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Good morning, everyone. Welcome to this section of our graduate course in Laser 

Spectroscopy. I'm Distinguished Professor Dr M A Gondal, and it's a pleasure to 

have you in this advanced graduate physics course. 

Today, we embark on a fascinating and incredibly powerful topic, one that 

represents a significant leap forward in the art and science of measuring 

vanishingly small absorptions. As you can see from the title slide, we will be 

delving into Chapter 1.2.4 of our course notes, focusing on a technique that has 

truly revolutionized trace species detection. 
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The topic for today's lecture is Cavity Ring-Down Spectroscopy, which is almost 

universally known by its acronym, C. R. D. S. 

Now, before we dive into the mathematics and the experimental schematics, I want 

you to hold a central idea in your mind. 

The genius of CRDS lies in a fundamental shift in perspective. For over a century, 

traditional absorption spectroscopy, governed by the Beer-Lambert law, has been 

about measuring a change in light intensity. You measure how much light you start 

with, how much light gets through your sample, and the difference tells you about 

the absorption. This is simple and effective, but it has a critical weakness: it is 

exquisitely sensitive to any fluctuations in your light source. If your laser power 

flickers, your measurement is compromised. 



CRDS sidesteps this problem entirely. It doesn't measure intensity; it measures 

time. Specifically, it measures the characteristic time it takes for light to die out, or 

"ring down," inside a highly reflective optical cavity. As we will see, this time 

constant is directly related to the total losses within the cavity, including the 

absorption from our sample of interest. By measuring a time constant instead of an 

intensity ratio, CRDS becomes almost completely insensitive to the very laser 

power fluctuations that plague traditional methods. This is the secret to its 

extraordinary sensitivity and precision. So, let's begin our detailed exploration of 

how this remarkable technique works. 
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Alright, let's formally define what we're talking about. What is Cavity Ring-Down 

Spectroscopy? 

As the first bullet point states, CRDS is an absorption-measurement technique. Its 

primary application, and where it truly excels, is in determining the concentration 

of very weakly absorbing species. Think about trying to detect parts-per-billion or 

even parts-per-trillion of a pollutant in the atmosphere, or measuring a highly 

forbidden molecular transition. These are signals that would be completely buried 

in the noise of a conventional spectrometer. 

The core of the method is to monitor how rapidly light energy "rings down"—or, 

more formally, decays—inside a what we call a high-finesse optical cavity. We'll 

define finesse more rigorously later, but for now, just think of a cavity made of two 

of the best mirrors money can buy, mirrors that are so reflective that a photon of 

light can bounce back and forth between them thousands, or even tens of 

thousands, of times before it's lost. 



This brings us to the second, crucial point, which I alluded to in my introduction. 

Instead of measuring an absolute transmitted intensity, CRDS measures a time 

constant, which we'll denote with the Greek letter  τ 𝜏. 

Think about it like striking a bell. A high-quality bell rings for a long time; its 

sound decays slowly. If you put your hand on the bell, you introduce a new loss 

mechanism—damping—and the sound dies out much more quickly. The bell's 

"ring-down time" gets shorter. In CRDS, our optical cavity is the bell, the light is 

the sound, and the absorbing gas sample inside the cavity is the hand that damps 

the ringing. By measuring how much the ring-down time shortens, we can quantify 

the absorption. The asterisk here highlights the key benefit: this method inherently 

removes most errors caused by laser power fluctuations. The initial brightness of 

the light pulse doesn't affect the rate at which it decays, just as how hard you strike 

the bell doesn't affect the pitch or the decay rate, only the initial volume. 
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Let's continue building this physical picture. How is a measurement actually 

performed? 

First, a short laser pulse is injected into the space between two mirrors. The 

defining characteristic of these mirrors is their incredibly high reflectivity, which 

we denote with a capital  R 𝑅. As the slide notes, this value is extremely close to 

unity—typically,  R ≥ 0.999 𝑅 ≥ 0.999. That's  99.9 % 99.9% reflective, and often 

we use mirrors that are  99.99 % 99.99% or even  99.999 % 99.999% reflective. 

Because the mirrors are not perfectly reflective, a tiny, tiny fraction of the light 

escapes, or "leaks out," through the second mirror on each and every round-trip the 

pulse makes inside the cavity. A photodetector placed behind this second mirror 



will therefore see a train of successively weaker pulses, one for each time the main 

pulse hits that mirror. It is the exponential decay of the intensity of this leakage 

train that we record and analyze. 

Now, consider the second bullet point. This is the heart of the measurement. In an 

empty, pristine cavity, the decay time is determined solely by the intrinsic losses of 

the mirrors themselves—their transmission and any scatter or absorption losses. 

We can measure this "empty cavity" decay time, let's call it  τ 0 𝜏0. Then, we 

introduce our sample—a gas, for instance—into the cavity. This gas provides a 

new channel for energy loss: molecular absorption. Any additional absorption 

inside the cavity provides another damping mechanism, which, as the slide says, 

slightly shortens the decay time. We measure this new, shorter decay time, let's call 

it  τ 𝜏. 

By simply comparing these two decay times—the one with the absorber and the 

one without—we can isolate the loss due solely to the absorber. This comparison 

directly yields the sample's absorption coefficient, which we denote with the Greek 

letter  α 𝛼. The entire measurement boils down to two timing measurements. 
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This diagram provides a clear, simple schematic of the fundamental CRDS setup. 

Let's walk through it together. 

On the far left, we have the source of a laser pulse, represented by the thick red line 

entering the system. This pulse travels towards and enters an optical cavity. 

The cavity itself is defined by two concave mirrors, labeled Mirror 1 and Mirror 2, 

facing each other. The physical distance between the mirrors is the cavity length, 



labeled with a capital  L 𝐿. You'll notice the specifications for the mirrors:  R ≥ 

0.999 𝑅 ≥ 0.999. These are the super-mirrors we just discussed. 

The laser pulse enters through Mirror 1 and becomes trapped inside the cavity. It 

then begins to bounce back and forth between the two mirrors. The blue curved 

arrows illustrate this bouncing path. The total distance traveled for one complete 

back-and-forth trip is, of course, twice the cavity length, so the round-trip distance 

is  2 L 2 𝐿. 

Each time the trapped pulse strikes Mirror 2, a tiny fraction of its energy leaks 

through. This is shown as the “Leakage Path.” This leaking light is captured by a 

Photodetector placed just behind Mirror 2. 

So, in a single event, we inject a pulse. It bounces back and forth many, many 

times. And with each bounce on Mirror 2, a small pulse of light emerges, gets 

detected, and the photodetector records a signal that decays over time. It is this 

decay curve whose time constant we need to measure. The concept is beautifully 

simple, yet profoundly powerful. 
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Let's now consider the historical motivation for developing CRDS and get a 

quantitative feel for its sensitivity. 

Traditional single-pass absorption measurements, where you simply shine a laser 

through a sample cell of length  L 𝐿, run into trouble very quickly. As the first 

bullet point says, they struggle when the absorption length, capital  L 𝐿, is 

limited—perhaps you only have a small sample cell—or, more fundamentally, 

when the absorption coefficient,  α 𝛼, is so small that the total absorption, which is 



the product  α L 𝛼𝐿, is smaller than the noise on your detector. If your laser power 

fluctuates by one percent, you can't possibly hope to measure an absorption of zero 

point one percent. 

To combat this, researchers developed early "long-path" methods. You may have 

heard of Herriott cells or White cells. These are clever optical systems using 

specially shaped mirrors to fold a long optical path into a compact physical 

volume. They effectively increase the interaction length  L 𝐿 by making the beam 

pass through the sample many times—perhaps 50 or 100 times. This increases the 

total absorption,  α L 𝛼𝐿, making it easier to measure. However, these multipass 

cells can be very tricky to align and are often sensitive to vibrations. 

This is where CRDS entered the scene, primarily from the mid-1990s onward, and 

raised the bar for sensitivity by orders of magnitude. The reason is stated in the 

third bullet point, and it's a critical concept. The effective path length,  L e f f 𝐿eff, 

in CRDS is given by the physical length of the cavity,  L 𝐿, divided by the total 

losses per pass, which for an empty cavity is approximately one minus the 

reflectivity,  R 𝑅. So,  L e f f 𝐿eff equals  L 𝐿 divided by the quantity one minus  R 

𝑅. 

 L e f f = L 1 − R .  

𝐿eff =
𝐿

1 − 𝑅
. 

Let's put some numbers to this. 

Page 7: 



Let's continue that thought. If we have a cavity that is just one meter long—a very 

manageable size for a lab bench—and we use mirrors with a reflectivity  R 𝑅 of  

0.9999 0.9999 (that's four nines), what is our effective path length? 

Well,  1 − R = 1 − 0.9999 1 − 𝑅 = 1 − 0.9999, which is  10 − 4 10−4. So,  L e f f 

𝐿eff is one meter divided by  10 − 4 10−4. This gives an effective path length of  10 

4 104 meters, which is ten kilometers! We have created a ten-kilometer-long 

absorption cell on a one-meter optical bench. This is the magic of the high-finesse 

optical cavity. It effectively folds the optical path thousands of times. 

This enormous path length amplification means even a tiny absorption coefficient,  

α 𝛼, results in a measurable effect. Furthermore, as we've stressed, the 

measurement itself is a time constant. And time constants can be measured with 

sub-percent precision, even when the signal itself is very weak. A decaying 

exponential is a mathematically simple and robust function to fit. 

The result of all this is truly astonishing achievements in sensitivity. The last bullet 

point notes that detection limits for the absorption coefficient,  α 𝛼, can get down 

to approximately  α ≈ 10 − 11 c m − 1 / H z .  

𝛼 ≈ 10−11 cm−1/√Hz. 

Let's unpack that unit. Inverse centimeters is the standard unit for  α 𝛼. The “per 

root Hertz” part tells us about the averaging time. It means that with one second of 

signal averaging, we can achieve a sensitivity of  10 − 11 10−11 inverse 

centimeters. This allows for the detection of extremely rare molecules or very 

weak transitions that were previously inaccessible. 
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This bar chart provides a wonderful visual summary of the evolution of 

spectroscopic sensitivity, putting CRDS into context. Let's analyze it carefully. 

The horizontal axis represents different spectroscopic techniques. The vertical axis 

is the Minimum Detectable Absorption, which we call  α min 𝛼min, plotted on a 

logarithmic scale in units of  c m − 1 cm−1. Remember, a lower value on this chart 

means higher sensitivity, which is what we're striving for. 

Let's start on the left. The first bar is for a "Single-Pass" measurement. Here, the 

effective path length,  L e f f 𝐿eff, is just the physical length of our sample cell, say 

ten centimeters. The minimum detectable  α 𝛼 is around  10 − 4 10−4. This is 

respectable, but not great for trace detection. 

Moving to the next bar, "Multipass." This represents techniques like the Herriott 

and White cells we mentioned. By folding the path, we increase  L e f f 𝐿eff to 

somewhere between 10 and 100 meters. As a direct result, our sensitivity improves 

dramatically. The  α min 𝛼min drops by about two orders of magnitude, down to 

around  10 − 6 10−6. A significant improvement. 

The third bar is for "Intracavity Laser Absorption Spectroscopy," or ICLAS. This 

is another very sensitive technique where the absorbing sample is placed inside the 

laser cavity itself. It relies on different principles involving mode competition, but 

it can achieve very high equivalent path lengths, noted here as greater than one 

kilometer. The sensitivity is correspondingly better, with  α min 𝛼min pushing 

down towards  10 − 8 10−8 or  10 − 9 10−9. 

And finally, on the far right, we have our technique of the day: CRDS. Look at the 

immense improvement. The effective path length is now on the order of ten 

kilometers, as we calculated. This pushes the minimum detectable absorption down 

to  10 − 10 10−10,  10 − 11 10−11, and even approaching  10 − 12 10−12. Each 



step on this chart represents a massive leap in our ability to see the invisible, and 

CRDS currently stands at the pinnacle for this type of absorption measurement. 

Page 9: 

Alright, let's now transition from the conceptual overview to the mathematical 

formalism. To do that, we need to precisely define the basic elements and 

quantities associated with an optical ring-down cavity. 

First, as we've seen in the diagrams, the core of the system is two mirrors. We'll 

assume for simplicity that they are identical, with reflectivity  R 1 = R 2 𝑅1 = 𝑅2, 

which we'll just call  R 𝑅. These mirrors face each other to form a linear cavity of 

physical length  L 𝐿. 

Now, for any real mirror, reflectivity isn't the whole story. The energy of a photon 

incident on the mirror has to go somewhere. The first bullet point under "Other 

characteristic quantities" notes the transmission of each mirror,  T 𝑇. But there are 

other loss mechanisms. So, we have a fundamental conservation of energy 

relationship for the mirror, which is the equation shown: 

 T = 1 − R − A  

𝑇 = 1 − 𝑅 − 𝐴 

Let's break this down. One represents one hundred percent of the incident energy.  

R 𝑅 is the fraction that is reflected.  T 𝑇 is the fraction that is transmitted through 

the mirror. And capital  A 𝐴 represents the fraction of energy that is lost to all other 

processes at the mirror surface. 
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Continuing with that thought, what does this loss term, capital A, physically 

represent? As the first line on this slide clarifies, capital A is a catch-all term that 

lumps together all non-sample, non-transmission losses associated with the mirror. 

This includes light that is scattered off the mirror surface due to microscopic 

imperfections, light that is lost to diffraction because the mirror has a finite size, 

and any light that is directly absorbed by the mirror’s dielectric coating itself. For 

the ultra-high-quality mirrors used in CRDS, this ‘A’ term is incredibly small, but 

it’s not zero, and it ultimately sets a limit on the performance of the empty cavity. 

Next, we define two fundamental temporal and spatial parameters. The round-trip 

optical path is simply  2 L 2 𝐿, as we saw in the diagram. From this, we get the 

round-trip time, denoted  T R 𝑇R. This is the time it takes for a photon to travel 

from one mirror, to the other, and back again. The equation is simple:  T R 𝑇R 

equals the round-trip distance,  2 L 2 𝐿, divided by the speed of light,  c 𝑐. So,  T R 

𝑇R equals  2 L c 
2 𝐿

𝑐
. For a one-meter cavity, the round-trip time is about 6.7 

nanoseconds. This is a very important timescale in our analysis. 

Finally, we must state a crucial assumption that underpins all the simple 

derivations that follow. We assume that the mirrors are near-perfect. This means 

that the fraction of light transmitted,  T 𝑇, and the fraction lost to scatter and 

absorption,  A 𝐴, are both very, very much less than one. This is equivalent to 

saying that the reflectivity,  R 𝑅, is extremely close to one, which is the entire 

premise of CRDS. 
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Now for a slightly more subtle point regarding the nature of the laser excitation. 



The first bullet point here states that a short input pulse of initial power  P 0 𝑃0 

excites many cavity modes simultaneously if its bandwidth exceeds the cavity's 

free spectral range. Let's unpack this statement, because it's dense with important 

concepts. 

First, what is a cavity mode? A stable optical cavity will only support standing 

waves of light at specific resonant frequencies, much like a guitar string only 

vibrates at its fundamental frequency and its harmonics. These allowed frequencies 

are the “modes” of the cavity. For a simple linear cavity, these modes are separated 

in frequency by a value called the Free Spectral Range, or FSR, which is equal to  

c 2 L 
𝑐

2 𝐿
. 

Second, what is the bandwidth of a short laser pulse? From the uncertainty 

principle, or more formally, the Fourier transform relationship between time and 

frequency, a pulse that is short in time must be broad in frequency. A picosecond 

or femtosecond laser pulse has a very wide spectral bandwidth. 

So, if the laser pulse’s bandwidth is wider than the spacing between the cavity 

modes (the FSR), the pulse has frequency components that will match and excite 

many of these cavity modes at the same time. While this is a very common 

scenario in pulsed CRDS, it can lead to complications like interference beats, 

which we will discuss later. 

The slide also foreshadows an alternative approach: mode-matching to a single  T 

E M 00 TEM00 mode.  T E M 00 TEM00 refers to the fundamental transverse 

Gaussian mode, the “cleanest” spatial profile a laser beam can have. In some 

advanced CRDS schemes, you use a very narrow-bandwidth laser and carefully 

match its beam profile and frequency to just one of these cavity modes. For now, 

we will proceed with the simpler picture of a short, broadband pulse. 
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Let's begin our journey of deriving the mathematical expression for the ring-down 

signal. We'll start with the very first pulse of light that leaks out of the cavity. We'll 

call its power  P 1 𝑃1. 

The first bullet point reminds us that immediately after the initial laser pulse is 

injected into the cavity, a part of it exits through the output mirror. How much 

power does it have? 

To figure this out, we first need to define the absorption coefficient of our sample 

inside the cavity. This is given by the Greek letter  α 𝛼, typically in units of inverse 

centimeters, or centimeters to the minus one. This  α 𝛼 is the quantity we 

ultimately want to measure. 

Now, let's consider the power in this very first transmitted pulse,  P 1 𝑃1. The 

equation is given as: 

 P 1 = T 2 e − α L P 0  

𝑃1 = 𝑇2𝑒−𝛼𝐿𝑃0 

Let's deconstruct this piece by piece. 
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Let's break down that equation for the power of the first pulse,  P 1 𝑃1. 

The first term is  T 2 𝑇2. Where does this come from? The initial laser pulse, with 

power  P 0 𝑃0, must first enter the cavity. It does so by passing through the first 

mirror, so its power is multiplied by the mirror's transmission,  T 𝑇. Then, this 



pulse travels a single pass down the length of the cavity,  L 𝐿. It then strikes the 

second mirror and exits the cavity, passing through it. This involves another 

multiplication by the transmission,  T 𝑇. So, the  T 2 𝑇2 term represents the 

product of two transmission events: one on entry, and one on exit. 

The next term is the exponential:  e − α L 𝑒−𝛼𝐿. This is nothing more than the 

familiar Beer–Lambert attenuation law. It describes the fraction of light that 

survives after travelling a distance  L 𝐿 through a medium with an absorption 

coefficient  α 𝛼. This accounts for the absorption by our sample during that first 

single pass. 

The final term,  P 0 𝑃0, is simply the incident laser power of the pulse we started 

with. 

So, to reiterate, the power of the very first leakage pulse,  P 1 𝑃1, is what you get 

after the initial pulse enters the cavity (factor  T 𝑇), traverses the sample once 

(factor  e − α L 𝑒−𝛼𝐿), and immediately exits (factor  T 𝑇). This gives us our 

starting point for the subsequent decay. 
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Now that we have the power of the first leaked pulse,  P 1 𝑃1, what happens to the 

light that remains trapped inside the cavity? Let's consider its evolution after  n 𝑛 

full round-trips. 

The first bullet point breaks down the losses that occur during a single round-trip. 

After entering the cavity, the pulse travels to the far mirror and back. This involves 

two mirror reflections. Since the reflectivity of each mirror is  R 𝑅, the power is 

multiplied by  R 2 𝑅2 after one round-trip. Simultaneously, the pulse has traversed 



the sample twice—once down the length  L 𝐿, and once back. So it travels a total 

distance of  2 L 2 𝐿 through the absorbing medium. The attenuation factor for this 

is therefore the exponential of minus two alpha L. 

So, for each complete round-trip, the intra-cavity power is multiplied by a total 

factor of  ( R 2 e − 2 α L ) (𝑅2𝑒−2𝛼𝐿). 

Therefore, as the second bullet point states, just before the  ( n + 1 ) (𝑛 + 1)-th 

leakage event—which means after  n 𝑛 full round-trips have been completed since 

the first leakage—the power of the pulse still inside the cavity has been multiplied 

by this factor  n 𝑛 times. That is, it's been multiplied by the quantity  ( R 2 e − 2 α 

L ) (𝑅2𝑒−2𝛼𝐿) all raised to the power of  n 𝑛. 

This leads directly to the expression for the transmitted power of the n-th leakage 

pulse, which we denote  P n 𝑃n. It is simply the power of the first leakage pulse,  P 

1 𝑃1, multiplied by this round-trip loss factor  n 𝑛 times. 

So we have: 

 P n = ( R 2 e − 2 α L ) n P 1  

𝑃n = (𝑅2𝑒−2𝛼𝐿)𝑛 𝑃1 

This expression is correct, but it's a bit cumbersome. To get it into the nice 

exponential decay form we're looking for, it's very convenient to rewrite it using 

logarithms, which we will do on the next slide. 
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Let's now perform the mathematical manipulation to transform our expression for  

P n 𝑃n into a more useful exponential form. 



First, we take the natural logarithm of both sides of the equation from the previous 

slide. The natural log of  P n 𝑃n, written  ln ⁡ P n ln𝑃n, is equal to the natural log 

of  P 1 𝑃1 plus the natural log of the term in parentheses. Using the properties of 

logarithms, the exponent 'n' comes down in front. So, we get: 

 ln ⁡ P n = ln ⁡ P 1 + n ( 2 ln ⁡ R − 2 α L ) .  

ln𝑃n = ln𝑃1 + 𝑛 (2ln𝑅 − 2𝛼𝐿). 

Next, we can re-exponentiate this expression to write  P n 𝑃n in terms of the 

exponential function.  P n 𝑃n is equal to  P 1 𝑃1 times the exponential of the second 

term. So: 

 P n = P 1 exp ⁡ [ 2 n ( ln ⁡ R − α L ) ] .  

𝑃n = 𝑃1 exp[2 𝑛(ln𝑅 − 𝛼𝐿)]. 

Now comes the most important step in this derivation. We use the fact that the 

reflectivity,  R 𝑅, is very, very close to 1. This allows us to use a first-order Taylor 

series expansion for the natural logarithm. The expansion for  ln ⁡ ( x ) ln(𝑥) 

around  x = 1 𝑥 = 1 is  ln ⁡ ( x ) ln(𝑥) is approximately  x − 1 𝑥 − 1. So, 

 ln ⁡ ( R ) ≈ R − 1.  

ln(𝑅) ≈ 𝑅 − 1. 

But we know from our earlier definition that the total losses at a mirror are given 

by  1 − R = T + A 1 − 𝑅 = 𝑇 + 𝐴. Therefore,  R − 1 𝑅 − 1 is simply the negative 

of  ( T + A ) (𝑇 + 𝐴). So, we arrive at the crucial approximation: 

 ln ⁡ ( R ) ≈ − ( T + A ) .  

ln(𝑅) ≈ −(𝑇 + 𝐴). 



This simple linear approximation is the key that unlocks the final, elegant form of 

the decay expression. 
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Now we can take the result of that approximation and substitute it back into our 

equation for  P n 𝑃n. 

The title of this slide says it all: we are expressing the "Power Decay in Terms of 

Losses  T + A + α L 𝑇 + 𝐴 + 𝛼𝐿". We replace the term ‘ ln ⁡ R ln𝑅’ with ‘ − ( T 

+ A ) −(𝑇 + 𝐴)’. 

Our expression for  P n 𝑃n now becomes: 

 P n = P 1 exp ⁡ [ − 2 n ( T + A + α L ) ] .  

𝑃n = 𝑃1exp[−2 𝑛 (𝑇 + 𝐴 + 𝛼𝐿)]. 

This equation has a wonderfully clear physical interpretation, which is stated in the 

second bullet point. The power decays exponentially with the number of round-

trips, ‘n’. The argument of the exponential tells us the total fractional loss per 

round trip. This total loss is simply the sum of the individual loss mechanisms. For 

each round trip, we have a loss due to mirror transmission (which is  2 T 2 𝑇, one 

for each mirror, but our formula normalizes this to a loss per pass length  L 𝐿, 

hence the structure), a loss due to mirror scatter and absorption ( A 𝐴), and a loss 

due to absorption by the medium ( α L 𝛼𝐿). 

The beauty of this form is that all the loss terms now appear linearly and additively 

inside the exponential. This is exactly what we need to be able to separate them 

later. 
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This slide makes a final, crucial connection between our discrete pulse model and 

what is actually observed in many experiments. 

The key insight is that the pulse number, ‘n’, is directly proportional to the 

observation time, ‘t’. We will formalize this on the very next slide, but the 

relationship is simple: 

 t = n T R  

𝑡 = 𝑛 𝑇𝑅 

Because of this direct proportionality, our equation for the power of the n-th pulse,  

P n 𝑃𝑛, can be rewritten as an equation for the power as a function of continuous 

time,  P ( t ) 𝑃(𝑡). 

Now, consider a typical experiment. The round-trip time,  T R 𝑇𝑅, for a meter-long 

cavity is just a few nanoseconds. Many photodetectors and data acquisition 

systems have a response time that is slower than this. They cannot resolve the 

individual leakage pulses. What they see instead is the smoothed-out envelope of 

the pulse train. 

Therefore, when detected with insufficient temporal resolution, the train of discrete 

leakage pulses merges into what appears to be a single, smooth exponential decay. 

And the time constant of this smooth decay is precisely what our equation 

describes. 
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Let's formalize the relationship between the discrete pulse number,  n 𝑛, and the 

continuous physical time,  t 𝑡. This is a straightforward but essential step. 

First, let's recall the definition of the round-trip time,  T R 𝑇R. This is the time it 

takes for the light pulse to complete one full circuit of the cavity. It is given by the 

equation: 

 T R = 2 L c  

𝑇R =
2 𝐿

𝑐
 

Now, let's think about the arrival time of the  n 𝑛-th leakage pulse at the detector. 

We'll set  t = 0 𝑡 = 0 as the arrival time of the first leakage pulse. The second pulse 

arrives after one round-trip, at time  T R 𝑇R. The third arrives after two round-trips, 

at time  2 T R 2 𝑇R. And so, the  n 𝑛-th leakage pulse, which has completed  n − 1 

𝑛 − 1 additional round-trips, arrives at a time we can simply call 't'. 

So, the arrival time 't' of the  n 𝑛-th leakage pulse is given by: 

 t = n T R  

𝑡 = 𝑛 𝑇R 

Substituting our expression for  T R 𝑇R, we get: 

 t = n 2 L c  

𝑡 = 𝑛 
2 𝐿

𝑐
 

This simple linear relationship,  t = n T R 𝑡 = 𝑛 𝑇R, allows us to switch from the 

discrete variable 'n' to the continuous variable 't' in our decay equation. 
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Now we can put all the pieces together to arrive at the final expression for the 

measured signal. 

The first bullet point summarizes the situation: If the detector response time, which 

we can call  τ d e t 𝜏det, is much longer than the cavity round-trip time,  T R 𝑇R, 

then the individual pulses blur together into a smooth decay. 

By replacing the term  n 𝑛 in our previous exponential equation with  t 𝑡 divided by  

T R 𝑇R, which is  t 𝑡 divided by  2 L c 
2 𝐿

𝑐
, we find that the power as a function of 

time,  P ( t ) 𝑃(𝑡), follows a simple exponential decay: 

 P ( t ) = P 1 exp ( − t τ 1 )  

𝑃(𝑡) = 𝑃1exp (−
𝑡

𝜏1
) 

This is the classic exponential decay curve that is fitted in a CRDS experiment.  P 

1 𝑃1 is the initial power at time  t = 0 𝑡 = 0, and the crucial parameter is  τ 1 𝜏1. 

What is  τ 1 𝜏1? As the slide states,  τ 1 𝜏1 is the "cavity ring-down time" when the 

absorber is present. It is the characteristic one-over-e time of the decay. Our entire 

goal is to measure this  τ 1 𝜏1, and its counterpart without the absorber,  τ 2 𝜏2, as 

accurately as possible. 

On the next slide, we will derive an explicit expression for  τ 1 𝜏1 based on the 

physical parameters of the cavity. 
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This slide shows how we derive the explicit formula for the ring-down time,  τ 1 

𝜏1. It's simply a matter of comparing the exponents from our last two expressions 

for the power decay. 

In the previous slide, we wrote the decay term as  exp ⁡ ( − t τ 1 ) exp(− 𝑡 𝜏1⁄ ). 

Two slides ago, we derived the decay term as  exp ⁡ [ − 2 n ( T + A + α L ) ] 

exp[−2 𝑛 (𝑇 + 𝐴 + 𝛼𝐿)]. If we substitute  n = t T R = t c 2 L 𝑛 = 𝑡 𝑇𝑅⁄ = 𝑡 𝑐 2 𝐿⁄  

into the second expression, the decay term becomes  exp ⁡ [ − t c L ( T + A + α L 

) ] exp[−𝑡  𝑐 𝐿⁄  (𝑇 + 𝐴 + 𝛼𝐿)]. 

Now, we simply identify the coefficients of 't' in the exponents. This gives us the 

first equation on the slide: 

 1 τ 1 = c L ( T + A + α L ) .  

1

𝜏1
=
𝑐

𝐿
 (𝑇 + 𝐴 + 𝛼𝐿). 

This equation tells us that the decay rate ( 1 / τ 1 1/𝜏1) is directly proportional to 

the sum of all the fractional losses per pass. 

By simply rearranging this equation, we can solve for the ring-down time,  τ 1 𝜏1: 

 τ 1 = L / c T + A + α L .  

𝜏1 =
𝐿/𝑐

𝑇 + 𝐴 + 𝛼𝐿
. 

This form is very intuitive. The numerator,  L / c 𝐿/𝑐, is the time it takes for light 

to make a single pass of the cavity. The denominator is the total fractional loss per 

pass. So the ring-down time is essentially the single-pass time scaled by one over 

the fractional loss. 



Finally, we consider the very important special case: the empty cavity. In this 

situation, the absorption coefficient,  α 𝛼, is equal to zero. We'll call the ring-down 

time for the empty cavity  τ 2 𝜏2. 
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Continuing with the special case of the empty cavity, we simply set  α = 0 𝛼 = 0 in 

our general expression for the ring-down time. This gives us the ring-down time 

for the reference measurement, which we’ve called  τ 2 𝜏2. 

The equation is: 

 τ 2 = L / c T + A  

𝜏2 =
𝐿/𝑐

𝑇 + 𝐴
 

Here, the only losses are the intrinsic mirror losses: transmission  T 𝑇 and 

scatter/absorption  A 𝐴. 

Now, the slide shows a further approximation. If we assume that all the mirror 

losses,  A 𝐴, are negligible compared to the transmission,  T 𝑇, we can use the 

relation  T ≈ 1 − R 𝑇 ≈ 1 − 𝑅. This gives the commonly cited simplified formula 

for the empty cavity ring-down time: 

 τ 2 ≈ L / c 1 − R  

𝜏2 ≈
𝐿/𝑐

1 − 𝑅
 

This form makes the dependence on mirror reflectivity very explicit. As  R → 1 

𝑅 → 1, the denominator approaches zero, and the ring-down time,  τ 𝜏, goes to 

infinity. 



The remark at the bottom simply reiterates the basis for this approximation: we are 

using  T + A = 1 − R 𝑇 + 𝐴 = 1 − 𝑅, which is valid when all other unaccounted-

for losses are small. For our purposes, the more general form including  A 𝐴 is 

more accurate, and as we will see, the  A 𝐴 term will conveniently cancel out 

anyway. 
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We have finally reached the climax of our derivation. This is the slide where we 

see the true elegance and power of the CRDS method. Our goal is to extract the 

absorption coefficient,  α 𝛼, from our two experimental measurements:  τ 1 𝜏1 

(with the sample) and  τ 2 𝜏2 (without the sample). 

The first bullet point says to combine our expressions for  τ 1 𝜏1 and  τ 2 𝜏2. The 

most convenient way to do this is to work with their inverses, the decay rates. Let’s 

write them out: 

 1 τ 1 = c L ( T + A + α L )  

1

𝜏1
=
𝑐

𝐿
(𝑇 + 𝐴 + 𝛼𝐿) 

 1 τ 2 = c L ( T + A )  

1

𝜏2
=
𝑐

𝐿
(𝑇 + 𝐴) 

Now, watch what happens when we subtract the second equation from the first:  1 

τ 1 − 1 τ 2 = 
1

𝜏1
−

1

𝜏2
= On the right side, the terms  c L ( T + A ) 

𝑐

𝐿
(𝑇 + 𝐴) are 

common to both expressions, so they cancel out completely! We are left with just  

c L 
𝑐

𝐿
 times  α L 𝛼𝐿. The L’s cancel, and we are left with c times alpha. 



So, our resulting equation is: 

 1 τ 1 − 1 τ 2 = c α  

1

𝜏1
−

1

𝜏2
= 𝑐 𝛼 

This is a beautiful and powerful result. We can now easily solve for alpha, which is 

the quantity we want to measure. 

 α = 1 c ( 1 τ 1 − 1 τ 2 )  

𝛼 =
1

𝑐
 (
1

𝜏1
−

1

𝜏2
) 

This is the central equation of Cavity Ring-Down Spectroscopy. 

Now, let’s consider the profound “Advantages of this difference method,” 

highlighted in red. 
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Let's elaborate on those crucial advantages. 

First, and most importantly, the mirror losses,  T + A 𝑇 + 𝐴, cancel out completely 

in the subtraction. Think about what this means. We don't need to know the 

absolute value of our mirror's reflectivity or its scattering losses. These can be very 

difficult to measure accurately. As long as these properties remain stable between 

our sample measurement (for  τ 1 𝜏1) and our reference measurement (for  τ 2 𝜏2), 

their exact value is irrelevant. This is a massive practical advantage, removing a 

huge source of systematic error. 



Second, any intensity noise or fluctuation in the initial laser pulse,  P 0 𝑃0, also 

cancels out. Why? Because  P 0 𝑃0, or the related first pulse power  P 1 𝑃1, only 

determines the initial amplitude of our decay curve. It appears as a pre-factor, not 

inside the exponential. When we perform a fit to the decay curve, we are fitting for 

the time constant in the exponent. The initial amplitude is just a scaling factor that 

doesn't affect the determination of  τ 𝜏. Since our final calculation for  α 𝛼 depends 

only on  τ 1 𝜏1 and  τ 2 𝜏2, the initial laser power has no bearing on the result. This 

is what makes CRDS so wonderfully immune to laser power noise. 

These two points are the foundation of the technique's remarkable sensitivity and 

robustness. 
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Now that we have our working equation for alpha, we need to understand how 

uncertainties in our measurements affect the uncertainty in our final result. This is 

a standard exercise in the propagation of measurement uncertainty. 

Our goal, as stated, is to relate the uncertainties in our measured decay times,  δ τ 1 

𝛿𝜏1 and  δ τ 2 𝛿𝜏2, to the resulting uncertainty in alpha,  δ α 𝛿𝛼. 

The standard formula for error propagation involves partial derivatives. We need to 

calculate the partial derivative of alpha with respect to tau_1, and the partial 

derivative of alpha with respect to tau_2. Our expression for alpha is  α = 1 c ( τ 1 

− 1 − τ 2 − 1 ) 𝛼 =
1

𝑐
(𝜏1

−1 − 𝜏2
−1). Let's take the derivatives. 

The partial derivative of alpha with respect to tau_1, written  d α d τ 1 
𝑑𝛼

𝑑𝜏1
, is  1 c × 

( − 1 ) × ( τ 1 − 2 ) 
1

𝑐
× (−1) × (𝜏1

−2). So we get: 



 d α d τ 1 = − 1 c τ 1 2 .  

𝑑𝛼

𝑑𝜏1
= −

1

𝑐 𝜏1
2. 

Similarly, the partial derivative with respect to tau_2 is: 

 d α d τ 2 = 1 c τ 2 2 .  

𝑑𝛼

𝑑𝜏2
=

1

𝑐 𝜏2
2. 

Now, let's make a reasonable assumption for a practical experiment. We assume 

that our timing precision for both measurements is the same. That is,  δ τ 1 𝛿𝜏1 is 

approximately equal to  δ τ 2 𝛿𝜏2, and we can just call this value  δ τ 𝛿𝜏. We also 

know that for weak absorption,  τ 1 𝜏1 and  τ 2 𝜏2 will be very close to each other. 

So we can define an average ring-down time,  τ 𝜏, as: 

 τ = τ 1 + τ 2 2 .  

𝜏 =
𝜏1 + 𝜏2

2
. 

This simplifies the analysis that follows. 
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Using these derivatives and the standard error propagation formula, which in its 

simplest form is  ( δ f ) 2 = ( d f d x ) 2 ( δ x ) 2 + ( d f d y ) 2 ( δ y ) 2 ,  

(𝛿𝑓)2 = (
𝑑𝑓

𝑑𝑥
)

2

(𝛿𝑥)2 + (
𝑑𝑓

𝑑𝑦
)

2

(𝛿𝑦)2, 

we can find the uncertainty in  α 𝛼, which we call  δ α 𝛿𝛼. 



Under the condition of weak absorption, where  | τ 1 − τ 2 | |𝜏1 − 𝜏2| is much, 

much smaller than the average time  τ 𝜏, the uncertainty formula simplifies 

significantly. The derivation is a bit tedious, but the result is shown on the slide:  δ 

α ≈ 2 δ τ τ 3 | τ 1 − τ 2 | .  

𝛿𝛼 ≈
2 𝛿𝜏

𝜏3
  |𝜏1 − 𝜏2|. 

Correction: A more standard propagation of error would yield  ( δ α ) 2 = ( 1 c τ 1 2 

) 2 ( δ τ 1 ) 2 + ( 1 c τ 2 2 ) 2 ( δ τ 2 ) 2 .  

(𝛿𝛼)2 = (
1

𝑐 𝜏1
2)

2

(𝛿𝜏1)
2 + (

1

𝑐 𝜏2
2)

2

(𝛿𝜏2)
2. 

Assuming  τ 1 𝜏1 is close to  τ 2 𝜏2, this simplifies to  δ α ≈ 2 δ τ c τ 2 .  

𝛿𝛼 ≈
√2 𝛿𝜏

𝑐 𝜏2
. 

Let me re-evaluate the slide’s formula. The presented formula  δ α ≈ 2 δ τ τ 3 | τ 1 

− τ 2 |  

𝛿𝛼 ≈
2 𝛿𝜏

𝜏3
  |𝜏1 − 𝜏2| 

seems unusual. Let's re-derive.  α = 1 c τ 2 − τ 1 τ 1 τ 2 ≈ 1 c τ 2 − τ 1 τ 2 .  

𝛼 =
1

𝑐

𝜏2 − 𝜏1
𝜏1 𝜏2

≈
1

𝑐

𝜏2 − 𝜏1
𝜏2

. 

Then  δ α = 1 c τ 2 | δ ( τ 2 − τ 1 ) | .  

𝛿𝛼 =
1

𝑐 𝜏2
|𝛿(𝜏2 − 𝜏1)|. 

 δ ( τ 2 − τ 1 ) 2 = δ τ 2 2 + δ τ 1 2 = 2 δ τ 2 .  



𝛿(𝜏2 − 𝜏1)
2 = 𝛿𝜏2

2 + 𝛿𝜏1
2 = 2 𝛿𝜏2. 

So  | δ ( τ 2 − τ 1 ) | = 2 δ τ .  

|𝛿(𝜏2 − 𝜏1)| = √2 𝛿𝜏. 

This leads to  δ α ≈ 2 δ τ c τ 2 .  

𝛿𝛼 ≈
√2 𝛿𝜏

𝑐 𝜏2
. 

The formula on the slide might be a different form or have a typo. However, I must 

interpret the slide as given. Let me proceed by explaining the implications of the 

formula on the slide, while being aware it might be non-standard. 

Let's focus on the key takeaways from the uncertainty analysis, regardless of the 

exact form of the equation. The second bullet point is the most important message 

on this page. How can we improve our sensitivity? Improving sensitivity means 

making  δ α 𝛿𝛼 as small as possible. Looking at the general dependence, we can 

see two clear pathways. 

First, sensitivity improves with longer cavity ring-down times,  τ 𝜏. Since  τ 𝜏 

appears in the denominator (as  τ 2 𝜏2 or  τ 3 𝜏3), making  τ 𝜏 larger will make  δ α 

𝛿𝛼 smaller. And how do we get a larger  τ 𝜏? By using mirrors with higher 

reflectivity,  R 𝑅. This is the single most important factor in designing a sensitive 

CRDS system. 

Second, sensitivity improves with better timing precision,  δ τ 𝛿𝜏.  δ τ 𝛿𝜏 

represents the noise or uncertainty in our measurement of the decay time. It 

appears in the numerator, so making it smaller directly reduces our final 

uncertainty,  δ α 𝛿𝛼. We achieve better timing precision by improving the signal-

to-noise ratio ( S / N S/N) of our decay curve measurement. 



So, the recipe for high sensitivity is: Use the best mirrors you can get, and use a 

high-quality, low-noise detection system. 
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This slide translates our uncertainty analysis into concrete experimental design 

implications. We want to minimize  Δ α 𝛥𝛼, so what should we do in the lab? 

The first point reiterates our main conclusion: Increase the ring-down time,  τ 𝜏, by 

choosing mirrors with higher reflectivity,  R 𝑅. This is the most direct way to gain 

orders of magnitude in sensitivity. However, there is a point of diminishing returns. 

As the slide notes, when you start using mirrors with reflectivities approaching 

unity (say,  R > 0.99995 𝑅 > 0.99995), the mirror transmission,  T 𝑇, becomes 

incredibly small. At this point, other intrinsic loss mechanisms, like diffraction and 

scatter (the  A 𝐴 term), can become comparable to or even larger than the 

transmission. When these losses start to dominate, simply increasing  R 𝑅 further 

doesn't give you the same dramatic improvement in ring-down time. You become 

limited by the quality of the mirror substrate and coating, not just its reflectivity. 

The second major strategy is to enhance the signal-to-noise ratio of the 

measurement, which directly reduces the timing uncertainty,  Δ τ 𝛥𝜏. The slide lists 

several ways to do this: 

1. Use low-noise detectors. A photodetector with lower intrinsic electronic noise 

will give a cleaner signal. 2. Average many decay traces. Since much of the noise 

is random, averaging hundreds or thousands of decay curves will cause the noise to 

average down, typically as the square root of the number of averages, while the 

exponential signal remains. This is a very powerful and common technique. 
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3. Electronic filtering. We can use appropriate electronic filters, either analog or 

digital, to remove noise components that are at frequencies far away from our 

signal’s characteristic frequency content. 

4. Suppressing mechanical vibrations. This is a crucial practical point. The ring-

down time depends on the cavity length,  L 𝐿. If the table is vibrating or there are 

acoustic noises in the room, the distance between the two mirrors can fluctuate 

slightly. This is called "cavity length jitter." This jitter can introduce noise into the 

decay traces, effectively worsening your timing precision. Therefore, building a 

mechanically stable and isolated cavity is essential for high-performance systems. 

Finally, we have to consider an important experimental trade-off. A long ring-

down time,  τ 𝜏, which is what we want for high sensitivity, necessarily means a 

slow decay. This means the data acquisition time for a single decay event 

increases. If  τ 𝜏 is 100 microseconds, you need to record for several hundred 

microseconds to capture the full decay. This seems like it might slow down your 

experiment. However, modern pulsed lasers can often be fired at repetition rates of 

several kilohertz. This means that even if each decay takes a fraction of a 

millisecond, you can still acquire and average thousands of shots in just a few 

seconds. So, it’s possible to have both a long ring-down time and rapid signal 

averaging. 
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This graph provides a powerful visual confirmation of our design principles. Let's 

break it down. 



The plot shows the calculated Absorption Uncertainty,  δ α 𝛿𝛼, on the vertical axis, 

versus the Mirror Reflectivity,  R 𝑅, on the horizontal axis. Note that the vertical 

axis for  δ α 𝛿𝛼 is a logarithmic scale, spanning from  10 − 10 10−10 up to  10 − 7 

c m − 1 10−7 cm−1. The horizontal axis for  R 𝑅 is linear, but covers only the very 

high reflectivity range from  0.990 0.990 to  1.000 1.000. 

The graph was generated for a fixed set of parameters, noted in the top right: a 

cavity length  L 𝐿 of  50 c m 50 cm, and a timing precision  δ τ 𝛿𝜏 of  1 n s 1 ns. 

The blue curve shows the resulting uncertainty,  δ α 𝛿𝛼. The relationship is stark 

and dramatic. As we move from left to right—that is, as we increase the mirror 

reflectivity—the uncertainty in our measurement plummets by orders of 

magnitude. 

At  R = 0.990 𝑅 = 0.990, the uncertainty is around  10 − 7 10−7. By the time we 

get to  R = 0.999 𝑅 = 0.999, the uncertainty has dropped by nearly two orders of 

magnitude to about  2 × 10 − 9 2 × 10−9. As we push  R 𝑅 even closer to 1, the 

curve becomes even steeper. 

The annotation "delta alpha is proportional to  1 − R 1 − 𝑅" captures the essence of 

this relationship. This comes directly from our uncertainty analysis:  δ α 𝛿𝛼 is 

roughly proportional to  1 / τ 2 1/𝜏2, and  τ 𝜏 itself is proportional to  1 / ( 1 − R ) 

1/(1 − 𝑅). 

So,  δ α 𝛿𝛼 goes roughly as  ( 1 − R ) 2 (1 − 𝑅)2, which is an even stronger 

dependence, but the key takeaway is correct: as  ( 1 − R ) (1 − 𝑅) gets smaller, so 

does the uncertainty. This plot unequivocally shows that the choice of mirrors is 

paramount for achieving high sensitivity. 
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Alright, let's solidify these concepts with a worked example. We'll start with a case 

of what we'll call "moderate" reflectivity. 

We are given a set of parameters for our experiment. 

First, the mirror reflectivity, R, is  0.999 0.999. This is often called "three nines" 

reflectivity. This means the total loss per reflection,  1 − R 1 − 𝑅, is  10 − 3 10−3. 

The physical cavity length, L, is  1 m 1 m. To be consistent with our other units, 

we should convert this to  100 cm 100 cm. 

The absorption coefficient,  α 𝛼, of the trace gas we are trying to measure is  1 × 10 

− 6 cm − 1 1 × 10−6 cm−1. This is a very small absorption. 

Finally, the speed of light, c, is  3.00 × 10 10 cm/s 3.00 × 1010 cm/s. 

Our task is to compute the decay times with and without the sample, and then 

determine the uncertainty of our measurement. 
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Let's compute the decay times using the parameters from the previous slide. 

First, let's calculate the decay time of the empty cavity, τ₂. We'll use the 

approximate formula  τ 2 = L / c 1 − R  

𝜏2 =
𝐿/𝑐

1 − 𝑅
 

The term  L / c 𝐿/𝑐 is 100 centimeters divided by  ( 3 × 10 10 cm/s ) (3 ×

1010 cm/s), which is 3.33 nanoseconds. The denominator,  1 − R 1 − 𝑅, is  10 − 3 

10−3. So,  τ 2 = 3.33 × 10 − 9 seconds 10 − 3  



𝜏2 =
3.33 × 10−9 seconds

10−3
 

which equals  3.33 × 10 − 6 3.33 × 10−6 seconds, or three point three three 

microseconds. 

Next, we compute the decay time with the absorber present, τ₁. The formula is  τ 1 

= L / c 1 − R + α L  

𝜏1 =
𝐿/𝑐

1 − 𝑅 + 𝛼𝐿
 

The new term in the denominator is  α L 𝛼𝐿, which is  ( 10 − 6 cm − 1 ) × ( 100 cm 

) = 10 − 4 (10−6 cm−1) × (100 cm) = 10−4. So the denominator is now  10 − 3 + 

10 − 4 10−3 + 10−4, which is  1.1 × 10 − 3 1.1 × 10−3. 

Let's re-calculate using the numbers on the slide. The denominator is  10 − 3 + 10 

− 4 10−3 + 10−4. The slide calculates τ₁ to be approximately three point zero three 

microseconds. Let's check:  100 cm / c 10 − 3 + 10 − 4 = 3.33 ns 1.1 × 10 − 3 = 

3.03 microseconds .  

100 cm/𝑐

10−3 + 10−4
=

3.33 ns

1.1 × 10−3
= 3.03 microseconds. 

Yes, that's correct. 

The difference in decay times, Δτ, is τ₂ minus τ₁, which is 3.33 minus 3.03, giving 

zero point three zero microseconds. This is the small change in decay time that we 

have to measure. 

Now for the uncertainty. Let's assume our experimental timing precision, δτ, is 

plus or minus zero point zero three microseconds. This is ten percent of the 

difference we're trying to measure. 



Using a simplified uncertainty formula,  δ α ∝ δ τ c τ 2 .  

𝛿𝛼 ∝
𝛿𝜏

𝑐 𝜏2
. 

Plugging in the numbers, the slide calculates the absolute uncertainty, δα, to be 

approximately  4 × 10 − 7 4 × 10−7 inverse centimeters. 

How does this compare to the true value of α we were trying to measure? The 

relative uncertainty is δα divided by α. That's  ( 4 × 10 − 7 ) / ( 1 × 10 − 6 ) 

(4 × 10−7)/(1 × 10−6), which is 0.4, or a whopping 40 percent! 
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The conclusion from this first worked example is clear and sobering. 

Using mirrors with a reflectivity of  0.999 0.999 is insufficient for making a high-

accuracy measurement of this particular trace species. A measurement with a  40 

% 40% uncertainty is not very useful for quantitative analysis. The change in the 

decay time caused by the absorber was simply too small compared to our ability to 

measure that change. To do better, we need to find a way to make the difference 

between  τ 1 𝜏1 and  τ 2 𝜏2 much larger. And as we know, the way to do that is to 

use better mirrors. 
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Let's now repeat the exact same worked example, but this time we'll upgrade our 

hardware. We'll perform the measurement with high-reflectivity mirrors. 

Our new reflectivity,  R 𝑅, is zero point nine nine nine nine, or "four nines." This 

means the intrinsic loss per reflection,  1 − R 1 − 𝑅, is now ten times smaller, at  



10 − 4 10−4. All other parameters ( L 𝐿,  α 𝛼,  c 𝑐, and our timing precision  δ τ 

𝛿𝜏) remain the same. 

Let's re-calculate the decay times. 

The empty cavity decay time,  τ 2 𝜏2, is  ( L / c ) / ( 1 − R ) (𝐿/𝑐)/(1 − 𝑅), which 

is  ( 100   c m / c ) / ( 10 − 4 ) (100 cm/𝑐)/(10−4). This is approximately  33   μ s 

33 𝜇s. Notice that just by adding one 'nine' to the reflectivity, our ring-down time 

has increased by a factor of ten! 

Now for the decay time with the absorber,  τ 1 𝜏1. The denominator is  ( 1 − R + α 

L ) (1 − 𝑅 + 𝛼𝐿), which is  10 − 4 + 10 − 4 = 2 × 10 − 4 10−4 + 10−4 = 2 ×

10−4. So  τ 1 𝜏1 is  ( 100   c m / c ) / ( 2 × 10 − 4 ) (100 cm/𝑐)/(2 × 10−4), which 

is approximately  16.5   μ s 16.5 𝜇s. 

The difference in decay times,  Δ τ 𝛥𝜏, is now  33 − 16.5 33 − 16.5, which is  16.5 

  μ s 16.5 𝜇s. This is a huge improvement! The difference we need to measure is 

now  16.5   μ s 16.5 𝜇s, not the tiny  0.3   μ s 0.3 𝜇s from before. 

We are still using the same detection system, so our timing precision,  δ τ 𝛿𝜏, 

remains  ± 0.03   μ s ±0.03 𝜇s. 
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Now let’s calculate the final uncertainty for the high-reflectivity case. 

With a much larger difference between  τ 1 𝜏1 and  τ 2 𝜏2, and much longer decay 

times overall, our uncertainty formula predicts a much smaller  δ α 𝛿𝛼. Plugging in 

the new values, the calculation yields: 

delta alpha is approximately  6 × 10 − 9 c m − 1  6 × 10−9 cm−1. 



Let’s compare this to the true value of  α 𝛼, which was  1 × 10 − 6 1 × 10−6. 

The relative uncertainty,  δ α / α 𝛿𝛼/𝛼, is now  ( 6 × 10 − 9 ) / ( 1 × 10 − 6 ) 

(6 × 10−9)/(1 × 10−6), which is 0.006, or just zero point six percent. 

The conclusion is powerful and unambiguous. By moving from  99.9 % 99.9% to  

99.99 % 99.99% reflectivity, we have improved our measurement accuracy from a 

useless  40 % 40% uncertainty to a very respectable  0.6 % 0.6% uncertainty. A 

high-finesse cavity dramatically enhances detection accuracy. This pair of 

examples perfectly illustrates the core principle of CRDS. 
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These two plots provide a perfect visual summary of the two worked examples we 

just went through. They show exactly why high-reflectivity mirrors are so crucial. 

On both plots, the vertical axis is the normalized intensity on a logarithmic scale, 

and the horizontal axis is time in microseconds. On a log-linear plot, an 

exponential decay becomes a straight line, and the slope of that line is related to 

the decay time. A steeper slope means a shorter decay time. 

Let's look at the left panel, for the "Moderate Reflectivity" case,  R = 0.999 𝑅 =

0.999. The blue line represents the decay of the empty cavity, with its time 

constant  τ 2 𝜏2 of  3.3 μ s 3.3 𝜇s. The orange line shows the decay with the 

absorbing sample, with its shorter time constant  τ 1 𝜏1 of  3.03 μ s 3.03 𝜇s. As you 

can see, the two lines are very close together. Their slopes are almost identical. The 

difference between them,  Δ τ 𝛥𝜏, is only  0.30 μ s 0.30 𝜇s. If your measurement 

has any noise, telling these two lines apart becomes very difficult. 



Now look at the right panel, for the "High Reflectivity" case,  R = 0.9999 𝑅 =

0.9999. The first thing you'll notice is that the time axis is much longer, going out 

to  60 μ s 60 𝜇s. The decays are much, much slower. The blue line for the empty 

cavity has a time constant of  33 μ s 33 𝜇s, and the orange line for the sample has a 

time constant of  16.5 μ s 16.5 𝜇s. Now, the two lines are clearly and widely 

separated. The difference,  Δ τ 𝛥𝜏, is a large  16.8 μ s 16.8 𝜇s. This difference is 

vastly larger than our assumed timing uncertainty of  0.03 μ s 0.03 𝜇s, making a 

precise and accurate measurement not just possible, but straightforward. This is a 

beautiful illustration of how finesse enhances sensitivity. 
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Let's now formally introduce two important figures of merit that are often used to 

characterize a CRDS system: the effective absorption path length and the cavity 

finesse. 

First, as we've discussed, the incredible sensitivity of CRDS comes from the fact 

that the light makes many, many passes through the sample. We can calculate the 

effective number of passes the light makes through the sample, N_pass. 

In the simple case of an empty cavity, this is approximately given by the formula: 

 N p a s s = 1 1 − R  

𝑁pass =
1

1 − 𝑅
 

So for our  R = 0.9999 𝑅 = 0.9999 mirror, the light makes  1 10 − 4 = 10,000 

1

10−4
= 10,000 passes on average before being lost. 



From this, we can calculate the effective absorption length, L_eff. It's simply the 

physical length of the cavity, L, multiplied by the number of passes. However, 

since the light traverses the length L twice per round trip, a more careful derivation 

gives the formula shown: 

 L e f f = L 1 − R  

𝐿eff =
𝐿

1 − 𝑅
 

This formula gives us the length of an equivalent single-pass absorption cell that 

would yield the same total absorption. 
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Let's plug in the numbers from our high-reflectivity example. If the physical cavity 

length  L 𝐿 is one meter, and the reflectivity  R 𝑅 is 0.9999, then the effective path 

length,  L e f f 𝐿eff, is 1 meter divided by  ( 1 − 0.9999 ) (1 − 0.9999), which is 1 

meter divided by  10 − 4 10−4. This gives an  L e f f 𝐿eff of 10,000 meters, or ten 

kilometers. This number should be burned into your memory; it perfectly 

encapsulates the power of this technique. 

Next, we introduce a closely related and very important parameter: the Cavity 

Finesse, denoted by a script capital F. The finesse is a dimensionless quantity that 

characterizes the quality of an optical resonator. It's defined as: 

 F = π R 1 − R .  

ℱ =
𝜋√𝑅

1 − 𝑅
. 



Since  R 𝑅 is very close to 1, the square root of  R 𝑅 is also very close to 1, so a 

common approximation is 

 F ≈ π 1 − R .  

ℱ ≈
𝜋

1 − 𝑅
. 

You can see that Finesse, just like the ring-down time and the effective path length, 

is inversely proportional to the cavity losses  ( 1 − R ) (1 − 𝑅). A high-finesse 

cavity is a low-loss cavity. In fact, finesse is directly proportional to the ring-down 

time and therefore to the sensitivity of the measurement. A finesse of over 30,000 

is common for CRDS. 

The final point is an important practical one. Our simple formulas assume losses 

are only from transmission and absorption. But diffraction can also be a loss. To 

achieve the highest possible finesse, one must ensure that the input laser beam is 

properly "mode-matched" to the cavity. This means using a system of lenses to 

focus the laser beam so that its waist size and curvature perfectly match the cavity's 

fundamental TEM-zero-zero eigenmode. This excites the lowest-loss mode of the 

cavity and minimizes any additional losses due to diffraction, which would 

otherwise limit the achievable finesse. 
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Let's now move on to discuss a typical experimental setup for performing Pulsed 

CRDS. What are the key hardware components you would find in a real-world 

system? 



First, you obviously need a laser. For pulsed CRDS, you need a short-pulse, 

tunable laser. A very common choice, especially in research labs, is a dye laser or 

an Optical Parametric Oscillator (OPO), which is pumped by a high-power pulsed 

laser like a Q-switched Nd:YAG laser. The tunability is essential for scanning 

across a molecular absorption feature to record a spectrum. 

Next, you need mode-matching optics. As we just discussed, this typically consists 

of a combination of lenses and apertures. Their job is to take the output beam from 

the laser and shape it perfectly to align its beam waist with the cavity's 

fundamental eigenmode, ensuring efficient coupling of light into the cavity and 

minimizing diffraction losses. 

Of course, the heart of the system is the cavity itself, formed by two high-

reflectivity mirrors. In many practical setups, these mirrors also serve as the 

windows for the absorption cell or vacuum chamber that contains the gas sample. 

Finally, you need the detection system. This consists of a fast photodetector (like a 

photomultiplier tube or an avalanche photodiode) to convert the weak, fast leakage 

pulses into an electrical signal. This signal is then digitized. A traditional 

instrument for this is a "boxcar integrator," which is specifically designed to 

sample a signal in a very narrow time window and is good for averaging. More 

commonly today, one would use a fast digital oscilloscope or a dedicated high-

speed digitizer card. 
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There are a couple of important temporal requirements to consider in a pulsed 

CRDS experiment. 



First, there's a condition on the laser pulse duration, which we'll call  T p 𝑇p. For 

the cleanest measurement, where you can actually resolve the individual leakage 

pulses coming out of the cavity, the pulse duration  T p 𝑇p should be shorter than 

the cavity round-trip time,  T R 𝑇R. Remember,  T R 𝑇R is typically a few 

nanoseconds. So this requires using a nanosecond or picosecond laser. Seeing 

clearly separated leakage pulses can sometimes help in making a more accurate 

exponential fit, as you have distinct data points along the decay curve. 

However, this is not a strict requirement. What happens if your laser pulse is 

longer than the round-trip time? For example, if  T p 𝑇p is greater than  T R 𝑇R. In 

this case, before the first part of the pulse has even completed a round trip, more of 

the pulse is still entering the cavity. The result is that the individual leakage pulses 

overlap in time. But this is perfectly fine! You will no longer see a train of discrete 

pulses, but you will still observe a smooth, continuous decay envelope after the 

laser pulse turns off. Crucially, this decay envelope is still a pure exponential, and 

its time constant,  τ 𝜏, is still determined by the total cavity losses in exactly the 

same way. So the technique works perfectly well in this regime too. 
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This diagram provides an excellent schematic of a complete Pulsed Cavity Ring-

Down Spectroscopy setup. Let's trace the signal path from start to finish. 

On the far left, we have the "Pulsed Laser," our source of light. 

The beam emerges and passes through a set of mode-matching optics, here 

represented by two lenses, L1 and L2, and an aperture between them. This system, 

as we know, shapes the beam for optimal injection into the cavity. 



The beam then enters the "Sample Cell," which is the region between the two high-

reflectivity mirrors, M1 and M2. The mirrors are specified as having reflectivity of 

approximately 99.99%. Inside this cell, the light pulse is "trapped," bouncing back 

and forth as shown by the multiple red lines. A gas inlet and outlet, which are not 

shown, would allow for the introduction and removal of the sample gas. 

With each bounce on mirror M2, a small amount of light leaks out. This "Leakage" 

light is directed onto a "Photodetector." 

The photodetector converts the decaying light signal into a voltage signal. This 

electrical signal is then sent to the "Data Acquisition / Oscilloscope" system. 

An inset shows what the recorded signal looks like. The vertical axis is Intensity 

and the horizontal axis is Time. We see a classic exponential decay curve. The data 

acquisition system's job is to digitize this curve and then use a computer to fit it to 

the mathematical function 

 I ( t ) = I 0 e − t / τ  

𝐼(𝑡) = 𝐼0 𝑒
−𝑡/𝜏 

The result of this fit is the all-important number: the ring-down time,  τ 𝜏. 
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While pulsed CRDS is very common, there's an important and powerful variant of 

the technique that uses a continuous-wave, or CW, laser. This is known as CW-

CRDS. 

In this scheme, you don't use a short pulse. Instead, you illuminate the cavity with 

a highly stabilized, narrow-linewidth continuous-wave laser. You tune the laser 



frequency (or the cavity length) so that it is exactly on resonance with one of the 

cavity modes. This causes a large amount of optical power to build up inside the 

cavity. 

Then, at a time we'll call  t = 0 𝑡 = 0, the input laser beam is abruptly switched off. 

This is typically done with a very fast optical switch, like an Acousto-Optic 

Modulator (AOM) or an Electro-Optic Modulator (EOM), which can turn the beam 

off in tens of nanoseconds. 

Once the input is cut off, the energy that was stored inside the cavity has nowhere 

to go but to leak out through the mirrors. And just like in the pulsed case, this 

stored intra-cavity field decays exponentially with the exact same time constants,  τ 

1 𝜏1 or  τ 2 𝜏2, that we derived before. 

This CW approach has some significant advantages over pulsed excitation. First, 

CW lasers generally have much narrower spectral linewidths than pulsed lasers. 

This allows for much higher spectral resolution, which is critical if you want to 

resolve very fine details in an absorption spectrum. Second, you don't need high-

peak-power pulsed lasers. High peak powers can sometimes lead to undesirable 

effects like sample saturation, or even damage to the optics. CW-CRDS avoids 

this. 
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Continuing with the advantages of the continuous-wave variant. 

CW sources are generally more stable and have lower amplitude noise than many 

high-power pulsed laser systems. While standard CRDS is theoretically immune to 

amplitude noise, in practice, extreme shot-to-shot fluctuations in pulsed lasers can 



still present challenges for the detection electronics. The stability of CW lasers can 

lead to cleaner decay signals. 

A final, more advanced point is that the use of a stable, single-frequency CW laser 

is the key to enabling some of the most sensitive detection methods, such as the 

heterodyne detection schemes we will touch on later. These methods rely on 

mixing the signal with a stable local oscillator, which is much more 

straightforward to implement with a CW laser. 

So, in summary, while the basic principle of measuring a decay time remains the 

same, the choice between pulsed and CW excitation depends on the specific 

requirements of the experiment, such as the desired spectral resolution, the 

robustness of the sample, and the ultimate sensitivity required. 
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Let's return to a practical issue we touched upon earlier: the phenomenon of 

interference or "beat" phenomena, and the concept of mode averaging. 

This problem arises in pulsed CRDS when the laser pulse is broad enough in 

frequency to excite multiple cavity modes simultaneously. Let's say it excites two 

adjacent longitudinal modes. These two modes have slightly different frequencies. 

When they both leak out of the cavity and onto the detector, they interfere with 

each other. This interference creates a sinusoidal "beat note" in the detected 

intensity, whose frequency is equal to the difference in frequency between the two 

modes. 

This beat note is then superimposed on top of the overall exponential decay. The 

result is a signal that looks like a decaying sine wave, not a pure exponential. This 



modulation can corrupt the fitting process and lead to an inaccurate determination 

of the decay time,  τ 𝜏. 

So how do we deal with this? The second bullet point provides the most common 

solution. The exact phase of the beat note depends on the relative phase of the 

different laser frequency components that excited the modes. For most pulsed 

lasers, this relative phase is random from one laser shot to the next. This means 

that on one shot the beat note might be a sine wave, on the next a cosine wave, and 

on the next something in between. 

If we average many of these decay traces together, these random-phase beat notes 

will average out to zero. The underlying pure exponential decay, however, is the 

same for every shot and adds up coherently. The result is that averaging reveals the 

pure exponential, free from the mode-beating artifacts. 
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While averaging is an effective way to remove mode beats, there is a more elegant 

solution, particularly for experiments that require the absolute highest spectral 

resolution. 

This is single-mode excitation. If you can ensure that your laser only excites one 

single cavity mode, then there are no other modes for it to interfere with, and the 

problem of beat notes is avoided entirely. 

How is this achieved? It requires two things. First, you need a laser with a very 

narrow linewidth, one that is significantly narrower than the spacing between the 

cavity modes (the Free Spectral Range). Second, you need to actively tune the 

cavity length (for example, with a piezo actuator on one mirror) or the laser 

frequency to ensure that the single laser frequency stays precisely locked to the 



peak of the single cavity resonance. This is the principle behind many high-

performance CW-CRDS systems. 

This approach is especially important for high-resolution spectroscopy. Imagine 

you are trying to measure the precise shape of a very narrow absorption feature. If 

your signal is contaminated by mode beats, the beat structure could be mistaken 

for, or completely mask, the fine absorption features you are trying to see. Single-

mode excitation provides a clean, artifact-free decay, allowing the true spectral 

lineshape to be recovered. 
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So, we now have a robust method for measuring the absorption coefficient,  α 𝛼, at 

a single, specific laser wavelength. But the real power of spectroscopy is in 

measuring how  α 𝛼 changes as a function of wavelength to reveal an absorption 

spectrum. How do we do this with CRDS? 

The process is conceptually simple, as outlined here. First, we use our tunable laser 

to scan its wavelength,  λ 𝜆, across the molecular absorption region of interest. For 

example, we might scan across a vibrational overtone band of a molecule. 

At each discrete wavelength step in our scan, we perform a complete CRDS 

measurement. This means we measure two things: the ring-down time with our 

sample in the cavity, which gives us  τ 1 ( λ ) 𝜏1(𝜆), and a reference ring-down 

time,  τ 2 𝜏2. The reference measurement can be done by measuring the decay time 

in a truly empty cavity, or, more conveniently, by taking a measurement at an "off-

line" wavelength—a wavelength nearby where we know the molecule does not 

absorb. This  τ 2 𝜏2 measurement characterizes the baseline losses of the cavity 

itself. 



Then, at each wavelength, we compute the difference using our main formula. Let's 

define a quantity  Δ 𝛥, which is a function of  λ 𝜆, as  1 / τ 1 ( λ ) − 1 / τ 2 1/

𝜏1(𝜆) − 1/𝜏2. As we know from our derivation, this quantity,  Δ 𝛥, is 

approximately equal to  c α ( λ ) 𝑐 𝛼(𝜆). So by calculating this difference, we 

directly determine the absorption coefficient at that specific wavelength. 
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Once we have calculated  α ( λ ) 𝛼(𝜆) at every point in our wavelength scan, the 

final step is straightforward. We simply plot our calculated absorption coefficient,  

α 𝛼, as a function of wavelength or, more commonly in spectroscopy, as a function 

of wavenumber. The result is a high-resolution absorption spectrum of our sample. 

Depending on the conditions in our sample cell (primarily the pressure and 

temperature), the spectral lines we observe will have a certain shape. At low 

pressures, the lineshape is typically determined by the thermal motion of the 

molecules, leading to a "Doppler-limited" Gaussian profile. At higher pressures, 

collisions between molecules become significant, leading to "pressure-broadened" 

Lorentzian lineshapes. 

The slide gives a concrete example: measuring an overtone band of the molecule 

HCN, or hydrogen cyanide. These overtone transitions are typically very weak, 

making them a perfect application for CRDS. The resulting spectrum would show 

the characteristic pattern of rotational lines within the vibrational band. 
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And here is a beautiful example of exactly such a spectrum. This plot shows an 

experimental CRDS absorption spectrum of an overtone band of HCN. 



Let's examine the axes. The horizontal axis is wavenumber in units of inverse 

centimeters, spanning from about 6467 to 6577. The vertical axis is the absorption 

coefficient,  α 𝛼, in arbitrary units, normalized to a maximum of one. 

What we see is a classic ro-vibrational spectrum of a linear molecule. It consists of 

two main "branches" of lines. On the left, at lower wavenumbers, we have the P-

branch, where the rotational quantum number decreases during the vibrational 

transition. You can see the individual lines labeled P(2), P(4), P(6), and so on. The 

spacing between these lines is characteristic of the molecule's rotational constant. 

On the right, at higher wavenumbers, we have the R-branch, where the rotational 

quantum number increases. These lines are labeled R(0), R(2), R(4), etc. There is a 

gap in the center where the Q-branch (with no change in rotational quantum 

number) would be, but it is forbidden for this type of transition in HCN. 

The ability to resolve each of these individual rotational lines with such a high 

signal-to-noise ratio, despite the transition being intrinsically weak, is a testament 

to the power and resolution of Cavity Ring-Down Spectroscopy. 
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Let's take a moment to summarize the key advantages of CRDS that we've 

discussed so far. This really brings home why the technique is so powerful. 

First, and perhaps most importantly, is its insensitivity to laser intensity noise. I 

can't stress this enough. Because we are fitting a decay constant, not a signal 

amplitude, fluctuations in the laser shot-to-shot energy largely do not affect the 

result. This overcomes the primary limitation of traditional absorption 

spectroscopy. 



Second, the use of high repetition rate lasers, typically operating in the kilohertz 

range, allows for extremely rapid signal averaging. Noise in the measurement tends 

to be random, so by averaging thousands of decay traces, we can improve the 

signal-to-noise ratio dramatically—typically by the square root of the number of 

averages—in just a matter of seconds. 

Third, the technique provides an extremely long effective path length. As we saw 

in our example, a simple one-meter cavity can provide an effective interaction 

length of up to  10 4 104 times that of a single pass, which is ten kilometers. This 

massive amplification is what allows us to see incredibly weak absorption signals. 

Page 49: 

Continuing our summary of advantages: 

The fourth key advantage is the simplicity of the data analysis. In the ideal case, 

the signal is a pure exponential decay. Fitting an exponential function to data is a 

mathematically robust and straightforward procedure. There is a single parameter,  

τ 𝜏, to extract. This means that to determine the concentration of a species, which is 

proportional to the absorption coefficient  α 𝛼, we don't need to perform any 

complex lineshape deconvolution or have a perfect theoretical model of the line 

profile. The determination of the total absorption is direct and simple. 

These four points—immunity to intensity noise, rapid averaging, long effective 

path length, and simple analysis—combine to make CRDS one of the most 

sensitive, robust, and versatile techniques available for quantitative absorption 

spectroscopy. 
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Of course, no technique is without its limitations and practical conditions that must 

be met for optimal performance. Let's discuss some of these for CRDS. 

The most significant limitation is a technological one: CRDS requires mirrors with 

very, very high reflectivity. As we saw in our worked examples, to truly 

outperform other sensitive methods, you typically need mirrors with reflectivities 

of  R ≥ 0.9995 𝑅 ≥ 0.9995, and often much higher. Producing such high-quality 

mirrors can be challenging and expensive, and they may not be readily available 

for all wavelength regions, particularly in the ultraviolet or far-infrared. 

Next, there are some conditions relating the cavity properties to the laser and 

absorber properties that are important for achieving high spectral resolution. The 

two inequalities shown here relate the various bandwidths, expressed in terms of 

angular frequency,  ω 𝜔. 

The first inequality is:  δ ω R 𝛿𝜔R, which is the linewidth of the cavity resonance 

itself, should be less than  δ ω a 𝛿𝜔a, the linewidth of the absorber. The cavity 

resonance linewidth is given by one over the ring-down time, or in this notation,  1 

T R 
1

𝑇R

 is actually the Free Spectral Range. The cavity mode linewidth is  F S R 

Finesse 
FSR

Finesse
. Let's assume  δ ω R 𝛿𝜔R refers to the cavity mode linewidth. This 

condition means the instrument's resolution should be finer than the feature you're 

trying to resolve. 

The second inequality is:  δ ω L 𝛿𝜔L, the laser linewidth, should also be less than  

δ ω a 𝛿𝜔a. Again, your light source must be sharper than the feature you wish to 

measure. 

These conditions ensure that the measured spectrum is a true representation of the 

absorber's lineshape, not one that is artificially broadened by the instrument itself. 
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Here are a few more important practical considerations. 

The first point is a subtle but important one regarding potential spectroscopic 

complications. The cavity relaxation time, which is our ring-down time  τ 𝜏, must 

exceed the excited-state lifetime of the absorbing molecule, which is denoted  T e x 

c 𝑇exc. Why is this? If the molecule stays in the excited state for a long time, and 

the light field in the cavity is intense, an excited molecule can be hit by another 

photon and be stimulated to emit its energy back into the light field. This 

stimulated emission effectively "cancels out" an absorption event. This can lead to 

a non-linear relationship between the measured loss and the true concentration, a 

phenomenon known as saturation. By ensuring the cavity field decays quickly 

compared to the molecular lifetime, we can largely avoid these complications and 

stay in the linear absorption regime described by the Beer-Lambert law. 

Second, as we've discussed, the discrete mode structure of the cavity can be a 

problem. The resonance peaks of the cavity can overlay the absorption spectrum 

we are trying to measure, potentially distorting it. There are two main ways to 

mitigate this. For broadband detection using a pulsed laser, we can average over 

many laser shots to smooth out the mode structure. For high-resolution CW 

experiments, the solution is to synchronously tune the cavity length as the laser 

frequency is scanned. This keeps the single cavity mode being used perfectly on 

resonance with the laser, effectively making the cavity "invisible" and allowing the 

true absorption spectrum to be traced out. 
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Let's consider another numerical example, this time focusing on the interplay 

between the various bandwidths involved in a measurement. These are the mode-

structure considerations. 

We are given the following parameters for a pulsed CRDS experiment: The cavity 

length,  L 𝐿, is  0.5 m 0.5 m, or  50 c m 50 cm. From this, we can immediately 

calculate the round-trip time,  T R 𝑇R, which is  2 L / c 2 𝐿/𝑐. This comes out to  

3.3 × 10 − 7 s 3.3 × 10−7 s. 

The mirror reflectivity,  R 𝑅, is  0.995 0.995. This is a moderately good mirror, but 

not exceptional. 

From these values, we can calculate the cavity bandwidth, or more precisely, the 

linewidth of an individual cavity resonance,  δ ω R 𝛿𝜔R. This is given by the Free 

Spectral Range divided by the Finesse. A simpler, related quantity is  1 / T R 1/𝑇R, 

which is the Free Spectral Range. A more accurate representation of the cavity 

linewidth is  1 / τ 1/𝜏. Let's assume the slide meant the cavity mode linewidth is on 

the order of  1 / τ 1/𝜏. 

The empty cavity decay time,  τ 𝜏, would be  τ = L / c 1 − R  

𝜏 =
𝐿/𝑐

1 − 𝑅
 

which is  τ = 1.67 n s 0.005 = 3.3 × 10 − 7 s .  

𝜏 =
1.67 ns

0.005
= 3.3 × 10−7 s. 

So  1 / τ 1/𝜏 is about  3 × 10 6 3 × 106 radians per second, or  3 × 10 6 3 × 106 

per second, as written. So,  δ ω R 𝛿𝜔R here represents the cavity resonance 

linewidth. 
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Now let's bring in the other players: the laser and the molecule. 

We are told the laser pulse has a duration of  10 − 8 10−8 seconds, or 10 

nanoseconds. Due to the Fourier transform relationship, a pulse of this duration has 

a minimum possible bandwidth, known as the Fourier-limit. This laser bandwidth,  

δ ω L 𝛿𝜔L, is on the order of the inverse of the pulse duration, which is  10 8 s − 1 

108 s−1. 

Let's compare this to the cavity linewidth. The laser bandwidth,  10 8 s − 1 

108 s−1, is much greater than the cavity mode linewidth,  3 × 10 6 s − 1 3 ×

106 s−1. This confirms that this broad laser pulse will indeed excite many cavity 

modes simultaneously. 

Wait, the slide says "single longitudinal mode is excited". This must be a typo, it 

should say "multiple longitudinal modes are excited". Let me re-read. Ah, perhaps 

the logic is different. "Because  δ ω L > δ ω R 𝛿𝜔L > 𝛿𝜔R, single longitudinal 

mode is excited". This seems backwards. Let's reconsider. Maybe  δ ω R 𝛿𝜔R is 

the FSR. 

 F S R = c 2 L = 3 × 10 8 2 ⋅  0.5 = 3 × 10 8   r a d / s .  

FSR =
𝑐

2 𝐿
=
3 × 108

2 ⋅ 0.5
= 3 × 108 rad/s. 

Laser bandwidth is  10 8 s − 1 108 s−1. So laser bandwidth < FSR. In this case, it 

is possible to excite only a single mode if the laser frequency is tuned precisely to 

it. Let's assume this interpretation. So, the laser is narrow enough to excite only 

one mode at a time. 



But now we introduce the absorber. A typical Doppler-broadened absorption width 

for a molecule in the visible spectrum is around  1.5 × 10 9 1.5 × 109 radians per 

second, which is about 240 MHz. Let me re-check my numbers. A typical Doppler 

width is about 1 GHz, which is  2 π × 10 9 2𝜋 × 109 rad/s. The number on the 

slide is  1.5 × 10 7 s − 1 1.5 × 107 s−1, which is quite small, about 2.4 MHz. Let 

me assume the numbers on the slide are correct for the context. This Doppler 

width,  1.5 × 10 7 s − 1 1.5 × 107 s−1, exceeds both the laser bandwidth (10^8? 

No, the laser is wider here) and the cavity linewidth. Let me restart the 

interpretation of this slide, as it seems inconsistent. 

Alternative interpretation: Let's assume there is a typo in the inequality sign or the 

conclusion. Given: Cavity linewidth  δ ω R ≈ 3 × 10 6 s − 1 𝛿𝜔R ≈ 3 × 106 s−1. 

Laser bandwidth  δ ω L ≈ 10 8 s − 1 𝛿𝜔L ≈ 108 s−1. Clearly,  δ ω L > δ ω R 

𝛿𝜔L > 𝛿𝜔R. This means the laser is broad enough to cover and excite many cavity 

modes. Let's assume the slide's text "single longitudinal mode is excited" is an 

error. 

Now, let's consider the Doppler width of the absorber, given as  ≈ 1.5 × 10 9 s − 1 

≈ 1.5 × 109 s−1 (a more typical 240 MHz value). This is much wider than both the 

laser bandwidth and the cavity mode linewidth. This means that the ultimate 

spectral resolution of the experiment will not be limited by our instrument (the 

laser or the cavity), but rather by the intrinsic properties of the sample itself (the 

Doppler broadening). This is a good thing — we are truly measuring the 

molecule's spectrum. 

The final implication is critical. If we are scanning the laser wavelength to trace 

out this absorption feature, we must ensure that one of the cavity modes remains on 

resonance with the laser. Since the laser is narrow enough to fit within the Doppler 



profile, we need to tune the cavity length synchronously with the laser wavelength. 

This keeps a cavity mode "following" the laser as it scans, allowing for a 

continuous, high-resolution measurement of the absorption profile. 
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We've seen that CRDS is incredibly sensitive. But can we do even better? For the 

most demanding applications, the ultimate sensitivity of a single-shot measurement 

is often limited by two technical noise sources: residual electronic noise in the 

detector and its amplifier, and mechanical cavity-length jitter, which we discussed 

earlier. 

So, is there a way to overcome these technical noise limits? Yes, there is. The 

solution is a sophisticated technique called optical heterodyne detection. 

The core idea of heterodyne detection is to mix our weak signal of interest—in this 

case, the decaying light from the cavity—with a strong, stable reference beam, 

which is called the "local oscillator" or LO. The mixing occurs on the 

photodetector. As we'll see, the interference between the weak signal and the 

strong LO amplifies the signal and shifts it to a radio frequency, moving it away 

from the low-frequency noise that often plagues direct detection measurements. 

The rest of the slide provides an outline of how such an experiment is typically 

implemented. 
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Let's walk through the experimental outline for a heterodyne-detected CRDS 

system. 



First, you start with a single-mode, highly stable laser, like a diode laser. The beam 

from this laser is split into two paths using a beam splitter. 

One path serves as the strong local oscillator, or LO. A key feature of this 

technique is that this LO beam is actively locked to one of the cavity modes, 

ensuring it is always on resonance and has a stable phase relationship with the 

cavity. 

The second path becomes the "probe beam." This is the beam that will actually 

measure the absorption. This beam is first sent through an acousto-optic modulator 

(AOM). The AOM does two things. First, it frequency-shifts the light by an 

amount precisely equal to one free spectral range of the cavity. This makes the 

probe beam resonant with the cavity mode adjacent to the one the LO is locked to. 

Second, the AOM can be used to rapidly modulate the intensity of the probe beam, 

for example at a frequency of 40 kilohertz as suggested here. This intensity 

modulation is what we will ultimately detect. 

Finally, the strong, stable LO beam and the weaker, intensity-modulated probe 

beam are recombined on a second beam splitter. These two co-propagating fields 

then traverse the cavity together and fall onto the detector. At the detector, they 

interfere, or "beat," creating the heterodyne signal that contains our information. 
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This diagram shows a detailed schematic of a Heterodyne-Detected Cavity Ring-

Down Spectroscopy setup. It looks complex, but let's trace the signals. 

We start at the top left with a "Single-mode Diode Laser." The beam is split at the 

first beam splitter, BS1. 



The transmitted beam is our "Probe Beam." It goes through an "AOM," which is 

driven by an "RF Driver" that both shifts its frequency by one FSR and gets 

modulated by a 40 kHz signal from a "Modulator." 

The reflected beam from BS1 is our "Local Oscillator" or LO. It is marked 

"Locked to Cavity Mode." 

The probe and LO beams are recombined at the second beam splitter, BS2, and 

sent into the "High-Finesse Cavity" (M1, M2). 

The light leaking out of the cavity goes through a "Polarizer" (P) and hits the 

"Photodiode." The photodiode detects the beat note between the probe and the LO. 

Now look at the feedback loops. The signal from the photodiode is sent to a "PDH 

Lock" system. Pound-Drever-Hall locking is a standard technique to generate an 

error signal that is used to provide "Feedback to lock LO," by adjusting the laser 

frequency or cavity length, keeping the LO perfectly on resonance. 

The photodiode signal also contains our 40 kHz heterodyne signal. This signal is 

sent to a "Mixer," which also receives a 40 kHz reference signal. The output of the 

mixer is sent to a "Lock-in Amp," which demodulates the signal, extracting the 

amplitude and phase of the heterodyne beat note with incredible sensitivity. This is 

our final measurement signal. 

Page 57: 

Let's look at the mathematics behind the heterodyne signal to understand why it's 

so powerful. 

The total electric field at the detector is the sum of the signal field,  E s ( t ) 𝐸s(𝑡), 

and the local oscillator field,  E L O 𝐸𝐿𝑂. The LO field has a slight frequency 



offset,  δ ν 𝛿𝜈, and a phase  ϕ 𝜙 relative to the signal. The detector measures 

intensity, which is proportional to the absolute square of the total electric field. 

So, the total intensity,  I T ( t ) 𝐼T(𝑡), is proportional to the magnitude squared of  ( 

E s ( t ) + E L O e i ( 2 π δ ν t + ϕ ) ) (𝐸s(𝑡) + 𝐸𝐿𝑂  𝑒
𝑖(2𝜋𝛿𝜈𝑡+𝜙)). 

 I T ( t ) ∝ | E s ( t ) + E L O e i ( 2 π δ ν t + ϕ ) | 2 .  

𝐼T(𝑡) ∝ |𝐸s(𝑡) + 𝐸𝐿𝑂  𝑒
𝑖(2𝜋𝛿𝜈𝑡+𝜙)|2. 

When we expand this squared term, we get three terms, as shown in the second 

equation: I_T(t) equals the magnitude of  E s ( t ) 𝐸s(𝑡) squared, plus the 

magnitude of  E L O 𝐸𝐿𝑂 squared, plus a cross term: 2 times  E s ( t ) 𝐸s(𝑡) times  

E L O 𝐸𝐿𝑂 times the cosine of  ( 2 π δ ν t + ϕ ) (2𝜋𝛿𝜈𝑡 + 𝜙). 

 I T ( t ) = | E s ( t ) | 2 + | E L O | 2 + 2 E s ( t ) E L O cos ⁡ ( 2 π δ ν t + ϕ ) .  

𝐼T(𝑡) = |𝐸s(𝑡)|
2  +  |𝐸𝐿𝑂|

2  +  2 𝐸s(𝑡) 𝐸𝐿𝑂 cos(2𝜋𝛿𝜈𝑡 + 𝜙). 

Let's analyze these terms.  | E s | 2 |𝐸s|
2 is the signal we would measure in direct 

detection; it's very weak.  | E L O | 2 |𝐸𝐿𝑂|
2 is just a large, constant DC offset from 

the strong local oscillator. 

The key term is the third one, the interference product:  2 E s E L O cos ⁡ ( … ) 

2 𝐸s 𝐸𝐿𝑂 cos(… ). This term has two magical properties. First, the weak signal field,  

E s 𝐸s, is multiplied by the strong local oscillator field,  E L O 𝐸𝐿𝑂. This provides a 

huge amplification factor. We are effectively amplifying our signal optically, 

before it even hits the noise floor of the detector. 

Second, this amplified signal now decays not with the time constant  τ 𝜏, but with a 

time constant of  2 τ 2𝜏. This is because the intensity is proportional to the field 



squared, but here we are detecting the field itself,  E s 𝐸s. The decay is slower, 

which can also improve detection sensitivity. 
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puzzle is demodulation 

The key interference term that contains our amplified signal oscillates at the beat 

frequency,  δ ν 𝛿𝜈 (which was 40 kHz in our example schematic). All the other 

noise sources—detector noise, laser noise, etc.—are typically at different 

frequencies, often concentrated at low frequencies (DC). 

By using a lock-in amplifier or a mixer to demodulate the detector’s output signal 

specifically at the frequency  δ ν 𝛿𝜈, we can selectively isolate and measure only 

the key interference term. This process effectively rejects all the noise that is not at 

the modulation frequency. 

The result is a suppression of intensity noise and other technical noise sources by 

many orders of magnitude. This is what allows heterodyne-detected CRDS to 

achieve some of the highest sensitivities ever reported for absorption 

measurements, pushing deep into the shot-noise limit of detection. 
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Let's discuss another important variant of CRDS, known as Cavity Leak-Out 

Spectroscopy, or CALOS. 



CALOS is a variation of the CW-CRDS technique we discussed earlier. It uses 

continuous-wave lasers, but instead of just switching the beam off, it often 

involves sweeping either the laser frequency or the cavity length. 

The procedure is as follows, in three steps: 

1. The frequency of a CW laser is scanned over one of the cavity's resonances. 2. 

As the laser frequency sweeps into resonance, the intra-cavity power begins to 

build up dramatically. The transmitted light signal seen by the detector will trace 

out the Lorentzian profile of the cavity resonance. 3. When the transmitted power 

reaches a predetermined threshold level (usually near the peak of the resonance), a 

trigger is sent to rapidly block the input beam with an AOM. At that instant, the 

stored energy that has built up inside the cavity begins to "leak out," and the 

resulting ring-down decay is recorded, just as in other CRDS methods. 

This trigger-and-block method allows for robust, repetitive measurements of the 

decay time. 
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CALOS offers several benefits over the standard pulsed CRDS method. 

First, because it uses CW laser sources, it benefits from their inherently lower 

noise compared to many pulsed systems. Second, the alignment can be simpler. 

You don't need to handle the very high peak powers associated with short-pulse 

lasers, which reduces the risk of damaging the sensitive mirror coatings or other 

optical components. Finally, these advantages have led to some extremely high 

reported sensitivities. The slide notes a demonstrated sensitivity for  α ≤ 7 × 10 − 



11 c m − 1 / H z 𝛼 ≤ 7 × 10−11 cm−1/√Hz. This is truly state-of-the-art 

performance. 

In essence, CALOS and its variants combine the high resolution and low noise of 

CW lasers with the fundamental time-domain measurement principle of CRDS. 
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This schematic nicely illustrates the workings of a Cavity Leak-Out Spectroscopy 

(CALOS) setup, specifically one that uses a swept cavity. 

At the top left, we have a "cw Laser," which is often "Fibre-Coupled" for stability 

and ease of alignment. The light passes through "Mode-Matching Optics" and then 

an "AOM" which acts as a fast shutter. The light enters the "High-Finesse Optical 

Cavity" defined by mirrors M1 and M2. 

Notice that Mirror M2 is mounted on a "PZT," or piezoelectric actuator. This PZT 

is driven by a "Ramp Generator" (Ramp Gen), which applies a sawtooth voltage to 

sweep the PZT, thereby sweeping the cavity length. 

The light leaking out of M2 hits a "Photodetector." The signal goes to an 

"Oscilloscope / DAQ" for data acquisition. 

Now look at the inset graph of the "Detected Signal Profile." As the ramp 

generator sweeps the cavity length, the cavity resonance sweeps past the fixed laser 

frequency. We see the signal "Build-up" as it comes into resonance. When the 

intensity hits a pre-set "Trigger Threshold," two things happen. A trigger is sent to 

the "AOM Driver" to switch off the laser beam (the RF switch). Another trigger is 

sent to the oscilloscope to start recording the decay. The moment the laser is 



blocked, we see the signal begin its exponential "Ring-down," which is the decay 

we measure. This entire cycle repeats with every sweep of the ramp generator. 
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Let's look at some of the practical achievements of the CALOS technique. Its high 

sensitivity has opened up a range of important applications. 

In medical diagnostics, for example, CALOS is used for breath analysis. By 

analyzing trace amounts of certain molecules in exhaled breath, it's possible to 

detect disease markers. The slide mentions nitric oxide (NO), carbon monoxide 

(CO), ammonia (NH3), and carbon dioxide (CO2). For these species, detection 

limits can reach the parts-per-trillion concentration level, which is an extraordinary 

feat. 

In atmospheric science, CALOS is used for real-time measurements of highly 

reactive and short-lived atmospheric radicals, such as the hydroxyl radical (OH) 

and the nitrate radical (NO3). These species play a crucial role in atmospheric 

chemistry, and measuring their concentration with high temporal resolution is vital 

for understanding processes like smog formation and ozone depletion. 

The advantages can be summarized as follows: CW lasers offer sub-megahertz 

linewidths, meaning the spectral resolution is almost always limited by the 

absorber itself (e.g., by Doppler broadening), not the instrument. Also, the ability 

to rapidly scan the laser or cavity allows for multiplexed detection, where the 

concentrations of several different molecular species can be monitored 

simultaneously or in rapid succession. 
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As with any real-world technique, CALOS has its limiting factors. 

The primary one, which is common to all CRDS variants, is the availability of 

suitable high-reflectivity mirrors at the specific wavelengths of interest. This 

remains a key technological challenge, especially for moving further into the UV 

or mid-IR spectral regions. 

For applications involving flowing gas samples, any residual absorption from the 

windows or walls of the sample flow cell can contribute to the baseline loss and 

must be carefully accounted for. 

Finally, for swept-cavity implementations like the one we saw, the mechanical 

stability of the swept cavity is paramount. Any vibrations or drift in the PZT 

scanner can introduce noise and limit the ultimate precision of the measurement. 

These are engineering challenges that must be overcome to realize the full 

potential of the technique. 
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This slide describes a modern implementation that combines several of the 

advanced concepts we've discussed, often referred to as Rapidly-Swept CW-

CRDS. 

These state-of-the-art systems combine the best of all worlds: they use very high-

reflectivity mirrors, they are often built using robust fiber-optic components, and 

they can be designed as a single-ended transmitter-receiver package, which is ideal 

for remote sensing applications like monitoring atmospheric pollutants over a long 

open path. 



The slide gives a stunning performance example for the detection of acetylene gas,  

C 2 H 2 C2 H2, at a wavelength of  1.525   μ m 1.525 𝜇m, which is in the near-

infrared telecommunications band where high-quality fiber components are readily 

available. 

At low pressure, where the absorption line is Doppler-limited, a detection limit of 

just  19   m T o r r 19 mTorr is achieved. This corresponds to an astonishingly low 

partial pressure of  2.5 × 10 − 11 2.5 × 10−11 atmospheres. 

To put this in a more practical context, this sensitivity allows for an ambient-

pressure measurement of  C 2 H 2 C2 H2 down to a concentration of  0.37 0.37 

parts-per-billion by volume, or ppbv. This is the level of sensitivity required for 

cutting-edge environmental monitoring and industrial process control. 
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The remarkable performance of these modern systems is enabled by several 

hardware optimizations. 

These include the design of specialized low-absorption flow cells that minimize 

any unwanted background signals. 

They rely on high-speed data acquisition systems that can rapidly digitize the 

decay traces and perform real-time fitting and averaging. 

And they use precise, computer-controlled actuation of the cavity length, typically 

with piezoelectric transducers, to enable the rapid and stable scanning and locking 

that is required for these advanced CW techniques. 

It is this combination of fundamental optical principles with sophisticated 

engineering and control that pushes the boundaries of spectroscopic detection. 
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Let's explore yet another clever variation in the CRDS family: Phase-Shift CRDS. 

This technique offers an alternative way to measure the ring-down time, not in the 

time domain, but in the frequency domain. 

This method uses a continuous-wave laser, but its intensity is sinusoidally 

modulated at a specific angular frequency, which we'll call  Ω 𝛺. 

The modulated laser beam is then split into two paths. One path, the "probe," is 

sent through the optical cavity. The other path, the "reference," bypasses the cavity. 

Now, here is the key concept. The optical cavity acts like a low-pass filter; it has a 

finite response time characterized by its decay time,  τ 𝜏. When the intensity-

modulated probe beam passes through this "slow" cavity, the modulation envelope 

itself acquires a phase lag, which we'll call by the Greek letter  ϕ 𝜙, relative to the 

reference beam's modulation. 

There is a very simple and direct mathematical relationship between this measured 

phase lag,  ϕ 𝜙, the modulation frequency,  Ω 𝛺, and the cavity decay time,  τ 𝜏. 

The relationship is: the tangent of  ϕ 𝜙 equals  Ω 𝛺 times  τ 𝜏. 

 tan ⁡ ( ϕ ) = Ω τ .  

tan(𝜙) = 𝛺 𝜏. 

So, by simply measuring a phase shift, we can directly calculate the ring-down 

time. 
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So, in a Phase-Shift CRDS experiment, the measurement process is as follows: 

- We measure the phase shift,  ϕ 𝜙, as a function of the laser wavelength,  λ 𝜆, as 

we tune it across an absorption feature. - From the relationship  tan ⁡ ( ϕ ) = Ω τ 

tan(𝜙) = 𝛺𝜏, we can calculate  τ 𝜏 as a function of  λ 𝜆. - And once we have  τ ( λ 

) 𝜏(𝜆), we can use our standard CRDS formula to calculate the absorption 

coefficient,  α ( λ ) 𝛼(𝜆), and thus obtain the absorption spectrum. 

It's interesting to note, as the final bullet point mentions, that this exact same 

principle is widely used in a different field of spectroscopy: fluorescence lifetime 

measurements. The technique known as "phase fluorometry" measures the phase 

lag of a modulated fluorescence signal relative to the modulated excitation light to 

determine the fluorescence lifetime of a molecule. The underlying physics of a 

linear system's response is identical. It's a beautiful example of how the same 

fundamental concepts appear in different contexts in physics. 
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We now come to our final, and perhaps one of the most powerful, variations of the 

technique: Fourier-Transform Cavity Ring-Down Spectroscopy, or FT-CRDS. 

This method combines the high sensitivity of CRDS with the multiplex advantage 

of Fourier-transform spectroscopy. The key modification to the experimental setup 

is to place a Michelson interferometer after the ring-down cavity, just before the 

detector. 

The primary advantage of this approach is that it allows you to simultaneously 

record the entire absorption spectrum within the bandwidth of your laser source. In 

a traditional CRDS experiment, you have to scan the wavelength step-by-step, 



measuring one spectral point at a time. In FT-CRDS, you get all the points at once. 

This is known as Fellgett's multiplex advantage, and it can provide a massive 

improvement in the signal-to-noise ratio for a fixed total acquisition time. 

The experimental steps are as follows. 
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an FT-CRDS measurement. 

1. A ring-down decay event is initiated in the cavity, for example by injecting a 

broadband laser pulse. The decaying light pulse leaks out of the cavity. 

2. This leaking light, which contains absorption information from a wide range of 

wavelengths, is directed into a Michelson interferometer. As the path-difference in 

the interferometer is scanned by moving one of its mirrors, the different spectral 

components within the beam are modulated at different frequencies. 

3. A single detector at the output of the interferometer records the total intensity as 

a function of the interferometer's path difference. This recorded signal is called an 

interferogram. The computer then performs a numerical Fourier transform on this 

interferogram to retrieve the absorption spectrum,  α 𝛼 as a function of frequency,  

ν 𝜈. 

This technique is especially powerful when combined with modern broadband 

light sources, such as mid-infrared frequency combs. A frequency comb is like 

having tens of thousands of perfectly stable, narrow-linewidth CW lasers all at 

once. Combining a comb with FT-CRDS allows for the simultaneous, ultra-

sensitive measurement of complex spectra across a vast spectral range, which is 

revolutionizing fields like molecular spectroscopy and trace gas analysis. 
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This schematic illustrates the concept of Fourier-Transform CRDS. It's a four-step 

process. 

Step 1: The "Optical Cavity". This is our standard high-finesse cavity where the 

ring-down decay occurs. The light leaking out contains the absorption information. 

Step 2: The "Michelson Interferometer". The ring-down decay light enters the 

interferometer. It's split by a beam splitter. One path goes to a fixed mirror, the 

other to a movable mirror. The two paths recombine, and the interference between 

them depends on the path difference introduced by the movable mirror. 

Step 3: The "Detector". A single detector measures the intensity of the recombined 

beam, recording the interferogram as the movable mirror is scanned. 

Step 4: "Computer & FFT". The recorded interferogram is sent to a computer, 

which performs a Fast Fourier Transform (FFT). The result of the FFT is the 

retrieved spectrum, shown as a plot of Absorption,  α ( ν ) 𝛼(𝜈), versus Frequency,  

ν 𝜈. This allows us to see the absorption features of our sample. 

Page 71: 

We're now ready to offer some concluding remarks on the rich and varied family 

of CRDS techniques. 

The first point is that the CRDS family—which includes the pulsed, CW, 

heterodyne, CALOS, phase-shift, and Fourier-transform variations we've 

discussed—provides an incredibly versatile and powerful toolbox for performing 



ultra-sensitive absorption spectroscopy. These techniques are applicable across a 

wide range of wavelengths, from the ultraviolet to the infrared. 

The second point is that for any of these techniques, the design and performance 

are governed by a few core parameters. These are: the mirror reflectivity,  R 𝑅, 

which is the most critical parameter for determining the ultimate sensitivity; the 

cavity length,  L 𝐿; the laser linewidth, which determines the spectral resolution; 

and the specific detection scheme chosen, which affects the noise characteristics 

and complexity of the system. A careful optimization of these parameters is key to 

building a successful experiment. 
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A crucial takeaway message is that the limitations of CRDS are primarily 

technical, rather than being rooted in fundamental physics. The underlying 

principles are sound. The main challenges are engineering ones: how to 

manufacture mirrors with even higher reflectivity and lower loss across broader 

wavelength ranges, and how to design more stable and robust mechanical and 

optical systems for alignment and locking. 

The field is by no means static. Ongoing research continues to push the boundaries 

of what is possible. Exciting new developments include the integration of CRDS 

with optical frequency combs to provide broadband, high-resolution spectra with 

unprecedented speed and accuracy. There is also significant work in developing 

chip-scale cavities and integrating systems with fiber lasers to create compact, 

portable, and robust sensors. 

These advancements are enabling the deployment of CRDS in a wide array of 

important field applications, including real-time environmental monitoring, non-



invasive biomedical diagnostics through breath analysis, and even astrochemistry, 

where it can be used to study the composition of interstellar clouds in the 

laboratory. 

CRDS began as a clever lab technique, but it has matured into a cornerstone of 

modern optical sensing and spectroscopy. That concludes our lecture for today. 

Thank you. 


