝑡)), is what our photodetector sees. It is this 

signal that we feed into the lock-in amplifier, which will then extract the 

component oscillating at our chosen modulation frequency. 
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To understand precisely where the derivative lineshape comes from, let’s 

walk through a brief Taylor‐ series derivation of the modulated signal. 

First, we begin with the fundamental expression for the transmitted power,  

P T 𝑃T, at the instantaneous laser frequency,  ω L 𝜔L. This is simply the 

Beer–Lambert law: 

 P T ( ω L ) = P 0 exp [ − α ( ω L ) L ] .  

𝑃T(𝜔L) = 𝑃0exp[−𝛼(𝜔L) 𝐿]. 

The second step is the core of the derivation. We assume that our 

modulation depth,  a 𝑎, is small compared to the features of our spectrum. 

This allows us to perform a Taylor‐ series expansion of the transmitted 

power function,  P T ( ω L ) 𝑃T(𝜔L), around the center frequency,  ω 0 𝜔0. 

Remember that the frequency excursion from the center is  a sin ⁡ ( Ω t ) 

𝑎sin(𝛺𝑡). The Taylor expansion states that the function is approximately 

equal to its value at the center point, plus the first derivative at the center 

point times the small displacement, plus  1 2 
1

2
 the second derivative times 

the displacement squared, and so on. 

This gives us the expression on the slide: 



 P T ( ω L ) ≈ P T ( ω 0 ) + d P T d ω | ω 0 a sin ⁡ ( Ω t ) + 1 2 d 2 P T d ω 

2 | ω 0 a 2 sin 2 ⁡ ( Ω t ) + higher-order terms .  

𝑃T(𝜔L) ≈ 𝑃T(𝜔0) +
𝑑𝑃T

𝑑𝜔
|
𝜔0

 𝑎sin(𝛺𝑡) +
1

2

𝑑2 𝑃T

𝑑𝜔2 |
𝜔0

 𝑎2sin2(𝛺𝑡)

+ higher-order terms. 

This expansion breaks down our complex modulated signal into a series of 

simpler components. 
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Continuing our derivation, we now look at the terms in our Taylor 

expansion. 

The third step is to focus on the signal that our lock-in amplifier will detect 

when it’s tuned to the fundamental modulation frequency,  Ω 𝛺. This signal 

comes from the first-order term in the expansion, as it is the only one that 

oscillates purely at  sin ⁡ ( Ω t ) sin(𝛺𝑡). We can therefore write that the 

time-varying part of our transmitted power,  Δ P T ( t ) 𝛥𝑃T(𝑡), is 

approximately equal to: 

the derivative,  d P T d ω 
𝑑𝑃T

𝑑𝜔
, evaluated at  ω 0 𝜔0, multiplied by  a sin ⁡ ( 

Ω t ) 𝑎sin(𝛺𝑡). 

 Δ P T ( t ) ≈ d P T d ω | ω 0 a sin ⁡ ( Ω t ) .  

𝛥𝑃T(𝑡) ≈
𝑑𝑃T

𝑑𝜔
|
𝜔0

 𝑎 sin(𝛺𝑡). 



This shows us that the amplitude of the signal at frequency  Ω 𝛺 is directly 

proportional to the slope, or derivative, of the transmitted power curve at 

our chosen center frequency. 

The fourth step is to relate this derivative of the transmitted power back to 

the physical quantity we actually care about: the absorption coefficient,  α 

𝛼. We can do this using the small-signal approximation of the Beer-Lambert 

law, where  P T ≈ P 0 ( 1 − α L ) 𝑃T ≈ 𝑃0(1 − 𝛼𝐿). We then take the 

derivative of this expression with respect to  ω 𝜔.  P 0 𝑃0 and  L 𝐿 are 

constants, so we find that: 

The derivative,  d P T d ω 
𝑑𝑃T

𝑑𝜔
, is approximately equal to  − P 0 L d α d ω 

−𝑃0𝐿
𝑑𝛼

𝑑𝜔
. 

 d P T d ω ≈ − P 0 L d α d ω .  

𝑑𝑃T

𝑑𝜔
≈ −𝑃0𝐿

𝑑𝛼

𝑑𝜔
. 

The slope of the power curve is directly proportional to the negative of the 

slope of the absorption curve. 
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Now we arrive at the final step, where we put everything together to find the 

output of our lock-in amplifier. 

The lock-in amplifier measures the amplitude of the signal component that 

oscillates at the modulation frequency,  Ω 𝛺. From step 3, we know this 

amplitude is 'a' times the derivative  d P T d ω 
𝑑𝑃T

𝑑𝜔
. From step 4, we know 



that  d P T d ω 
𝑑𝑃T

𝑑𝜔
 is approximately  − P 0 L d α d ω −𝑃0𝐿 

𝑑𝛼

𝑑𝜔
. However, the 

signal itself also depends on  P 0 𝑃0. Let's revisit the previous slide. Ah, the 

derivation on the slide is slightly simplified. A more rigorous derivation 

would show that the final lock-in signal  S ( Ω ) 𝑆(𝛺) is proportional to  P 0 a 

L d α d ω 𝑃0 𝑎 𝐿 
𝑑𝛼

𝑑𝜔
. Let's assume the lowercase 'a' in the final equation on 

this slide is a combined constant. The key result is that the signal,  S ( Ω ) 

𝑆(𝛺), is proportional to: 

 S ( Ω ) ∝ − a L d α d ω | ω = ω 0 .  

𝑆(𝛺) ∝ − 𝑎 𝐿 
𝑑𝛼

𝑑𝜔
|
𝜔=𝜔0

. 

This is the central result of small-modulation FM spectroscopy. It states that 

the signal measured by the lock-in amplifier is not the absorption profile 

itself, but rather its first derivative. 

Thus, the crucial conclusion is that FM detection mathematically converts 

an absorption profile into a first derivative lineshape. In doing so, it has 

shifted our signal from DC to a high frequency,  Ω 𝛺, giving us all the 

powerful noise-rejection benefits that we have discussed. 
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What about the higher-order terms in that Taylor expansion, like the one 

with  a 2 sin 2 ⁡ ( Ω t ) 𝑎2sin2(𝛺𝑡)? They don't just disappear; they produce 

signals at higher harmonics of the modulation frequency. This leads to a 

powerful set of techniques broadly known as "Derivative Spectroscopy." 



A full Fourier analysis of the modulated signal reveals that it contains 

frequency components at all integer multiples of the fundamental 

modulation frequency,  Ω 𝛺. That is, at  n Ω 𝑛 𝛺, where  n 𝑛 can be one, 

two, three, and so on. 

We can use our lock-in amplifier to detect the signal at any of these 

harmonics, not just the fundamental. The general rules for what we 

measure are as follows, assuming a small modulation depth: 

- If we detect at an odd harmonic, where  n 𝑛 is 1, 3, 5, and so on, the 

signal will be proportional to the nth odd derivative of the absorption profile,  

d n α d ω n 
𝑑𝑛𝛼

𝑑𝜔𝑛
. These signals will be carried on sine terms, meaning they 

are anti-symmetric about the line center. - If we detect at an even 

harmonic, where  n 𝑛 is 2, 4, 6, and so on, the signal will be proportional to 

the nth even derivative. These signals will be carried on cosine terms, 

making them symmetric about the line center. 

This gives us an incredible tool: by simply changing the detection frequency 

of our lock-in amplifier, we can experimentally measure the first, second, 

third, or even higher derivatives of our spectral line, each of which reveals 

different information and has different advantages for analysis. 
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This slide presents the explicit mathematical forms for the signals at the 

first three harmonics, which are the most commonly used in practice. Let's 

examine them one by one. 



First, the signal at the fundamental frequency,  Ω 𝛺, which we denote  S ( 

Ω ) 𝑆(𝛺). This is the first harmonic, or 1-f signal. Its time-dependent form is: 

 S ( Ω ) = − a L d α d ω sin ⁡ ( Ω t )  

𝑆(𝛺) = − 𝑎 𝐿 
𝑑𝛼

𝑑𝜔
 sin(𝛺𝑡) 

The amplitude of this signal is proportional to the first derivative. 

Next, the signal at the second harmonic,  2 Ω 2𝛺, which we call the 2-f 

signal. Its form is: 

 S ( 2 Ω ) = + a 2 L 4 d 2 α d ω 2 cos ⁡ ( 2 Ω t )  

𝑆(2𝛺) = + 
𝑎2  𝐿

4
 
𝑑2𝛼

𝑑𝜔2  cos(2𝛺𝑡) 

The amplitude here is proportional to the second derivative of the 

absorption profile. Notice the prefactor contains an 'a-squared', which 

means for small modulation depths 'a', the second harmonic signal is 

generally smaller than the first. 

Finally, the signal at the third harmonic,  3 Ω 3𝛺, or the 3-f signal. Its form 

is: 

 S ( 3 Ω ) = + a 3 L 24 d 3 α d ω 3 sin ⁡ ( 3 Ω t )  

𝑆(3𝛺) = + 
𝑎3  𝐿

24
 
𝑑3𝛼

𝑑𝜔3
 sin(3𝛺𝑡) 

This signal is proportional to the third derivative, and its amplitude is even 

smaller, scaling as 'a-cubed'. 



These results show how we can directly access the different derivatives of 

our lineshape by tuning our detection electronics. 
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So, why would we want to measure these different harmonics? They have 

distinct shapes and properties that make them useful for different practical 

applications. 

The first derivative signal, obtained by detecting at  n = 1 𝑛 = 1, has that 

characteristic dispersive or 'S'-shape. Its most important feature is that it 

passes through zero exactly at the peak of the original absorption line. This 

zero-crossing point provides a very sharp, unambiguous marker for the line 

center. Furthermore, the signal around this zero-crossing is very steep, 

making it an ideal "error signal" for frequency stabilization. If the laser 

frequency drifts off the peak, a positive or negative voltage is generated, 

which can be fed back to the laser to correct its frequency. This is the 

fundamental principle behind many laser locking schemes, including the 

Pound-Drever-Hall technique. 

The second derivative signal, obtained by detecting at  n = 2 𝑛 = 2, has a 

very different character. It yields a symmetric peak that is centered 

precisely at the absorption maximum. Unlike the original absorption profile, 

however, this  2 f 2 𝑓 signal has a natural zero baseline away from the 

resonance. The height of this central peak is directly proportional to the 

absorber concentration. This combination of a sharp central feature and a 

flat, zero baseline makes the second derivative signal excellent for 



quantitative analysis—for accurately measuring how much of a substance 

is present. It's one of the most widely used techniques in trace gas sensing. 
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These two graphs provide a perfect visual comparison between the 

standard absorption profile and the first harmonic signal. 

In the top plot, we see the absorption coefficient,  α ( ω ) 𝛼(𝜔), plotted 

against frequency. It's a simple, symmetric peak, perhaps a Lorentzian or a 

Gaussian lineshape. The peak of the absorption is marked by the vertical 

dashed red line. 

In the bottom plot, we see the corresponding first harmonic signal,  S ( Ω ) 

𝑆(𝛺), which is proportional to the negative of the first derivative,  − d α d ω 

−
𝑑𝛼

𝑑𝜔
. As predicted by the mathematics, it has a dispersive, ‘S’-like shape. 

The most crucial feature to observe is that it passes exactly through zero at 

the precise frequency where the absorption is maximum. The steep, linear 

slope around this zero-crossing is what makes it such a superb 

discriminant for frequency locking applications. 

Page 36: 

This slide continues our visual exploration, showing the shapes of the 

second and third harmonic signals. The horizontal axis is labeled as 

"Frequency Detuning," which is the frequency  ( ω − ω 0 ) / Γ (𝜔 − 𝜔0)/𝛤. 

This allows us to see the universal shapes of these derivatives. 



Let's look at the top plot, which shows the second harmonic signal, 

proportional to the second derivative of alpha. As we discussed, this 

lineshape is symmetric. It has a strong, negative-going central peak that 

occurs exactly at the line center, at zero detuning. This central peak is 

flanked by two smaller, positive-going lobes. The sharp central feature on a 

zero baseline makes this ideal for quantitative measurements. 

Now, let's examine the bottom plot, showing the third harmonic signal, 

which is proportional to the third derivative. Like the first harmonic, this 

lineshape is anti-symmetric. It has a zero-crossing at the line center, but it 

exhibits more complex structure. It has a central positive lobe and two 

negative side lobes. While less commonly used than the first and second 

harmonics, the third derivative can sometimes be useful for resolving 

closely spaced or overlapping spectral features. 
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Now that we understand the power of frequency modulation, let's turn to 

the practical question of how we actually implement it. How do we make a 

laser's frequency wobble? This slide outlines the first of several common 

techniques. 

Technique 1 is resonator length modulation. This method is often used for 

gas lasers, like Helium-Neon lasers, or for lasers that use an external cavity 

for tuning, such as external cavity diode lasers. 

The implementation is conceptually simple: we mount one of the laser's 

end mirrors on a piezoelectric actuator, or PZT. A PZT is a ceramic 

material that physically expands or contracts when a voltage is applied 



across it. By applying a sinusoidal voltage to the PZT, we can make the 

mirror vibrate back and forth, thus modulating the physical length  d 𝑑 of 

the laser cavity. 

Since the laser's output frequency is determined by the cavity length (recall 

that  ν = q c 2 d 𝜈 =
𝑞𝑐

2𝑑
), modulating the length  d 𝑑 directly modulates the 

frequency  ν 𝜈. The relationship between the change in frequency,  Δ ν 𝛥𝜈, 

and the change in cavity length,  Δ d 𝛥𝑑, is given by the equation: 

 Δ ν = − q c 2 d 2 Δ d  

𝛥𝜈 = −
𝑞𝑐

2𝑑2
 𝛥𝑑 

This expression comes directly from differentiating the laser cavity 

resonance condition. 

The major limitation of this technique is speed. A PZT is a mechanical 

object; it has mass and inertia. You cannot oscillate it at extremely high 

frequencies. It has its own mechanical resonances that limit its useful 

operating range. Typically, this method is restricted to modulation 

frequencies,  Ω 𝛺, of at most a few kilohertz. This is often good enough to 

move away from the worst of the  1 / f 1/𝑓 noise, but it may not be fast 

enough to reach the true shot-noise limit. 
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For higher modulation frequencies, we need to employ faster, non-

mechanical methods. This slide introduces two more powerful techniques. 



Technique 2 is direct injection current modulation, which is primarily used 

for semiconductor diode lasers. The physics of a diode laser is such that its 

output frequency is dependent on the density of charge carriers in the 

semiconductor junction, which in turn is controlled by the injection current. 

Therefore, a very simple way to modulate the frequency is to add a small, 

high-frequency AC signal directly on top of the main DC drive current. This 

can be done with a simple function generator and a bias-T circuit. This 

method is incredibly effective and can achieve modulation frequencies up 

to hundreds of megahertz or even into the gigahertz range. The one 

significant drawback is that modulating the current also tends to modulate 

the laser's output power or amplitude. This unwanted amplitude 

modulation, known as residual amplitude modulation or RAM, can create 

spurious background signals that may limit sensitivity. 

Technique 3 is the cleanest and most versatile method: using an external 

electro-optic phase modulator, or EOM. An EOM is a special crystal, such 

as lithium niobate, whose refractive index changes in response to an 

applied electric field (this is the Pockels effect). We take the stable, single-

frequency output from our laser and pass it through this crystal. We then 

apply a high-frequency sinusoidal voltage across the crystal. This causes 

the crystal's refractive index 'n' to oscillate according to the equation: 

 n ( V ) = n 0 ( 1 + b sin ⁡ ( Ω t ) ) .  

𝑛(𝑉) = 𝑛0(1 + 𝑏sin(𝛺𝑡)). 

This oscillation in the refractive index modulates the optical path length 

through the crystal, which imposes a direct sinusoidal modulation on the 

phase of the light wave. This generates a phase deviation,  Δ ϕ m 𝛥𝜙m. As 



we will see, a pure phase modulation is extremely desirable and can 

operate at very high frequencies, well into the GHz range, with minimal 

unwanted amplitude modulation. 
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When we use an EOM to impose a phase modulation on our laser beam, 

we are doing something more profound than just "wobbling" the frequency. 

In the frequency domain, this action creates a whole family of new 

frequency components called sidebands. These sidebands appear at 

frequencies of  ω 0 ± n Ω 𝜔0 ± 𝑛𝛺. So, we have sidebands at  ω 0 ± Ω , ω 

0 ± 2 Ω , … 𝜔0 ± 𝛺,𝜔0 ± 2𝛺,…. The amplitudes of these sidebands are 

described by Bessel functions of the first kind,  J q 𝐽q, where the argument 

is the phase modulation depth,  Δ ϕ m 𝛥𝜙m. 

Now we arrive at a crucial distinction, as highlighted by the title of this slide: 

Phase vs. Amplitude Modulation, and its role in Noise Cancellation. 

Let's first consider Amplitude Modulation, or AM. In pure AM, the 

modulation process creates a carrier and just a single pair of sidebands, at  

ω 0 ± Ω 𝜔0 ± 𝛺. Crucially, in AM, these sidebands are created in-phase 

with the carrier wave. 

Now consider Phase Modulation, or PM, which is what an ideal EOM 

produces. PM also creates sidebands. For small modulation depths, the 

dominant sidebands are also at  ω 0 ± Ω 𝜔0 ± 𝛺. However, there is a 

critical difference: PM yields symmetric sidebands that have opposite 

phase. That is, the electric field of the upper sideband (at  ω 0 + Ω 𝜔0 + 𝛺) 

is  180 ∘  180∘ out of phase with the electric field of the lower sideband (at  



ω 0 − Ω 𝜔0 − 𝛺). This specific phase relationship is the key to the powerful 

noise cancellation properties of FM spectroscopy. 

Page 40: How does this opposite 

phase relationship in phase 

modulation lead to such effective 

noise cancellation? Let's walk 

through the process. 

Our photodetector is a square-law detector; it measures intensity, which is 

the square of the electric field. When our phase-modulated light hits the 

detector, several different frequency components beat against each other. 

The lock-in amplifier, tuned to the modulation frequency  Ω 𝛺, is sensitive 

to the beat note created between the strong central carrier and the two 

sidebands. 

Specifically, the carrier beats with the upper sideband, producing an 

electrical signal at their difference frequency, which is  Ω 𝛺. At the same 

time, the carrier beats with the lower sideband, also producing an electrical 

signal at their difference frequency,  Ω 𝛺. 

Now, consider the case without any absorption. The two sidebands have 

equal amplitude. Because their optical phases are opposite, the two 

electrical beat notes they produce at frequency  Ω 𝛺 are also 180 degrees 

out of phase with each other. Since they have equal amplitude and 



opposite phase, they sum together and perfectly cancel each other out. 

The result is a zero baseline signal. 

Now, let's introduce our sample, which absorbs some of the light at, say, 

the upper sideband's frequency. This reduces the amplitude of the upper 

sideband. Now, the two beat notes are no longer equal in magnitude. They 

no longer cancel perfectly. This imbalance creates a net, non-zero signal at 

the lock-in frequency  Ω 𝛺. This imbalance is our absorption signal. 

Here is the magic of the noise cancellation: any fluctuation in the intensity 

of the main laser is a "common-mode" fluctuation. It affects the power of 

the carrier and both sidebands equally and in phase. Since our detection 

method is sensitive only to the imbalance or difference between the 

sidebands, this common-mode noise is automatically subtracted out and 

cancels to first order. 

This is what provides the dramatic improvement in sensitivity. 
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This diagram provides an excellent visual explanation of the concepts we 

just discussed, comparing Amplitude Modulation on the left with Phase 

Modulation on the right. 

Let's start with the top row, which shows the case with no absorption. 

In panel (a), for AM, we see the frequency spectrum consists of the strong 

carrier at  ω 0 𝜔0 and two smaller sidebands at  ω 0 ± Ω 𝜔0 ± 𝛺. Crucially, 

they are all drawn as upward arrows, indicating they are in-phase. 



In panel (b), for PM, we see the carrier and two sidebands. But here, the 

lower sideband is drawn as a downward arrow, representing its opposite 

phase. Below this, the process at the detector is illustrated. The beat note 

between the carrier and the upper sideband,  B e a t ( C , U S B ) 

Beat(𝐶, USB), is a sine wave. The beat note with the lower sideband,  B e a 

t ( C , L S B ) Beat(𝐶, LSB), is a sine wave that is perfectly out of phase. 

When these two are summed (indicated by the  Σ 𝛴 symbol), the result is a 

flat line: "Perfect Cancellation  → → Zero Baseline Signal." 

Now, let's look at the bottom row, which shows what happens when there is 

absorption of the upper sideband. 

In panel (a) for AM, the upper sideband's amplitude is reduced. This 

imbalance in the total power is detected directly as an AM signal, which is 

highly susceptible to laser intensity noise. 

In panel (b) for PM, this is the key case. The absorption reduces the 

amplitude of the upper sideband. Now, the two beat notes are no longer 

equal in magnitude. When they are summed, they no longer cancel. A net 

sinusoidal signal at frequency  Ω 𝛺 appears. The diagram shows: 

"Imbalance  → → Non-Zero Signal at  Ω 𝛺". This signal, born out of an 

imbalance on a zero background, is our highly sensitive, noise-immune 

measurement. 
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We've established that modulating at a high frequency, capital  Ω 𝛺, is 

crucial for noise rejection. But how do we choose the optimal value for  Ω 

𝛺? 



First, we must remember that technical noise sources, like laser flicker and  

1 / f 1/𝑓 electronic noise, are most severe at low frequencies and decrease 

rapidly as frequency increases. Therefore, the higher we can make  Ω 𝛺, 

the better our noise rejection will be. 

The optimum region for  Ω 𝛺 also depends on the properties of the spectral 

line we are trying to measure. A good rule of thumb is given by the 

inequality on the slide: 

 Γ ≤ Ω ≤ 10 Γ  

𝛤 ≤ 𝛺 ≤ 10 𝛤 

The modulation frequency  Ω 𝛺, in units of radians per second, should be 

greater than or equal to the linewidth,  Γ 𝛤, and less than or equal to about 

ten times the linewidth. In terms of ordinary frequency in Hertz, this means 

the modulation frequency should be comparable to or a few times larger 

than the linewidth of the transition ( Γ / ( 2 π ) 𝛤/(2𝜋)). Modulating much 

slower than the linewidth means you're not really measuring a derivative, 

while modulating much faster can sometimes reduce the signal magnitude. 

However, if ultimate sensitivity is the goal, we can push  Ω 𝛺 to be very 

high, greater than one gigahertz. At these very high frequencies, we are far 

beyond the reach of almost all technical noise sources. This allows us to 

suppress all technical noise and reach the fundamental shot-noise limit. 
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Operating at very high modulation frequencies in the gigahertz range 

presents a practical challenge: most standard laboratory photodetectors 

and lock-in amplifiers are not designed to work at such high frequencies. 

To get around this, a clever technique called "two-tone FM" spectroscopy is 

often employed. This method allows us to get the noise-suppression 

benefits of GHz-frequency sidebands while performing the final electronic 

detection at a more manageable frequency, typically in the MHz range. It 

requires a down-conversion step before the lock-in amplifier, which we will 

touch on next. 

So, with all these considerations, what is a good practical rule of thumb for 

choosing the modulation frequency  Ω 𝛺? A very common and effective 

choice is to set the modulation frequency, capital  Ω 𝛺, to be approximately 

equal to the full-width-at-half-maximum, or FWHM, of the target absorption 

line. This usually provides a good balance, yielding a strong derivative 

signal while ensuring the modulation is fast enough to provide significant 

noise rejection. 
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Let's briefly outline the principle of Two-Tone Frequency-Modulation 

Spectroscopy. This is an elegant solution to the problem of wanting to use 

GHz modulation frequencies without needing GHz detection electronics. 

The process starts similarly to standard FM: a high-frequency carrier 

modulation is imposed on the laser beam using an EOM. Let's say we 

modulate at a few gigahertz. This creates the widely separated sidebands 

that are key to avoiding low-frequency laser noise. 



Here's the trick: the radio-frequency signal that drives the EOM is not a 

pure, single-frequency sine wave. Instead, the gigahertz drive signal is 

itself amplitude-modulated at a much lower frequency, for example, in the 

megahertz range. This generates what are effectively two closely spaced 

FM carriers, or "tones." The result on the optical beam is a more complex 

pattern of sidebands, with two main clusters separated by the GHz 

frequency, and within each cluster, sidebands separated by the MHz 

frequency. 

When this complex beam strikes the photodetector, a variety of beat notes 

are produced. Crucially, a beat note is generated between the two main 

tones. This beat note appears at the MHz difference frequency. 

This MHz signal, which still carries the absorption information from the 

widely spaced GHz sidebands, is now at a frequency that is perfectly 

manageable for a standard lock-in amplifier. 

The system still fully benefits from the gigahertz-scale separation of the 

sidebands from the carrier, which places them in the shot-noise-limited 

region, far from the 1/f noise of the laser. 
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The ultimate benefit of the two-tone FM technique is summarized here. It 

allows us to achieve the holy grail of shot-noise-limited detection, but it 

cleverly sidesteps the practical difficulty and expense of using gigahertz-

bandwidth photodetectors and lock-in amplifiers in the demodulation chain. 

It's a "best of both worlds" scenario. We get the supreme noise immunity 

that comes from probing our sample with frequencies separated by 



gigahertz, while performing all of our sensitive electronic detection and 

signal processing in the much more convenient and accessible megahertz 

frequency range. This makes it a powerful and widely used technique for 

pushing the absolute limits of absorption spectroscopy. 
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We now move to our third major strategy for high-sensitivity 

measurements: Intracavity Laser Absorption Spectroscopy, or ICLAS. The 

core principle of ICLAS is as simple as it is powerful. 

Instead of taking the output of a laser and passing it through an external 

sample cell, we place the sample directly inside the laser resonator itself, 

between the two laser mirrors. 

To understand why this is so powerful, we must recall how a laser works. 

The light inside a laser cavity bounces back and forth, being amplified by 

the gain medium on each pass. The intracavity field intensity builds up until 

the round-trip gain provided by the medium exactly equals the total round-

trip losses. These losses include the light transmitted through the output 

mirror and any absorption or scattering from components inside the cavity. 

The crucial consequence is that each photon inside the cavity circulates 

many, many times before it eventually leaks out. A typical photon might 

make hundreds or even thousands of round trips. This means that if our 

sample is inside the cavity, it is interrogated by the light not once, but 

hundreds or thousands of times. This results in a huge effective path 

length, which dramatically enhances the absorption signal. 



There are several ways to detect the effect of this intracavity absorption. 

The slide lists four key detection concepts. The first is to simply measure 

the fluorescence emitted from the sample. As the sample absorbs the very 

intense intracavity light, it will re-emit some of that energy as fluorescence, 

which we can detect from the side of the cell with a separate detector. 
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Let's continue with the other detection concepts for ICLAS. 

The second method is to monitor the change in the laser’s output power, 

which we would measure with a detector, detector 2, placed outside the 

output coupler. If the intracavity sample introduces an absorption loss at 

the laser’s frequency, the overall loss of the cavity increases. The laser will 

then stabilize at a new, lower output power. As we will see, this effect can 

be highly non-linear and extremely sensitive, especially when the laser is 

operated near its lasing threshold. 

The third method is to exploit the phenomenon of mode competition in 

multimode lasers. Many lasers, such as dye lasers or Ti:sapphire lasers, 

have a very broad gain profile and can oscillate on thousands of different 

longitudinal modes, or frequencies, simultaneously. If our sample 

introduces a narrow absorption loss that overlaps with just one of these 

modes, that mode will be at a disadvantage in the competition for gain 

against all the other modes. Its intensity can be drastically reduced, or even 

completely extinguished. 

The fourth concept is a powerful time-resolved method. Instead of letting 

the laser reach a steady state, we use what’s called a "step-function 



pump." We turn the laser on very quickly and observe how the different 

modes build up from noise over a very short time. Modes that experience 

absorption will grow much more slowly than their neighbors. In this dynamic 

method, the effective path length,  L e f f 𝐿eff, is simply the speed of light,  c 

𝑐, multiplied by the generation time,  t 𝑡. This can lead to astonishingly long 

effective path lengths. 

Page 48: 

This schematic provides a clear block diagram of a generic Intracavity 

Laser Absorption Spectroscopy, or ICLAS, experiment. 

At its core, we have a laser resonator, defined by a High Reflector (HR) 

mirror on the left and an Output Coupler (OC) mirror on the right. 

Inside this resonator, we have two key components. The first is the Gain 

Medium, which provides the optical amplification that makes the laser lase. 

This gain medium is energized by an external Pump Source. The diagram 

notes that this pump source could be a step-function for time-resolved 

experiments. 

The second, and most crucial, component inside the cavity is our Sample 

Cell. This contains the atoms or molecules we wish to study. 

The Intracavity Laser Field, represented by the red beam, circulates back 

and forth, passing through both the gain medium and the sample cell on 

every round trip. As we've discussed, this leads to an enormous Effective 

Path Length. In the time-resolved case, this is 

 L e f f = c t .  



𝐿eff = 𝑐 𝑡. 

The diagram shows two possible ways to get a signal. Detector 1 is placed 

to the side of the sample cell and measures the fluorescence that is emitted 

as the sample absorbs the intense intracavity light. The second detection 

path is to measure the light that transmits through the Output Coupler. This 

measures the final output power of the laser, which, as we've discussed, is 

also sensitive to the intracavity absorption. 
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Let's now develop a more quantitative understanding of ICLAS, starting 

with the simplest case: a single-mode laser operating in a steady state. 

We'll perform a simple power balance analysis. 

First, let's define the properties of our laser mirrors. The back mirror is a 

high reflector, so its reflectivity,  R 1 𝑅1, is very close to one. The front 

mirror is the output coupler, which is designed to transmit a small fraction of 

the light. We'll call its transmission  T 2 𝑇2. Therefore, its reflectivity,  R 2 

𝑅2, is  1 − T 2 1 − 𝑇2. 

Now, let's consider the relationship between the power inside the cavity,  P 

i n t 𝑃int, and the power that we measure coming out of the laser,  P o u t 

𝑃out. The output power is simply the fraction  T 2 𝑇2 of the intracavity power 

that hits the output mirror. Therefore, we can write: 

 P i n t = P o u t T 2 .  

𝑃int =
𝑃out
𝑇2

. 



We can define an intracavity power enhancement factor,  q 𝑞, as being 

equal to  1 / T 2 1/𝑇2. This gives the simple relation: 

 P i n t = q P o u t .  

𝑃int = 𝑞 𝑃out. 

For a typical laser with a 2% output coupler ( T 2 = 0.02 𝑇2 = 0.02), this 

enhancement factor  q 𝑞 is 50. The power inside is 50 times the power 

outside. 

Now, what is the total power absorbed by our sample per second? The 

absorbed power,  Δ P ( ω ) 𝛥𝑃(𝜔), is the single-pass absorption factor, 

which is  α ( ω ) 𝛼(𝜔) times the sample length  L 𝐿, multiplied by the power 

that is actually interrogating the sample. That power is the huge intracavity 

power,  P i n t 𝑃int. 

Substituting our expression for  P i n t 𝑃int, we find: 

 Δ P ( ω ) = q α ( ω ) L P o u t .  

𝛥𝑃(𝜔) = 𝑞 𝛼(𝜔) 𝐿 𝑃out. 

The power absorbed by the sample is enhanced by this same factor  q 𝑞. 

Page 50: 

So, the power absorbed by the sample is enhanced by this factor  q 𝑞, 

which is equal to one over the output coupler transmission,  T 2 𝑇2. For 

typical lasers,  T 2 𝑇2 can range from a few percent down to a fraction of a 

percent. This means the enhancement factor  q 𝑞 can readily be in the 

range of 50 to 500. This is a very significant enhancement. 



This leads to several possible measurement modalities. We can aim to 

detect the absorbed power,  Δ P 𝛥𝑃, directly. Since this absorbed power is 

enhanced by the large factor  q 𝑞, any detection method sensitive to 

absorbed energy will also have its sensitivity enhanced. 

For example, the absorbed energy heats the sample. In a gas, this heating 

will cause a pressure rise. We can detect this pressure rise with a sensitive 

microphone. This is the basis of photo-acoustic spectroscopy, and placing 

the photo-acoustic cell inside a laser cavity is a well-known method for 

boosting its sensitivity. 

Alternatively, as mentioned before, we can detect the fluorescence that is 

emitted after the molecule absorbs a photon. The amount of fluorescence 

will be proportional to the absorbed power,  Δ P 𝛥𝑃, and will therefore also 

be enhanced by the factor  q 𝑞. 
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Let's now analyze the second detection method: measuring the change in 

the laser's output power. This approach is particularly sensitive when the 

laser is operated very close to its lasing threshold. 

First, let's review the fundamental condition for steady-state laser 

operation. A laser reaches a stable output power when the gain it receives 

per round trip exactly balances the total losses it experiences per round 

trip. We call the saturated gain g-sub-s, and the total round-trip loss 

gamma. So, the threshold condition is: 

 g s = γ  



𝑔s = 𝛾 

The gain of a laser medium is not constant; it saturates. For a 

homogeneously broadened gain medium, the saturated gain g-sub-s is 

given by the formula: 

 g s = g 0 1 + P P s  

𝑔s =
𝑔0

1 +
𝑃
𝑃s

 

Here,  g 0 𝑔0 is the small-signal gain, which is the maximum gain available, 

determined by how hard we are pumping the laser.  P 𝑃 is the intracavity 

power, and  P s 𝑃s is the saturation power, which is a fundamental constant 

of the gain medium. This equation shows that as the power  P 𝑃 inside the 

laser builds up, the gain available for further amplification decreases. 

The laser is a self-regulating system. The power  P 𝑃 will automatically 

adjust itself until the saturated gain  g s 𝑔s drops to a value that exactly 

equals the total loss,  γ 𝛾. 
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By setting the saturated gain equal to the loss ( g s = γ 𝑔s = 𝛾) and solving 

the equation from the previous slide for the power  P 𝑃, we can find the 

steady-state intracavity power of the laser: 

 P = P s ( g 0 γ − 1 ) .  

𝑃 = 𝑃s (
𝑔0
𝛾
− 1). 



Now, let's introduce our weakly absorbing sample into the cavity. This 

introduces a small additional loss, which we'll call  Δ γ 𝛥𝛾. This additional 

loss is equal to the absorption coefficient  α 𝛼 times the round-trip path 

length through the sample, which is  2 L 2 𝐿: 

 Δ γ = α ⋅  2 L .  

𝛥𝛾 = 𝛼 ⋅ 2 𝐿. 

This new loss will cause the laser power to drop to a new, lower value,  P α 

𝑃𝛼. We want to find the relative change in power,  Δ P / P 𝛥𝑃/𝑃. 

The full derivation is a bit tedious, but it involves taking the derivative of the 

power expression with respect to the loss  γ 𝛾. The result, in the limit that  Δ 

γ 𝛥𝛾 is much smaller than  γ 𝛾, is shown on the slide: 

 Δ P P ≈ ( g 0 g 0 − γ ) 2 Δ γ γ .  

𝛥𝑃

𝑃
≈ (

𝑔0
𝑔0 − 𝛾

)
2 𝛥𝛾

𝛾
. 

Actually, the formula on the slide is slightly simplified, the final expression 

for the sensitivity enhancement factor Q is the key part. Let's focus on that. 

The response of the laser is highly non-linear. The sensitivity enhancement 

factor,  Q 𝑄, quantifies this non-linearity. It is the factor that multiplies our 

fractional added loss,  Δ γ / γ 𝛥𝛾/𝛾, to give our measured fractional power 

change,  Δ P / P 𝛥𝑃/𝑃. This enhancement factor is given by: 

 Q = g 0 γ ( g 0 − γ ) .  

𝑄 =
𝑔0

𝛾 (𝑔0 − 𝛾)
. 



This expression holds the key to the high sensitivity of this method. 
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Let's take a close look at the behavior of this sensitivity enhancement 

factor,  Q 𝑄, in two different operating regimes. 

First, let's consider the case where we are operating the laser far above its 

threshold. This means we are pumping it very hard, so the small-signal 

gain,  g 0 𝑔0, is much, much larger than the round-trip loss,  γ 𝛾. In this 

limit, the term in the denominator,  g 0 − γ 𝑔0 − 𝛾, is approximately equal to  

g 0 𝑔0. So, the expression for  Q 𝑄 simplifies to: 

 Q ≈ g 0 γ g 0 .  

𝑄 ≈
𝑔0
𝛾 𝑔0

. 

The  g 0 𝑔0s cancel, and we are left with  Q 𝑄 is approximately  1 / γ 1/𝛾. 

Since the loss  γ 𝛾 is dominated by the output coupling  T 2 𝑇2, this is 

essentially the same power enhancement factor ' q 𝑞' that we saw earlier. 

So, far above threshold, the enhancement is significant, but not 

extraordinary. 

Now for the exciting case: when we operate the laser very close to its 

threshold. In this regime, we reduce the pump power so that the small-

signal gain  g 0 𝑔0 becomes just barely larger than the loss  γ 𝛾. This 

means the term in the denominator,  g 0 − γ 𝑔0 − 𝛾, becomes a very, very 

small number. As this denominator term approaches zero, the 

enhancement factor  Q 𝑄 becomes huge, approaching infinity in principle. 



This suggests we could achieve unlimited sensitivity by operating precisely 

at the threshold. However, there is a catch. As we approach threshold, the 

laser becomes extremely sensitive not just to our sample's absorption, but 

to any small perturbation. It becomes highly susceptible to pump power 

noise, mechanical vibrations, and temperature fluctuations, making the 

output power very noisy and unstable. Therefore, in practice, there is 

always a trade-off between achieving maximum sensitivity and maintaining 

sufficient stability for a reliable measurement. 
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The analysis we just performed was for a laser with a homogeneously 

broadened gain medium, such as a dye, fiber, or solid-state laser. What 

happens in the case of a laser with an inhomogeneously broadened gain 

medium? A classic example is a gas laser, where the random thermal 

motion of the atoms leads to Doppler broadening. 

In an inhomogeneously broadened medium, the gain saturates differently 

with power. The relationship for the saturated gain,  g s 𝑔s, is: 

 g s = g 0 1 + I I s  

𝑔s =
𝑔0

√1 +
𝐼
𝐼s

 

where  I 𝐼 is the intracavity intensity. 

We can perform an analogous derivation to find the sensitivity to a small 

added loss. Without going through the detailed steps, the result for the 

fractional change in power is given on the slide: 



 Δ P P ≈ g 0 2 γ 2 Δ γ g 0 − γ ′  

𝛥𝑃

𝑃
≈
𝑔0
2

𝛾2
𝛥𝛾

𝑔0 − 𝛾′
 

(Here  γ ′ 𝛾′ is nearly identical to  γ 𝛾.) 

The key feature to notice in this result is the even stronger dependence on 

operating near threshold. The enhancement factor now contains a term that 

looks like  g 0 2 𝑔0
2, and the denominator still contains the  g 0 − γ 𝑔0 − 𝛾 

term that becomes very small near threshold. This even stronger non-

linearity demonstrates that ICLAS can be even more sensitive when 

performed with an inhomogeneously broadened laser operating close to its 

threshold. 
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Now let's explore one of the most powerful ICLAS techniques: Multimode 

ICLAS, which relies on the phenomenon of mode competition. 

First, let's set the scene. We are now considering a laser with a very broad 

gain profile, one that is wide enough to support lasing on a large number,  

N 𝑁, of longitudinal modes simultaneously. Imagine the laser output as a 

comb of thousands of discrete, sharp frequencies, all lasing at the same 

time under the same broad gain curve. 

Now, what happens if we place a sample inside this laser's cavity, and that 

sample has a very narrow absorption line that happens to overlap with just 

one of these thousands of modes? Let's call it mode  k 𝑘. This absorption 



introduces a small, additional loss,  Δ γ 𝛥𝛾, that is experienced only by 

mode  k 𝑘. 

The immediate effect is that the intensity of mode  k 𝑘,  I k 𝐼k, will begin to 

drop. But that's not the whole story. 

Because mode  k 𝑘's intensity has dropped, it is now extracting less energy 

from the shared gain medium. This means the overall gain saturation is 

slightly reduced, and the gain medium "recovers" a little. This extra 

available gain is now up for grabs. It doesn't help mode  k 𝑘, which is being 

actively suppressed by the absorption. Instead, this recovered gain is 

distributed among all the other, non-absorbing modes, boosting their 

intensities,  I j 𝐼j. 

This process, where all the modes fight for a common pool of gain, is called 

mode competition. The degree to which they are coupled is quantified by a 

coupling parameter,  K 𝐾, which ranges from  0 0 for no coupling to  1 1 for 

strong coupling. In many lasers, like dye lasers, this coupling is very strong, 

with  K 𝐾 close to one. 
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The consequence of this strong mode competition is a truly dramatic 

amplification of the effect of the absorption. 

The relative power change for the single absorbing mode, mode  k 𝑘, is 

given by the equation on this slide. Let's look at it closely. The first part of 

the expression,  g 0 Δ γ γ ( g 0 − γ ) 
𝑔0𝛥𝛾

𝛾(𝑔0−𝛾)
, is the same sensitivity 

enhancement factor we saw for the single-mode laser operating near 



threshold. But now, this is multiplied by a massive new factor: the quantity  

1 + K N 1 + 𝐾𝑁. 

Let's think about this new factor.  K 𝐾 is the coupling strength, which is 

close to one. And  N 𝑁 is the number of competing modes, which can be in 

the thousands. This means the initial sensitivity enhancement is multiplied 

by an additional factor of several thousand. 

In a laser with strong coupling ( K ≈ 1 𝐾 ≈ 1) and many modes, the result is 

an enormous contrast. Even a minuscule absorption on mode  k 𝑘 can 

cause a catastrophic loss of power for that mode. The absorbing mode can 

effectively vanish, as all of its energy is redistributed to the other modes. 

This creates what is known as a "spectral hole" in the laser's output 

spectrum. 

The detection method is then elegant and straightforward. We take the 

broadband output from our multimode ICLAS laser and disperse it using a 

high-resolution monochromator or spectrograph with a detector array. The 

recorded spectrum will show the broad profile of the laser, but with sharp, 

dark lines appearing exactly at the frequencies where our intracavity 

sample absorbs. By observing the positions and depths of these missing 

mode intensities, we can map out the complete absorption spectrum with 

incredible sensitivity, often in a single shot. 
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Let's now turn to the final ICLAS variant we'll discuss: the powerful Time-

Resolved ICLAS method, also known as the "Step-Function Pump" 

method. This is a dynamic technique, rather than a steady-state one. 



First, we define a characteristic time for the cavity,  t m 𝑡m, which is the 

mean lifetime of a photon in the empty cavity. This is related to the cavity's 

Q-factor and losses, and is typically in the range of milliseconds to 

microseconds. 

The experiment proceeds as follows. We start with the laser pump turned 

off. Then, at time  t = 0 𝑡 = 0, we apply the pump power very rapidly, ideally 

as a perfect step-function. 

At this moment, all of the possible laser modes within the gain profile begin 

to grow from the background of spontaneous emission noise. They start a 

race to build up their intensity, all competing for the same pool of gain. 

Crucially, we do not wait for the laser to reach a steady state. Instead, we 

use a fast optical switch, like an acousto-optic modulator or AOM, to act as 

a gate. We open this gate for a very short time at a specific delay,  t 𝑡, after 

the pump was turned on. This delay time  t 𝑡 is chosen to be less than the 

mode lifetime  t m 𝑡m. 

This gated pulse of light, which represents a snapshot of the laser 

spectrum at time  t 𝑡, is then sent to a spectrometer for analysis. For each 

mode  q 𝑞 in the spectrum, its intensity will depend on how quickly it was 

able to grow in that short time interval. 
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The growth of the power in each mode 'q',  P q ( t ) 𝑃q(𝑡), follows a specific 

mathematical law. The equation is shown on the slide: 



 P q ( t ) = P q ( 0 ) ,   its initial noise power,   × t π t m   × ( a large 

exponential term ) .  

𝑃q(𝑡) = 𝑃q(0),  its initial noise power, ×
𝑡

𝜋 𝑡m
 × (a large exponential term). 

Let's focus on the exponent, which contains two parts. The first part, 

involving  Δ ω g 𝛥𝜔g, describes a process called spectral narrowing, where 

the overall laser spectrum becomes narrower as time goes on. The second 

part is the key to the sensitivity: it's  e − α ( ω q ) c t 𝑒−𝛼(𝜔q) 𝑐 𝑡. 

This second term has the exact mathematical form of the Beer–Lambert 

law,  I = I 0 e − α L 𝐼 = 𝐼0 𝑒
−𝛼𝐿. By comparing these forms, we can see that 

in time-resolved ICLAS, the effective interaction length,  L eff 𝐿eff, is simply 

the speed of light,  c 𝑐, multiplied by the generation time,  t 𝑡. 

 L eff = c t .  

𝐿eff = 𝑐 𝑡. 

This leads to some astounding numbers. Let's take the numerical example. 

Suppose we let the laser evolve for a generation time 't' of just  10 − 4 s 

10−4 s, or  100 μ s 100 𝜇s. The effective path length is  L eff = c t 𝐿eff = 𝑐 𝑡, 

which is  3 × 10 8 m / s × 10 − 4 s 3 × 108 m/s × 10−4 s. This gives an 

effective path length of  3 × 10 4 m 3 × 104 m, or  30 k m 30 km! 

With a  30 k m 30 km effective path length, even a very weak absorption 

becomes easily detectable. If our detection system can measure a  1 % 1% 

dip in the intensity of a mode, this corresponds to a minimum detectable 

absorption coefficient,  α min 𝛼min, of approximately  3 × 10 − 9 c m − 1 3 ×



10−9 cm−1. This demonstrates the extraordinary sensitivity that can be 

achieved with this time-domain approach. 
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This diagram provides an excellent visualization of the Time-Resolved 

ICLAS, or step-function pump, method. 

The top graph illustrates the timing sequence. The horizontal axis is time. 

The blue line shows the pump power, which is off before  t = 0 𝑡 = 0, and 

then instantly steps up to a constant value. Below this timeline, we see two 

red and orange boxes representing two different detection windows, one at 

an early time  t 1 𝑡1, and another at a later time  t 2 𝑡2. 

The bottom graph shows the resulting laser spectrum at these two 

moments in time. The vertical axis is intensity and the horizontal axis is 

frequency. The red curve represents the laser spectrum as measured at 

the early time,  t 1 𝑡1. At this point, the laser has just started to turn on. The 

spectrum is still relatively broad. We can see two small dips in the 

spectrum, which correspond to two absorption lines in our intracavity 

sample. 

The orange curve represents the spectrum measured at the later time,  t 2 

𝑡2. Two important things have happened during the time interval between  t 

1 𝑡1 and  t 2 𝑡2. First, you can see that the overall width of the laser 

spectrum has decreased. This is the "spectral narrowing" effect. Second, 

and most importantly, look at the absorption dips. They have become 

dramatically deeper and more pronounced. The effect of the absorption is 

amplified over time, as the non-absorbing modes have had more time to 



out-compete the absorbing modes. This diagram beautifully illustrates how 

the absorption contrast grows over the generation time, leading to the 

technique's high sensitivity. 
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Let's now consider a classic and very elegant practical example that 

showcases the power and selectivity of ICLAS: the detection and 

differentiation of iodine isotopes. 

The experiment is set up as follows. We place an intracavity cell that 

contains a trace amount of the iodine isotope  I 127 𝐼127, in its molecular 

form  I 2 𝐼2. This cell is placed inside the cavity of a broadband dye laser. 

This dye laser is designed to be multimode, with a gain profile so broad that 

its output spectrum simultaneously covers the absorption bands of both the 

stable isotope,  I 127 𝐼127, and another isotope, the radioactive  I 129 𝐼129. 

Now, because of the powerful mode competition effect we discussed, the 

specific laser modes whose frequencies coincide with the absorption lines 

of the  I 127 𝐼127 that is inside the cavity will be strongly suppressed. 

To visualize this effect, we now use the output of this modified laser as a 

probe beam. We send this beam to two external fluorescence cells. Cell A 

contains a pure sample of  I 127 𝐼127 vapor. Cell B contains a pure sample 

of  I 129 𝐼129 vapor. 

What will happen in Cell A? The light entering Cell A from our ICLAS laser 

is specifically missing the frequencies required to excite  I 127 𝐼127 

molecules. The pump lines have been extinguished by the intracavity 



absorption. Therefore, the  I 127 𝐼127 in Cell A cannot be excited, and we 

will observe no fluorescence. 
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Now, what happens in the second external cell, Cell B, which contains pure 

I-129 vapor? 

The light coming from our ICLAS laser is only missing the frequencies 

corresponding to I-127 absorption. The laser is still oscillating strongly at all 

the frequencies corresponding to the absorption lines of the I-129 isotope. 

Therefore, when this light passes through Cell B, the I-129 molecules will 

readily absorb the light and will be excited, leading to the emission of 

strong fluorescence. 

The final result is striking and demonstrates the incredible selectivity of the 

technique. We see strong fluorescence from Cell B, but no fluorescence 

from Cell A. This experiment demonstrates isotope-specific extinction. We 

have effectively created a filter that removes light at the frequencies of one 

isotope, while leaving the light at the frequencies of another isotope 

untouched. 

The enhancement factor, Q, in such experiments can be enormous, on the 

order of  10 5 105. This highlights the ability of ICLAS to detect and 

differentiate species with extremely high sensitivity and specificity. 
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This diagram provides a clear visual summary of the iodine isotope 

selectivity experiment we've just described. 



On the far left, we start with our "Broadband Dye Laser," which has the 

intracavity cell containing the I-127 sample. This produces a "Modified 

Laser Output." 

The spectrum of this modified output is shown in the graph at the top. The 

overall shape is the broad gain profile of the dye laser. However, 

superimposed on this are sharp, dark lines. These are the "Suppressed 

modes at 127-I-2 frequencies." The intracavity absorption has effectively 

punched holes in the laser spectrum. Meanwhile, the "Modes still present at 

129-I-2 frequencies" remain at full intensity. 

This modified laser beam is then directed to the two "External Fluorescence 

Cells." The beam enters Cell A, which contains pure I-127. Since the pump 

lines for I-127 are missing from the beam, the result is "NO 

FLUORESCENCE." The beam then enters Cell B, which contains pure I-

129. The pump lines for I-129 are present in the beam, so the result is 

"STRONG FLUORESCENCE." 

This simple and elegant diagram perfectly captures the power of multimode 

ICLAS to act as an ultra-sensitive, species-specific filter. 
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Like any experimental technique, ICLAS has a unique set of advantages 

and limitations. Let's summarize the pros and cons. 

First, the Pros: 

The primary advantage is the enormous effective path length,  L e f f 𝐿eff, 

that can be achieved. As we saw in the time-resolved case, this can easily 



reach tens or even thousands of kilometers, providing unparalleled 

sensitivity for detecting weak absorptions. 

Second, when using a multimode laser, ICLAS allows for simultaneous 

broadband measurement. We can capture an entire spectral region in a 

single laser shot, which makes the technique very fast and efficient for 

spectroscopic surveys. 

Third, because of its extreme sensitivity, ICLAS is an excellent tool for 

studying very weak spectral features that are inaccessible with other 

methods. This includes high overtone bands of molecules and quantum-

mechanically forbidden transitions, which are often of great interest for 

fundamental physics and chemistry. 

Now for the Cons: 

The main drawback is that the technique's power is also its vulnerability. 

Because it relies on the delicate balance of the laser's internal dynamics, it 

requires a very stable laser cavity. The system is extremely sensitive to any 

optical feedback from outside the cavity and requires meticulous alignment 

and mechanical and thermal stability. 
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Continuing with the limitations of ICLAS: 

Near-threshold operation, while providing the highest theoretical sensitivity, 

is also the regime where the laser is most prone to intensity noise and to 

"mode hops," where the laser frequency jumps uncontrollably between 

different longitudinal modes. 



Furthermore, the sample itself can perturb the laser's operation in ways 

beyond simple absorption. A sample that is highly scattering, or one that 

causes significant gain depletion, can disrupt the lasing process itself, 

making the measurement unreliable. 

A significant practical limitation is that the laser's gain medium and the 

sample cell must coexist within the same optical cavity. This often means 

they must share the same pressure and thermal environment, which can 

limit the range of conditions that can be studied. For example, it is difficult 

to perform ICLAS on high-pressure samples if the gain medium requires 

low pressure to operate. 

Fortunately, there are mitigations for these problems. A major one is to 

move from an active ICLAS setup to a passive cavity setup. Instead of 

placing the sample inside the active laser cavity, we can use an external 

passive enhancement cavity, like the Fabry-Pérot systems we discussed 

earlier. We can then use an optical isolator between the laser and the 

passive cavity to completely prevent any destabilizing feedback from 

reaching the laser, giving us the best of both worlds: a stable laser and a 

high-power environment for our sample. 
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Here are a couple more advanced mitigation strategies to overcome the 

limitations of ICLAS. 

One issue with standard linear laser cavities is a phenomenon called 

"spatial hole burning." The counter-propagating beams inside a linear 

cavity create a standing wave pattern of the electric field, which has nodes 



(points of zero intensity) and antinodes (points of maximum intensity). If our 

absorbing atoms or molecules happen to be located at the nodes, they will 

not interact with the laser field, reducing the sensitivity. A very effective way 

to avoid this is to employ a ring-laser geometry. In a ring laser, the light is 

constrained to travel in only one direction around a closed loop. This 

creates a traveling wave, not a standing wave, which has a uniform 

intensity profile. This ensures that all the absorbers within the beam path 

interact equally with the laser field. 

Another mitigation, which is essential for any high-performance system, is 

to implement active stabilization. Instead of just trying to build a passively 

stable system, we can use electronic feedback loops to actively control the 

critical parameters. This includes stabilizing the power of the pump source 

and actively stabilizing the length of the laser cavity using the very locking 

techniques we've already discussed. By actively fighting against sources of 

noise and drift, we can achieve robust, high-sensitivity operation. 
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This slide provides an excellent summary of the enhancement factors for 

the various techniques we have discussed, allowing us to compare their 

power and effectiveness on a common scale. 

Let's start with our baseline: a simple, single-pass absorption 

measurement. Here, the effective path length,  L e f f 𝐿eff, is just the 

physical length,  L 𝐿. We define its enhancement factor,  Q 𝑄, as being 

equal to  1 1. 



Next, the multipass cell. Here,  L e f f 𝐿eff is  q L 𝑞𝐿, where  q 𝑞, the number 

of passes, is typically in the range of 50 to 200. This is a simple, robust, 

and significant improvement. 

Third, the external high-Q cavity. Here, the power gain inside the cavity is 

approximately  1 1 − R 
1

1−𝑅
. The effective path length enhancement is on 

the order of  2 R 1 − R 
2 𝑅

1−𝑅
. For a typical high-quality mirror, this also results 

in an enhancement factor of a few hundred, similar to a multipass cell, but 

with the added benefit of a massive power buildup. 

Fourth, FM derivative detection. This enhances sensitivity in a different 

way. It doesn't increase the path length, but it reduces the noise bandwidth 

by using a lock-in amplifier. This results in an effective signal-to-noise ratio, 

or SNR, improvement of typically 10 to 1000 times, depending on the 

modulation frequency. 

Finally, intracavity techniques. For a single-mode ICLAS system, the 

enhancement factor  Q 𝑄 is equal to  1 T 2 
1

𝑇2
, the output coupling, which is 

typically in the range of 50 to 500. This can be even higher when operated 

near the laser's threshold. 
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Continuing our summary of enhancement factors, we now come to the 

most powerful techniques. 

For an intracavity system that is multimode and strongly coupled, we start 

with the basic intracavity enhancement factor, but this is then multiplied by 

the additional mode competition factor, which is  1 + K N 1 + 𝐾𝑁. This can 



provide an additional multiplicative factor of  10 3 103 to  10 4 104. This 

combination leads to truly enormous overall enhancement factors. 

Finally, for time-resolved intracavity spectroscopy, the enhancement comes 

from the effective path length being equal to  c t 𝑐𝑡. This can result in a path 

length enhancement of  10 5 105 to  10 8 108 times that of a single pass. 

These numbers are staggering and represent the pinnacle of path-length 

enhancement techniques. 

This summary clearly shows the hierarchy of techniques, from simple 

multipass cells providing modest gains to advanced intracavity methods 

that push sensitivities into truly extraordinary regimes. 
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This slide transitions us from theory to the practical reality of building an 

ultra-sensitive spectroscopic setup. It provides an excellent and 

comprehensive design checklist that anyone embarking on such a project 

should consider. 

Let's go through the main categories: 

First, the Source. You need a high-quality laser that is single-mode, has a 

narrow linewidth, and is tunable over the spectral range of interest. 

Critically, you must use an output isolator to prevent any back-reflections 

from destabilizing the laser. 

Second, the Optics. For any cavity-based method, precise mode-matching 

is absolutely essential. You should aim for a coupling efficiency of 95% or 

better. And your mirror coatings must be superb, with very high reflectivity 



and, just as importantly, extremely low scattering loss, as scattered light 

can create spurious interference fringes. 

Third, the Electronics. If using an EOM, you need a high-frequency driver 

with low phase noise. Your detection chain—the photodiode and the 

transimpedance amplifier—must be low-noise and have sufficient 

bandwidth for your modulation frequency. And a modern, digital lock-in 

amplifier with a selectable time constant is an indispensable tool. 

Fourth, Sample Handling. You need a well-designed sample cell, perhaps 

one that is pressure-tunable and has temperature control. You also need to 

be meticulous about gas purification to remove any parasitic absorbers, like 

water vapor, that could create interfering signals. 

Finally, Data Processing. Your job isn't done when you acquire the data. 

You need robust software to perform a simultaneous fit of your data, 

perhaps using multiple derivative orders, to accurately extract the 

absorption coefficient  α ( ω ) 𝛼(𝜔). And crucially, you must always perform 

a calibration of your system using a known reference gas, such as 

acetylene, which has a well-characterized and strong absorption spectrum. 
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To bring all these concepts together, let’s walk through an example 

experimental workflow for a state-of-the-art experiment, such as a Noise-

Immune Cavity-Enhanced FM spectroscopy setup. 

Step 1: Alignment. This is often the most painstaking part. First, you must 

align your laser beam to pass cleanly through your electro-optic modulator, 

or EOM. Then, it goes through the mode-matching telescope. Finally, you 



must align this shaped beam to perfectly couple into your high-finesse 

enhancement cavity, which contains your absorption cell. 

Step 2: Lock the cavity. Once you have light successfully building up inside 

the cavity, you need to engage the feedback lock to keep it on resonance. 

You would typically use the Pound-Drever-Hall, or PDH, technique. This 

method cleverly leverages the existing FM sidebands that are generated by 

your EOM to create a very robust error signal, so this step integrates 

naturally into an FM experiment. 

Step 3: Set the modulation index. With the cavity locked, you now need to 

optimize the modulation parameters. You would adjust the radio-frequency 

power going to your EOM to set the modulation index,  a 𝑎, to an optimal 

value. A common strategy is to set it such that the power in the carrier 

(related to the Bessel function  J 0 ( a ) 𝐽0(𝑎)) is approximately equal to the 

power in the first-order sidebands (related to  J 1 ( a ) 𝐽1(𝑎)). This provides 

a good balance for generating a strong signal. 
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experimental workflow 

Step 4: Sweep and record. With the system aligned, locked, and optimized, 

you are now ready to acquire data. You would program your laser to sweep 

its center frequency slowly across the target molecular transition. While the 

laser is sweeping, you record the output signal from your lock-in amplifier. 

This will trace out the characteristic derivative-shaped spectrum of your 

absorption line. 



Step 5: Convert the signal. The raw data you record is a voltage from the 

lock-in amplifier as a function of laser frequency. The next crucial step is to 

convert this derivative signal back into an absolute absorption spectrum,  α 

( ω ) 𝛼(𝜔). This requires a calibrated physical model of your experiment. 

You need to know your modulation index  a 𝑎, the effective path length  L e 

f f 𝐿eff provided by your cavity, and the responsivity of your detector and 

electronics. By fitting your derivative data to a theoretical model, you can 

extract the quantitative absorption coefficient. 

Step 6: Validate. This is the final and most important step for any 

quantitative measurement. You must validate your entire system and your 

analysis model. This is typically done by injecting a calibrated gas mixture 

with a precisely known concentration into your cell. You then perform the 

measurement and check if your result matches the known value. If there is 

a discrepancy, you can refine your model and your noise-equivalent power 

(NEP) budget until your system provides accurate and reliable results. 
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As we draw this chapter to a close, let's reflect on some concluding 

remarks. 

The first, and perhaps most important, takeaway is that high-sensitivity 

absorption spectroscopy is not a single discipline. It is a deeply multi-

disciplinary optimisation problem. To design, build, and operate a state-of-

the-art experiment, one must be an expert in three distinct but 

interconnected fields: 



1. Photonics: This includes the design and alignment of high-Q optical 

cavities, understanding Gaussian beam optics for mode-matching, and 

selecting and characterizing low-noise, narrow-linewidth lasers. 

2. Electronics: This involves the world of radio-frequency and microwave 

engineering for generating fast and stable modulation, designing low-noise 

detection circuits, and mastering the theory and practice of phase-sensitive 

lock-in detection. 

3. Spectroscopic theory: This is the physics of interpreting the data. It 

requires a deep understanding of lineshape theory, the ability to model the 

complex derivative signals generated by modulation techniques, and the 

statistical methods required to fit experimental data to these models to 

extract meaningful, quantitative results. 

It is the synergy and mastery of all three of these areas that allows 

experimentalists to push the frontiers of what is detectable. 
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The second major conclusion is that the powerful combination of our two 

main strategies—path-length enhancement and noise-rejection 

modulation—routinely achieves detection limits that were previously 

thought to be impossible. These are not just incremental improvements; 

they represent many orders of magnitude in progress, allowing us to move 

from detecting parts-per-million to parts-per-billion, parts-per-trillion, and in 

some cases, even parts-per-quadrillion. 

Mastery of these techniques is far more than just an academic exercise in 

pushing instrumental limits. It opens the doors to transformative research 



and new capabilities across a vast range of scientific and technological 

fields. 

For example: 

1. In climate science, these methods are used for ultra-trace detection of 

greenhouse gases, atmospheric pollutants, and reactive chemical 

intermediates that govern the chemistry of our atmosphere. 

2. In fundamental physics, they are used to perform some of the most 

precise tests of our physical laws, by searching for tiny, parity-violating 

energy shifts in chiral molecules, or by measuring the frequencies of 

forbidden transitions in simple atoms to test the predictions of quantum 

electrodynamics. 

3. In medical diagnostics, there is a burgeoning field of breath analysis, 

where the trace volatile organic compounds in a patient's breath are 

measured to provide a non-invasive signature of metabolic processes and 

diseases. 
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The applications of these powerful techniques extend even further. 

4. In engineering, they are used for combustion and plasma monitoring. 

These methods allow us to peer inside the harsh environment of an internal 

combustion engine or an industrial plasma reactor to monitor chemical 

reactions and optimize efficiency in real-time. 



Finally, let's look to the future. This field is by no means static. Continual 

technological advances promise to deliver even greater sensitivity and 

functionality in the coming years. 

For example, the development of optical frequency combs provides a way 

to perform massively parallel, broadband spectroscopy with thousands of 

ultra-precise laser lines at once. The development of whispering-gallery-

mode micro-cavities allows us to create resonators with astronomical Q-

factors on the scale of a microchip. And the field of integrated photonics 

promises to move these complex, table-sized experiments onto a single, 

compact, and robust photonic chip. 

These advances promise a new generation of ultra-sensitive spectrometers 

that will find applications we haven't even dreamed of yet. The quest to 

measure the smallest signals and to detect the undetectable is a journey 

that continues to be at the very heart of experimental physics. 

Thank you. 


