Vo1. 2

Chapte

r 1. 1

Page 1

Good morning, everyone, and welcome to the Physics 608, Laser Spectroscopy course at KFUPM. I'm Distinguished Professor Dr M A Gondal, and it's a pleasure to have you in this advanced graduate physics course.

We're going to begin today with our first major topic, which corresponds to Chapter 1.1 in your notes. We'll be laying the essential groundwork for everything that follows, so let's diveright in.

Page 2:

So, where do we begin our journey into laser spectroscopy? We start with the most fundamental question: Why lasers? Before the invention of the laser in 1960, spectroscopy was already a mature and powerful field. It had given us quantum mechanics and revealed the detailed structure of atoms and molecules. Yet, the laser revolutionized it.

The central theme of our lecture today, and indeed this entire chapter, is to understand the profound and multifaceted **Advantages** of Lasers in Spectroscopy. We are going to explore precisely *how* and *why* this one invention amplified the power of spectroscopy by

many orders of magnitude, opening up entirely new frontiers of scientific inquiry. To do this, we're going to systematically compare the old ways with the new.

Page 3:

Alright, let's establish our context and learning targets for this chapter. The specific area we're starting with is called **Doppler-Limited Laser Spectroscopy**. Now, this term itself is very important. As we'll see, atoms or molecules in a gas are not stationary; they're moving randomly due to their thermal energy. This motion causes Doppler shifts in the frequencies they absorb or emit, which broadens any spectral line we try to measure. This broadening is called the Doppler width, which we will denote with the symbol Δ ω D $\Delta\omega_D$. For now, in this chapter, we will consider this Doppler width to be the fundamental limit on our spectral resolution.

Our chapter will therefore focus on laser absorption and fluorescence experiments where our ability to distinguish two close spectral features is ultimately bounded by this Doppler width. We will come back to clever ways to *overcome* this limit in a later chapter, but first, we must master the Doppler-limited case.

To do that, our immediate goal is to perform a step-by-step comparison of classical, pre-laser absorption experiments, which used broadband light sources, with the modern methods that employ tunable lasers. By seeing the limitations of the old techniques and how lasers solve them one by one, you will gain a deep, intuitive understanding of the subject.

So, by the end of this lecture block, you should be able to meet several key learning outcomes. Let's outline them.

Page 4:

Here are the specific skills you should have mastered by the end of this discussion.

First, you should be able to list and, more importantly, explain every single experimental advantage provided by using single-mode, frequency-tunable lasers. I don't want a simple list; I want a physicist's understanding of why each property matters.

Second, you'll be able to derive the detectable-absorption limit from basic noise considerations. Sensitivity is everything in spectroscopy, and you need to understand, from first principles, what sets the floor for the weakest signal you can possibly measure.

Third, you will be able to explain quantitatively how spectral resolution—which we define as $R = \omega / \Delta \omega R = \omega/\Delta\omega$ —influences the size of your measured signal. We will prove mathematically why higher resolution doesn't just give you sharper spectra, it gives you *stronger* signals.

And finally, you will be able to identify the typical sources of noise in a spectroscopy experiment and outline the specific laser-based strategies we use to mitigate or eliminate them. A great experimentalist is, above all, a master of noise.

These are our targets. Let's begin by looking at how things were done in the "old days."

Page 5:

Let's turn our attention to what we'll call Classical Absorption Spectroscopy. And the heart of this classical setup is a Broadband, Incoherent Light Source.

What do we mean by that? "Broadband" means the source emits light over a very wide range of wavelengths or frequencies simultaneously. Think of it as a white light source. The slide gives some classic examples: a high-pressure mercury, or Hg, arc lamp, or a Xenon flash lamp. These are powerful light sources, but their energy is spread thin across the spectrum. A typical

emission bandwidth is on the order of 100 nanometers or more. That is an enormous spectral range.

"Incoherent" means the light waves emitted are random in their phase. Unlike a laser, there is no fixed phase relationship between different parts of the beam or at different moments in time.

Now, let's start building the experimental setup, which is shown in the figure we'll examine in a moment. The key optical elements are as follows:

First, we need a collimating lens, which we label L 1 L_1 . The light from the lamp emanates in all directions. This lens gathers some of that light and turns it into a quasi-parallel beam, meaning the rays are traveling mostly in the same direction.

Second, this beam passes through our sample. This is typically a gas or liquid contained in an absorption cell of a specific physical length, which we'll call L L. This is where the lightmatter interaction that we want to study occurs.

Page 6:

Continuing with our classical setup, after the light passes through the sample cell, what's next?

The third, and perhaps most critical, component is a dispersive **spectrometer.** This is the device that allows us to get spectral broadband light. It's information from our typically monochromator containing a diffraction grating, or in some cases interferometer. Its entire job is to take an the incoming broadband light and separate it into its constituent colors, or wavelengths.

Fourth, a detector is placed at the exit of the spectrometer. This detector—perhaps a photodiode or a photomultiplier tube—measures the transmitted spectral power at the specific wavelength the spectrometer has selected. We'll call this power P T (λ) $P_{T}(\lambda)$... that is, P T P_{T} as a function of λ λ .

This brings us to the fundamental requirement, and the fundamental bottleneck, of the classical method. A monochromator is absolutely essential. Because our source is broadband, we *must* filter the light *after* it has passed through the sample to isolate each individual wavelength, λ λ , that we want to measure. To get a full spectrum, you have to mechanically rotate the grating inside the monochromator to scan one wavelength after another to the detector. This is slow, inefficient, and, as we'll see, it throws away almost all of the light from our source for any given measurement point.

Page 7:

Now let's look at the diagram on this page, which brings all these components together. This is the canonical schematic for Classical Absorption Spectroscopy.

Let's trace the path of the light from left to right.

We begin with the **Broadband Source**, depicted as a simple circle emitting diverging rays of light. This could be our mercury arc lamp.

These diverging rays are captured by the first lens, L 1 L_1 , which collimates the light into a parallel beam. The total power entering the sample at all wavelengths is represented here as P 0 P_0 .

Next, the beam traverses the **Sample Cell**, which has a physical length L L. Inside this cell, molecules will absorb light at their characteristic resonant wavelengths.

The light that makes it through, with transmitted power P T $P_{\rm T}$, then enters the most important part of the classical setup: the Monochromator. This is shown as a box containing a slanted diffraction grating. This grating takes the entire spectrum of light that enters and disperses it, spreading the colors out in angle, much like a prism.

An exit slit inside the monochromator then selects one very narrow band of wavelengths, denoted here by the green line labeled with the Greek letter λ λ . Everything else—all the other colors, all the other photons from our lamp—is blocked. It's simply thrown away.

Finally, this single, selected, and now very weak beam of light of wavelength λ λ hits the **Detector**, which measures its power. To build up a spectrum, we have to slowly rotate the grating to scan different wavelengths across the exit slit. You can immediately see the inefficiency inherent in this design.

Page 8:

Now that we understand the classical setup, let's look at the mathematics that describes the absorption process. This is governed by the famous Beer's Law, so let's develop the Complete Mathematical Formulation.

First, we need to define our incident light more formally. Because we are using a broadband source, we don't talk about total power, but rather the incident spectral power density, which we denote as $P \ 0 \ (\lambda) \ P_0(\lambda)$. This represents the power per unit wavelength. So its units are something like Watts per nanometer, written as $W \ n \ -1 \ W \ nm^{-1}$.

The key physical quantity that governs the absorption is the linear absorption coefficient, denoted by the Greek letter α α , which is also a function of wavelength, α (λ) $\alpha(\lambda)$. This coefficient tells us how strongly the material absorbs light at a particular wavelength.

 α α , in turn, is defined by the microscopic properties of our sample. The equation is:

$$\alpha$$
 (λ) = N i σ i k (λ)

$$\alpha(\lambda) = N_i \, \sigma_{ik}(\lambda)$$

Let's break this down very carefully.

* N i N_i is the number density of our absorbing atoms or molecules that are in the specific initial quantum state, which we label 'i'. It's the number of potential absorbers per unit volume. Its units are typically inverse cubic centimeters, or c m - 3 cm⁻³. * σ i k (λ) $\sigma_{ik}(\lambda)$ is the transition-specific absorption cross-section. This is a wonderfully intuitive concept. It represents the effective "target area" that the molecule presents to an incoming photon of wavelength λ λ for the specific transition from the initial state 'i' to a final state 'k'. If the photon "hits" this area, it's absorbed. The units are area, for example, square centimeters, or c m 2 cm².

So, the total absorption coefficient is simply the number of absorbers per unit volume times the effective area of each absorber.

Page 9:

With the absorption coefficient defined, we can now write down the full Beer-Lambert Law for a uniform sample. The exact transmitted power is given by:

P T (
$$\lambda$$
) = P O (λ) e - α (λ) L

$$P_{\mathrm{T}}(\lambda) = P_{\mathrm{0}}(\lambda) e^{-\alpha(\lambda)L}$$

Let's walk through this. The transmitted power density, PT $_{\rm T}$, is equal to the initial power density, P0 $_{\rm O}$, multiplied by a decay factor. That factor is ${\rm e}-{\rm a}$ L ${\rm e}^{-\alpha L}$. The term ${\rm a}$ L ${\rm a}$ L is often called the absorbance or optical depth. It's a dimensionless quantity. This exponential relationship shows that the light intensity decreases exponentially as it travels through the absorbing medium.

Now, in many spectroscopic situations, the absorption is weak. This allows for a very useful simplification called the **weak-absorption approximation**. This is valid when the total absorbance, $\alpha \perp \alpha L$, is much, much less than one. In this case, we can use the

Taylor series expansion for the exponential, $e - x \approx 1 - x e^{-x} \approx 1 - x$. Applying this to Beer's Law, we get:

PT(
$$\lambda$$
) \approx P0(λ) (1 – α (λ) L)

$$P_{\rm T}(\lambda) \approx P_{\rm 0}(\lambda) (1 - \alpha(\lambda)L)$$

This linear approximation makes many calculations much simpler.

So, what is the actual signal we are trying to measure? It's the amount of power that was absorbed by the sample. We can define this absorbed power difference, capital Δ P (λ) $\Delta P(\lambda)$, as the initial power minus the transmitted power.

$$\Delta$$
 P (λ) = P 0 (λ) - P T (λ)

$$\Delta P(\lambda) = P_0(\lambda) - P_{\mathrm{T}}(\lambda)$$

Using our weak-absorption approximation, this simplifies beautifully to:

$$\Delta$$
 P (λ) = P 0 (λ) α (λ) L

$$\Delta P(\lambda) = P_0(\lambda) \, \alpha(\lambda) \, L$$

This is the signal we want to detect. It's directly proportional to the incident power, the absorption coefficient we're trying to find, and the path length of our cell.

Page 10:

Sensitivity and Resolution Limits in this classical method. How well can we actually measure that small change in power, \triangle P \triangle P? First, we need a reliable way to measure the incident power, P O P_0 , to compare against the transmitted power, P T P_T . The standard reference technique is to perform two separate measurements. First, you measure the power with the sample cell in the beam path. Then, you physically remove the cell and measure the power again. Or you might use an identical "dummy" cell with no sample in it. This gives you a reference power, P R P_R , which, ideally, is equal to P O P_0 . This is a slow and cumbersome process, and it's susceptible to drifts in the light source power that might occur between the two measurements.

at the practical heart of the

the

The measured signal from our electronics, which we can call S (λ) $S(\lambda)$, will then be proportional to the difference between the reference and transmitted powers. We can write this as:

S (
$$\lambda$$
) = a [b P R (λ) - P T (λ)].

arrive

$$S(\lambda) = a[b P_{R}(\lambda) - P_{T}(\lambda)].$$

Here, 'a' and 'b' are just instrumental calibration constants that account for things like detector sensitivity and amplifier gains. The essential physics is in the difference between the reference power and the transmitted power.

The second critical limitation is resolution. As we discussed, the spectrometer cannot distinguish wavelengths with infinite precision. The **spectral interval** that the instrument passes to the detector, which we can call d λ d λ or, equivalently in angular frequency, d ω d ω , defines the instrumental resolution. We will denote this resolution as Δ ω s p e c $\Delta\omega_{\rm spec}$. This finite resolution will have a profound impact on the signal size, as we are about to derive.

<u>Page 11:</u>

Let's put some concrete numbers on these limitations.

Consider a typical high-quality laboratory instrument: a 1-meter focal length grating spectrograph. The resolving power, capital R R, which is λ / Δ λ $\lambda/\Delta\lambda$, for such an instrument is typically around 5×10 4 5×10^4 . This might sound like a large number, but what does it mean in practice? It means that at a wavelength of 500 nanometers, the smallest spectral interval it can resolve, capital Δ λ $\Delta\lambda$, is about 0.01 nanometers. We will see shortly that in the world of spectroscopy, this is actually quite a broad window.

Now for the second limitation: the practical noise floor. Even if we had a perfect signal, our measurement is limited by noise. The two main culprits in the classical setup are detector noise and, often more significantly, source flicker—random fluctuations in the lamp's output power. This noise sets a limit on the smallest relative absorption we can reliably detect. The minimum detectable change in power, Δ P ΔP , divided by the incident power, P 0 P_0 , is typically on the order of 10-4 10^{-4} to 10-5 10^{-5} . That is, we can hope to see a change of about one part in ten thousand, or at best one part in a hundred thousand.

The conclusion from all this is inescapable. The minimum measurable absorption coefficient, α min α_{\min} , is directly linked to these two factors: the instrument's resolution, which determines how much power P O P_0 actually reaches the detector for a given spectral line, and the noise floor, which determines the minimum Δ P ΔP we can see. We are fighting a battle on two fronts.

<u>Page 12:</u>

Now, let's change the game completely. We've seen the bottlenecks of the classical method: a weak, broadband, incoherent, and flickering source that requires an inefficient monochromator. So, let's Enter Tunable Lasers and see how they solve every single one of these problems. Let's look at their fundamental properties.

First, and most dramatically, is the **laser output**. Lasers provide extremely high spectral power density. The power per unit wavelength from a laser can be many, many orders of magnitude greater than the power per unit wavelength from a lamp. We write this as:

 $P \lambda 1aser \gg P \lambda 1amp$

$$P_{\lambda}^{\mathrm{laser}} \gg P_{\lambda}^{\mathrm{lamp}}$$

All of the laser's power is concentrated in an infinitesimally narrow spectral region. We are no longer throwing away 99.99% of our light.

Second, consider the linewidth possibilities. A standard multimode dye laser might have a linewidth, which we'll call Δ v L $\Delta \nu_L$, of about 1 Gigahertz. But a modern single-mode external-cavity diode laser can have a linewidth, Δ v L $\Delta \nu_L$, of less than 1 Megahertz! Let's keep these numbers in mind. We'll soon compare them to the 0.01 nanometer resolution of the classical spectrometer, which we calculated was equivalent to about 12 Gigahertz. The laser is thousands to millions of times sharper.

Third, frequency agility. Lasers can be tuned. We can change their emission frequency, either continuously or in rapid steps. This is typically done using intracavity elements like etalons or by using electro-optic modulators. This completely eliminates the need for

a slow, mechanical monochromator. The laser *is* its own ultra-high-resolution monochromator.

Page 13:

The advantages continue. Let's look at the spatial and intensity characteristics of a laser beam.

A crucial property is the **spatial mode**. A laser typically emits a beam in a single, fundamental transverse mode, often a Gaussian T E M 00 TEM_{00} mode. This means the beam is **diffraction-limited**. Its divergence, the angle θ at which it spreads out, is as small as physically possible, given by the relation:

$$\theta \approx \lambda \pi w 0$$

$$\theta \approx \frac{\lambda}{\pi w_0}$$

where w 0 w_0 is the radius of the beam at its narrowest point, the beam waist. Because this divergence is so small, a laser beam can travel over many meters with very little change in its size. This is what enables the use of very long path lengths, something that is impossible with a lamp.

Next, what about the flicker noise that plagued our classical source? Lasers have their own intensity fluctuations, but we have a powerful tool to combat them: intensity stabilization. We can

use an active feedback loop to measure the laser's power and feed a correction signal back to the laser's power supply or to an external modulator. Using this, we can reduce the relative power fluctuations, which we'll write as δ PP $\frac{\delta P}{P}$, to be less than 10 - 4 10⁻⁴, and often much, much better. We can directly attack and suppress the dominant noise source of the classical method.

<u>Page 14:</u>

Let's now make a Direct Comparison of the Experimental Layouts to synthesize these ideas.

The first major point of departure: the broadband case, as we saw, absolutely requires a dispersive element like a monochromator to select a wavelength *after* the sample. In stark contrast, the laser case measures the transmitted power, PT $_T$, directly. Because the laser is already monochromatic, we measure the power at a single angular frequency, ω ω . This means there is **no monochromator** needed at all. The most complex and inefficient component of the classical setup is simply gone.

Now, let's look at what the new laser configuration, which we'll see in the next diagram, adds to the setup. It's not about making things more complicated, but about making them more powerful.

- 1. We add a beamsplitter. This simple piece of optics allows us to peel off a small fraction of the laser beam before it enters the sample. We send this to a separate detector to create a real-time reference signal, $P R P_R$. This allows us to normalize our absorption signal against any residual laser power fluctuations on the fly, a vastly superior method to the classical technique of physically removing the sample cell.
- 2. We add an optional, low-finesse Fabry-Perot Interferometer, or FPI. As we'll discuss in detail later, this acts as an incredibly precise "frequency ruler," providing a stream of frequency markers as we tune the laser.

Page 15:

Continuing with the laser setup, there's another powerful addition:

3. We can use a **multiple-pass cell**. Taking advantage of the laser's beautifully low divergence, we can use a set of mirrors to fold the beam back and forth through the sample many times. This allows us to achieve an extremely long **extended effective path** length, which we'll call L e f f $L_{\rm eff}$, all within a compact and manageable volume.

This leads to a complete paradigm shift in what defines our experiment's resolution. The spectral resolution is now limited by the absorber's own intrinsic linewidth, which we'll call δ ω $\delta \omega$, or by the laser's linewidth itself. It is no longer limited by a bulky, expensive spectrometer.

The consequence is profound. We can now easily meet or even beat the Doppler limit, that is, our instrumental resolution can be made smaller than the Doppler width of the transition, Δ ω D $\Delta\omega_{\rm D}$. Achieving this with a classical setup would require an enormous, multi-meter-long spectrograph that would be prohibitively expensive and deliver vanishingly small amounts of light. With a laser, it's routine.

Page 16:

This slide gives us the perfect visual summary. Let's compare the two block diagrams side-by-side.

On the top, in panel (a), we have **Broadband Absorption**. Let's follow the flow once more. A Broadband Source sends light with power P O (λ) $P_0(\lambda)$ through a Sample Cell of length L L. The transmitted light, P T (λ) $P_T(\lambda)$, which is still broadband, enters a Monochromator. The monochromator selects one wavelength and sends it to a Detector or a detector array. The setup is

defined by its need to disperse the light after interaction with the sample.

Now, look at the bottom panel, (b), showing Laser Absorption. The elegance and power of this approach should be immediately apparent.

We start with a **Tunable Laser**. Its monochromatic beam, with power $P 0 P_0$, immediately hits a **Beamsplitter**. Most of the light continues straight ahead, into the **Multiple-Pass Cell**, which achieves a long effective path length, L e f f $L_{\rm eff}$. The transmitted light, $P T P_{\rm T}$, goes directly to our primary detector, D D. Notice what's missing: no monochromator.

Meanwhile, the beamsplitter has directed small portions of the beam along two other paths. One path goes to a **Reference Detector**, which continuously monitors the incident laser power, $P R P_R$. The other path goes to a **Fabry-Perot** interferometer and its detector, which provides our frequency markers.

Every single component in the laser setup is there to add power, precision, and new capabilities.

<u>Page 17:</u>

Now that we have the qualitative picture, let's get quantitative. We're going to perform a **Step-by-Step Derivation** to prove the

relationship between **Signal Strength and Resolution**. This is one of the most important concepts in this chapter.

First, let's set up the model. We consider an absorption line that is centered at an angular frequency of ω 0 ω_0 and has a natural, homogeneous profile with a width of lowercase δ ω $\delta\omega$. This δ ω $\delta\omega$ could be the lifetime-limited width or, in a more realistic scenario, the Doppler width.

Second, we are going to probe this line by scanning our light source across it. The source itself has a certain instrumental bandwidth, which we will call **capital** Δ ω $\Delta\omega$. In the classical case, Δ ω $\Delta\omega$ is the resolution of our spectrometer. In the laser case, Δ ω $\Delta\omega$ is the linewidth of the laser.

Finally, let's consider the **relative attenuation** of the light, which is Δ P / P Δ P/P, as it travels through an infinitesimally small path length, **capital** Δ **x** Δ x, of the sample.

Page 18:

The expression for this relative attenuation, Δ P / P $\Delta P/P$, is given by the following integral form. This equation looks a bit intimidating at first, but it's quite logical. It is:

 $\Delta P P = \Delta x \times \int \omega 0 - 12 \Delta \omega \omega 0 + 12 \Delta \omega \alpha (\omega) P$ $(\omega) d \omega \int \omega 0 - 12 \Delta \omega \omega 0 + 12 \Delta \omega P (\omega) d \omega.$

$$\frac{\Delta P}{P} = \Delta x \times \frac{\int_{\omega_0 - 1/2\Delta\omega}^{\omega_0 + 1/2\Delta\omega} \alpha(\omega) P(\omega) d\omega}{\int_{\omega_0 - 1/2\Delta\omega}^{\omega_0 + 1/2\Delta\omega} P(\omega) d\omega}.$$

Let's dissect this. The numerator is the $\int \omega 0 - 12 \Delta \omega \omega 0$ + $12 \Delta \omega \alpha (\omega) P(\omega) d\omega$. This numerator represents the total power that is absorbed by the sample, integrated over the entire spectral window, $\Delta \omega \Delta \omega$, that our instrument can see.

The denominator is the $\int \omega 0 - 12\Delta \omega \omega 0 + 12\Delta \omega P$ (ω) d $\omega \int_{\omega_0-1/2\Delta\omega}^{\omega_0+1/2\Delta\omega} P(\omega) d\omega$. This denominator represents the total incident power from the source that falls within our instrument's detection window. So, the whole expression is simply the fraction of power that gets absorbed within that window.

Now, to make progress, we make a simple and very reasonable assumption. We assume that the source spectrum, $P(\omega)$ $P(\omega)$, is essentially flat or constant inside our detection window, $\Delta \omega \Delta \omega$. We can approximate $P(\omega)$ $P(\omega)$ by a constant value, P^{-} \bar{P} .

With this assumption, our expression simplifies dramatically. The P \bar{P} in the numerator can be pulled out of the integral. So the numerator becomes P \bar{P} × $\int \alpha$ (ω) d ω \bar{P} × $\int \alpha$ (ω) d ω . The P \bar{P} in the denominator can also be pulled out, and the integral of

d ω $d\omega$ over a range of Δ ω $\Delta\omega$ is just Δ ω $\Delta\omega$. So the denominator becomes $P^- \times \Delta$ ω $\bar{P} \times \Delta\omega$.

The P \bar{P} terms cancel, and we are left with a much more transparent result:

$$\Delta P P = \Delta \times \Delta \omega \times \int \alpha (\omega) d\omega$$
.

$$\frac{\Delta P}{P} = \frac{\Delta x}{\Delta \omega} \times \int \alpha(\omega) \, d\omega.$$

From this single equation, we can now understand everything by considering two limiting regimes.

Page 19:

Let's examine the two crucial limiting regimes that arise from the equation we just derived.

Case 1: The Low-Resolution Limit. This is the classical spectrometer case, where our instrumental bandwidth, $\Delta \omega \Delta \omega$, is much greater than the actual width of the absorption line, $\delta \omega \delta \omega$ ($\Delta \omega \gg \delta \omega \Delta \omega \gg \delta \omega$). Our detection window is wide, and the absorption feature is a narrow spike inside it.

In this case, what is the value of the integral of alpha of omega? Since the absorption feature is narrow, the integral is just the area under that narrow peak. We can approximate this area as the average absorption coefficient, which we'll call alpha-bar,

multiplied by the width of the line, delta omega. So, the integral is approximately α $\bar{\delta}$ ω $\bar{\alpha}$ $\delta\omega$.

Substituting this into our simplified equation from the last slide, we get:

$$\Delta$$
 PP \approx α $^ \Delta$ $_X$ δ ω Δ ω .

$$\frac{\Delta P}{P} \approx \bar{\alpha} \Delta x \frac{\delta \omega}{\Delta \omega}.$$

Look closely at that final ratio. Since $\Delta \omega \Delta \omega$ is much larger than $\delta \omega \delta \omega$, this ratio is a small number, much less than one. This means our measured signal, $\Delta P / P \Delta P / P$, is "washed out" or diluted. We only get a small fraction of the true peak absorption because it's averaged over the wide instrument bandwidth.

Case 2: The High-Resolution Limit. This is the tunable laser case, where our probe's linewidth, $\Delta \omega \Delta \omega$, is much, much less than the width of the absorption line, $\delta \omega \delta \omega$ ($\Delta \omega \ll \delta \omega \Delta \omega \ll \delta \omega$). Our probe is now a very sharp needle that we are scanning across a much broader feature.

In this limit, the value of alpha of omega is essentially constant across our tiny integration window, $\Delta \omega \Delta \omega$. So we can pull alpha of omega out of the integral, and the integral of d $\omega d\omega$

is just $\Delta \omega \Delta \omega$. Therefore, the integral is approximately α (ω) $\Delta \omega \alpha(\omega) \Delta \omega$.

Now, let's substitute this into our general equation.

$$\Delta$$
 PP \approx (α (ω) Δ ω) Δ x Δ ω .

$$\frac{\Delta P}{P} \approx (\alpha(\omega) \Delta \omega) \frac{\Delta x}{\Delta \omega}.$$

The Δ ω $\Delta\omega$ in the numerator and the denominator cancel out perfectly! We are left with the beautifully simple result:

$$\Delta$$
 PP \approx α (ω) Δ x.

$$\frac{\Delta P}{P} \approx \alpha(\omega) \Delta x$$
.

There is no dilution factor! The measured signal is directly proportional to the true value of the absorption coefficient at that frequency. This mathematical derivation provides the definitive proof of why high resolution leads to a much stronger signal.

Page 20:

Theory is great, but let's do a Numerical Illustration to see just how dramatic this difference is. We'll compare our grating spectrograph to a single-mode laser.

Let's establish the parameters for our hypothetical experiment. We're looking at a molecule that absorbs in the visible part of the spectrum, at a wavelength, λ λ , of 500 nanometers.

First, let's consider the classical instrument, our 1-meter grating spectrograph. We established earlier that its resolution, Δ λ $\Delta\lambda$, is about 0.01 nanometers.

Now, what is this in frequency units, which are more natural for spectroscopy? We can find the corresponding frequency span, Δ v $\Delta \nu$, using the relationship:

$$\Delta$$
 v \approx c λ 2 Δ λ .

$$\Delta \nu \approx \frac{c}{\lambda^2} \Delta \lambda.$$

where c c is the speed of light. Plugging in our numbers: c = 3 \times 10 8 m/s c = 3 \times 10⁸ m/s, λ = 500 \times 10 - 9 m λ = 500 \times 10⁻⁹ m, and Δ λ = 0.01 \times 10 - 9 m $\Delta\lambda$ = 0.01 \times 10⁻⁹ m. This calculation yields a frequency span of approximately 12 Gigahertz. This is our instrumental bandwidth, our Δ ω $\Delta\omega$ (or Δ v Δv).

Now, what is the width of the absorption line itself, our lowercase δ ω $\delta \omega$? For a gas at room temperature, this is typically dominated by Doppler broadening. Let's calculate the **Doppler width** for a typical molecule with a molecular mass, M M, of 30 atomic mass units, at a temperature, T T, of 300 Kelvin.

Page 21

The Doppler width, which we denote as lowercase delta nu sub D, is given by the following formula. This is the full-width at half-maximum, or FWHM, for a Gaussian lineshape. The equation is:

delta nu sub D is approximately equal to nu sub zero times the square root of the quantity (8 times k sub B times T times the natural log of 2) all divided by (M times c squared).

 δ v D \approx v 0 8 k B T 1n $[\![f_0]\!]$ 2 M c 2 .

$$\delta v_{\rm D} \approx v_0 \sqrt{\frac{8 k_{\rm B} T \ln 2}{M c^2}}.$$

Here, nu sub zero is the center frequency of the transition, k sub B is the Boltzmann constant, T is the absolute temperature, M is the mass of the molecule, and c is the speed of light.

For the parameters we set on the previous slide—500 nanometers, 300 Kelvin, and a mass of 30 amu—this calculation gives a Doppler width of approximately 1 Gigahertz. This is our lowercase delta nu.

Now for the final, crucial comparison.

For the classical instrument, the ratio of the instrument's bandwidth to the absorption line's width is capital Delta nu

divided by delta nu sub D, which is 12 Gigahertz divided by 1 Gigahertz. This ratio is 12. Recalling our derivation, this means that the measured signal, capital Delta P over P, is reduced by this same factor of 12 compared to the actual peak absorption.

Now, consider the **single-mode laser**. Its linewidth, capital Delta nu sub L, might be less than 1 Megahertz. This is far, far less than the 1 Gigahertz Doppler width. So for the laser, we are deep in the high-resolution regime, and the effective ratio of linewidths is essentially **one**.

This means that for the exact same sample cell of length L, the signal enhancement factor for the laser over the spectrograph is approximately 12.

The take-away message is crystal clear and incredibly important: higher spectral resolution directly converts to a proportionally larger measurable attenuation. You don't just see more detail; your signal gets stronger.

Page 22

Let's just pause for a moment to let that sink in.

By simply replacing a classical light source and a monochromator with a tunable laser, we have achieved a more than ten-fold increase in our signal strength. This comes purely from the

laser's superior spectral resolution. This is our first major advantage.

But the benefits don't stop there. Let's now consider the spatial properties of the laser beam.

Page 23:

This brings us to our second major advantage: the ability to achieve very Long Path Lengths via Multipass Cells.

As we discussed earlier, the divergence of a laser beam, the angle θ θ , is incredibly small. This means the beam can traverse distances of many meters with negligible growth in its waist size. You simply cannot do this with the light from a lamp.

This unique property allows us to use ingenious optical devices like a Herriott cell or a White cell. These cells use a pair of precisely curved mirrors to fold the laser beam back and forth through the sample gas many, many times. The result is that we can achieve a 10- to 100-fold, or even greater, increase in the effective path the light travels through the sample, all without needing a ten or one-hundred-meter-long tube! The entire apparatus can be quite compact.

As a practical aside, these cells are often constructed with Brewster-angle windows. These are windows tilted at a special

angle, Brewster's angle, which allows light of a specific polarization to pass through with virtually zero reflection loss. This is crucial, because even a small loss of 1 or 2 percent per window would become a very large total loss after a hundred passes.

So, what is the ultimate benefit of increasing the path length?

Page 24:

The benefit follows directly from Beer's Law. Remember that the total absorbance is the product of the absorption coefficient, α , and the path length, L L. This means that for a given minimum detectable signal, the minimum absorption coefficient we can see is inversely proportional to the path length. We can write this as:

 $\alpha \min \propto 1 Leff$

$$\alpha_{\min} \propto \frac{1}{L_{\text{eff}}}$$

To make this tangible, let's consider a numerical example. Suppose a standard, single-pass absorption experiment uses a cell that is 10 centimeters long, or 0.1 meters. Now, let's say we replace it with a multipass cell that gives us an effective path length, L e

f f $L_{\rm eff}$, of 10 meters. We have increased the interaction length by a factor of 100.

Consequently, this lowers the minimum detectable absorption coefficient, α min α_{min} , by that same factor of 100. We have just made our experiment one hundred times more sensitive. We can now detect species at one-hundredth the concentration, or measure transitions that are one hundred times weaker. This is another massive improvement, completely independent of the resolution advantage we already discussed.

Page 25: Multipass Cell for Long Path Length Spectroscopy

Here on this slide, we have a beautiful schematic of a Multipass Cell for Long Path Length Spectroscopy. This illustrates the concept of a Herriott cell.

Let's trace the beam path. We see two concave mirrors, labeled Mirror 1 (M1) on the left and Mirror 2 (M2) on the right.

The Laser Input beam enters the cell through a small hole, or aperture, drilled in the center of Mirror 1. The beam travels the length of the cell to Mirror 2, where it reflects. It then travels back to Mirror 1, but because of the mirrors' curvature, it

strikes a different point on the surface. It reflects again, travels back to M2, and so on.

The red lines show this intricate dance of the laser beam bouncing back and forth. You can see the circular or elliptical pattern of spots that the beam makes on the surface of each mirror. The geometry is carefully designed so that after a specific, large number of reflections, the beam hits the back of Mirror 1 at just the right angle to pass back out through the central aperture as the Laser Output.

The total **Effective Path Length**, as indicated at the bottom, is roughly the number of passes multiplied by the distance between the mirrors. This elegant optical arrangement is a direct consequence of the laser's low divergence and is a cornerstone of high-sensitivity absorption spectroscopy.

<u>Page 26:</u>

Let's now do a comprehensive Example - Quantifying the total alpha_min Improvement. We will combine all the advantages we've discussed: better resolution, longer path length, and lower noise.

First, let's consider the noise floor. By using an intensity-stabilized laser and a powerful signal processing technique called lock—in detection, we can dramatically reduce our noise. Lock—in

detection allows us to pull a tiny signal out from a noisy background by modulating our experiment at a specific frequency. With these combined techniques, the minimum detectable relative absorption, Δ P / P Δ P/P, can be pushed down to approximately $10-6\ 10^{-6}$, or one part per million. This is already a factor of 100 better than the classical flicker-noise limit.

Second, we must recall that we are operating in the high-resolution regime, where the laser's linewidth, Δ ω laser $\Delta\omega_{\rm laser}$, is much smaller than the absorption linewidth, δ ω $\delta\omega$. This ensures we get the maximum possible signal without any "wash-out" effect.

<u>Page 27:</u>

Now, let's try to assemble a formula for our minimum detectable alpha, $\,^\alpha$ min $\alpha_{min},\,$ and plug in some conservative numbers.

For the high-resolution laser case, we found that the relative absorption is simply Δ P / P = α L $\Delta P/P = \alpha L$. Therefore, the minimum detectable alpha should be:

 $\alpha \min = (\Delta P / P) \min Leff.$

$$\alpha_{\min} = \frac{(\Delta P/P)_{\min}}{L_{\text{eff}}}.$$

The slide presents a related formula:

α min = 1 L e f f · (Δ P P) · Δ ω l a s e r δ ω .

$$\alpha_{\min} = \frac{1}{L_{\text{eff}}} \cdot \left(\frac{\Delta P}{P}\right) \cdot \frac{\Delta \omega_{\text{laser}}}{\delta \omega}.$$

This formula explicitly includes the ratio of the laser linewidth to the absorption linewidth. This factor accounts for how much of the lineshape is being sampled. In our ideal high-resolution case, this ratio is small, and our signal is maximized at the peak of the absorption line. Let's use the slide's formula with some conservative numbers to get an order-of-magnitude estimate.

First, for our path length, let's use a L e f f $L_{
m eff}$ of 10 meters.

Second, for the linewidth ratio, Δ ω 1 as er / δ ω $\Delta\omega_{laser}$ / $\delta\omega$, let's take a conservative value of 0.1 0.1. This would correspond, for instance, to a 100 MHz laser linewidth probing a 1 GHz 1GHz Doppler-broadened line.

Now, let's put these numbers together to find our result.

<u>Page 28:</u>

Plugging these conservative numbers into the formula, we have:

 α min \approx 10 - 6 10 m \times 0.1

$$\alpha_{\min} \approx \frac{10^{-6}}{10 \text{ m}} \times 0.1$$

Now, we must be very careful with our units. An absorption coefficient is typically given in inverse centimeters. 10 meters is equal to 1000 centimeters. So, our calculation is:

 $\alpha \min \approx 10 - 6 \ 1000 \ c \ m \times 0.1.$

$$\alpha_{\min} \approx \frac{10^{-6}}{1000 \text{ cm}} \times 0.1.$$

This gives us $10 - 9 \times 0.1 \ 10^{-9} \times 0.1$, which equals $10 - 10 \ 10^{-10}$ inverse centimeters.

The slide shows a result of 10-8 10^{-8} inverse centimeters. This likely comes from a common shorthand where the 10-meter path length is treated as a dimensionless factor of 10 in the denominator. The exact exponent can vary depending on the specific assumptions, but the key point is the overall magnitude of the improvement.

Let's compare this to the conventional method. A typical classical experiment might achieve an α min α_{min} of roughly 10-5 10^{-5} inverse centimeters. Our laser-based method gives a result of 10-8 10^{-8} to 10-10 10^{-10} inverse centimeters.

This represents an improvement of a factor of 1000 to 100,000. The slide's summary of a "Factor 10 cubed better" is a conservative but certainly justified claim. This is a truly staggering improvement in sensitivity.

Page 29:

So far, we've focused on sensitivity and resolution. But lasers enable another crucial capability: precision frequency metrology. This brings us to the use of a Fabry-Perot Interferometer as a Frequency Ruler.

As we saw in our experimental layout, we can send a small portion of our tunable laser field into a Fabry-Perot interferometer, or FPI. An FPI, in its simplest form, consists of two highly reflective parallel mirrors separated by a fixed distance, d.

Due to interference effects, the FPI will only allow light to be transmitted through it if the wavelength fits the cavity resonance condition. This occurs at a series of discrete frequencies, given by the equation:

$$v m = m (c 2 d)$$

$$v_{\text{m}} = m \left(\frac{c}{2 d} \right)$$

Here, \mathbf{nu} sub \mathbf{m} are the transmission peak frequencies, \mathbf{c} is the speed of light, \mathbf{d} is the mirror spacing, and \mathbf{m} is an integer known as the mode number.

The spacing between these transmission peaks is a constant value known as the Free Spectral Range, or FSR. It's given by a very simple formula:

$$\Delta$$
 v p = c 2 d

$$\Delta v_{\rm p} = \frac{c}{2 d}$$

This FSR is a stable, precisely known frequency interval determined only by the physical construction of the interferometer. It is our ruler.

<u>Page 30:</u>

Let's look at a practical example. If we construct a Fabry-Perot interferometer with a mirror spacing, d d, of 1 m 1m, then the Free Spectral Range, Δ v p Δv_p , is approximately 150 M H z 150 MHz.

Here's how we use it. As we tune our laser's frequency to scan across a molecular absorption profile, we simultaneously record the transmission signal from the FPI on a separate detector. The result is that our absorption data is recorded alongside a beautiful, perfectly regular series of sharp peaks from the FPI. These peaks create absolute frequency markers across our entire spectrum.

The accuracy of this frequency ruler is exceptionally high. It is limited primarily by the thermal and mechanical stability of the FPI cavity, which can be made very robust.

We can easily know the relative spacing of these frequency markers to a precision of better than one part in 10 8 10⁸. This allows us to measure the shapes, widths, and positions of spectral lines with an accuracy that is completely unthinkable in classical spectroscopy.

Page 31:

This diagram provides a perfect visual illustration of the Fabry-Perot Interferometer as a Frequency Ruler.

Let's look at the plot. The horizontal axis represents the Laser Frequency, which we are tuning. The vertical axis is the measured signal intensity, in arbitrary units.

We see two signals being recorded simultaneously. The broad, bell-shaped blue curve is labeled **Absorption Signal**. This is the molecular transition we are trying to study. The series of sharp, narrow, repeating red peaks is the **FPI Transmission** signal.

The key feature is labeled Δ v p Δv_p (FSR). This indicates the constant frequency spacing—our Free Spectral Range—between each of the FPI transmission peaks.

By recording both traces at the same time, we have effectively superimposed a high-precision ruler onto our unknown spectrum. We can determine the width of our absorption line by simply counting how many FPI peaks fit within its half-maximum points. We can determine its center frequency with incredible precision. This is a simple but profoundly powerful technique.

Page 32: Laser Frequency
Stabilization & Absolute Line
Metrology

We can take the idea of using an FPI one step further, from passive measurement to active control. This leads us to Laser Frequency Stabilization & Absolute Line Metrology.

There are a number of powerful error-signal techniques—the most famous being the Pound-Drever-Hall technique, as well as simpler frequency modulation schemes—that allow us to lock the laser's frequency directly to a reference. We can, for example, lock the laser to the side of one of those FPI transmission peaks, or even better, directly to the center of a narrow atomic or molecular absorption line. These techniques generate a signal that is zero when the laser is perfectly on frequency and provides a positive

or negative correction signal if it drifts. This signal is fed back to the laser, keeping it actively locked to the reference.

The achievable stability is astounding. We can achieve a relative frequency stability, capital Δ v / v $\Delta v/v$, of less than or equal to $10-10~10^{-10}$ over measurement times of seconds.

When this extreme stability is combined with the interferometer calibration we just discussed, it allows for true absolute metrology. We can determine the absolute frequencies of molecular transitions with incredible precision. The slide indicates a relative uncertainty, lowercase δ λ / λ $\delta\lambda/\lambda$, of less than or equal to 10-8 10^{-8} . This opens the door to some of the most sensitive tests of fundamental physics.

<u>Page 33:</u>

So, why would we want to measure a frequency to one part in a hundred million or even better? What does this capability enable? It allows for **precision tests** of some of our most fundamental theories of nature.

For example, we can perform extremely sensitive tests of **Quantum-electrodynamics**, or QED. We can measure tiny energy level shifts, like the Lamb shift in hydrogen, and compare the results with the

fantastically precise calculations of QED. This is how we test our best theory of light and matter.

We also perform searches for a possible variation fundamental Ts the fine-structure constant constants. constant over cosmological time? By measuring the frequencies of and transitions today comparing specific atomic astronomical observations of the same transitions in distant quasars, we can place incredibly tight limits on any possible change in these constants.

And on a more practical level, we can precisely measure things like pressure-shift coefficients for atmospheric sensing. The exact frequency of a molecule's absorption line shifts slightly depending on the pressure and composition of the surrounding air. By measuring these shifts with laser precision in the lab, we can then use this information to perform highly accurate remote sensing of pollutants or greenhouse gases in the atmosphere.

Page 34:

Let's shift gears now to another unique advantage of lasers: speed. This brings us to Rapidly Tunable Lasers for Transient Species.

Some lasers, particularly dye lasers, can be tuned over a significant frequency range at incredible speeds. This is often accomplished using an **electro-optic tuning** element inside the laser cavity, like a Pockels cell or a lithium niobate crystal, whose refractive index can be changed rapidly with an applied voltage.

The performance specifications are impressive. We can achieve a scan range of approximately 5 c m - 1 5 cm⁻¹, or wavenumbers, which is a very useful range for observing a single molecular feature. And we can perform this scan in a sweep time of less than 1 μ s 1 μ s.

Why is this so important? It allows us to perform spectroscopy on things that don't last very long. We can now probe short-lived radicals—highly reactive molecular fragments—that may only exist for a few n s ns or μ s μ s. These transient species are critical intermediates in chemical reactions, such as those that photolysis experiments in flash or in the occur complex environment of combustion. Before rapidly tunable lasers, getting high-resolution spectra of these fleeting species was simply impossible.

Page 35:

So how does the data acquisition for such a fast experiment work?

It requires perfect timing. We use a synchronized digitizer—a very fast oscilloscope—that is triggered by the same event that creates the transient species. For example, in a flash photolysis experiment, a short, intense pulse of UV light breaks apart a precursor molecule, creating the radicals. This same event triggers our fast digitizer.

Simultaneously, our rapidly swept laser beam passes through the sample, and the transmitted light is monitored by a fast photodetector. The digitizer then captures the entire absorption trace—the full spectrum—within that single, sub-microsecond sweep. We get a high-resolution snapshot of the species that were present during that one fleeting moment.

This technique dramatically extends the classical flash-photolysis method. The classical method used a broadband "white-light" flash as the probe, resulting in a low-resolution spectrum. The laser-based method provides spectra of UV or visible absorption lines with sub-Gigahertz resolution, allowing for detailed identification and characterization of these crucial reaction intermediates.

Page 36:

Let's now turn to yet another profound advantage: Selective Excitation & Optical Pumping.

This benefit arises from the laser's exquisitely narrow linewidth. In a molecule, the energy levels are grouped into electronic, vibrational, and rotational states. The spacing between rotational lines is typically on the order of several to tens of Gigahertz. laser linewidth is the much, much less than rotational separation, we can tune our laser to be resonant with specific rotational-vibrational-or and only one, rovibronic—line. We can pick out a single quantum state to interact with, out of the millions that might be populated. This level of selectivity is impossible with a broadband source.

The consequence of this, combined with the laser's high intensity, is that we can achieve a significant achievable excited-state population fraction. We can literally pump a large fraction of the molecules that are in a specific ground state up to a specific excited state.

The steady-state population fraction in the excited state 'k', which we denote ρ k ρ_k , can be approximated by the following expression:

 $\boldsymbol{\rho}$ k $\boldsymbol{\rho}_k$ is approximately equal to the ratio of the pumping rate to the total decay rate.

 $ρ k \approx B i k I \hbar ω A k i + Γ c o 1 1$

$$\rho_{\rm k} \approx \frac{\frac{B_{ik} I}{\hbar \, \omega}}{A_{ki} + \Gamma_{\rm coll}}$$

The numerator is B i k I \hbar ω $\frac{B_{ik}I}{\hbar\omega}$. This is the stimulated absorption rate. The denominator is A k i + Γ c o 1 1 A_{ki} + Γ_{coll} . This is the total relaxation rate of the excited state.

The key term in the numerator is B i k B_{ik} , which is the **Einstein** B coefficient for stimulated absorption. Let's break down these terms.

<u>Page 37:</u>

Let's continue deconstructing that equation for the excited-state population.

- I I is the laser intensity, in Watts per square meter. - A k i A_{ki} is the Einstein A coefficient, which describes the rate of spontaneous emission from the excited state 'k' back down to the initial state 'i'. - Γ c o 1 1 Γ_{coll} is the collisional quench rate. This represents how often the excited molecule collides with another molecule and loses its energy non-radiatively.

Now, here is the crucial insight. Because we can focus a laser beam to a very small spot, the intensity, \mathbf{I} I, can be made

extremely high. This means the pumping rate in the numerator can be made very large. It can be made so large that it becomes comparable to, or even much larger than, the total decay rate in the denominator.

When this happens, the excited-state population fraction, ρ k ρ_k , can become a significant number, comparable to the ground-state occupancy. We can effectively move half of the molecules in the selected ground state up into the selected excited state.

This has two major consequences. 1. Fluorescence spectroscopy of excited levels. If we create a large population in an excited state, those molecules will decay, and many will do so by emitting a photon—they fluoresce. We can collect this fluorescent light. Often, detecting a photon appearing out of a dark background is much more sensitive than detecting the small dip in a large transmitted power that we measure in absorption. This is the basis of Laser-Induced Fluorescence, or L-I-F, a workhorse technique in chemical physics.

<u>Page 38:</u>

The second major consequence of being able to pump so many molecules into a single excited state is the creation of laser-induced population inversions.

A population inversion is a condition, fundamental to the operation of lasers themselves, where a higher energy state has a larger population than a lower energy state. By using a laser to selectively excite molecules *out* of a specific ground state level, we can deplete that level's population. At the same time, we are populating a specific excited state. This process is known as optical pumping.

This allows for very powerful experimental schemes. For example, we can create a population inversion between two closely spaced hyperfine levels within a ground state. We can then probe this inverted population using microwaves. This forms the basis of techniques like optical-microwave double-resonance spectroscopy, which allows for ultra-high-resolution studies of molecular structure that would otherwise be completely inaccessible.

Page 39: Ultrafast Time-Resolved

Spectroscopy

Now we move to the final frontier of laser spectroscopy: the time domain. Let's discuss Ultrafast Time-Resolved Spectroscopy.

This field is made possible by a special type of laser called a mode-locked laser. Systems like Titanium:sapphire or mode-locked fiber lasers are capable of producing incredibly short pulses of

light. These pulses can be $\leq 100 \leq 100$ femtoseconds in duration. A femtosecond is 10-15 10^{-15} seconds. This is the timescale of molecular vibrations and chemical bond breaking.

The workhorse experimental technique in this field is the pumpprobe scheme. It works as follows:

1. First, a powerful but ultrashort pump pulse arrives at the sample and excites the system. It creates an initial non-equilibrium state, for example, by promoting molecules to an excited electronic state. 2. Second, a weaker, time-delayed probe pulse arrives at a precisely controlled time t t after the pump. This probe pulse monitors the state of the system by measuring the change in absorption, which we'll call Δ A (t) Δ A(t).

By varying the time delay between the pump and probe pulses, we can map out the entire evolution of the system from the moment of excitation. We are essentially creating a molecular movie.

Page 40:

A crucial question in these pump-probe experiments is: what sets It's not resolution? the the time speed of our The temporal resolution electronics. is set by the crosscorrelation of the pump and probe pulses themselves.

Mathematically, the time resolution, capital Delta t sub res, is approximately the square root of the sum of the squares of the pulse durations:

 Δ tres \approx (Δ tpump)2 + (Δ tprobe)2

$$\Delta t_{\rm res} \approx \sqrt{\left(\Delta t_{\rm pump}\right)^2 + \left(\Delta t_{\rm probe}\right)^2}$$

This means if we use 100-femtosecond pulses, our time resolution is on the order of 100 femtoseconds. With modern lasers, sub-100 femtosecond resolution is readily achievable.

The **applications** of this capability are vast and have revolutionized chemistry and condensed matter physics. We can directly observe:

* Vibrational relaxation: how energy flows through a molecule after it's been "plucked" by the pump pulse. * Fourth-order photochemical intermediates: we can watch the sequence of steps as chemical bonds break and new ones form during a reaction. * Carrier dynamics in semiconductors: we can track how electrons and holes are created, how they move, and how they recombine in semiconductor materials, which is fundamental to the operation of all modern electronics and solar cells.

Page 41:

We've spent a lot of time talking about signals. But in any real experiment, the limit to sensitivity is noise. So, let's create a Detailed Inventory of Noise Sources.

First, there is **source intensity noise**, which we denote as lowercase δ P δP . This includes **flicker noise**, which has a 1 / f 1/f frequency spectrum and is dominant at low frequencies, as well as things like **relaxation oscillations**, which are specific periodic fluctuations that can occur in some types of lasers.

Second, there is detector noise. This category includes:

* Johnson noise, also known as thermal noise. This is the random voltage generated by the thermal motion of electrons the of detector resistive component or amplifier. Ιt is independent of the optical power hitting the detector. Shot noise. This is a fundamental quantum noise that arises from the fact that light is composed of discrete photons. The arrival of photons at the detector is a random Poisson process. The resulting noise current is proportional to the square root of the signal current. The formula is $2 \ e \ I \ d \ \Delta \ f \ \sqrt{2 \ e \ I_{\rm d}} \ \Delta f$, where $e \ e$ is the electron charge, I d $I_{
m d}$ is the detector photocurrent, and Δ f Δf is the detection bandwidth. Because the signal goes as P P and the shot noise goes as the square root of PP, the relative* shot noise decreases for higher optical power, P.

Other important noise sources include:

* Beam pointing jitter. If the laser beam physically wanders or wiggles, it can move partially on and off the detector's active area, causing the measured power to fluctuate. This is a very common technical noise source. * Laser frequency jitter. If our laser linewidth, Δ v L $\Delta \nu_{\rm L}$, is very narrow and we are sitting on the steep side of an absorption feature, δ v a b s $\delta \nu_{\rm abs}$, then any small jitter in the laser's frequency will be converted directly into a large fluctuation in the transmitted amplitude.

<u>Page 42:</u>

Finally, one more noise source to consider, which comes not from our instrumentation but from the sample itself.

This is **sample density fluctuations.** The number of absorbing molecules within the volume probed by the laser beam can fluctuate randomly.

This can be caused by localized **temperature** gradients that change the gas density, or by acoustic **pressure waves** traveling through the sample.

If the number of absorbers changes, the measured absorption will change, creating noise in our signal.

Page 43:

Now that we have inventoried the enemy, let's discuss our arsenal. Here are the primary Laser-Based Noise Mitigation Techniques.

For source intensity noise, the solution is a power stabilization loop. We use a photodiode to monitor a fraction of the laser power, P P. A Proportional-Integral-Derivative, or PID, controller compares this signal to a stable voltage reference and generates an error signal. This error signal is then used to modulate an Acousto-Optic Modulator (AOM) placed in the beam path, which adjusts the transmitted power to hold it constant. With this feedback, we can achieve a relative stability, Δ P / P Δ P/P, of less than 10-4 10^{-4} .

For detector noise, the key is to use the laser's high power. The shot-noise limit is reached when the high optical power, P P, makes the detector's photocurrent so large that the associated shot noise completely swamps out the fixed-level Johnson noise. Being shot-noise-limited is often the goal in a precision experiment, as it means you have reached the fundamental quantum limit for that optical power.

For beam pointing jitter, the solution is a combination of good optics. We use spatial filtering—passing the beam through a small

pinhole—to clean up the laser's spatial mode and make it more stable. We also use a large-area detector. If the detector is much larger than the beam, then small wiggles of the beam won't cause it to move off the active surface, thus reducing the noise.

Page 44: Let's continue with our noise mitigation strategies.

To combat laser frequency jitter, which we denoted as lowercase δ v $\delta \nu$, the solution is to actively stabilize the frequency. We use a frequency lock to an external, stable reference. This reference could be a high-finesse external optical cavity, or for the ultimate stability, it could be a narrow, Doppler-free transition in a reference gas cell. As we discussed, this effectively eliminates δ v $\delta \nu$ as a significant source of noise.

And finally, to minimize sample density variations, the solution lies in careful experimental design. We can use a steady gas flow through the sample cell to average out any local temperature or pressure pockets. We can also use meticulous thermal shielding and temperature control of the cell to ensure the density of the absorbers remains as constant as possible.

As you can see, for every source of noise, there is a clever laser-based technique to suppress it.

Page 45:

We've covered a lot of ground. Let's now consolidate everything we've learned into a clear summary of the Consolidated Advantages of Tunable Lasers.

First, spectrometer-free operation. This is a massive simplification of the experimental setup. The resolution is no longer set by a bulky, inefficient instrument, but by the fundamental properties of the absorber itself. This allows for routine Doppler-limited, or even sub-Doppler, resolution.

Second, this leads to orders-of-magnitude improvements in the minimum detectable absorption coefficient, α min α_{\min} . We saw this arise from a combination of higher resolution, lower noise, and longer path lengths.

Third, lasers enable precise frequency calibration. By using a Fabry-Perot interferometer or, in modern state-of-the-art experiments, an optical frequency comb, we can create an ultraprecise frequency ruler across our spectrum, enabling true metrology.

<u>Page 46:</u>

Continuing our summary of advantages:

Fourth, lasers provide the capacity for long path lengths and low pressures. The low divergence of a laser beam is what makes multipass cells possible, dramatically increasing sensitivity. And because we have such high sensitivity, we can afford to run our experiments at very low sample pressures. This has the added benefit of reducing pressure broadening, which is the collisional broadening of spectral lines, leading to even sharper and more resolved spectra.

And fifth, lasers open up the time-domain. The ability to generate ultrashort or rapidly swept pulses allows for the study of ultrafast and transient phenomena. These experiments, which probe the fundamental timescales of chemistry and physics, are completely impossible with classical, incoherent light sources.

These five points encapsulate the revolution that lasers brought to the field of spectroscopy.

Page 47:

To help you with your studies, this slide and the next few provide a **Key Equations Summary & Symbol Reference**. Let's quickly review the most important mathematical relationships we've established.

First, the fundamental equation for **transmitted power**, the Beer-Lambert Law:

P T (
$$\lambda$$
) = P O (λ) exp $[fo]$ (- N i σ i k (λ) L)

$$P_{\mathrm{T}}(\lambda) = P_{\mathrm{0}}(\lambda) \exp(-N_{\mathrm{i}} \sigma_{ik}(\lambda) L)$$

This describes the exponential attenuation of light passing through a uniform sample.

Second, a useful expression for the minimum detectable absorption coefficient, α min α_{min} , relates it to the detector's Noise Equivalent Power, or NEP:

 α min = N E P a P O L

$$\alpha_{\min} = \frac{\text{NEP}}{aP_0 L}$$

Here, 'a a' represents the detector's responsivity. This equation tells us that to see a weak absorption, we need a low-noise detector (small NEP) and as much incident power, P 0 P_0 , and path length, L L, as possible.

Third, the crucial relationship between **relative attenuation and resolution**. We found this has two distinct limits, which we will see on the next slide.

<u>Page 48:</u>

Here are the two limiting cases for the relative attenuation, Δ P / P $\Delta P/P$, for an infinitesimal path length, Δ x Δx . This is a

very important result to remember. The behavior is described by this piecewise function:

Next, the Fabry-Perot FSR, our frequency ruler:

$$\Delta$$
 v p = c 2 d

$$\Delta v_p = \frac{c}{2 d}$$

And finally, the formula for the Doppler width, the full-width at half-maximum for a Gaussian line shape, which is often the limiting resolution in our experiments:

$$\delta$$
 v D = v 0 8 k B T ln $[f_0]$ 2 M c 2

$$\delta \nu_D = \nu_0 \sqrt{\frac{8 k_B T \ln 2}{M c^2}}$$

<u>Page 49:</u>

The next few pages provide a consolidated table of all the symbols we've used. This is for your reference, so you can always look up

a symbol if you forget its meaning. I'll briefly go over the categories.

On this page, we have the symbols for Frequency & Wavelength.

- We use v ν for optical frequency in Hertz, and ω ω for angular frequency in radians per second. The subscripts L L and 0 0 denote laser and line center, respectively. - We use capital Δ Δ for instrumental widths or resolutions, like Δ v $\Delta\nu$ or Δ ω $\Delta\omega$, and lowercase δ δ for intrinsic widths, like the absorption width δ v abs $\delta\nu_{\rm abs}$ or the Doppler width δ v D $\delta\nu_{D}$. - λ λ is wavelength, δ λ $\delta\lambda$ is a wavelength uncertainty, and capital Δ v p $\Delta\nu_{D}$ is our Fabry-Perot Free Spectral Range.

Page 50: This Page summarizes the symbols related to Power & Intensity

* Capital P P denotes optical power in Watts, with subscripts 0 and T for initial and transmitted power. * Lowercase δ P δ P represents optical power noise or fluctuations. * Capital I I is laser intensity, which is power per unit area, in Watts per square meter. * I d $I_{\rm d}$ is the detector photocurrent, measured in Amperes.

* And N E P NEP is the Noise Equivalent Power, a key figure of merit for a detector, with units of Watts per root Hertz.

Page 51: Here we have the symbols for the Properties of Matter & the System

* lowercase a (or alpha in my speech) is the absorption coefficient, in inverse meters. * sigma sub ik is the absorption cross-section, in square meters. * N sub i is the number density of absorbers in state i, in inverse cubic meters. * rho sub k is the dimensionless population fraction in the excited state k. * A sub ki and B sub ik are the crucial Einstein A and B coefficients, which govern spontaneous emission and stimulated absorption/emission. * Gamma sub coll is the collisional quench rate in inverse seconds. * And finally, capital M for the mass of the particle and capital T for the absolute temperature.

Page 52

Finally, this table lists **Time & Experimental Parameters** and **Fundamental Constants**.

- Under experimental parameters, we have time t t, path length L L, FPI mirror separation d d, and so on. - And under fundamental constants, we have the key players that appear throughout physics: c c for the speed of light, \hbar \hbar for the reduced Planck constant, k B k_B for the Boltzmann constant, and e e for the elementary charge.

I strongly recommend you become fluent with all of these symbols and their meanings.

Page 53

This brings us to our closing thoughts for this chapter, and a Transition to Sub-Doppler Techniques.

Through our detailed comparison and analysis, we now possess a comprehensive toolkit for understanding and performing Doppler-limited measurements using lasers. We understand the sources of signal, the sources of noise, and the powerful techniques we can use to maximize our sensitivity and precision.

However, as the title of this section implies, we are still bound by a fundamental limitation. All the improvements we've discussed so far ultimately run into a wall: the **thermal motion of the absorbers** themselves. This is the source of **Doppler broadening**, and it remains the primary obstacle to achieving the ultimate spectral resolution.

Page 54:

So, what is the **next step**? Our next major topic will be to explore a collection of brilliant and ingenious **sub-Doppler strategies** that have been developed to remove that final limitation entirely. We will delve into techniques like **saturation spectroscopy**, **two-photon absorption**, and the **Lamb dip**. These methods cleverly use the properties of the laser itself to select and probe only those atoms or molecules that are not moving along the beam axis, thus eliminating the Doppler effect.

As we move into these more advanced topics, I urge you to keep the foundational equations from this chapter handy. The principles of Beer's Law, the concepts of signal versus noise, and our entire sensitivity analysis will continue to be the bedrock upon which we build our understanding of all the forthcoming methods.

Thank you for your attention. I'll see you at the next lecture.