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Good morning, everyone, and welcome to the Physics 608, Laser
Spectroscopy course at KFUPM. I'm Distinguished Professor Dr M A
Gondal, and it’s a pleasure to have you in this advanced graduate

physics course.

We’re going to begin today with our first major topic, which
corresponds to Chapter 1.1 1in your notes. We 1l be laying the
essential groundwork for everything that follows, so let’s dive

right in.
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So, where do we begin our journey into laser spectroscopy? We
start with the most fundamental question: Why lasers? Before the
invention of the laser in 1960, spectroscopy was already a mature
and powerful field. It had given us quantum mechanics and revealed
the detailed structure of atoms and molecules. Yet, the laser

revolutionized it.

The central theme of our lecture today, and indeed this entire
chapter, is to understand the profound and multifaceted Advantages
of Lasers in Spectroscopy. We are going to explore precisely hAow

and why this one invention amplified the power of spectroscopy by



many orders of magnitude, opening up entirely new frontiers of
scientific inquiry. To do this, we re going to systematically

compare the old ways with the new.
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Alright, let’s establish our context and learning targets for this
chapter. The specific area we re starting with is called Doppler-—
Limited Laser Spectroscopy. Now, this term itself is very
important. As we’ 11 see, atoms or molecules in a gas are not
stationary; they re moving randomly due to their thermal energy.
This motion causes Doppler shifts in the frequencies they absorb
or emit, which broadens any spectral line we try to measure. This
broadening is called the Doppler width, which we will denote with
the symbol A ® D Awp. For now, in this chapter, we will
consider this Doppler width to be the fundamental limit on our

spectral resolution.

Our chapter will therefore focus on laser absorption and
fluorescence experiments where our ability to distinguish two
close spectral features 1is wultimately bounded by this Doppler
width. We will come back to clever ways to overcome this limit in
a later chapter, but first, we must master the Doppler—limited

case.



To do that, our immediate goal 1is to perform a step—by-step
comparison of classical, pre—laser absorption experiments, which
used broadband light sources, with the modern methods that employ
tunable lasers. By seeing the limitations of the old techniques
and how lasers solve them one by one, you will gain a deep,

intuitive understanding of the subject.

So, by the end of this lecture block, you should be able to meet

several key learning outcomes. Let’ s outline them.
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Here are the specific skills you should have mastered by the end

of this discussion.

First, you should be able to list and, more importantly, explain
every single experimental advantage provided by using single-mode,
frequency—tunable lasers. I don’t want a simple list; I want a

physicist’ s understanding of why each property matters.

Second, you 11 be able to derive the detectable—absorption limit
from basic noise considerations. Sensitivity 1s everything in
spectroscopy, and you need to understand, from first principles,
what sets the floor for the weakest signal you can possibly

measure.



Third, you will be able to explain quantitatively how spectral
resolution—which we define as R = o / A o R=w/Ado—
influences the size of your measured signal. We will prove
mathematically why higher resolution doesn’t just give you sharper

spectra, it gives you stronger signals.

And finally, you will be able to identify the typical sources of
noise in a spectroscopy experiment and outline the specific laser-—
based strategies we use to mitigate or eliminate them. A great

experimentalist is, above all, a master of noise.

These are our targets. Let’s begin by looking at how things were

done in the “old days.”
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Let’s turn our attention to what we 11 call Classical Absorption
Spectroscopy. And the heart of this classical setup is a

Broadband, Incoherent Light Source.

What do we mean by that? ”Broadband” means the source emits light
over a very wide range of wavelengths or frequencies
simultaneously. Think of it as a white light source. The slide
gives some classic examples: a high-pressure mercury, or Hg, arc
lamp, or a Xenon flash lamp. These are powerful light sources, but

their energy 1is spread thin across the spectrum. A typical



emission bandwidth is on the order of 100 nanometers or more. That

is an enormous spectral range.

“Incoherent” means the light waves emitted are random in their
phase. Unlike a laser, there is no fixed phase relationship
between different parts of the beam or at different moments in

time.

Now, let’s start building the experimental setup, which is shown
in the figure we’ 11 examine in a moment. The key optical elements

are as follows:

First, we need a collimating lens, which we label L 1 L;. The
light from the lamp emanates in all directions. This lens gathers
some of that light and turns it 1into a quasi—parallel beam,

meaning the rays are traveling mostly in the same direction.

Second, this beam passes through our sample. This is typically a
gas or liquid contained in an absorption cell of a specific
physical length, which we’1l call L L. This is where the light-

matter interaction that we want to study occurs.
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Continuing with our classical setup, after the 1light passes

through the sample cell, what’s next?



The third, and perhaps most critical, component is a dispersive
spectrometer. This is the device that allows us to get spectral
information from our broadband 1light. It’s typically a
monochromator containing a diffraction grating, or in some cases
an interferometer. Its entire job 1is to take the incoming
broadband light and separate it into its constituent colors, or

wavelengths.

Fourth, a detector is placed at the exit of the spectrometer. This
detector—perhaps a photodiode or a photomultiplier tube—measures
the transmitted spectral power at the specific wavelength the
spectrometer has selected. We’ 11 call this power P T ( A )

P;(1)... that is, P T P; as a function of A A.

This brings us to the fundamental requirement, and the fundamental
bottleneck, of the classical method. A monochromator is absolutely
essential. Because our source is broadband, we must filter the
light after it has passed through the sample to 1isolate each
individual wavelength, A A, that we want to measure. To get a
full spectrum, you have to mechanically rotate the grating inside
the monochromator to scan one wavelength after another to the
detector. This is slow, inefficient, and, as we 11 see, it throws
away almost all of the light from our source for any given

measurement point.
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Now let’ s look at the diagram on this page, which brings all these
components together. This is the canonical schematic for Classical

Absorption Spectroscopy.
Let’ s trace the path of the light from left to right.

We begin with the Broadband Source, depicted as a simple circle
emitting diverging rays of light. This could be our mercury arc

lamp.

These diverging rays are captured by the first lens, L 1 Ly,
which collimates the light into a parallel beam. The total power
entering the sample at all wavelengths is represented here as P 0

P,.

Next, the beam traverses the Sample Cell, which has a physical
length L L. Inside this cell, molecules will absorb light at

their characteristic resonant wavelengths.

The light that makes it through, with transmitted power P T Py,
then enters the most important part of the classical setup: the
Monochromator. This is shown as a box containing a slanted
diffraction grating. This grating takes the entire spectrum of
light that enters and disperses it, spreading the colors out in

angle, much like a prism.



An exit slit inside the monochromator then selects one very narrow
band of wavelengths, denoted here by the green line labeled with
the Greek letter A A. Everything else—all the other colors, all
the other photons from our lamp—is blocked. It’s simply thrown

away.

Finally, this single, selected, and now very weak beam of light of
wavelength A A hits the Detector, which measures its power. To
build up a spectrum, we have to slowly rotate the grating to scan
different wavelengths across the exit slit. You can immediately

see the inefficiency inherent in this design.
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Now that we understand the classical setup, let’s look at the
mathematics that describes the absorption process. This 1is
governed by the famous Beer’s Law, so let’s develop the Complete

Mathematical Formulation.

First, we need to define our incident light more formally. Because
we are using a broadband source, we don’t talk about total power,
but rather the incident spectral power density, which we denote as
PO (X ) Py(d). This represents the power per unit wavelength. So
its units are something like Watts per nanometer, written as W n

m—1 Wnm™1L



The key physical quantity that governs the absorption 1is the
linear absorption coefficient, denoted by the Greek letter a a,
which is also a function of wavelength, a (XM ) a(d). This
coefficient tells us how strongly the material absorbs light at a

particular wavelength.

a @, in turn, is defined by the microscopic properties of our

sample. The equation is:

« (M)=Nio ik (Ar)
a(4) = N; 0y, (1)

Let’ s break this down very carefully.

% N i N; is the number density of our absorbing atoms or
molecules that are in the specific initial quantum state, which we
label ’i’. It’s the number of potential absorbers per unit volume.
Its units are typically inverse cubic centimeters, or ¢ m — 3
cm 3. * o ik ( M) 04(1) is the transition—specific absorption
cross—section. This is a wonderfully intuitive concept. It
represents the effective “target area” that the molecule presents
to an 1incoming photon of wavelength A A for the specific
transition from the initial state i’ to a final state 'k . If the

photon “hits” this area, it’s absorbed. The units are area, for

example, square centimeters, or c¢ m 2 cm?.



So, the total absorption coefficient is simply the number of
absorbers per unit volume times the effective area of each

absorber.
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With the absorption coefficient defined, we can now write down the
full Beer - Lambert Law for a uniform sample. The exact transmitted

power is given by:
PT(CA)=PO0OCXAN)e—-—a (A)L
Py(2) = Py(2) e~ Wt

Let’ s walk through this. The transmitted power density, P T P, is
equal to the initial power density, P 0 Py, multiplied by a decay
factor. That factor is e — a L e % The term a L aL is often
called the absorbance or optical depth. It’s a dimensionless
quantity. This exponential relationship shows that the 1light
intensity decreases exponentially as it travels through the

absorbing medium.

Now, 1in many spectroscopic situations, the absorption is weak.
This allows for a very useful simplification called the weak-
absorption approximation. This is valid when the total absorbance,

a L alL, is much, much less than one. In this case, we can use the



Taylor series expansion for the exponential, e —x = 1 —x e * =

1 —x. Applying this to Beer’ s Law, we get:
PT(AN)=~PO(CXMN) (1-a (X)L)

Pr() = Py(D) (1 — a(DL)
This linear approximation makes many calculations much simpler.

So, what is the actual signal we are trying to measure? It’s the
amount of power that was absorbed by the sample. We can define
this absorbed power difference, capital A P ( A ) AP(1), as the

initial power minus the transmitted power.
AP(CMAM)=PO0O(CA)=PT (M)
AP(A) = Py(1) — Pr(A)

Using our  weak—absorption  approximation, this simplifies

beautifully to:
AP(CMAM)=PO0(CA) a (A)L
AP(A) = Py(AD) a(Q) L

This is the signal we want to detect. It’s directly proportional
to the incident power, the absorption coefficient we re trying to

find, and the path length of our cell.
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Now we arrive at the practical heart of the matter: the
Sensitivity and Resolution Limits in this classical method. How

well can we actually measure that small change in power, A P AP?

First, we need a reliable way to measure the incident power, P O
Py, to compare against the transmitted power, P T P;. The standard
reference technique is to perform two separate measurements.
First, you measure the power with the sample cell in the beanm
path. Then, you physically remove the cell and measure the power
again. Or you might use an identical “dummy” cell with no sample
in it. This gives you a reference power, P R P;, which, ideally,
is equal to P 0 P,. This is a slow and cumbersome process, and
it’s susceptible to drifts in the light source power that might

occur between the two measurements.

The measured signal from our electronics, which we can call S (
A ) S(A), will then be proportional to the difference between the

reference and transmitted powers. We can write this as:
S(AM)=albPR(CXN)=PT(CXN)].
S(A) = a[b (A1) — Pr(D)].

Here, a’ and b’ are just instrumental calibration constants that
account for things like detector sensitivity and amplifier gains.
The essential physics is in the difference between the reference

power and the transmitted power.



The second critical limitation is resolution. As we discussed, the
spectrometer cannot distinguish wavelengths with infinite
precision. The spectral interval that the instrument passes to the
detector, which we can call d A dA or, equivalently in angular
frequency, d ® dw, defines the instrumental resolution. We will
denote this resolution as A ® s p e ¢ Awgpe. This finite
resolution will have a profound impact on the signal size, as we

are about to derive.
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Let’ s put some concrete numbers on these limitations.

Consider a typical high—quality laboratory instrument: a l-meter
focal length grating spectrograph. The resolving power, capital R
R, which is A / A A A/AA, for such an instrument is typically
around 5 X 10 4 5x 10%* This might sound like a large number,
but what does it mean in practice? It means that at a wavelength
of 500 nanometers, the smallest spectral interval it can resolve,
capital A A AA, is about 0.01 nanometers. We will see shortly
that in the world of spectroscopy, this is actually quite a broad

window.

Now for the second limitation: the practical noise floor. Even if

we had a perfect signal, our measurement is limited by noise. The



two main culprits in the classical setup are detector noise and,
often more significantly, source flicker—random fluctuations in
the lamp’ s output power. This noise sets a limit on the smallest
relative absorption we can reliably detect. The minimum detectable
change in power, A P AP, divided by the incident power, P 0 P,
is typically on the order of 10 — 4 10™* to 10 — 5 107°. That
is, we can hope to see a change of about one part in ten thousand,

or at best one part in a hundred thousand.

The conclusion from all this 1is 1inescapable. The minimum
measurable absorption coefficient, a min Ay, 1S directly
linked to these two factors: the instrument’ s resolution, which
determines how much power P 0 P, actually reaches the detector
for a given spectral line, and the noise floor, which determines
the minimum A P AP we can see. We are fighting a battle on two

fronts.
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Now, let’s change the game completely. We’ve seen the bottlenecks
of the classical method: a weak, broadband, incoherent, and
flickering source that requires an inefficient monochromator. So,
let’ s Enter Tunable Lasers and see how they solve every single one

of these problems. Let’s look at their fundamental properties.



First, and most dramatically, is the laser output. Lasers provide
extremely high spectral power density. The power per unit
wavelength from a laser can be many, many orders of magnitude
greater than the power per unit wavelength from a lamp. We write

this as:

P A laser > P A lamp

P/%as Ty P/11 amp

All of the laser’s power 1is concentrated in an infinitesimally
narrow spectral region. We are no longer throwing away 99.99% of

our light.

Second, consider the linewidth possibilities. A standard multimode
dye laser might have a linewidth, which we’1l call A v L Ay,
of about 1 Gigahertz. But a modern single—mode external-cavity
diode laser can have a linewidth, A v L Ay, of less than 1
Megahertz! Let’s keep these numbers in mind. We’ 11 soon compare
them to the 0.01 nanometer resolution of the classical
spectrometer, which we calculated was equivalent to about 12

Gigahertz. The laser is thousands to millions of times sharper.

Third, frequency agility. Lasers can be tuned. We can change their
emission frequency, either continuously or in rapid steps. This is
typically done using intracavity elements like etalons or by using

electro—optic modulators. This completely eliminates the need for



a slow, mechanical monochromator. The laser 7s its own ultra—high-

resolution monochromator.
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The advantages continue. Let’s look at the spatial and intensity

characteristics of a laser beam.

A crucial property is the spatial mode. A laser typically emits a
beam in a single, fundamental transverse mode, often a Gaussian T
E M 00 TEMy, mode. This means the beam is diffraction-limited. Its
divergence, the angle 0 6 at which it spreads out, is as small

as physically possible, given by the relation:

0 =~ A m wo

where w 0 wy is the radius of the beam at its narrowest point,
the beam waist. Because this divergence is so small, a laser beam
can travel over many meters with very little change in its size.
This is what enables the use of very long path lengths, something

that is impossible with a lamp.

Next, what about the flicker noise that plagued our classical
source? Lasers have their own intensity fluctuations, but we have

a powerful tool to combat them: intensity stabilization. We can



use an active feedback loop to measure the laser’s power and feed
a correction signal back to the laser’s power supply or to an

external modulator. Using this, we can reduce the relative power
. . ’ . 1)
fluctuations, which we 11 write as & P P 7;, to be less than 10

— 4 107% and often much, much better. We can directly attack and

suppress the dominant noise source of the classical method.
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Let’ s now make a Direct Comparison of the Experimental Layouts to

synthesize these ideas.

The first major point of departure: the broadband case, as we saw,
absolutely requires a dispersive element like a monochromator to
select a wavelength after the sample. In stark contrast, the laser
case measures the transmitted power, P T P;, directly. Because the
laser is already monochromatic, we measure the power at a single
angular frequency, ® . This means there is no monochromator
needed at all. The most complex and inefficient component of the

classical setup is simply gone.

Now, let’s look at what the new laser configuration, which we’ 11
see in the next diagram, adds to the setup. It’s not about making

things more complicated, but about making them more powerful.



1. We add a beamsplitter. This simple piece of optics allows us to
peel off a small fraction of the laser beam before it enters the
sample. We send this to a separate detector to create a real-time
reference signal, P R P;. This allows us to normalize our
absorption signal against any residual laser power fluctuations on
the fly, a vastly superior method to the classical technique of

physically removing the sample cell.

2. We add an optional, low—finesse Fabry-Perot Interferometer, or
FPI. As we’ 11 discuss in detail later, this acts as an incredibly
precise “frequency ruler,” providing a stream of frequency markers

as we tune the laser.
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Continuing with the laser setup, there's another powerful

addition:

3. We can use a multiple-pass cell. Taking advantage of the
laser’ s beautifully low divergence, we can use a set of mirrors to
fold the beam back and forth through the sample many times. This
allows us to achieve an extremely long extended effective path
length, which we’ 11 call L e f f Lgg all within a compact and

manageable volume.



This leads to a complete paradigm shift in what defines our
experiment’ s resolution. The spectral resolution is now limited by
the absorber’s own intrinsic linewidth, which we’ 11 call & o
Sw, or by the laser’s linewidth itself. It is no longer limited by

a bulky, expensive spectrometer.

The consequence is profound. We can now easily meet or even beat
the Doppler limit, that is, our instrumental resolution can be
made smaller than the Doppler width of the transition, A o D
Awp. Achieving this with a classical setup would require an
enormous, multi-meter—long spectrograph that would be
prohibitively expensive and deliver vanishingly small amounts of

light. With a laser, it’ s routine.
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This slide gives us the perfect visual summary. Let’ s compare the

two block diagrams side—by—side.

On the top, in panel (a), we have Broadband Absorption. Let’s
follow the flow once more. A Broadband Source sends light with
power P 0 ( A ) Py(1) through a Sample Cell of length L L. The
transmitted light, P T ( A ) Pp(1), which is still broadband,
enters a Monochromator. The monochromator selects one wavelength

and sends it to a Detector or a detector array. The setup is



defined by its need to disperse the light after interaction with

the sample.

Now, look at the bottom panel, (b), showing Laser Absorption. The
elegance and power of this approach should be immediately

apparent.

We start with a Tunable Laser. Its monochromatic beam, with power
P 0 P,, immediately hits a Beamsplitter. Most of the light
continues straight ahead, into the Multiple-Pass Cell, which
achieves a long effective path length, L e f f Lgs The
transmitted light, P T P, goes directly to our primary detector,

D D. Notice what’s missing: no monochromator.

Meanwhile, the beamsplitter has directed small portions of the
beam along two other paths. One path goes to a Reference Detector,
which continuously monitors the incident laser power, P R P;. The
other path goes to a Fabry-Perot interferometer and its detector,

which provides our frequency markers.

Every single component in the laser setup is there to add power,

precision, and new capabilities.
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Now that we have the qualitative picture, let’s get quantitative.

We’re going to perform a Step—by-Step Derivation to prove the



relationship between Signal Strength and Resolution. This is one

of the most important concepts in this chapter.

First, let’s set up the model. We consider an absorption line that
is centered at an angular frequency of ® 0 w, and has a natural,
homogeneous profile with a width of lowercase 6 ® fw. This 6
® 6w could be the lifetime—-limited width or, in a more realistic

scenario, the Doppler width.

Second, we are going to probe this line by scanning our light
source across it. The source itself has a certain instrumental
bandwidth, which we will call capital A ® Aw. In the classical
case, A o Aw 1is the resolution of our spectrometer. In the

laser case, A ® Aw is the linewidth of the laser.

Finally, let’s consider the relative attenuation of the light,
which is A P / P AP/P, as it travels through an infinitesimally

small path length, capital A x Ax, of the sample.

Page 18:

The expression for this relative attenuation, A P/ P AP/P, is
given by the following integral form. This equation looks a bit

intimidating at first, but it’s quite logical. It is:

APP=AxX [ ©«o0-12A o o 0+12A o a (@ )P

(o)dow J ©o0-12A © o 0+12 A 0P (w)dw



fa)0+1/2Aa)

AP A wo—l/ZAa) a ((1)) P((l)) d(l)
—_— = X .
)2 wo+1/24w

Let’s dissect this. The numerator is the [ ® 0—-12 A ® o 0

F12A 0 a ()P (o)do [ 0)P(w)dw. This

wo—1/24w
numerator represents the total power that is absorbed by the
sample, integrated over the entire spectral window, A o Aw,

that our instrument can see.

The denominator is the [ © 0 - 12 A o © 0+12 A o P (

© ) d » fw0+1/2Aa)
0)0—1/2A(A)

P (w)dw. This denominator represents the total
incident power from the source that falls within our instrument’ s
detection window. So, the whole expression is simply the fraction

of power that gets absorbed within that window.

Now, to make progress, we make a simple and very reasonable
assumption. We assume that the source spectrum, P ( ® ) P(w), is
essentially flat or constant inside our detection window, A o
Aw. We can approximate P ( @ ) P(w) by a constant value, P
P.

With this assumption, our expression simplifies dramatically. The
P P in the numerator can be pulled out of the integral. So the

numerator becomes P~ X [ a (o ) d o PX[a(w)dw. The P

P in the denominator can also be pulled out, and the integral of



d o dw over a range of A ® Aw is just A o Aw. So the

denominator becomes P X A o P X Aw.

The P P terms cancel, and we are left with a much more

transparent result:
APP=AxA o X [ a (o )do

AP Ax f (@) d
— = — X )
2 1% a(w) dw

From this single equation, we can now understand everything by

considering two limiting regimes.
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Let’ s examine the two crucial limiting regimes that arise from the

equation we just derived.

Case 1: The Low-Resolution Limit. This 1is the classical
spectrometer case, where our instrumental bandwidth, A ® Aw, is
much greater than the actual width of the absorption line, § o
Sw (A © >» 8§ o Aw>» Sw). Our detection window is wide, and

the absorption feature is a narrow spike inside it.

In this case, what is the value of the integral of alpha of omega?
Since the absorption feature is narrow, the integral is just the
area under that narrow peak. We can approximate this area as the

average absorption coefficient, which we’ 11 call alpha-bar,



multiplied by the width of the line, delta omega. So, the integral

is approximately a 8§ ® adw.

Substituting this into our simplified equation from the last

slide, we get:

APP~~a A x § o A o

Look closely at that final ratio. Since A ® Aw is much larger
than 06 o 6w, this ratio is a small number, much less than one.
This means our measured signal, A P / P AP/P, is “washed out”
or diluted. We only get a small fraction of the true peak

absorption because it’ s averaged over the wide instrument

bandwidth.

Case 2: The High—Resolution Limit. This is the tunable laser case,
where our probe’ s linewidth, A o Aw, is much, much less than
the width of the absorption line, 6 ® fw ( A © K § o Aw K
Sw). Our probe is now a very sharp needle that we are scanning

across a much broader feature.

In this limit, the value of alpha of omega is essentially constant
across our tiny integration window, A o Aw. So we can pull

alpha of omega out of the integral, and the integral of d ® dw



is just A © Aw. Therefore, the integral is approximately a (

) A o alw)ldw.
Now, let’s substitute this into our general equation.
APP=(a (o) A o) Ax A o
AP Ax
7 = (a(a))Aa))E.
The A ® Aw in the numerator and the denominator cancel out

perfectly! We are left with the beautifully simple result:

APP~ a (o) A x.

3 ~ a(w)Ax.

There is no dilution factor! The measured signal is directly
proportional to the true value of the absorption coefficient at
that frequency. This mathematical derivation provides the
definitive proof of why high resolution leads to a much stronger

signal.
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Theory is great, but let’s do a Numerical Illustration to see just
how dramatic this difference 1is. We’ll compare our grating

spectrograph to a single—mode laser.



Let’s establish the parameters for our hypothetical experiment.
We're looking at a molecule that absorbs in the visible part of

the spectrum, at a wavelength, A A, of 500 nanometers.

First, let’s consider the classical instrument, our l-meter
grating spectrograph. We established earlier that its resolution,

A M AA, is about 0.01 nanometers.

Now, what is this in frequency units, which are more natural for
spectroscopy? We can find the corresponding frequency span, A Vv

Av, using the relationship:

A v &= ¢ A 2 A A

where ¢ ¢ is the speed of light. Plugging in our numbers: ¢ = 3
X 108 m/sc=3x108m/s, A =500 X 10 -9 m A=500X
10°m, and A X =0.01 X 10 =9 m A2=0.01%x10"?m. This
calculation yields a frequency span of approximately 12 Gigahertz.

This is our instrumental bandwidth, our A ® Aw (or A Vv Av).

Now, what 1is the width of the absorption line itself, our
lowercase § w fw? For a gas at room temperature, this is
typically dominated by Doppler broadening. Let’s calculate the
Doppler width for a typical molecule with a molecular mass, M M,

of 30 atomic mass units, at a temperature, T T, of 300 Kelvin.
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The Doppler width, which we denote as lowercase delta nu sub D, is
given by the following formula. This is the full-width at half-

maximum, or FWHM, for a Gaussian lineshape. The equation is:

delta nu sub D is approximately equal to nu sub zero times the
square root of the quantity (8 times k sub B times T times the

natural log of 2) all divided by (M times c squared).

§ vDa v 08kBTIlnifi2Mc?2.

8 kB T In2

ovp = v
O Mc?

Here, nu sub zero is the center frequency of the transition, k sub
B is the Boltzmann constant, T is the absolute temperature, M 1is

the mass of the molecule, and c¢ is the speed of light.

For the parameters we set on the previous slide—500 nanometers,
300 Kelvin, and a mass of 30 amu—this calculation gives a Doppler
width of approximately 1 Gigahertz. This is our lowercase delta

nu.
Now for the final, crucial comparison.

For the classical instrument, the ratio of the instrument’s

bandwidth to the absorption line’s width is capital Delta nu



divided by delta nu sub D, which is 12 Gigahertz divided by 1
Gigahertz. This ratio is 12. Recalling our derivation, this means
that the measured signal, capital Delta P over P, is reduced by

this same factor of 12 compared to the actual peak absorption.

Now, consider the single-mode laser. Its linewidth, capital Delta
nu sub L, might be less than 1 Megahertz. This is far, far less
than the 1 Gigahertz Doppler width. So for the laser, we are deep
in the high-resolution regime, and the effective ratio of

linewidths is essentially one.

This means that for the exact same sample cell of length L, the
signal enhancement factor for the laser over the spectrograph is

approximately 12.

The take—away message is crystal clear and incredibly important:
higher spectral resolution directly converts to a proportionally
larger measurable attenuation. You don’t just see more detail;

your signal gets stronger.
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Let’s just pause for a moment to let that sink in.

By simply replacing a classical light source and a monochromator
with a tunable laser, we have achieved a more than ten—-fold

increase 1in our signal strength. This comes purely from the



laser’s superior spectral resolution. This is our first major

advantage.

But the benefits don’t stop there. Let’s now consider the spatial

properties of the laser beam.
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This brings us to our second major advantage: the ability to

achieve very Long Path Lengths via Multipass Cells.

As we discussed earlier, the divergence of a laser beam, the angle
0 @O, 1is incredibly small. This means the beam can traverse
distances of many meters with negligible growth in its waist size.

You simply cannot do this with the light from a lamp.

This unique property allows us to use ingenious optical devices
like a Herriott cell or a White cell. These cells use a pair of
precisely curved mirrors to fold the laser beam back and forth
through the sample gas many, many times. The result is that we can
achieve a 10— to 100-fold, or even greater, increase 1in the
effective path the light travels through the sample, all without
needing a ten or one—hundred—meter—long tube! The entire apparatus

can be quite compact.

As a practical aside, these cells are often constructed with

Brewster—angle windows. These are windows tilted at a special



angle, Brewster’ s angle, which allows 1light of a specific
polarization to pass through with virtually zero reflection loss.
This is crucial, because even a small loss of 1 or 2 percent per
window would become a very large total loss after a hundred

passes.

So, what is the ultimate benefit of increasing the path length?
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The benefit follows directly from Beer’s Law. Remember that the
total absorbance is the product of the absorption coefficient, a
a, and the path length, L L. This means that for a given minimum
detectable signal, the minimum absorption coefficient we can see
is inversely proportional to the path length. We can write this

as:

a min << 1 L e f f

1
“ —
Legs

®min
To make this tangible, let’s consider a numerical example. Suppose
a standard, single—pass absorption experiment uses a cell that is

10 centimeters long, or 0.1 meters. Now, let’s say we replace it

with a multipass cell that gives us an effective path length, L e



f f Legg, of 10 meters. We have increased the interaction length by

a factor of 100.

Consequently, this lowers the minimum detectable absorption
coefficient, a min @pip, by that same factor of 100. We have
just made our experiment one hundred times more sensitive. We can
now detect species at one—hundredth the concentration, or measure
transitions that are one hundred times weaker. This 1is another
massive improvement, completely independent of the resolution

advantage we already discussed.
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Path Length Spectroscopy

Here on this slide, we have a beautiful schematic of a Multipass
Cell for Long Path Length Spectroscopy. This illustrates the

concept of a Herriott cell.

Let’ s trace the beam path. We see two concave mirrors, labeled

Mirror 1 (M1) on the left and Mirror 2 (M2) on the right.

The Laser Input beam enters the cell through a small hole, or
aperture, drilled in the center of Mirror 1. The beam travels the
length of the cell to Mirror 2, where it reflects. It then travels

back to Mirror 1, but because of the mirrors’ curvature, it



strikes a different point on the surface. It reflects again,

travels back to M2, and so on.

The red lines show this intricate dance of the laser beam bouncing
back and forth. You can see the circular or elliptical pattern of
spots that the beam makes on the surface of each mirror. The
geometry 1s carefully designed so that after a specific, large
number of reflections, the beam hits the back of Mirror 1 at just
the right angle to pass back out through the central aperture as

the Laser Output.

The total Effective Path Length, as indicated at the bottom, is
roughly the number of passes multiplied by the distance between
the mirrors. This elegant optical arrangement 1is a direct
consequence of the laser’ s low divergence and is a cornerstone of

high—-sensitivity absorption spectroscopy.
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Let’s now do a comprehensive Example - Quantifying the total
alpha min Improvement. We will combine all the advantages we’ ve

discussed: better resolution, longer path length, and lower noise.

First, let’s consider the noise floor. By using an intensity-
stabilized laser and a powerful signal processing technique called

lock—in detection, we can dramatically reduce our noise. Lock—in



detection allows us to pull a tiny signal out from a noisy
background by modulating our experiment at a specific frequency.
With these combined techniques, the minimum detectable relative
absorption, AN P / P AP/P, can be pushed down to approximately
10 — 6 107°% or one part per million. This is already a factor of

100 better than the classical flicker—noise limit.

Second, we must recall that we are operating in the high-
resolution regime, where the laser’ s linewidth, A ® laser
AW1,cer, 1s much smaller than the absorption linewidth, 6 o Jdw.
This ensures we get the maximum possible signal without any “wash-

out” effect.
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Now, let’ s try to assemble a formula for our minimum detectable

alpha, a min apn;, and plug in some conservative numbers.

For the high-resolution laser case, we found that the relative
absorption is simply A P / P = a L AP/P = aL. Therefore, the

minimum detectable alpha should be:
a min= (A P/P)minLeff.

(AP/P)min
@min = L—ff
e

The slide presents a related formula:



a min=1Leff -(APP)  -A o laser § o .

1 AP\ Awjzser
“mi“:Q'(?)° Sw
This formula explicitly includes the ratio of the laser linewidth
to the absorption linewidth. This factor accounts for how much of
the lineshape is being sampled. In our ideal high-resolution case,
this ratio is small, and our signal is maximized at the peak of
the absorption line. Let’ s use the slide’ s formula with some

conservative numbers to get an order—of-magnitude estimate.

First, for our path length, let’ s use a L e f f Lgp of 10

meters.

Second, for the linewidth ratio, A w laser/ 6§ o Awyser/
6w, let’ s take a conservative value of 0.1 0.1. This would
correspond, for instance, to a 100 M H z 100 MHz laser

linewidth probing a 1 G H z 1 GHz Doppler—broadened line.

Now, let’ s put these numbers together to find our result.
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Plugging these conservative numbers into the formula, we have:
a min =~ 10 -6 10 m X 0.1

10°°
10 m

~
~

Xmin



Now, we must be very careful with our units. An absorption
coefficient is typically given in inverse centimeters. 10 meters

is equal to 1000 centimeters. So, our calculation is:
a min = 10 — 6 1000 ¢ m X 0.1.

10~° 01
o~ — X U.1.
%min ¥ 76500 cm

This gives us 10 — 9 X 0.1 1072x 0.1, which equals 10 — 10

10719 inverse centimeters.

The slide shows a result of 10 — 8 1078 inverse centimeters. This
likely comes from a common shorthand where the 10-meter path
length 1is treated as a dimensionless factor of 10 in the
denominator. The exact exponent can vary depending on the specific
assumptions, but the key point is the overall magnitude of the

improvement.

Let’ s compare this to the conventional method. A typical classical
experiment might achieve an a min ap;, of roughly 10 — 5 107>
inverse centimeters. Our laser—based method gives a result of 10

-8 1078 to 10 — 10 10719 inverse centimeters.

This represents an improvement of a factor of 1000 to 100, 000. The
slide’ s summary of a “Factor 10 cubed better” 1is a conservative
but certainly justified claim. This 1is a truly staggering

improvement in sensitivity.
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So far, we ve focused on sensitivity and resolution. But lasers
enable another crucial capability: precision frequency metrology.
This brings us to the use of a Fabry-Perot Interferometer as a

Frequency Ruler.

As we saw in our experimental layout, we can send a small portion
of our tunable laser field into a Fabry—Perot interferometer, or
FPI. An FPI, in 1its simplest form, <consists of two highly

reflective parallel mirrors separated by a fixed distance, d.

Due to interference effects, the FPI will only allow light to be
transmitted through it if the wavelength fits the cavity resonance
condition. This occurs at a series of discrete frequencies, given

by the equation:

vm=m (c2d)

(72)
v, =m|—
. 2d
Here, nu sub m are the transmission peak frequencies, ¢ is the

speed of light, d is the mirror spacing, and m is an integer known

as the mode number.



The spacing between these transmission peaks is a constant value
known as the Free Spectral Range, or FSR. It’s given by a very

simple formula:

A v p=c2d

c
AVp=ﬁ

This FSR is a stable, precisely known frequency interval

determined only by the physical construction of the

interferometer. It is our ruler.
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Let’s look at a practical example. If we construct a Fabry - Perot
interferometer with a mirror spacing, d d, of 1 m 1m, then the
Free Spectral Range, A v p Adv,, is approximately 150 M H z

150 MHz.

Here’s how we use it. As we tune our laser’s frequency to scan
across a molecular absorption profile, we simultaneously record
the transmission signal from the FPI on a separate detector. The
result 1is that our absorption data is recorded alongside a
beautiful, perfectly regular series of sharp peaks from the FPI.
These peaks create absolute frequency markers across our entire

Spectrum.



The accuracy of this frequency ruler is exceptionally high. It is
limited primarily by the thermal and mechanical stability of the

FPI cavity, which can be made very robust.

We can easily know the relative spacing of these frequency markers
to a precision of better than one part in 10 8 108 This allows
us to measure the shapes, widths, and positions of spectral lines
with an accuracy that 1is completely unthinkable in classical

spectroscopy.
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This diagram provides a perfect visual illustration of the Fabry-

Perot Interferometer as a Frequency Ruler.

Let’s look at the plot. The horizontal axis represents the Laser
Frequency, which we are tuning. The vertical axis is the measured

signal intensity, in arbitrary units.

We see two signals being recorded simultaneously. The broad, bell-
shaped blue curve is labeled Absorption Signal. This 1is the
molecular transition we are trying to study. The series of sharp,

narrow, repeating red peaks is the FPI Transmission signal.

The key feature is labeled A v p Av, (FSR). This indicates the
constant frequency spacing—our Free Spectral Range—between each

of the FPI transmission peaks.



By recording both traces at the same time, we have effectively
superimposed a high—precision ruler onto our unknown spectrum. We
can determine the width of our absorption line by simply counting
how many FPI peaks fit within its half-maximum points. We can
determine its center frequency with incredible precision. This is

a simple but profoundly powerful technique.
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Stabilization & Absolute Line

Metrology

We can take the idea of wusing an FPI one step further, from
passive measurement to active control. This leads us to Laser

Frequency Stabilization & Absolute Line Metrology.

There are a number of powerful error—-signal techniques—the most
famous being the Pound-Drever-Hall technique, as well as simpler
frequency modulation schemes—that allow us to lock the laser’ s
frequency directly to a reference. We can, for example, lock the
laser to the side of one of those FPI transmission peaks, or even
better, directly to the center of a narrow atomic or molecular
absorption line. These techniques generate a signal that is zero

when the laser is perfectly on frequency and provides a positive



or negative correction signal if it drifts. This signal is fed

back to the laser, keeping it actively locked to the reference.

The achievable stability is astounding. We can achieve a relative
frequency stability, capital A v / v Av/v, of less than or

equal to 10 — 10 10710 over measurement times of seconds.

When this extreme stability is combined with the interferometer
calibration we just discussed, it allows for true absolute
metrology. We can determine the absolute frequencies of molecular
transitions with incredible precision. The slide 1indicates a
relative uncertainty, lowercase &6 A / A §A/A, of less than or
equal to 10 — 8 1078 This opens the door to some of the most

sensitive tests of fundamental physics.
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So, why would we want to measure a frequency to one part in a
hundred million or even better? What does this capability enable?
It allows for precision tests of some of our most fundamental

theories of nature.

For example, we can perform extremely sensitive tests of Quantum-—
electrodynamics, or QED. We can measure tiny energy level shifts,

like the Lamb shift in hydrogen, and compare the results with the



fantastically precise calculations of QED. This is how we test our

best theory of light and matter.

We can also perform searches for a possible variation of
fundamental constants. Is the fine-structure constant truly
constant over cosmological time? By measuring the frequencies of
specific atomic transitions today and comparing them to
astronomical observations of the same transitions in distant
quasars, we can place incredibly tight limits on any possible

change in these constants.

And on a more practical level, we can precisely measure things
like pressure-shift coefficients for atmospheric sensing. The
exact frequency of a molecule’ s absorption line shifts slightly
depending on the pressure and composition of the surrounding air.
By measuring these shifts with laser precision in the lab, we can
then use this information to perform highly accurate remote

sensing of pollutants or greenhouse gases in the atmosphere.
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Let’s shift gears now to another unique advantage of lasers:
speed. This brings us to Rapidly Tunable Lasers for Transient

Species.



Some lasers, particularly dye lasers, can be tuned over a
significant frequency range at incredible speeds. This is often
accomplished using an electro—optic tuning element inside the
laser cavity, like a Pockels cell or a lithium niobate crystal,
whose refractive index can be changed rapidly with an applied

voltage.

The performance specifications are impressive. We can achieve a
scan range of approximately 5 ¢ m — 1 5cm™!, or wavenumbers,
which is a very useful range for observing a single molecular

feature. And we can perform this scan in a sweep time of less than

I v s 1us.

Why is this so important? It allows us to perform spectroscopy on
things that don’t last very long. We can now probe short-lived
radicals—highly reactive molecular fragments—that may only exist
for a few n s ns or b s us. These transient species are
critical intermediates in chemical reactions, such as those that
occur in flash photolysis experiments or in the complex
environment of combustion. Before rapidly tunable lasers, getting
high-resolution spectra of these fleeting species was simply

impossible.
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So how does the data acquisition for such a fast experiment work?

It requires perfect timing. We use a synchronized digitizer—a
very fast oscilloscope—that is triggered by the same event that
creates the transient species. For example, in a flash photolysis
experiment, a short, intense pulse of UV light breaks apart a
precursor molecule, <creating the radicals. This same event

triggers our fast digitizer.

Simultaneously, our rapidly swept laser beam passes through the
sample, and the transmitted 1light is monitored by a fast
photodetector. The digitizer then captures the entire absorption
trace—the full spectrum—within that single, sub—microsecond
sweep. We get a high-resolution snapshot of the species that were

present during that one fleeting moment.

This technique dramatically extends the classical flash—photolysis
method. The classical method used a broadband “white-light” flash
as the probe, resulting in a low—resolution spectrum. The laser—
based method provides spectra of UV or visible absorption lines
with sub—Gigahertz resolution, allowing for detailed
identification and characterization of these crucial reaction

intermediates.
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Let’s now turn to yet another profound advantage: Selective

Excitation & Optical Pumping.

This benefit arises from the laser’ s exquisitely narrow linewidth.
In a molecule, the energy levels are grouped into electronic,
vibrational, and rotational states. The spacing between rotational
lines is typically on the order of several to tens of Gigahertz.
Because the laser linewidth is much, much 1less than this
rotational separation, we can tune our laser to be resonant with
one, and only one, specific rotational-vibrational —or
rovibronic—1line. We can pick out a single quantum state to
interact with, out of the millions that might be populated. This

level of selectivity is impossible with a broadband source.

The consequence of this, combined with the laser’s high intensity,
is that we can achieve a significant achievable excited-state
population fraction. We can literally pump a large fraction of the
molecules that are in a specific ground state up to a specific

excited state.

The steady—state population fraction in the excited state 'k,
which we denote p k py, can be approximated by the following

expression:

p k p, is approximately equal to the ratio of the pumping rate

to the total decay rate.



pk=~BiklIh o Aki+ T coll

B 1
~ hw
Agi + Ieon

Px

The numerator is B i k I & o %%f. This is the stimulated

absorption rate. The denominator is A k i + I' ¢ o 1 1 Ay + Igon-

This is the total relaxation rate of the excited state.

The key term in the numerator is B i k Bj,, which is the Einstein
B coefficient for stimulated absorption. Let’s break down these

terms.
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Let’s continue deconstructing that equation for the excited-state

population.

- I I is the laser intensity, in Watts per square meter. — A k i
Ag; is the Einstein A coefficient, which describes the rate of
spontaneous emission from the excited state 'k’ back down to the
initial state 'i’. - T ¢ o 1 1 I, is the collisional quench
rate. This represents how often the excited molecule collides with

another molecule and loses its energy non-radiatively.

Now, here is the crucial insight. Because we can focus a laser

beam to a very small spot, the intensity, I I, can be made



extremely high. This means the pumping rate in the numerator can
be made very large. It can be made so large that it becomes
comparable to, or even much larger than, the total decay rate in

the denominator.

When this happens, the excited-state population fraction, p k
Px,» can become a significant number, comparable to the ground-
state occupancy. We can effectively move half of the molecules in

the selected ground state up into the selected excited state.

This has two major consequences. 1. Fluorescence spectroscopy of
excited levels. If we create a large population in an excited
state, those molecules will decay, and many will do so by emitting
a photon—they fluoresce. We can collect this fluorescent 1light.
Often, detecting a photon appearing out of a dark background is
much more sensitive than detecting the small dip in a large
transmitted power that we measure in absorption. This is the basis
of Laser—Induced Fluorescence, or L-1-F, a workhorse technique in

chemical physics.
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The second major consequence of being able to pump so many
molecules into a single excited state is the creation of laser-—

induced population inversions.



A population inversion 1is a condition, fundamental to the
operation of lasers themselves, where a higher energy state has a
larger population than a lower energy state. By using a laser to
selectively excite molecules out of a specific ground state level,
we can deplete that level’s population. At the same time, we are
populating a specific excited state. This process 1is known as

optical pumping.

This allows for very powerful experimental schemes. For example,
we can create a population inversion between two closely spaced
hyperfine levels within a ground state. We can then probe this
inverted population wusing microwaves. This forms the basis of
techniques like optical-microwave double—-resonance spectroscopy,
which allows for wultra—high-resolution studies of molecular

structure that would otherwise be completely inaccessible.
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Spectroscopy

Now we move to the final frontier of laser spectroscopy: the time

domain. Let’s discuss Ultrafast Time—Resolved Spectroscopy.

This field is made possible by a special type of laser called a
mode—locked laser. Systems like Titanium:sapphire or mode—locked

fiber lasers are capable of producing incredibly short pulses of



light. These pulses can be < 100 <100 femtoseconds in duration.
A femtosecond is 10 — 15 107 seconds. This is the timescale of

molecular vibrations and chemical bond breaking.

The workhorse experimental technique in this field is the pump-—

probe scheme. It works as follows:

1. First, a powerful but ultrashort pump pulse arrives at the
sample and excites the system. It <creates an 1initial non-—
equilibrium state, for example, by promoting molecules to an
excited electronic state. 2. Second, a weaker, time—delayed probe
pulse arrives at a precisely controlled time t t after the pump.
This probe pulse monitors the state of the system by measuring the

change in absorption, which we’ 11 call A A (t ) AA(¢).

By varying the time delay between the pump and probe pulses, we
can map out the entire evolution of the system from the moment of

excitation. We are essentially creating a molecular movie.
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A crucial question in these pump—probe experiments is: what sets
the time resolution? It's not the speed of our detector
electronics. The temporal resolution is set by the cross-—

correlation of the pump and probe pulses themselves.



Mathematically, the time resolution, capital Delta t sub res, 1is
approximately the square root of the sum of the squares of the

pulse durations:

Atres~ (A tpump) 2+ (A tprobe) 2

Atres ~ \/(Atpump)z + (Atprobe)2

This means if we use 100-femtosecond pulses, our time resolution
is on the order of 100 femtoseconds. With modern lasers, sub—100

femtosecond resolution is readily achievable.

The applications of this capability are vast and have
revolutionized chemistry and condensed matter physics. We can

directly observe:

* Vibrational relaxation: how energy flows through a molecule
after it’s been “plucked” by the pump pulse. * Fourth-order
photochemical intermediates: we can watch the sequence of steps as
chemical bonds break and new ones form during a reaction. =*
Carrier dynamics in semiconductors: we can track how electrons and
holes are created, how they move, and how they recombine in
semiconductor materials, which is fundamental to the operation of

all modern electronics and solar cells.
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We’ ve spent a lot of time talking about signals. But in any real
experiment, the 1limit to sensitivity is noise. So, let’s create a

Detailed Inventory of Noise Sources.

First, there 1is source intensity noise, which we denote as
lowercase & P §P. This includes flicker noise, which has a 1 /
f 1/f frequency spectrum and is dominant at low frequencies, as
well as things like relaxation oscillations, which are specific

periodic fluctuations that can occur in some types of lasers.
Second, there is detector noise. This category includes:

* Johnson noise, also known as thermal noise. This is the random
voltage generated by the thermal motion of electrons in any
resistive component of the detector or amplifier. It 1is
independent of the optical power hitting the detector. Shot noise.
This 1s a fundamental quantum noise that arises from the fact that
light 1s composed of discrete photons. The arrival of photons at
the detector 1s a random Poisson process. The resulting noise
current 1s proportional to the square root of the signal current.
The formula is 2 e I d A f \2el;Af, where e e is the electron
charge, 1 d I; is the detector photocurrent, and A f Af is the
detection bandwidth. Because the signal goes as P P and the shot
noise goes as the square root of P P, the relative* shot noise

decreases for higher optical power, P P.



Other important noise sources include:

* Beam pointing jitter. If the laser beam physically wanders or
wiggles, it can move partially on and off the detector’s active
area, causing the measured power to fluctuate. This is a very
common technical noise source. * Laser frequency jitter. If our
laser linewidth, A v L Av;, is very narrow and we are sitting
on the steep side of an absorption feature, 6 Vv ab s v
then any small jitter in the laser’s frequency will be converted

directly into a large fluctuation in the transmitted amplitude.
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Finally, one more noise source to consider, which comes not from

our instrumentation but from the sample itself.

This is sample density fluctuations. The number of absorbing
molecules within the volume probed by the laser beam can fluctuate

randomly.

This can be caused by localized temperature gradients that change
the gas density, or by acoustic pressure waves traveling through

the sample.

If the number of absorbers changes, the measured absorption will

change, creating noise in our signal.
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Now that we have inventoried the enemy, let’s discuss our arsenal.

Here are the primary Laser—-Based Noise Mitigation Techniques.

For source intensity noise, the solution is a power stabilization
loop. We use a photodiode to monitor a fraction of the laser
power, P P. A Proportional—-Integral-Derivative, or PID,
controller compares this signal to a stable voltage reference and
generates an error signal. This error signal is then used to
modulate an Acousto—-Optic Modulator (AOM) placed in the beam path,
which adjusts the transmitted power to hold it constant. With this
feedback, we can achieve a relative stability, A P / P AP/P, of

less than 10 — 4 1074

For detector noise, the key is to use the laser’s high power. The
shot-noise limit is reached when the high optical power, P P,
makes the detector’s photocurrent so large that the associated
shot noise completely swamps out the fixed—level Johnson noise.
Being shot-noise-limited is often the goal 1in a precision
experiment, as it means you have reached the fundamental quantum

limit for that optical power.

For beam pointing jitter, the solution is a combination of good

optics. We use spatial filtering—passing the beam through a small



pinhole—to clean up the laser’s spatial mode and make it more
stable. We also use a large—area detector. If the detector is much
larger than the beam, then small wiggles of the beam won' t cause

it to move off the active surface, thus reducing the noise.

Page 44: Let’s continue with our

noise mitigation strategies.

To combat laser frequency jitter, which we denoted as lowercase
& v §v, the solution is to actively stabilize the frequency. We
use a frequency lock to an external, stable reference. This
reference could be a high—-finesse external optical cavity, or for
the wultimate stability, it could be a narrow, Doppler—free
transition in a reference gas cell. As we discussed, this

effectively eliminates & Vv &§v as a significant source of noise.

And finally, to minimize sample density variations, the solution
lies in careful experimental design. We can use a steady gas flow
through the sample cell to average out any local temperature or
pressure pockets. We can also use meticulous thermal shielding and
temperature control of the cell to ensure the density of the

absorbers remains as constant as possible.

As you can see, for every source of noise, there is a clever

laser—based technique to suppress it.
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We’ve covered a lot of ground. Let’s now consolidate everything
we’ ve learned into a clear summary of the Consolidated Advantages

of Tunable Lasers.

First, spectrometer—free operation. This is a massive
simplification of the experimental setup. The resolution is no
longer set by a bulky, inefficient instrument, but by the
fundamental properties of the absorber itself. This allows for

routine Doppler—-limited, or even sub—-Doppler, resolution.

Second, this leads to orders—of-magnitude improvements in the
minimum detectable absorption coefficient, a min api,. We saw
this arise from a combination of higher resolution, lower noise,

and longer path lengths.

Third, lasers enable precise frequency calibration. By using a
Fabry—Perot interferometer  or, in modern state—of-the—art
experiments, an optical frequency comb, we can create an ultra—
precise frequency ruler across our sSpectrum, enabling true

metrology.
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Continuing our summary of advantages:



Fourth, lasers provide the capacity for long path lengths and low
pressures. The low divergence of a laser beam is what makes
multipass cells possible, dramatically increasing sensitivity. And
because we have such high sensitivity, we can afford to run our
experiments at very low sample pressures. This has the added
benefit of reducing pressure broadening, which is the collisional
broadening of spectral lines, leading to even sharper and more

resolved spectra.

And fifth, lasers open up the time—domain. The ability to generate
ultrashort or rapidly swept pulses allows for the study of
ultrafast and transient phenomena. These experiments, which probe
the fundamental timescales of chemistry and physics, are

completely impossible with classical, incoherent light sources.

These five points encapsulate the revolution that lasers brought

to the field of spectroscopy.
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To help you with your studies, this slide and the next few provide
a Key Equations Summary & Symbol Reference. Let’s quickly review

the most important mathematical relationships we’ ve established.

First, the fundamental equation for transmitted power, the Beer -

Lambert Law:



PT(MAM)=PO0O (XN )expifoi(=Nio ik (CMA)L)
Pr(1) = Py(Dexp(—N; 0y (VL)

This describes the exponential attenuation of 1light passing

through a uniform sample.

Second, a useful expression for the minimum detectable absorption
coefficient, a min @pny,, relates it to the detector’s Noise

Equivalent Power, or NEP:

a min=NEPaPOL

NEP

Apmin = ——

e ap, L
Here, ° a a’ represents the detector’ s responsivity. This equation
tells us that to see a weak absorption, we need a low—noise
detector (small NEP) and as much incident power, P 0 P,, and path

length, L L, as possible.

Third, the crucial relationship between relative attenuation and
resolution. We found this has two distinct limits, which we will

see on the next slide.
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Here are the two limiting cases for the relative attenuation, A

P / P AP/P, for an infinitesimal path length, A x Ax. This is a



very important result to remember. The behavior is described by

this piecewise function:

- a A x adx, when our resolution is high, meaning A © <« 6§
® Aw K 6w. This is the laser case. - a A x 6 o A o
chx:%%, when our resolution is low, meaning A ® >» & o Aw >
Ow. This is the classical spectrometer case, where the signal 1is
washed out.

Next, the Fabry - Perot FSR, our frequency ruler:

A v p=c2d

A _C
P T 24

And finally, the formula for the Doppler width, the full-width at
half-maximum for a Gaussian line shape, which 1is often the

limiting resolution in our experiments:

§ vD=v 08kBTInfi2Mc 2

8 ky T In2

ovp =V
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The next few pages provide a consolidated table of all the symbols

we’ ve used. This is for your reference, so you can always look up



a symbol if you forget its meaning. I 11 briefly go over the

categories.
On this page, we have the symbols for Frequency & Wavelength.

- We use v v for optical frequency in Hertz, and © w for
angular frequency in radians per second. The subscripts L L and
0 0 denote laser and line center, respectively. — We use capital
A A for instrumental widths or resolutions, like A v Av or A
®w Aw, and lowercase 6§ & for intrinsic widths, like the
absorption width & v abs 8v,,, or the Doppler width & v D
dvp. — A A is wavelength, 6 A §A is a wavelength uncertainty,

and capital A Vv p Avy is our Fabry-Perot Free Spectral Range.

Page 50: This Page summarizes the

symbols related to Power &

Intensity

* Capital P P denotes optical power in Watts, with subscripts 0
and T for initial and transmitted power. * Lowercase 8§ P 6P
represents optical power noise or fluctuations. * Capital I I is
laser intensity, which is power per unit area, in Watts per square

meter. * I d Iy is the detector photocurrent, measured in Amperes.



% And N E P NEP is the Noise Equivalent Power, a key figure of

merit for a detector, with units of Watts per root Hertz.

Page 51: Here we have the symbols

for the Properties of Matter & the

System

* Jlowercase a (or alpha in my speech) 1is the absorption
coefficient, in inverse meters. * sigma sub ik is the absorption
cross—section, in square meters. * N sub i is the number density
of absorbers in state i, in inverse cubic meters. * rho sub k is
the dimensionless population fraction in the excited state k. * A
sub ki and B sub ik are the crucial Einstein A and B coefficients,
which govern spontaneous emission and stimulated
absorption/emission. * Gamma sub coll is the collisional quench
rate in inverse seconds. * And finally, capital M for the mass of

the particle and capital T for the absolute temperature.
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Finally, this table 1lists Time & Experimental Parameters and

Fundamental Constants.



— Under experimental parameters, we have time t t, path length L
L, FPI mirror separation d d, and so on. — And under fundamental
constants, we have the key players that appear throughout physics:
¢ ¢ for the speed of light, h h for the reduced Planck constant,
k B kg for the Boltzmann constant, and e e for the elementary

charge.

I strongly recommend you become fluent with all of these symbols

and their meanings.
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This brings us to our closing thoughts for this chapter, and a

Transition to Sub-Doppler Techniques.

Through our detailed comparison and analysis, we now possess a
comprehensive toolkit for understanding and performing Doppler—
limited measurements using lasers. We understand the sources of
signal, the sources of noise, and the powerful techniques we can

use to maximize our sensitivity and precision.

However, as the title of this section implies, we are still bound
by a fundamental limitation. All the improvements we’ ve discussed
so far ultimately run into a wall: the thermal motion of the

absorbers themselves. This is the source of Doppler broadening,



and it remains the primary obstacle to achieving the ultimate

spectral resolution.
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So, what is the next step? Our next major topic will be to explore
a collection of brilliant and ingenious sub—-Doppler strategies
that have been developed to remove that final limitation entirely.
We will delve into techniques like saturation spectroscopy, two-—
photon absorption, and the Lamb dip. These methods cleverly use
the properties of the laser itself to select and probe only those
atoms or molecules that are not moving along the beam axis, thus

eliminating the Doppler effect.

As we move into these more advanced topics, I urge you to keep the
foundational equations from this chapter handy. The principles of
Beer’s Law, the concepts of signal versus noise, and our entire
sensitivity analysis will continue to be the bedrock upon which we

build our understanding of all the forthcoming methods.

Thank you for your attention. I’ 11 see you at the next lecture.



