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Good morning, everyone, and welcome to the Physics 608, Laser 

Spectroscopy course at KFUPM. I'm Distinguished Professor Dr M A 

Gondal, and it's a pleasure to have you in this advanced graduate 

physics course. 

We're going to begin today with our first major topic, which 

corresponds to Chapter 1.1 in your notes. We'll be laying the 

essential groundwork for everything that follows, so let's dive 

right in. 
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So, where do we begin our journey into laser spectroscopy? We 

start with the most fundamental question: Why lasers? Before the 

invention of the laser in 1960, spectroscopy was already a mature 

and powerful field. It had given us quantum mechanics and revealed 

the detailed structure of atoms and molecules. Yet, the laser 

revolutionized it. 

The central theme of our lecture today, and indeed this entire 

chapter, is to understand the profound and multifaceted Advantages 

of Lasers in Spectroscopy. We are going to explore precisely how 

and why this one invention amplified the power of spectroscopy by 



many orders of magnitude, opening up entirely new frontiers of 

scientific inquiry. To do this, we're going to systematically 

compare the old ways with the new. 
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Alright, let's establish our context and learning targets for this 

chapter. The specific area we're starting with is called Doppler-

Limited Laser Spectroscopy. Now, this term itself is very 

important. As we'll see, atoms or molecules in a gas are not 

stationary; they're moving randomly due to their thermal energy. 

This motion causes Doppler shifts in the frequencies they absorb 

or emit, which broadens any spectral line we try to measure. This 

broadening is called the Doppler width, which we will denote with 

the symbol  Δ ω D 𝛥𝜔D. For now, in this chapter, we will 

consider this Doppler width to be the fundamental limit on our 

spectral resolution. 

Our chapter will therefore focus on laser absorption and 

fluorescence experiments where our ability to distinguish two 

close spectral features is ultimately bounded by this Doppler 

width. We will come back to clever ways to overcome this limit in 

a later chapter, but first, we must master the Doppler-limited 

case. 



To do that, our immediate goal is to perform a step-by-step 

comparison of classical, pre-laser absorption experiments, which 

used broadband light sources, with the modern methods that employ 

tunable lasers. By seeing the limitations of the old techniques 

and how lasers solve them one by one, you will gain a deep, 

intuitive understanding of the subject. 

So, by the end of this lecture block, you should be able to meet 

several key learning outcomes. Let's outline them. 
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Here are the specific skills you should have mastered by the end 

of this discussion. 

First, you should be able to list and, more importantly, explain 

every single experimental advantage provided by using single-mode, 

frequency-tunable lasers. I don't want a simple list; I want a 

physicist's understanding of why each property matters. 

Second, you'll be able to derive the detectable-absorption limit 

from basic noise considerations. Sensitivity is everything in 

spectroscopy, and you need to understand, from first principles, 

what sets the floor for the weakest signal you can possibly 

measure. 



Third, you will be able to explain quantitatively how spectral 

resolution—which we define as  R = ω / Δ ω 𝑅 = 𝜔/𝛥𝜔—

influences the size of your measured signal. We will prove 

mathematically why higher resolution doesn't just give you sharper 

spectra, it gives you stronger signals. 

And finally, you will be able to identify the typical sources of 

noise in a spectroscopy experiment and outline the specific laser-

based strategies we use to mitigate or eliminate them. A great 

experimentalist is, above all, a master of noise. 

These are our targets. Let's begin by looking at how things were 

done in the "old days." 
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Let's turn our attention to what we'll call Classical Absorption 

Spectroscopy. And the heart of this classical setup is a 

Broadband, Incoherent Light Source. 

What do we mean by that? "Broadband" means the source emits light 

over a very wide range of wavelengths or frequencies 

simultaneously. Think of it as a white light source. The slide 

gives some classic examples: a high-pressure mercury, or Hg, arc 

lamp, or a Xenon flash lamp. These are powerful light sources, but 

their energy is spread thin across the spectrum. A typical 



emission bandwidth is on the order of 100 nanometers or more. That 

is an enormous spectral range. 

"Incoherent" means the light waves emitted are random in their 

phase. Unlike a laser, there is no fixed phase relationship 

between different parts of the beam or at different moments in 

time. 

Now, let's start building the experimental setup, which is shown 

in the figure we'll examine in a moment. The key optical elements 

are as follows: 

First, we need a collimating lens, which we label  L 1 𝐿1. The 

light from the lamp emanates in all directions. This lens gathers 

some of that light and turns it into a quasi-parallel beam, 

meaning the rays are traveling mostly in the same direction. 

Second, this beam passes through our sample. This is typically a 

gas or liquid contained in an absorption cell of a specific 

physical length, which we'll call  L 𝐿. This is where the light-

matter interaction that we want to study occurs. 
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Continuing with our classical setup, after the light passes 

through the sample cell, what's next? 



The third, and perhaps most critical, component is a dispersive 

spectrometer. This is the device that allows us to get spectral 

information from our broadband light. It's typically a 

monochromator containing a diffraction grating, or in some cases 

an interferometer. Its entire job is to take the incoming 

broadband light and separate it into its constituent colors, or 

wavelengths. 

Fourth, a detector is placed at the exit of the spectrometer. This 

detector—perhaps a photodiode or a photomultiplier tube—measures 

the transmitted spectral power at the specific wavelength the 

spectrometer has selected. We'll call this power  P T ( λ ) 

𝑃T(𝜆)... that is,  P T 𝑃T as a function of  λ 𝜆. 

This brings us to the fundamental requirement, and the fundamental 

bottleneck, of the classical method. A monochromator is absolutely 

essential. Because our source is broadband, we must filter the 

light after it has passed through the sample to isolate each 

individual wavelength,  λ 𝜆, that we want to measure. To get a 

full spectrum, you have to mechanically rotate the grating inside 

the monochromator to scan one wavelength after another to the 

detector. This is slow, inefficient, and, as we'll see, it throws 

away almost all of the light from our source for any given 

measurement point. 
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Now let's look at the diagram on this page, which brings all these 

components together. This is the canonical schematic for Classical 

Absorption Spectroscopy. 

Let's trace the path of the light from left to right. 

We begin with the Broadband Source, depicted as a simple circle 

emitting diverging rays of light. This could be our mercury arc 

lamp. 

These diverging rays are captured by the first lens,  L 1 𝐿1, 

which collimates the light into a parallel beam. The total power 

entering the sample at all wavelengths is represented here as  P 0 

𝑃0. 

Next, the beam traverses the Sample Cell, which has a physical 

length  L 𝐿. Inside this cell, molecules will absorb light at 

their characteristic resonant wavelengths. 

The light that makes it through, with transmitted power  P T 𝑃T, 

then enters the most important part of the classical setup: the 

Monochromator. This is shown as a box containing a slanted 

diffraction grating. This grating takes the entire spectrum of 

light that enters and disperses it, spreading the colors out in 

angle, much like a prism. 



An exit slit inside the monochromator then selects one very narrow 

band of wavelengths, denoted here by the green line labeled with 

the Greek letter  λ 𝜆. Everything else—all the other colors, all 

the other photons from our lamp—is blocked. It's simply thrown 

away. 

Finally, this single, selected, and now very weak beam of light of 

wavelength  λ 𝜆 hits the Detector, which measures its power. To 

build up a spectrum, we have to slowly rotate the grating to scan 

different wavelengths across the exit slit. You can immediately 

see the inefficiency inherent in this design. 

Page 8: 

Now that we understand the classical setup, let's look at the 

mathematics that describes the absorption process. This is 

governed by the famous Beer's Law, so let's develop the Complete 

Mathematical Formulation. 

First, we need to define our incident light more formally. Because 

we are using a broadband source, we don't talk about total power, 

but rather the incident spectral power density, which we denote as  

P 0 ( λ ) 𝑃0(𝜆). This represents the power per unit wavelength. So 

its units are something like Watts per nanometer, written as  W n 

m − 1 W nm−1. 



The key physical quantity that governs the absorption is the 

linear absorption coefficient, denoted by the Greek letter  α 𝛼, 

which is also a function of wavelength,  α ( λ ) 𝛼(𝜆). This 

coefficient tells us how strongly the material absorbs light at a 

particular wavelength. 

 α 𝛼, in turn, is defined by the microscopic properties of our 

sample. The equation is: 

 α ( λ ) = N i σ i k ( λ )  

𝛼(𝜆) = 𝑁i  𝜎𝑖𝑘(𝜆) 

Let's break this down very carefully. 

*  N i 𝑁i is the number density of our absorbing atoms or 

molecules that are in the specific initial quantum state, which we 

label 'i'. It's the number of potential absorbers per unit volume. 

Its units are typically inverse cubic centimeters, or  c m − 3 

cm−3. *  σ i k ( λ ) 𝜎𝑖𝑘(𝜆) is the transition-specific absorption 

cross-section. This is a wonderfully intuitive concept. It 

represents the effective "target area" that the molecule presents 

to an incoming photon of wavelength  λ 𝜆 for the specific 

transition from the initial state 'i' to a final state 'k'. If the 

photon "hits" this area, it's absorbed. The units are area, for 

example, square centimeters, or  c m 2 cm2. 



So, the total absorption coefficient is simply the number of 

absorbers per unit volume times the effective area of each 

absorber. 
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With the absorption coefficient defined, we can now write down the 

full Beer–Lambert Law for a uniform sample. The exact transmitted 

power is given by: 

 P T ( λ ) = P 0 ( λ ) e − α ( λ ) L  

𝑃T(𝜆) = 𝑃0(𝜆) 𝑒
−𝛼(𝜆)𝐿 

Let's walk through this. The transmitted power density,  P T 𝑃T, is 

equal to the initial power density,  P 0 𝑃0, multiplied by a decay 

factor. That factor is  e − α L 𝑒−𝛼𝐿. The term  α L 𝛼𝐿 is often 

called the absorbance or optical depth. It's a dimensionless 

quantity. This exponential relationship shows that the light 

intensity decreases exponentially as it travels through the 

absorbing medium. 

Now, in many spectroscopic situations, the absorption is weak. 

This allows for a very useful simplification called the weak-

absorption approximation. This is valid when the total absorbance,  

α L 𝛼𝐿, is much, much less than one. In this case, we can use the 



Taylor series expansion for the exponential,  e − x ≈ 1 − x 𝑒−𝑥 ≈

1 − 𝑥. Applying this to Beer's Law, we get: 

 P T ( λ ) ≈ P 0 ( λ ) ( 1 − α ( λ ) L )  

𝑃T(𝜆) ≈ 𝑃0(𝜆) (1 − 𝛼(𝜆)𝐿) 

This linear approximation makes many calculations much simpler. 

So, what is the actual signal we are trying to measure? It's the 

amount of power that was absorbed by the sample. We can define 

this absorbed power difference, capital  Δ P ( λ ) 𝛥𝑃(𝜆), as the 

initial power minus the transmitted power. 

 Δ P ( λ ) = P 0 ( λ ) − P T ( λ )  

𝛥𝑃(𝜆) = 𝑃0(𝜆) − 𝑃T(𝜆) 

Using our weak-absorption approximation, this simplifies 

beautifully to: 

 Δ P ( λ ) = P 0 ( λ ) α ( λ ) L  

𝛥𝑃(𝜆) = 𝑃0(𝜆) 𝛼(𝜆) 𝐿 

This is the signal we want to detect. It's directly proportional 

to the incident power, the absorption coefficient we're trying to 

find, and the path length of our cell. 
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Now we arrive at the practical heart of the matter: the 

Sensitivity and Resolution Limits in this classical method. How 

well can we actually measure that small change in power,  Δ P 𝛥𝑃? 

First, we need a reliable way to measure the incident power,  P 0 

𝑃0, to compare against the transmitted power,  P T 𝑃T. The standard 

reference technique is to perform two separate measurements. 

First, you measure the power with the sample cell in the beam 

path. Then, you physically remove the cell and measure the power 

again. Or you might use an identical "dummy" cell with no sample 

in it. This gives you a reference power,  P R 𝑃R, which, ideally, 

is equal to  P 0 𝑃0. This is a slow and cumbersome process, and 

it's susceptible to drifts in the light source power that might 

occur between the two measurements. 

The measured signal from our electronics, which we can call  S ( 

λ ) 𝑆(𝜆), will then be proportional to the difference between the 

reference and transmitted powers. We can write this as: 

 S ( λ ) = a [ b P R ( λ ) − P T ( λ ) ] .  

𝑆(𝜆) = 𝑎[𝑏 𝑃R(𝜆) − 𝑃T(𝜆)]. 

Here, 'a' and 'b' are just instrumental calibration constants that 

account for things like detector sensitivity and amplifier gains. 

The essential physics is in the difference between the reference 

power and the transmitted power. 



The second critical limitation is resolution. As we discussed, the 

spectrometer cannot distinguish wavelengths with infinite 

precision. The spectral interval that the instrument passes to the 

detector, which we can call  d λ 𝑑𝜆 or, equivalently in angular 

frequency,  d ω 𝑑𝜔, defines the instrumental resolution. We will 

denote this resolution as  Δ ω s p e c 𝛥𝜔spec. This finite 

resolution will have a profound impact on the signal size, as we 

are about to derive. 
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Let’s put some concrete numbers on these limitations. 

Consider a typical high-quality laboratory instrument: a 1-meter 

focal length grating spectrograph. The resolving power, capital  R 

𝑅, which is  λ / Δ λ 𝜆/𝛥𝜆, for such an instrument is typically 

around  5 × 10 4 5 × 104. This might sound like a large number, 

but what does it mean in practice? It means that at a wavelength 

of 500 nanometers, the smallest spectral interval it can resolve, 

capital  Δ λ 𝛥𝜆, is about 0.01 nanometers. We will see shortly 

that in the world of spectroscopy, this is actually quite a broad 

window. 

Now for the second limitation: the practical noise floor. Even if 

we had a perfect signal, our measurement is limited by noise. The 



two main culprits in the classical setup are detector noise and, 

often more significantly, source flicker—random fluctuations in 

the lamp’s output power. This noise sets a limit on the smallest 

relative absorption we can reliably detect. The minimum detectable 

change in power,  Δ P 𝛥𝑃, divided by the incident power,  P 0 𝑃0, 

is typically on the order of  10 − 4 10−4 to  10 − 5 10−5. That 

is, we can hope to see a change of about one part in ten thousand, 

or at best one part in a hundred thousand. 

The conclusion from all this is inescapable. The minimum 

measurable absorption coefficient,  α min 𝛼min, is directly 

linked to these two factors: the instrument’s resolution, which 

determines how much power  P 0 𝑃0 actually reaches the detector 

for a given spectral line, and the noise floor, which determines 

the minimum  Δ P 𝛥𝑃 we can see. We are fighting a battle on two 

fronts. 
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Now, let's change the game completely. We've seen the bottlenecks 

of the classical method: a weak, broadband, incoherent, and 

flickering source that requires an inefficient monochromator. So, 

let's Enter Tunable Lasers and see how they solve every single one 

of these problems. Let's look at their fundamental properties. 



First, and most dramatically, is the laser output. Lasers provide 

extremely high spectral power density. The power per unit 

wavelength from a laser can be many, many orders of magnitude 

greater than the power per unit wavelength from a lamp. We write 

this as: 

 P λ laser ≫ P λ lamp  

𝑃𝜆
laser ≫ 𝑃𝜆

lamp 

All of the laser's power is concentrated in an infinitesimally 

narrow spectral region. We are no longer throwing away 99.99% of 

our light. 

Second, consider the linewidth possibilities. A standard multimode 

dye laser might have a linewidth, which we'll call  Δ ν L 𝛥𝜈L, 

of about 1 Gigahertz. But a modern single-mode external-cavity 

diode laser can have a linewidth,  Δ ν L 𝛥𝜈L, of less than 1 

Megahertz! Let's keep these numbers in mind. We'll soon compare 

them to the 0.01 nanometer resolution of the classical 

spectrometer, which we calculated was equivalent to about 12 

Gigahertz. The laser is thousands to millions of times sharper. 

Third, frequency agility. Lasers can be tuned. We can change their 

emission frequency, either continuously or in rapid steps. This is 

typically done using intracavity elements like etalons or by using 

electro-optic modulators. This completely eliminates the need for 



a slow, mechanical monochromator. The laser is its own ultra-high-

resolution monochromator. 
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The advantages continue. Let's look at the spatial and intensity 

characteristics of a laser beam. 

A crucial property is the spatial mode. A laser typically emits a 

beam in a single, fundamental transverse mode, often a Gaussian  T 

E M 00 TEM00 mode. This means the beam is diffraction-limited. Its 

divergence, the angle  θ 𝜃 at which it spreads out, is as small 

as physically possible, given by the relation: 

 θ ≈ λ π w 0  

𝜃 ≈
𝜆

𝜋𝑤0
 

where  w 0 𝑤0 is the radius of the beam at its narrowest point, 

the beam waist. Because this divergence is so small, a laser beam 

can travel over many meters with very little change in its size. 

This is what enables the use of very long path lengths, something 

that is impossible with a lamp. 

Next, what about the flicker noise that plagued our classical 

source? Lasers have their own intensity fluctuations, but we have 

a powerful tool to combat them: intensity stabilization. We can 



use an active feedback loop to measure the laser's power and feed 

a correction signal back to the laser's power supply or to an 

external modulator. Using this, we can reduce the relative power 

fluctuations, which we'll write as  δ P P 
𝛿𝑃

𝑃
, to be less than  10 

− 4 10−4, and often much, much better. We can directly attack and 

suppress the dominant noise source of the classical method. 
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Let's now make a Direct Comparison of the Experimental Layouts to 

synthesize these ideas. 

The first major point of departure: the broadband case, as we saw, 

absolutely requires a dispersive element like a monochromator to 

select a wavelength after the sample. In stark contrast, the laser 

case measures the transmitted power,  P T 𝑃T, directly. Because the 

laser is already monochromatic, we measure the power at a single 

angular frequency,  ω 𝜔. This means there is no monochromator 

needed at all. The most complex and inefficient component of the 

classical setup is simply gone. 

Now, let's look at what the new laser configuration, which we'll 

see in the next diagram, adds to the setup. It's not about making 

things more complicated, but about making them more powerful. 



1. We add a beamsplitter. This simple piece of optics allows us to 

peel off a small fraction of the laser beam before it enters the 

sample. We send this to a separate detector to create a real-time 

reference signal,  P R 𝑃R. This allows us to normalize our 

absorption signal against any residual laser power fluctuations on 

the fly, a vastly superior method to the classical technique of 

physically removing the sample cell. 

2. We add an optional, low-finesse Fabry-Perot Interferometer, or 

FPI. As we'll discuss in detail later, this acts as an incredibly 

precise "frequency ruler," providing a stream of frequency markers 

as we tune the laser. 
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Continuing with the laser setup, there's another powerful 

addition: 

3. We can use a multiple-pass cell. Taking advantage of the 

laser's beautifully low divergence, we can use a set of mirrors to 

fold the beam back and forth through the sample many times. This 

allows us to achieve an extremely long extended effective path 

length, which we'll call  L e f f 𝐿eff, all within a compact and 

manageable volume. 



This leads to a complete paradigm shift in what defines our 

experiment's resolution. The spectral resolution is now limited by 

the absorber's own intrinsic linewidth, which we'll call  δ ω 

𝛿𝜔, or by the laser's linewidth itself. It is no longer limited by 

a bulky, expensive spectrometer. 

The consequence is profound. We can now easily meet or even beat 

the Doppler limit, that is, our instrumental resolution can be 

made smaller than the Doppler width of the transition,  Δ ω D 

𝛥𝜔D. Achieving this with a classical setup would require an 

enormous, multi-meter-long spectrograph that would be 

prohibitively expensive and deliver vanishingly small amounts of 

light. With a laser, it's routine. 
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This slide gives us the perfect visual summary. Let's compare the 

two block diagrams side-by-side. 

On the top, in panel (a), we have Broadband Absorption. Let's 

follow the flow once more. A Broadband Source sends light with 

power  P 0 ( λ ) 𝑃0(𝜆) through a Sample Cell of length  L 𝐿. The 

transmitted light,  P T ( λ ) 𝑃T(𝜆), which is still broadband, 

enters a Monochromator. The monochromator selects one wavelength 

and sends it to a Detector or a detector array. The setup is 



defined by its need to disperse the light after interaction with 

the sample. 

Now, look at the bottom panel, (b), showing Laser Absorption. The 

elegance and power of this approach should be immediately 

apparent. 

We start with a Tunable Laser. Its monochromatic beam, with power  

P 0 𝑃0, immediately hits a Beamsplitter. Most of the light 

continues straight ahead, into the Multiple-Pass Cell, which 

achieves a long effective path length,  L e f f 𝐿eff. The 

transmitted light,  P T 𝑃T, goes directly to our primary detector,  

D 𝐷. Notice what's missing: no monochromator. 

Meanwhile, the beamsplitter has directed small portions of the 

beam along two other paths. One path goes to a Reference Detector, 

which continuously monitors the incident laser power,  P R 𝑃R. The 

other path goes to a Fabry-Perot interferometer and its detector, 

which provides our frequency markers. 

Every single component in the laser setup is there to add power, 

precision, and new capabilities. 
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Now that we have the qualitative picture, let's get quantitative. 

We're going to perform a Step-by-Step Derivation to prove the 



relationship between Signal Strength and Resolution. This is one 

of the most important concepts in this chapter. 

First, let's set up the model. We consider an absorption line that 

is centered at an angular frequency of  ω 0 𝜔0 and has a natural, 

homogeneous profile with a width of lowercase  δ ω 𝛿𝜔. This  δ 

ω 𝛿𝜔 could be the lifetime-limited width or, in a more realistic 

scenario, the Doppler width. 

Second, we are going to probe this line by scanning our light 

source across it. The source itself has a certain instrumental 

bandwidth, which we will call capital  Δ ω 𝛥𝜔. In the classical 

case,  Δ ω 𝛥𝜔 is the resolution of our spectrometer. In the 

laser case,  Δ ω 𝛥𝜔 is the linewidth of the laser. 

Finally, let's consider the relative attenuation of the light, 

which is  Δ P / P 𝛥𝑃/𝑃, as it travels through an infinitesimally 

small path length, capital  Δ x 𝛥𝑥, of the sample. 
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The expression for this relative attenuation,  Δ P / P 𝛥𝑃/𝑃, is 

given by the following integral form. This equation looks a bit 

intimidating at first, but it's quite logical. It is: 

 Δ P P = Δ x × ∫ ω 0 − 1 2 Δ ω ω 0 + 1 2 Δ ω α ( ω ) P 

( ω ) d ω ∫ ω 0 − 1 2 Δ ω ω 0 + 1 2 Δ ω P ( ω ) d ω .  



𝛥𝑃

𝑃
 =  𝛥𝑥  × 

∫ 𝛼
𝜔0+1 2⁄ 𝛥𝜔

𝜔0−1 2⁄ 𝛥𝜔
(𝜔) 𝑃(𝜔) 𝑑𝜔

∫ 𝑃
𝜔0+1 2⁄ 𝛥𝜔

𝜔0−1 2⁄ 𝛥𝜔
(𝜔) 𝑑𝜔

. 

Let's dissect this. The numerator is the  ∫ ω 0 − 1 2 Δ ω ω 0 

+ 1 2 Δ ω α ( ω ) P ( ω ) d ω ∫ 𝛼
𝜔0+1 2⁄ 𝛥𝜔

𝜔0−1 2⁄ 𝛥𝜔
(𝜔) 𝑃(𝜔) 𝑑𝜔. This 

numerator represents the total power that is absorbed by the 

sample, integrated over the entire spectral window,  Δ ω 𝛥𝜔, 

that our instrument can see. 

The denominator is the  ∫ ω 0 − 1 2 Δ ω ω 0 + 1 2 Δ ω P ( 

ω ) d ω ∫ 𝑃
𝜔0+1 2⁄ 𝛥𝜔

𝜔0−1 2⁄ 𝛥𝜔
(𝜔) 𝑑𝜔. This denominator represents the total 

incident power from the source that falls within our instrument’s 

detection window. So, the whole expression is simply the fraction 

of power that gets absorbed within that window. 

Now, to make progress, we make a simple and very reasonable 

assumption. We assume that the source spectrum,  P ( ω ) 𝑃(𝜔), is 

essentially flat or constant inside our detection window,  Δ ω 

𝛥𝜔. We can approximate  P ( ω ) 𝑃(𝜔) by a constant value,  P ¯ 

𝑃‾. 

With this assumption, our expression simplifies dramatically. The  

P ¯ 𝑃‾ in the numerator can be pulled out of the integral. So the 

numerator becomes  P ¯ × ∫ α ( ω ) d ω 𝑃‾ × ∫ 𝛼(𝜔) 𝑑𝜔. The  P ¯ 

𝑃‾ in the denominator can also be pulled out, and the integral of  



d ω 𝑑𝜔 over a range of  Δ ω 𝛥𝜔 is just  Δ ω 𝛥𝜔. So the 

denominator becomes  P ¯ × Δ ω 𝑃‾ × 𝛥𝜔. 

The  P ¯ 𝑃‾ terms cancel, and we are left with a much more 

transparent result: 

 Δ P P = Δ x Δ ω × ∫ α ( ω ) d ω .  

𝛥𝑃

𝑃
 =  

𝛥𝑥

𝛥𝜔
 × ∫ 𝛼(𝜔) 𝑑𝜔. 

From this single equation, we can now understand everything by 

considering two limiting regimes. 
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Let's examine the two crucial limiting regimes that arise from the 

equation we just derived. 

Case 1: The Low-Resolution Limit. This is the classical 

spectrometer case, where our instrumental bandwidth,  Δ ω 𝛥𝜔, is 

much greater than the actual width of the absorption line,  δ ω 

𝛿𝜔 ( Δ ω ≫ δ ω 𝛥𝜔 ≫ 𝛿𝜔). Our detection window is wide, and 

the absorption feature is a narrow spike inside it. 

In this case, what is the value of the integral of alpha of omega? 

Since the absorption feature is narrow, the integral is just the 

area under that narrow peak. We can approximate this area as the 

average absorption coefficient, which we'll call alpha-bar, 



multiplied by the width of the line, delta omega. So, the integral 

is approximately  α ¯ δ ω 𝛼‾ 𝛿𝜔. 

Substituting this into our simplified equation from the last 

slide, we get: 

 Δ P P ≈ α ¯ Δ x δ ω Δ ω .  

𝛥𝑃

𝑃
 ≈  𝛼‾ 𝛥𝑥 

𝛿𝜔

𝛥𝜔
 . 

Look closely at that final ratio. Since  Δ ω 𝛥𝜔 is much larger 

than  δ ω 𝛿𝜔, this ratio is a small number, much less than one. 

This means our measured signal,  Δ P / P 𝛥𝑃/𝑃, is “washed out” 

or diluted. We only get a small fraction of the true peak 

absorption because it’s averaged over the wide instrument 

bandwidth. 

Case 2: The High-Resolution Limit. This is the tunable laser case, 

where our probe’s linewidth,  Δ ω 𝛥𝜔, is much, much less than 

the width of the absorption line,  δ ω 𝛿𝜔 ( Δ ω ≪ δ ω 𝛥𝜔 ≪

𝛿𝜔). Our probe is now a very sharp needle that we are scanning 

across a much broader feature. 

In this limit, the value of alpha of omega is essentially constant 

across our tiny integration window,  Δ ω 𝛥𝜔. So we can pull 

alpha of omega out of the integral, and the integral of  d ω 𝑑𝜔 



is just  Δ ω 𝛥𝜔. Therefore, the integral is approximately  α ( 

ω ) Δ ω 𝛼(𝜔) 𝛥𝜔. 

Now, let's substitute this into our general equation. 

 Δ P P ≈ ( α ( ω ) Δ ω ) Δ x Δ ω .  

𝛥𝑃

𝑃
 ≈  (𝛼(𝜔) 𝛥𝜔)  

𝛥𝑥

𝛥𝜔
 . 

The  Δ ω 𝛥𝜔 in the numerator and the denominator cancel out 

perfectly! We are left with the beautifully simple result: 

 Δ P P ≈ α ( ω ) Δ x .  

𝛥𝑃

𝑃
 ≈  𝛼(𝜔) 𝛥𝑥 . 

There is no dilution factor! The measured signal is directly 

proportional to the true value of the absorption coefficient at 

that frequency. This mathematical derivation provides the 

definitive proof of why high resolution leads to a much stronger 

signal. 
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Theory is great, but let's do a Numerical Illustration to see just 

how dramatic this difference is. We'll compare our grating 

spectrograph to a single-mode laser. 



Let's establish the parameters for our hypothetical experiment. 

We're looking at a molecule that absorbs in the visible part of 

the spectrum, at a wavelength,  λ 𝜆, of 500 nanometers. 

First, let's consider the classical instrument, our 1-meter 

grating spectrograph. We established earlier that its resolution,  

Δ λ 𝛥𝜆, is about 0.01 nanometers. 

Now, what is this in frequency units, which are more natural for 

spectroscopy? We can find the corresponding frequency span,  Δ ν 

𝛥𝜈, using the relationship: 

 Δ ν ≈ c λ 2 Δ λ .  

𝛥𝜈 ≈
𝑐

𝜆2
 𝛥𝜆. 

where  c 𝑐 is the speed of light. Plugging in our numbers:  c = 3 

× 10 8   m / s 𝑐 = 3 × 108 m/s,  λ = 500 × 10 − 9   m 𝜆 = 500 ×

10−9 m, and  Δ λ = 0.01 × 10 − 9   m 𝛥𝜆 = 0.01 × 10−9 m. This 

calculation yields a frequency span of approximately 12 Gigahertz. 

This is our instrumental bandwidth, our  Δ ω 𝛥𝜔 (or  Δ ν 𝛥𝜈). 

Now, what is the width of the absorption line itself, our 

lowercase  δ ω 𝛿𝜔? For a gas at room temperature, this is 

typically dominated by Doppler broadening. Let's calculate the 

Doppler width for a typical molecule with a molecular mass,  M 𝑀, 

of 30 atomic mass units, at a temperature,  T 𝑇, of 300 Kelvin. 
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The Doppler width, which we denote as lowercase delta nu sub D, is 

given by the following formula. This is the full-width at half-

maximum, or FWHM, for a Gaussian lineshape. The equation is: 

delta nu sub D is approximately equal to nu sub zero times the 

square root of the quantity (8 times k sub B times T times the 

natural log of 2) all divided by (M times c squared). 

 δ ν D ≈ ν 0 8 k B T ln ⁡ 2 M c 2 .  

𝛿𝜈D ≈ 𝜈0√
8 𝑘B 𝑇 ln2

𝑀 𝑐2
. 

Here, nu sub zero is the center frequency of the transition, k sub 

B is the Boltzmann constant, T is the absolute temperature, M is 

the mass of the molecule, and c is the speed of light. 

For the parameters we set on the previous slide—500 nanometers, 

300 Kelvin, and a mass of 30 amu—this calculation gives a Doppler 

width of approximately 1 Gigahertz. This is our lowercase delta 

nu. 

Now for the final, crucial comparison. 

For the classical instrument, the ratio of the instrument's 

bandwidth to the absorption line's width is capital Delta nu 



divided by delta nu sub D, which is 12 Gigahertz divided by 1 

Gigahertz. This ratio is 12. Recalling our derivation, this means 

that the measured signal, capital Delta P over P, is reduced by 

this same factor of 12 compared to the actual peak absorption. 

Now, consider the single-mode laser. Its linewidth, capital Delta 

nu sub L, might be less than 1 Megahertz. This is far, far less 

than the 1 Gigahertz Doppler width. So for the laser, we are deep 

in the high-resolution regime, and the effective ratio of 

linewidths is essentially one. 

This means that for the exact same sample cell of length L, the 

signal enhancement factor for the laser over the spectrograph is 

approximately 12. 

The take-away message is crystal clear and incredibly important: 

higher spectral resolution directly converts to a proportionally 

larger measurable attenuation. You don't just see more detail; 

your signal gets stronger. 
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Let's just pause for a moment to let that sink in. 

By simply replacing a classical light source and a monochromator 

with a tunable laser, we have achieved a more than ten-fold 

increase in our signal strength. This comes purely from the 



laser's superior spectral resolution. This is our first major 

advantage. 

But the benefits don't stop there. Let's now consider the spatial 

properties of the laser beam. 
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This brings us to our second major advantage: the ability to 

achieve very Long Path Lengths via Multipass Cells. 

As we discussed earlier, the divergence of a laser beam, the angle  

θ 𝜃, is incredibly small. This means the beam can traverse 

distances of many meters with negligible growth in its waist size. 

You simply cannot do this with the light from a lamp. 

This unique property allows us to use ingenious optical devices 

like a Herriott cell or a White cell. These cells use a pair of 

precisely curved mirrors to fold the laser beam back and forth 

through the sample gas many, many times. The result is that we can 

achieve a 10- to 100-fold, or even greater, increase in the 

effective path the light travels through the sample, all without 

needing a ten or one-hundred-meter-long tube! The entire apparatus 

can be quite compact. 

As a practical aside, these cells are often constructed with 

Brewster-angle windows. These are windows tilted at a special 



angle, Brewster’s angle, which allows light of a specific 

polarization to pass through with virtually zero reflection loss. 

This is crucial, because even a small loss of 1 or 2 percent per 

window would become a very large total loss after a hundred 

passes. 

So, what is the ultimate benefit of increasing the path length? 
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The benefit follows directly from Beer's Law. Remember that the 

total absorbance is the product of the absorption coefficient,  α 

𝛼, and the path length,  L 𝐿. This means that for a given minimum 

detectable signal, the minimum absorption coefficient we can see 

is inversely proportional to the path length. We can write this 

as: 

 α min ∝ 1 L e f f  

𝛼min ∝
1

𝐿eff
 

To make this tangible, let's consider a numerical example. Suppose 

a standard, single-pass absorption experiment uses a cell that is 

10 centimeters long, or 0.1 meters. Now, let's say we replace it 

with a multipass cell that gives us an effective path length,  L e 



f f 𝐿eff, of 10 meters. We have increased the interaction length by 

a factor of 100. 

Consequently, this lowers the minimum detectable absorption 

coefficient,  α min 𝛼min, by that same factor of 100. We have 

just made our experiment one hundred times more sensitive. We can 

now detect species at one-hundredth the concentration, or measure 

transitions that are one hundred times weaker. This is another 

massive improvement, completely independent of the resolution 

advantage we already discussed. 

Page 25: Multipass Cell for Long 

Path Length Spectroscopy 

Here on this slide, we have a beautiful schematic of a Multipass 

Cell for Long Path Length Spectroscopy. This illustrates the 

concept of a Herriott cell. 

Let’s trace the beam path. We see two concave mirrors, labeled 

Mirror 1 (M1) on the left and Mirror 2 (M2) on the right. 

The Laser Input beam enters the cell through a small hole, or 

aperture, drilled in the center of Mirror 1. The beam travels the 

length of the cell to Mirror 2, where it reflects. It then travels 

back to Mirror 1, but because of the mirrors’ curvature, it 



strikes a different point on the surface. It reflects again, 

travels back to M2, and so on. 

The red lines show this intricate dance of the laser beam bouncing 

back and forth. You can see the circular or elliptical pattern of 

spots that the beam makes on the surface of each mirror. The 

geometry is carefully designed so that after a specific, large 

number of reflections, the beam hits the back of Mirror 1 at just 

the right angle to pass back out through the central aperture as 

the Laser Output. 

The total Effective Path Length, as indicated at the bottom, is 

roughly the number of passes multiplied by the distance between 

the mirrors. This elegant optical arrangement is a direct 

consequence of the laser’s low divergence and is a cornerstone of 

high-sensitivity absorption spectroscopy. 
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Let's now do a comprehensive Example – Quantifying the total 

alpha_min Improvement. We will combine all the advantages we've 

discussed: better resolution, longer path length, and lower noise. 

First, let's consider the noise floor. By using an intensity-

stabilized laser and a powerful signal processing technique called 

lock-in detection, we can dramatically reduce our noise. Lock-in 



detection allows us to pull a tiny signal out from a noisy 

background by modulating our experiment at a specific frequency. 

With these combined techniques, the minimum detectable relative 

absorption,  Δ P / P 𝛥𝑃/𝑃, can be pushed down to approximately  

10 − 6 10−6, or one part per million. This is already a factor of 

100 better than the classical flicker-noise limit. 

Second, we must recall that we are operating in the high-

resolution regime, where the laser's linewidth,  Δ ω laser 

𝛥𝜔laser, is much smaller than the absorption linewidth,  δ ω 𝛿𝜔. 

This ensures we get the maximum possible signal without any "wash-

out" effect. 
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Now, let’s try to assemble a formula for our minimum detectable 

alpha,  α min 𝛼min, and plug in some conservative numbers. 

For the high-resolution laser case, we found that the relative 

absorption is simply  Δ P / P = α L 𝛥𝑃/𝑃 = 𝛼𝐿. Therefore, the 

minimum detectable alpha should be: 

 α min = ( Δ P / P ) min L e f f .  

𝛼min =
(𝛥𝑃/𝑃)min

𝐿eff
. 

The slide presents a related formula: 



 α min = 1 L e f f ⋅ ( Δ P P ) ⋅ Δ ω l a s e r δ ω .  

𝛼min =
1

𝐿eff
⋅ (
𝛥𝑃

𝑃
) ⋅

𝛥𝜔laser

𝛿𝜔
. 

This formula explicitly includes the ratio of the laser linewidth 

to the absorption linewidth. This factor accounts for how much of 

the lineshape is being sampled. In our ideal high-resolution case, 

this ratio is small, and our signal is maximized at the peak of 

the absorption line. Let’s use the slide’s formula with some 

conservative numbers to get an order-of-magnitude estimate. 

First, for our path length, let’s use a  L e f f 𝐿eff of 10 

meters. 

Second, for the linewidth ratio,  Δ ω l a s e r / δ ω 𝛥𝜔laser/

𝛿𝜔, let’s take a conservative value of  0.1 0.1. This would 

correspond, for instance, to a  100   M H z 100 MHz laser 

linewidth probing a  1   G H z 1 GHz Doppler-broadened line. 

Now, let’s put these numbers together to find our result. 
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Plugging these conservative numbers into the formula, we have: 

 α min ≈ 10 − 6 10 m × 0.1  

𝛼min ≈
10−6

10 m
× 0.1 



Now, we must be very careful with our units. An absorption 

coefficient is typically given in inverse centimeters. 10 meters 

is equal to 1000 centimeters. So, our calculation is: 

 α min ≈ 10 − 6 1000 c m × 0.1.  

𝛼min ≈
10−6

1000 cm
× 0.1. 

This gives us  10 − 9 × 0.1 10−9 × 0.1, which equals  10 − 10 

10−10 inverse centimeters. 

The slide shows a result of  10 − 8 10−8 inverse centimeters. This 

likely comes from a common shorthand where the 10-meter path 

length is treated as a dimensionless factor of 10 in the 

denominator. The exact exponent can vary depending on the specific 

assumptions, but the key point is the overall magnitude of the 

improvement. 

Let's compare this to the conventional method. A typical classical 

experiment might achieve an  α min 𝛼min of roughly  10 − 5 10
−5 

inverse centimeters. Our laser-based method gives a result of  10 

− 8 10−8 to  10 − 10 10−10 inverse centimeters. 

This represents an improvement of a factor of 1000 to 100,000. The 

slide’s summary of a “Factor 10 cubed better” is a conservative 

but certainly justified claim. This is a truly staggering 

improvement in sensitivity. 



Page 29: 

So far, we've focused on sensitivity and resolution. But lasers 

enable another crucial capability: precision frequency metrology. 

This brings us to the use of a Fabry-Perot Interferometer as a 

Frequency Ruler. 

As we saw in our experimental layout, we can send a small portion 

of our tunable laser field into a Fabry-Perot interferometer, or 

FPI. An FPI, in its simplest form, consists of two highly 

reflective parallel mirrors separated by a fixed distance, d. 

Due to interference effects, the FPI will only allow light to be 

transmitted through it if the wavelength fits the cavity resonance 

condition. This occurs at a series of discrete frequencies, given 

by the equation: 

 ν m = m ( c 2 d )  

𝜈m = 𝑚 (
𝑐

2 𝑑
) 

Here, nu sub m are the transmission peak frequencies, c is the 

speed of light, d is the mirror spacing, and m is an integer known 

as the mode number. 



The spacing between these transmission peaks is a constant value 

known as the Free Spectral Range, or FSR. It's given by a very 

simple formula: 

 Δ ν p = c 2 d  

𝛥𝜈p =
𝑐

2 𝑑
 

This FSR is a stable, precisely known frequency interval 

determined only by the physical construction of the 

interferometer. It is our ruler. 
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Let's look at a practical example. If we construct a Fabry–Perot 

interferometer with a mirror spacing,  d 𝑑, of  1 m 1 m, then the 

Free Spectral Range,  Δ ν p 𝛥𝜈𝑝, is approximately  150 M H z 

150 MHz. 

Here's how we use it. As we tune our laser's frequency to scan 

across a molecular absorption profile, we simultaneously record 

the transmission signal from the FPI on a separate detector. The 

result is that our absorption data is recorded alongside a 

beautiful, perfectly regular series of sharp peaks from the FPI. 

These peaks create absolute frequency markers across our entire 

spectrum. 



The accuracy of this frequency ruler is exceptionally high. It is 

limited primarily by the thermal and mechanical stability of the 

FPI cavity, which can be made very robust. 

We can easily know the relative spacing of these frequency markers 

to a precision of better than one part in  10 8 108. This allows 

us to measure the shapes, widths, and positions of spectral lines 

with an accuracy that is completely unthinkable in classical 

spectroscopy. 
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This diagram provides a perfect visual illustration of the Fabry-

Perot Interferometer as a Frequency Ruler. 

Let's look at the plot. The horizontal axis represents the Laser 

Frequency, which we are tuning. The vertical axis is the measured 

signal intensity, in arbitrary units. 

We see two signals being recorded simultaneously. The broad, bell-

shaped blue curve is labeled Absorption Signal. This is the 

molecular transition we are trying to study. The series of sharp, 

narrow, repeating red peaks is the FPI Transmission signal. 

The key feature is labeled  Δ ν p 𝛥𝜈𝑝 (FSR). This indicates the 

constant frequency spacing—our Free Spectral Range—between each 

of the FPI transmission peaks. 



By recording both traces at the same time, we have effectively 

superimposed a high-precision ruler onto our unknown spectrum. We 

can determine the width of our absorption line by simply counting 

how many FPI peaks fit within its half-maximum points. We can 

determine its center frequency with incredible precision. This is 

a simple but profoundly powerful technique. 
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Stabilization & Absolute Line 

Metrology 

We can take the idea of using an FPI one step further, from 

passive measurement to active control. This leads us to Laser 

Frequency Stabilization & Absolute Line Metrology. 

There are a number of powerful error-signal techniques—the most 

famous being the Pound-Drever-Hall technique, as well as simpler 

frequency modulation schemes—that allow us to lock the laser’s 

frequency directly to a reference. We can, for example, lock the 

laser to the side of one of those FPI transmission peaks, or even 

better, directly to the center of a narrow atomic or molecular 

absorption line. These techniques generate a signal that is zero 

when the laser is perfectly on frequency and provides a positive 



or negative correction signal if it drifts. This signal is fed 

back to the laser, keeping it actively locked to the reference. 

The achievable stability is astounding. We can achieve a relative 

frequency stability, capital  Δ ν / ν 𝛥𝜈/𝜈, of less than or 

equal to  10 − 10 10−10 over measurement times of seconds. 

When this extreme stability is combined with the interferometer 

calibration we just discussed, it allows for true absolute 

metrology. We can determine the absolute frequencies of molecular 

transitions with incredible precision. The slide indicates a 

relative uncertainty, lowercase  δ λ / λ 𝛿𝜆/𝜆, of less than or 

equal to  10 − 8 10−8. This opens the door to some of the most 

sensitive tests of fundamental physics. 
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So, why would we want to measure a frequency to one part in a 

hundred million or even better? What does this capability enable? 

It allows for precision tests of some of our most fundamental 

theories of nature. 

For example, we can perform extremely sensitive tests of Quantum-

electrodynamics, or QED. We can measure tiny energy level shifts, 

like the Lamb shift in hydrogen, and compare the results with the 



fantastically precise calculations of QED. This is how we test our 

best theory of light and matter. 

We can also perform searches for a possible variation of 

fundamental constants. Is the fine-structure constant truly 

constant over cosmological time? By measuring the frequencies of 

specific atomic transitions today and comparing them to 

astronomical observations of the same transitions in distant 

quasars, we can place incredibly tight limits on any possible 

change in these constants. 

And on a more practical level, we can precisely measure things 

like pressure-shift coefficients for atmospheric sensing. The 

exact frequency of a molecule's absorption line shifts slightly 

depending on the pressure and composition of the surrounding air. 

By measuring these shifts with laser precision in the lab, we can 

then use this information to perform highly accurate remote 

sensing of pollutants or greenhouse gases in the atmosphere. 
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Let's shift gears now to another unique advantage of lasers: 

speed. This brings us to Rapidly Tunable Lasers for Transient 

Species. 



Some lasers, particularly dye lasers, can be tuned over a 

significant frequency range at incredible speeds. This is often 

accomplished using an electro-optic tuning element inside the 

laser cavity, like a Pockels cell or a lithium niobate crystal, 

whose refractive index can be changed rapidly with an applied 

voltage. 

The performance specifications are impressive. We can achieve a 

scan range of approximately  5 c m − 1 5 cm−1, or wavenumbers, 

which is a very useful range for observing a single molecular 

feature. And we can perform this scan in a sweep time of less than  

1 μ s 1 𝜇s. 

Why is this so important? It allows us to perform spectroscopy on 

things that don't last very long. We can now probe short-lived 

radicals—highly reactive molecular fragments—that may only exist 

for a few  n s ns or  μ s 𝜇s. These transient species are 

critical intermediates in chemical reactions, such as those that 

occur in flash photolysis experiments or in the complex 

environment of combustion. Before rapidly tunable lasers, getting 

high-resolution spectra of these fleeting species was simply 

impossible. 
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So how does the data acquisition for such a fast experiment work? 

It requires perfect timing. We use a synchronized digitizer—a 

very fast oscilloscope—that is triggered by the same event that 

creates the transient species. For example, in a flash photolysis 

experiment, a short, intense pulse of UV light breaks apart a 

precursor molecule, creating the radicals. This same event 

triggers our fast digitizer. 

Simultaneously, our rapidly swept laser beam passes through the 

sample, and the transmitted light is monitored by a fast 

photodetector. The digitizer then captures the entire absorption 

trace—the full spectrum—within that single, sub-microsecond 

sweep. We get a high-resolution snapshot of the species that were 

present during that one fleeting moment. 

This technique dramatically extends the classical flash-photolysis 

method. The classical method used a broadband "white-light" flash 

as the probe, resulting in a low-resolution spectrum. The laser-

based method provides spectra of UV or visible absorption lines 

with sub-Gigahertz resolution, allowing for detailed 

identification and characterization of these crucial reaction 

intermediates. 
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Let's now turn to yet another profound advantage: Selective 

Excitation & Optical Pumping. 

This benefit arises from the laser's exquisitely narrow linewidth. 

In a molecule, the energy levels are grouped into electronic, 

vibrational, and rotational states. The spacing between rotational 

lines is typically on the order of several to tens of Gigahertz. 

Because the laser linewidth is much, much less than this 

rotational separation, we can tune our laser to be resonant with 

one, and only one, specific rotational-vibrational—or 

rovibronic—line. We can pick out a single quantum state to 

interact with, out of the millions that might be populated. This 

level of selectivity is impossible with a broadband source. 

The consequence of this, combined with the laser's high intensity, 

is that we can achieve a significant achievable excited-state 

population fraction. We can literally pump a large fraction of the 

molecules that are in a specific ground state up to a specific 

excited state. 

The steady-state population fraction in the excited state 'k', 

which we denote  ρ k 𝜌k, can be approximated by the following 

expression: 

 ρ k 𝜌k is approximately equal to the ratio of the pumping rate 

to the total decay rate. 



 ρ k ≈ B i k I ℏ  ω A k i + Γ c o l l  

𝜌k ≈

𝐵𝑖𝑘  𝐼
ℏ 𝜔

𝐴𝑘𝑖 + 𝛤coll
 

The numerator is  B i k I ℏ  ω 
𝐵𝑖𝑘  𝐼

ℏ 𝜔
. This is the stimulated 

absorption rate. The denominator is  A k i + Γ c o l l 𝐴𝑘𝑖 + 𝛤coll. 

This is the total relaxation rate of the excited state. 

The key term in the numerator is  B i k 𝐵𝑖𝑘, which is the Einstein 

B coefficient for stimulated absorption. Let's break down these 

terms. 

Page 37: 

Let's continue deconstructing that equation for the excited-state 

population. 

-  I 𝐼 is the laser intensity, in Watts per square meter. -  A k i 

𝐴𝑘𝑖 is the Einstein A coefficient, which describes the rate of 

spontaneous emission from the excited state 'k' back down to the 

initial state 'i'. -  Γ c o l l 𝛤coll is the collisional quench 

rate. This represents how often the excited molecule collides with 

another molecule and loses its energy non-radiatively. 

Now, here is the crucial insight. Because we can focus a laser 

beam to a very small spot, the intensity,  I 𝐼, can be made 



extremely high. This means the pumping rate in the numerator can 

be made very large. It can be made so large that it becomes 

comparable to, or even much larger than, the total decay rate in 

the denominator. 

When this happens, the excited-state population fraction,  ρ k 

𝜌k, can become a significant number, comparable to the ground-

state occupancy. We can effectively move half of the molecules in 

the selected ground state up into the selected excited state. 

This has two major consequences. 1. Fluorescence spectroscopy of 

excited levels. If we create a large population in an excited 

state, those molecules will decay, and many will do so by emitting 

a photon—they fluoresce. We can collect this fluorescent light. 

Often, detecting a photon appearing out of a dark background is 

much more sensitive than detecting the small dip in a large 

transmitted power that we measure in absorption. This is the basis 

of Laser-Induced Fluorescence, or L-I-F, a workhorse technique in 

chemical physics. 

Page 38: 

The second major consequence of being able to pump so many 

molecules into a single excited state is the creation of laser-

induced population inversions. 



A population inversion is a condition, fundamental to the 

operation of lasers themselves, where a higher energy state has a 

larger population than a lower energy state. By using a laser to 

selectively excite molecules out of a specific ground state level, 

we can deplete that level's population. At the same time, we are 

populating a specific excited state. This process is known as 

optical pumping. 

This allows for very powerful experimental schemes. For example, 

we can create a population inversion between two closely spaced 

hyperfine levels within a ground state. We can then probe this 

inverted population using microwaves. This forms the basis of 

techniques like optical-microwave double-resonance spectroscopy, 

which allows for ultra-high-resolution studies of molecular 

structure that would otherwise be completely inaccessible. 
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Spectroscopy 

Now we move to the final frontier of laser spectroscopy: the time 

domain. Let's discuss Ultrafast Time-Resolved Spectroscopy. 

This field is made possible by a special type of laser called a 

mode-locked laser. Systems like Titanium:sapphire or mode-locked 

fiber lasers are capable of producing incredibly short pulses of 



light. These pulses can be  ≤ 100 ≤ 100 femtoseconds in duration. 

A femtosecond is  10 − 15 10−15 seconds. This is the timescale of 

molecular vibrations and chemical bond breaking. 

The workhorse experimental technique in this field is the pump-

probe scheme. It works as follows: 

1. First, a powerful but ultrashort pump pulse arrives at the 

sample and excites the system. It creates an initial non-

equilibrium state, for example, by promoting molecules to an 

excited electronic state. 2. Second, a weaker, time-delayed probe 

pulse arrives at a precisely controlled time  t 𝑡 after the pump. 

This probe pulse monitors the state of the system by measuring the 

change in absorption, which we'll call  Δ A ( t ) 𝛥𝐴(𝑡). 

By varying the time delay between the pump and probe pulses, we 

can map out the entire evolution of the system from the moment of 

excitation. We are essentially creating a molecular movie. 

Page 40: 

A crucial question in these pump-probe experiments is: what sets 

the time resolution? It's not the speed of our detector 

electronics. The temporal resolution is set by the cross-

correlation of the pump and probe pulses themselves. 



Mathematically, the time resolution, capital Delta t sub res, is 

approximately the square root of the sum of the squares of the 

pulse durations: 

 Δ t r e s ≈ ( Δ t p u m p ) 2 + ( Δ t p r o b e ) 2  

𝛥𝑡res ≈ √(𝛥𝑡pump)
2
+ (𝛥𝑡probe)

2
 

This means if we use 100-femtosecond pulses, our time resolution 

is on the order of 100 femtoseconds. With modern lasers, sub-100 

femtosecond resolution is readily achievable. 

The applications of this capability are vast and have 

revolutionized chemistry and condensed matter physics. We can 

directly observe: 

* Vibrational relaxation: how energy flows through a molecule 

after it's been "plucked" by the pump pulse. * Fourth-order 

photochemical intermediates: we can watch the sequence of steps as 

chemical bonds break and new ones form during a reaction. * 

Carrier dynamics in semiconductors: we can track how electrons and 

holes are created, how they move, and how they recombine in 

semiconductor materials, which is fundamental to the operation of 

all modern electronics and solar cells. 
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We've spent a lot of time talking about signals. But in any real 

experiment, the limit to sensitivity is noise. So, let's create a 

Detailed Inventory of Noise Sources. 

First, there is source intensity noise, which we denote as 

lowercase  δ P 𝛿𝑃. This includes flicker noise, which has a  1 / 

f 1/𝑓 frequency spectrum and is dominant at low frequencies, as 

well as things like relaxation oscillations, which are specific 

periodic fluctuations that can occur in some types of lasers. 

Second, there is detector noise. This category includes: 

* Johnson noise, also known as thermal noise. This is the random 

voltage generated by the thermal motion of electrons in any 

resistive component of the detector or amplifier. It is 

independent of the optical power hitting the detector. Shot noise. 

This is a fundamental quantum noise that arises from the fact that 

light is composed of discrete photons. The arrival of photons at 

the detector is a random Poisson process. The resulting noise 

current is proportional to the square root of the signal current. 

The formula is  2 e I d Δ f √2 𝑒 𝐼d 𝛥𝑓, where  e 𝑒 is the electron 

charge,  I d 𝐼d is the detector photocurrent, and  Δ f 𝛥𝑓 is the 

detection bandwidth. Because the signal goes as  P 𝑃 and the shot 

noise goes as the square root of  P 𝑃, the relative* shot noise 

decreases for higher optical power,  P 𝑃. 



Other important noise sources include: 

* Beam pointing jitter. If the laser beam physically wanders or 

wiggles, it can move partially on and off the detector's active 

area, causing the measured power to fluctuate. This is a very 

common technical noise source. * Laser frequency jitter. If our 

laser linewidth,  Δ ν L 𝛥𝜈L, is very narrow and we are sitting 

on the steep side of an absorption feature,  δ ν a b s 𝛿𝜈abs, 

then any small jitter in the laser's frequency will be converted 

directly into a large fluctuation in the transmitted amplitude. 
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Finally, one more noise source to consider, which comes not from 

our instrumentation but from the sample itself. 

This is sample density fluctuations. The number of absorbing 

molecules within the volume probed by the laser beam can fluctuate 

randomly. 

This can be caused by localized temperature gradients that change 

the gas density, or by acoustic pressure waves traveling through 

the sample. 

If the number of absorbers changes, the measured absorption will 

change, creating noise in our signal. 
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Now that we have inventoried the enemy, let's discuss our arsenal. 

Here are the primary Laser-Based Noise Mitigation Techniques. 

For source intensity noise, the solution is a power stabilization 

loop. We use a photodiode to monitor a fraction of the laser 

power,  P 𝑃. A Proportional-Integral-Derivative, or PID, 

controller compares this signal to a stable voltage reference and 

generates an error signal. This error signal is then used to 

modulate an Acousto-Optic Modulator (AOM) placed in the beam path, 

which adjusts the transmitted power to hold it constant. With this 

feedback, we can achieve a relative stability,  Δ P / P 𝛥𝑃/𝑃, of 

less than  10 − 4 10−4. 

For detector noise, the key is to use the laser's high power. The 

shot-noise limit is reached when the high optical power,  P 𝑃, 

makes the detector's photocurrent so large that the associated 

shot noise completely swamps out the fixed-level Johnson noise. 

Being shot-noise-limited is often the goal in a precision 

experiment, as it means you have reached the fundamental quantum 

limit for that optical power. 

For beam pointing jitter, the solution is a combination of good 

optics. We use spatial filtering—passing the beam through a small 



pinhole—to clean up the laser's spatial mode and make it more 

stable. We also use a large-area detector. If the detector is much 

larger than the beam, then small wiggles of the beam won't cause 

it to move off the active surface, thus reducing the noise. 
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noise mitigation strategies. 

To combat laser frequency jitter, which we denoted as lowercase  

δ ν 𝛿𝜈, the solution is to actively stabilize the frequency. We 

use a frequency lock to an external, stable reference. This 

reference could be a high-finesse external optical cavity, or for 

the ultimate stability, it could be a narrow, Doppler-free 

transition in a reference gas cell. As we discussed, this 

effectively eliminates  δ ν 𝛿𝜈 as a significant source of noise. 

And finally, to minimize sample density variations, the solution 

lies in careful experimental design. We can use a steady gas flow 

through the sample cell to average out any local temperature or 

pressure pockets. We can also use meticulous thermal shielding and 

temperature control of the cell to ensure the density of the 

absorbers remains as constant as possible. 

As you can see, for every source of noise, there is a clever 

laser-based technique to suppress it. 
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We've covered a lot of ground. Let's now consolidate everything 

we've learned into a clear summary of the Consolidated Advantages 

of Tunable Lasers. 

First, spectrometer-free operation. This is a massive 

simplification of the experimental setup. The resolution is no 

longer set by a bulky, inefficient instrument, but by the 

fundamental properties of the absorber itself. This allows for 

routine Doppler-limited, or even sub-Doppler, resolution. 

Second, this leads to orders-of-magnitude improvements in the 

minimum detectable absorption coefficient,  α min 𝛼min. We saw 

this arise from a combination of higher resolution, lower noise, 

and longer path lengths. 

Third, lasers enable precise frequency calibration. By using a 

Fabry-Perot interferometer or, in modern state-of-the-art 

experiments, an optical frequency comb, we can create an ultra-

precise frequency ruler across our spectrum, enabling true 

metrology. 
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Continuing our summary of advantages: 



Fourth, lasers provide the capacity for long path lengths and low 

pressures. The low divergence of a laser beam is what makes 

multipass cells possible, dramatically increasing sensitivity. And 

because we have such high sensitivity, we can afford to run our 

experiments at very low sample pressures. This has the added 

benefit of reducing pressure broadening, which is the collisional 

broadening of spectral lines, leading to even sharper and more 

resolved spectra. 

And fifth, lasers open up the time-domain. The ability to generate 

ultrashort or rapidly swept pulses allows for the study of 

ultrafast and transient phenomena. These experiments, which probe 

the fundamental timescales of chemistry and physics, are 

completely impossible with classical, incoherent light sources. 

These five points encapsulate the revolution that lasers brought 

to the field of spectroscopy. 
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To help you with your studies, this slide and the next few provide 

a Key Equations Summary & Symbol Reference. Let's quickly review 

the most important mathematical relationships we've established. 

First, the fundamental equation for transmitted power, the Beer–

Lambert Law: 



 P T ( λ ) = P 0 ( λ ) exp ⁡ ( − N i σ i k ( λ ) L )  

𝑃T(𝜆) = 𝑃0(𝜆)exp(−𝑁i𝜎𝑖𝑘(𝜆)𝐿) 

This describes the exponential attenuation of light passing 

through a uniform sample. 

Second, a useful expression for the minimum detectable absorption 

coefficient,  α min 𝛼min, relates it to the detector's Noise 

Equivalent Power, or NEP: 

 α min = N E P a P 0 L  

𝛼min =
NEP

𝑎𝑃0 𝐿
 

Here, ' a 𝑎' represents the detector's responsivity. This equation 

tells us that to see a weak absorption, we need a low-noise 

detector (small NEP) and as much incident power,  P 0 𝑃0, and path 

length,  L 𝐿, as possible. 

Third, the crucial relationship between relative attenuation and 

resolution. We found this has two distinct limits, which we will 

see on the next slide. 
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Here are the two limiting cases for the relative attenuation,  Δ 

P / P 𝛥𝑃/𝑃, for an infinitesimal path length,  Δ x 𝛥𝑥. This is a 



very important result to remember. The behavior is described by 

this piecewise function: 

-  α Δ x 𝛼 𝛥𝑥, when our resolution is high, meaning  Δ ω ≪ δ 

ω 𝛥𝜔 ≪ 𝛿𝜔. This is the laser case. -  α Δ x δ ω Δ ω 

𝛼 𝛥𝑥 
𝛿𝜔

𝛥𝜔
, when our resolution is low, meaning  Δ ω ≫ δ ω 𝛥𝜔 ≫

𝛿𝜔. This is the classical spectrometer case, where the signal is 

washed out. 

Next, the Fabry–Perot FSR, our frequency ruler: 

 Δ ν p = c 2 d  

𝛥𝜈𝑝 =
𝑐

2 𝑑
 

And finally, the formula for the Doppler width, the full-width at 

half-maximum for a Gaussian line shape, which is often the 

limiting resolution in our experiments: 

 δ ν D = ν 0 8 k B T ln ⁡ 2 M c 2  

𝛿𝜈𝐷 = 𝜈0 √
8 𝑘𝐵 𝑇 ln2

𝑀 𝑐2
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The next few pages provide a consolidated table of all the symbols 

we've used. This is for your reference, so you can always look up 



a symbol if you forget its meaning. I'll briefly go over the 

categories. 

On this page, we have the symbols for Frequency & Wavelength. 

- We use  ν 𝜈 for optical frequency in Hertz, and  ω 𝜔 for 

angular frequency in radians per second. The subscripts  L 𝐿 and  

0 0 denote laser and line center, respectively. - We use capital  

Δ 𝛥 for instrumental widths or resolutions, like  Δ ν 𝛥𝜈 or  Δ 

ω 𝛥𝜔, and lowercase  δ 𝛿 for intrinsic widths, like the 

absorption width  δ ν abs 𝛿𝜈abs or the Doppler width  δ ν D 

𝛿𝜈𝐷. -  λ 𝜆 is wavelength,  δ λ 𝛿𝜆 is a wavelength uncertainty, 

and capital  Δ ν p 𝛥𝜈𝑝 is our Fabry-Perot Free Spectral Range. 
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symbols related to Power & 

Intensity 

* Capital  P 𝑃 denotes optical power in Watts, with subscripts 0 

and T for initial and transmitted power. * Lowercase  δ P 𝛿𝑃 

represents optical power noise or fluctuations. * Capital  I 𝐼 is 

laser intensity, which is power per unit area, in Watts per square 

meter. *  I d 𝐼d is the detector photocurrent, measured in Amperes. 



* And  N E P 𝑁𝐸𝑃 is the Noise Equivalent Power, a key figure of 

merit for a detector, with units of Watts per root Hertz. 
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for the Properties of Matter & the 

System 

* lowercase a (or alpha in my speech) is the absorption 

coefficient, in inverse meters. * sigma sub ik is the absorption 

cross-section, in square meters. * N sub i is the number density 

of absorbers in state i, in inverse cubic meters. * rho sub k is 

the dimensionless population fraction in the excited state k. * A 

sub ki and B sub ik are the crucial Einstein A and B coefficients, 

which govern spontaneous emission and stimulated 

absorption/emission. * Gamma sub coll is the collisional quench 

rate in inverse seconds. * And finally, capital M for the mass of 

the particle and capital T for the absolute temperature. 
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Finally, this table lists Time & Experimental Parameters and 

Fundamental Constants. 



- Under experimental parameters, we have time  t 𝑡, path length  L 

𝐿, FPI mirror separation  d 𝑑, and so on. - And under fundamental 

constants, we have the key players that appear throughout physics:  

c 𝑐 for the speed of light,  ℏ  ℏ for the reduced Planck constant,  

k B 𝑘𝐵 for the Boltzmann constant, and  e 𝑒 for the elementary 

charge. 

I strongly recommend you become fluent with all of these symbols 

and their meanings. 
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This brings us to our closing thoughts for this chapter, and a 

Transition to Sub-Doppler Techniques. 

Through our detailed comparison and analysis, we now possess a 

comprehensive toolkit for understanding and performing Doppler-

limited measurements using lasers. We understand the sources of 

signal, the sources of noise, and the powerful techniques we can 

use to maximize our sensitivity and precision. 

However, as the title of this section implies, we are still bound 

by a fundamental limitation. All the improvements we've discussed 

so far ultimately run into a wall: the thermal motion of the 

absorbers themselves. This is the source of Doppler broadening, 



and it remains the primary obstacle to achieving the ultimate 

spectral resolution. 
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So, what is the next step? Our next major topic will be to explore 

a collection of brilliant and ingenious sub-Doppler strategies 

that have been developed to remove that final limitation entirely. 

We will delve into techniques like saturation spectroscopy, two-

photon absorption, and the Lamb dip. These methods cleverly use 

the properties of the laser itself to select and probe only those 

atoms or molecules that are not moving along the beam axis, thus 

eliminating the Doppler effect. 

As we move into these more advanced topics, I urge you to keep the 

foundational equations from this chapter handy. The principles of 

Beer's Law, the concepts of signal versus noise, and our entire 

sensitivity analysis will continue to be the bedrock upon which we 

build our understanding of all the forthcoming methods. 

Thank you for your attention. I'll see you at the next lecture. 


