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Alright everyone, welcome back to Physics 608, Laser Spectroscopy. 

Today, we embark on a fascinating and fundamentally important topic: 

Chapter 5, Section 6, which deals with the Linewidths of Single-Mode 

Lasers. This material has been prepared by Distinguished Professor 

Doctor M A Gondal. 

Understanding laser linewidth is not just an academic exercise; it's 

absolutely crucial for anyone working at the forefront of laser applications, 

especially in spectroscopy, metrology, and quantum technologies. We often 

think of lasers as sources of perfectly monochromatic light, but as we'll see, 

reality is more nuanced. We're going to delve into what determines the 

ultimate sharpness of a laser's emission, the fundamental limits imposed by 

quantum mechanics, and how these limits compare to what we can achieve 

in the lab. So, let's begin. 
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Let's start with the core motivation: Why Does a Laser Have a Linewidth 

at All? It’s a very pertinent question. After all, the idealized picture of a 

laser is a source of perfectly single-frequency light. 

The first bullet point sets the stage: 

Every real laser emits a spectrum with non-zero width, called the 

linewidth, denoted as capital Delta nu sub L (𝛥𝜈L). 

This might seem counterintuitive at first. If a laser operates on a single 

mode of an optical resonator, shouldn't that mode correspond to an 

infinitesimally sharp frequency? Well, as we'll explore, there are inherent 

processes, even in an ideal single-mode laser, that cause the phase of the 

emitted light to fluctuate randomly over time. This phase fluctuation is what 

ultimately leads to a broadening of the spectral line, giving it a finite width, 

𝛥𝜈L. This 𝛥𝜈L is typically defined as the Full Width at Half Maximum, or 

FWHM, of the laser's power spectrum. 



Now, why should we care about making this 𝛥𝜈L as small as possible? The 

second bullet point highlights this: 

Ultranuarrow linewidths are essential for a variety of cutting-edge 

applications. 

Let's look at some examples: 

1. High-resolution spectroscopy. This is, of course, directly relevant to 

our course. If you want to resolve very fine details in the spectrum of an 

atom or molecule – for instance, resolving isotope shifts, which are tiny 

differences in transition frequencies between different isotopes of the same 

element, or hyperfine splittings, which arise from the interaction of 

nuclear spin with the electron cloud – you absolutely need a laser whose 

own linewidth is significantly narrower than the features you're trying to 

observe. If your laser linewidth is broader than the separation of these 

subtle spectral features, those features will simply be washed out, 

convolved with your laser line, and you won't be able to distinguish them. 

So, for high-fidelity spectroscopic interrogation, an ultranarrow laser is your 

precision scalpel. 
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Continuing with the applications where ultranarrow linewidths are 

indispensable: 

2. Optical frequency standards. This is a domain where lasers have 

revolutionized precision. Think of atomic clocks. The most advanced 

atomic clocks today use optical transitions in atoms as their "pendulum." 

The stability and accuracy of these clocks are directly tied to the ability to 

lock a laser with an extremely narrow linewidth to these atomic transitions. 

The narrower the laser line, the more precisely its frequency can be 

determined and stabilized, leading to clocks with astounding accuracy. 

Another area is laser interferometric length metrology. For measuring 

distances with extreme precision using interference, you need a light 



source with a very long coherence length, which, as we'll see, is inversely 

related to the linewidth. The narrower the linewidth, the longer the distance 

over which the phase of the light remains predictable, allowing for highly 

precise interferometric measurements. 

3. Coherent manipulation of quantum states in quantum information. 

In fields like quantum computing or quantum communication, we often 

need to use laser light to precisely control the quantum state of atoms, 

ions, or other quantum bits (qubits). These manipulations rely on 

maintaining well-defined phase relationships. A broad laser linewidth 

implies rapid phase fluctuations, which can destroy the delicate quantum 

coherence needed for these operations. Therefore, lasers with extremely 

narrow linewidths are critical tools for encoding, manipulating, and reading 

out quantum information. 

Now, beyond these practical applications, there's a deep fundamental 

physics aspect to understanding laser linewidths: 

* Understanding the ultimate, fundamental lower limit on 𝛥𝜈𝐿 reveals 

deep connections between several core concepts in physics. This isn't just 

about engineering better lasers; it's about understanding the interplay of 

light and matter at the quantum level. Specifically, it connects to: 

1. Quantum fluctuations of the electromagnetic field. Even in a perfect 

vacuum, the electromagnetic field is not quiescent. It has zero-point energy 

and undergoes fluctuations. These vacuum fluctuations can interact with 

the lasing process and are a source of fundamental noise, contributing to 

the laser linewidth. 

2. Spontaneous emission of atoms. While stimulated emission is the 

heart of laser action, atoms in the gain medium can also emit photons 

spontaneously. These spontaneously emitted photons have random 

phases and directions, and those that get coupled into the lasing mode can 

perturb the phase of the coherent laser field, again contributing to the 

linewidth. 
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And the third deep connection that understanding the fundamental laser 

linewidth limit reveals is: 

3. Cavity photon statistics and phase diffusion. The light field inside the 

laser cavity consists of a large number of photons. The process of 

spontaneous emission adding photons with random phases to this existing 

field leads to what's called phase diffusion – the phase of the laser's 

electromagnetic field undergoes a random walk over time. The statistics of 

the photons within the cavity, and how these random phase kicks 

accumulate, are central to determining the fundamental linewidth. 

So, with this motivation and these connections in mind, we can state the 

Goal of this section: 

• Our primary objective is to derive the Schawlow-Townes quantum 

limit. This is a famous result that predicts the minimum possible linewidth a 

laser can theoretically achieve, based on fundamental quantum principles. 

• Alongside the derivation, we will analyse the underlying noise 

mechanisms – spontaneous emission, vacuum fluctuations, and their 

manifestation as phase diffusion – that give rise to this limit. 

• And finally, we will compare this theoretical quantum limit with 

experimentally achievable linewidths in real-world lasers. This will give 

us a sense of how close we are to fundamental limits and what challenges 

remain. 

This journey into the Schawlow-Townes limit is a classic topic in laser 

physics, and it beautifully illustrates the interplay of quantum mechanics, 

electromagnetism, and statistical physics in determining a key 

characteristic of lasers. 
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To visualize what we're talking about, this page presents a Laser 

Linewidth Comparison graph. 

Let's break down this illustration. On the vertical axis, we have Relative 

Intensity. On the horizontal axis, we have Frequency, nu (𝜈). The graph 

shows three idealized spectral profiles of a laser line, all centered around 

the same nominal frequency, but with vastly different widths. 

1. The outermost, broadest curve, shaded in orange, is labeled Practical. 

This represents the linewidth of a typical, everyday laser that you might find 

in a teaching lab or a common industrial application. While it's still narrow 

compared to, say, an incandescent bulb, its linewidth is significantly 

broadened by technical noise sources – vibrations, temperature 

fluctuations, power supply instabilities, and so on. We're talking about 

linewidths that could be in the megahertz or kilohertz range, or sometimes 

even broader for less sophisticated lasers. 

2. The middle curve, shaded in a greenish-blue (cyan), is labeled State-

of-the-art. This represents a highly engineered laser system where 

significant effort has been made to suppress technical noise. This could 

involve sophisticated thermal and vibrational isolation, ultra-stable power 

supplies, and feedback control systems. These lasers, often found in 

research labs pursuing precision measurements, can achieve linewidths in 

the Hertz to kiloHertz range. This is a significant improvement over the 

"practical" laser. 

3. Finally, the innermost, sharpest peak, shaded in blue, is labeled 

Quantum-limited. This represents the ultimate theoretical limit to the laser 

linewidth, as predicted by the Schawlow-Townes formula (and its 

refinements). This linewidth arises purely from fundamental quantum noise 

– spontaneous emission and vacuum fluctuations – assuming all technical 

noise has been perfectly eliminated. As you can see, this quantum-limited 

linewidth is extremely narrow, often in the milliHertz or even microHertz 

range for typical laser parameters. 



The key takeaway from this visual is the vast difference in scales between 

what's practically common, what's achievable with advanced engineering, 

and what fundamental quantum mechanics dictates as the ultimate limit. 

Our goal in the upcoming discussion is to understand the physics behind 

that innermost blue curve – the quantum limit. 
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Now, let's move on to some Basic Definitions, as we transition From 

Perfect Monochromaticity to Finite Bandwidth. 

First, consider the ideal scenario: 

* An Ideal monochromatic wave. This is a purely theoretical construct, 

never realised in practice. 

Mathematically, we would write the electric field of such a wave as: 

𝐸ideal(𝑡) = 𝐸0cos(2𝜋𝜈0 𝑡) 

That is, capital E subscript ideal, as a function of time t, equals capital E 

subscript zero, times cosine, of the quantity two pi nu subscript zero t. 

Here, capital E sub zero (E₀ ) is the constant amplitude of the wave, 

representing its strength, typically in Volts per meter. And nu sub zero 

(ν₀ ) is the perfectly defined, single frequency of the wave, in Hertz. In this 

ideal case, if you were to take a Fourier transform to get the spectrum, you 

would find an infinitely sharp delta function at the frequency 𝜈0. The phase 

is perfectly predictable for all time. 

Why is this never realized in practice? Because any real oscillator, 

including a laser, is subject to perturbations and has a finite energy or finite 

observation time, which inherently leads to some frequency spread due to 

the uncertainty principle, and more practically, due to the noise processes 

we've started to discuss. 

Now, let's consider a more realistic description: 



* A Real laser field must be written in a way that accounts for these 

imperfections. 

The electric field of a real laser is typically expressed as: 

𝐸(𝑡) = 𝐴(𝑡)cos(2𝜋𝜈0 𝑡 + 𝜙(𝑡)) 

That is, capital E as a function of time t, equals capital A as a function of 

time t, times cosine, of the quantity two pi nu sub zero t, plus phi as a 

function of time t. 

Here, nu sub zero (ν₀ ) is still the nominal center frequency of the laser. 

However, we now have two new time-dependent terms: Capital A of t 

(A(t)) represents the amplitude of the laser field, which can fluctuate over 

time. And, crucially for our discussion of linewidth, phi of t (φ(t)) represents 

the phase of the laser field, which can also fluctuate over time. It's these 

fluctuations, particularly in 𝜙(𝑡), that are primarily responsible for the laser's 

finite linewidth. 
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Let's elaborate on the terms in our expression for the real laser field, 𝐸(𝑡) =

𝐴(𝑡)cos[2𝜋𝜈0𝑡 + 𝜙(𝑡)]. 

* 𝐴(𝑡) is the slowly varying amplitude, typically measured in Volts per 

meter (V m−1). The term "slowly varying" means that 𝐴(𝑡) changes on a 

timescale that is much longer than the period of the optical oscillation (1/

𝜈0). Fluctuations in 𝐴(𝑡) are referred to as amplitude noise. 

* 𝜙(𝑡) is the slowly varying phase, measured in radians (rad). Similarly, 

"slowly varying" means 𝜙(𝑡) changes on a timescale much longer than the 

optical period. Fluctuations in 𝜙(𝑡) are referred to as phase noise or 

frequency noise (since instantaneous frequency is related to the time 

derivative of the total phase). As we'll see, phase noise is the dominant 

contributor to the fundamental laser linewidth. 



Now, let's define the Linewidth, capital Delta nu sub L (𝛥𝜈L), more 

formally: 

* It is the Full Width at Half Maximum (FWHM) of the power spectral 

density of the laser field. The power spectral density is obtained by taking 

the Fourier transform of the electric field 𝐸(𝑡) to get 𝐸(𝜈) (E as a function of 

frequency 𝜈), and then considering its magnitude squared, absolute value 

of E of nu, squared (|𝐸(𝜈)|2). This |𝐸(𝜈)|2 represents how the laser's 

power is distributed across different frequencies. The FWHM is the width of 

this spectral peak at the points where the power has dropped to half of its 

maximum value. 

This linewidth, 𝛥𝜈L, is intimately related to another important concept: the 

coherence time, tau sub c (𝜏c). The relationship is approximately: 

tau sub c is approximately equal to one divided by (pi times capital Delta nu 

sub L) That is, 𝜏c ≈
1

𝜋𝛥𝜈L

. 

The coherence time, 𝜏c, represents the average time interval over which 

the phase of the laser field remains predictable or correlated with itself. A 

narrower linewidth 𝛥𝜈L implies a longer coherence time 𝜏c. The factor of 𝜋 

arises from the Fourier transform relationship between a Lorentzian 

lineshape (which is often a good model for a laser line broadened by phase 

diffusion) and an exponential decay of its time-domain correlation function. 

Building on coherence time, we have: 

* Coherence length, capital L sub c (𝐿c): This is the distance over 

which the field remains phase-correlated. It's simply the distance light 

travels in one coherence time. 
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The relationship between coherence length 𝐿c, the speed of light 𝑐, and 

coherence time 𝜏c is straightforward: 



𝐿c = 𝑐𝜏c 

That is, 𝐿c = 𝑐𝜏c. 

Here, 𝑐 is the speed of light in the medium (usually vacuum or air for laser 

propagation). So, if you know the coherence time, you can easily find the 

coherence length. 

The implication of this is very important: 

Narrower capital Delta nu sub L (𝛥𝜈L) leads to a longer capital L sub c 

(𝐿c). 

This is a direct consequence of the relationships we just discussed: 

narrower 𝛥𝜈L means longer 𝜏c, and longer 𝜏c means longer 𝐿c. 

To give you a sense of scale, the slide notes: (kilometres for Hertz-level 

lasers). 

Think about that. If you have a laser with a linewidth of just 1 Hertz (𝛥𝜈L =

1 Hz), then its coherence time 𝜏c would be approximately 

𝜏c ≈
1

𝜋 ⋅ 1 Hz
≈ 0.3 seconds 

The coherence length 𝐿c would then be 

𝐿c = 𝑐 𝜏c ≈ (3 × 108 m/s) × 0.3 s ≈ 0.9 × 108 m 

which is 90,000 kilometers! This is an incredibly long distance, highlighting 

the remarkable phase stability of such lasers. This long coherence length is 

precisely what enables applications like long-baseline interferometry for 

gravitational wave detection, or high-precision metrology over significant 

distances. 

So, the quest for narrower linewidths is also a quest for longer coherence 

times and coherence lengths, opening up new possibilities for precision 

measurement and coherent control. 
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Now, let's delve into the Classification of Frequency Noise in Lasers. 

Understanding the sources of noise is crucial for understanding linewidth 

and for devising strategies to reduce it. We can broadly categorize noise 

into two types: 

First, there's Technical (or extrinsic) noise: 

* This type of noise originates outside quantum theory. It's due to 

classical, often environmental, perturbations to the laser system. These 

are, in principle, things we can try to engineer away, though in practice, it's 

very challenging to eliminate them completely. Examples include: * 

Fluctuations of cavity length, 𝑑. The resonant frequencies of a laser 

cavity are determined by its length. If the cavity length changes due to 

thermal expansion (e.g., the laser heats up or the room temperature 

changes) or vibrations (mechanical disturbances from the environment 

like acoustic noise, pumps, or even seismic activity), the resonant 

frequencies will shift, leading to frequency noise. * Variations of refractive 

index, 𝑛, of intracavity components. If there are materials inside the laser 

cavity (like the gain medium itself, or optical elements), their refractive 

index can change due to temperature fluctuations, pressure changes, 

or even acoustic waves passing through them. Changes in refractive 

index alter the optical path length of the cavity, which, similar to physical 

length changes, shifts the resonant frequencies. * Power-supply and 

pump-intensity noise. Fluctuations in the electrical power supplied to the 

laser, or instabilities in the intensity of the pump source (e.g., a flashlamp or 

another laser used to energize the gain medium), can lead to variations in 

the gain, temperature, or carrier density within the laser, all of which can 

translate into frequency noise. 

Second, and more fundamentally, there's Fundamental (or intrinsic) 

noise: 



* This type of noise cannot be eliminated even with "perfect" 

engineering because it arises from the quantum nature of light and matter. 

It sets the ultimate lower limit on the laser linewidth, which is what the 

Schawlow-Townes theory addresses. The primary sources of fundamental 

noise are: 1. Spontaneous emission into the lasing mode. Even in a 

laser operating well above threshold, atoms in the gain medium will 

spontaneously emit photons. While most of these go off in random 

directions, a small fraction will be emitted into the same spatial and 

polarization mode as the laser field. Each such spontaneously emitted 

photon has a random phase relative to the existing coherent field in the 

mode. These random phase kicks perturb the overall phase of the laser 

light, causing it to diffuse over time. This is a key mechanism. 2. Photon-

number (shot) noise leading to amplitude fluctuations. The emission of 

photons is a discrete, quantum process. Even for a perfectly stable average 

intensity, there will be statistical fluctuations in the number of photons 

emitted per unit time. This is known as shot noise. While primarily affecting 

the amplitude, these amplitude fluctuations can also couple, to a lesser 

extent, into phase fluctuations through nonlinearities in the gain medium 

(like the Kramers-Kronig relations linking gain and refractive index). 
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Continuing with the sources of fundamental (intrinsic) noise: 

3. Phase diffusion generated by random birth times of photons. This is 

essentially a restatement and consequence of point 1 (spontaneous 

emission). Each time a spontaneous photon is added to the lasing mode, it 

carries a random phase. The accumulation of these random phase "kicks" 

causes the overall phase of the laser field to undergo a random walk, a 

process known as phase diffusion. This continuous, random evolution of 

the phase is the direct cause of the fundamental linewidth. Think of it like a 

drunken sailor's walk – each step is random, and over time, the sailor can 

end up quite far from the starting point, even if each individual step is small. 

Similarly, the laser's phase drifts. 



Now, an important clarification for the subsequent discussion: 

* The Linewidth discussion below completely ignores technical noise 

and addresses only the intrinsic limit. 

We are going to focus on deriving the Schawlow-Townes limit, which is a 

quantum limit. We will assume that our hypothetical laser is perfectly 

engineered, meaning all sources of technical noise (vibrations, temperature 

drifts, etc.) have been eliminated. This allows us to isolate and understand 

the fundamental noise processes that set the ultimate floor on the laser 

linewidth. In reality, achieving this intrinsic limit is extremely difficult, as 

technical noise often dominates. But knowing the fundamental limit is 

crucial as it provides a benchmark and a target for experimental efforts. 
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This page presents a Schematic Comparison of Noise Sources in a 

Well-Stabilized Single-Mode Laser, in the form of a bar chart. This visual 

helps to put the magnitudes of different noise sources into perspective. 

On the vertical axis, we have Relative Noise Magnitude, on an arbitrary 

linear scale, let's say from 0.0 to 3.0. The horizontal axis categorizes 

different noise sources. 

The sources are grouped into two categories: 

1. Technical Noise Sources (shown with blue bars): 

Cavity 𝛥𝐿 (Cavity length fluctuations): This bar is shown as the largest, 

with a relative magnitude of about 2.5. This signifies that, even in a well-

stabilized laser, mechanical stability of the cavity length is often a dominant 

challenge. 

Index 𝛥𝑛 (Refractive index fluctuations): This bar is next, with a magnitude 

around 2.0. Changes in the refractive index of intracavity materials due to 

temperature or pressure are also significant. 



Power/Pump (Power supply or pump fluctuations): This bar is 

somewhat smaller, around 1.5, but still a considerable source of technical 

noise. 

2. Fundamental Noise Sources (shown with red bars): 

Spont. Emission (Spontaneous Emission into the lasing mode): This is 

the largest of the fundamental noise sources, with a magnitude of about 

1.0. This is the primary driver of phase diffusion that leads to the 

Schawlow-Townes linewidth. 

Phase Diffusion: This bar is shown with a magnitude of about 0.8. It's 

essentially the consequence of spontaneous emission, representing the 

random walk of the laser's phase. 

Shot Noise: This is the smallest, with a magnitude around 0.5. This refers 

to the quantum fluctuations in photon number, which primarily affect 

amplitude but can also have a minor coupling to phase. 

Important context: The title specifies "in a Well-Stabilized Single-Mode 

Laser." This is key. If the laser were not well-stabilized, the blue bars 

representing technical noise would be vastly taller, completely dwarfing the 

red bars of fundamental noise. The chart illustrates that even after 

significant engineering efforts to suppress technical noise, these technical 

sources can still be comparable to or even larger than the fundamental 

quantum noise sources. Reaching the quantum limit requires heroic efforts 

to reduce those blue bars down to the level of, or below, the red bars. 

This chart effectively summarizes the battle faced by experimentalists: first, 

to aggressively combat the large technical noise sources, and then, to 

confront the unavoidable fundamental quantum noise. Our theoretical 

discussion will focus on the origins and magnitude of those red bars. 
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Let's now focus on the First Fundamental Noise Source: Spontaneous 

Emission. This is a cornerstone of the Schawlow-Townes theory. 

The first bullet point describes the basic process: 

* An Atom in the upper laser level, 𝐸i (Eᵢ), decays to a lower level, 𝐸k 

(Eₖ), with a probability per unit time denoted as 𝐴𝑖𝑘 (Aᵢₖ). This 𝐴𝑖𝑘 is the 

Einstein A-coefficient for spontaneous emission between levels i and k, 

and it has units of inverse seconds (𝑠−1). So, 𝐴𝑖𝑘 represents the rate at 

which an isolated atom in the excited state 𝐸i will spontaneously jump down 

to state 𝐸k, emitting a photon in the process. This emission occurs without 

any external stimulation, hence "spontaneous." The energy of the emitted 

photon will be ℎ𝜈 = 𝐸i − 𝐸k. 

Now, consider the collective effect in the laser's active medium: 

* The Total spontaneous power radiated from an active volume, 𝑉m 

(Vₖ), containing a population density 𝑁i (Nᵢ) in the upper laser level is given 

by the following equation. Let 𝑃𝑠𝑝 (Psp) be this total spontaneous power: 

𝑃𝑠𝑝 = 𝑁i𝑉m𝐴𝑖𝑘ℎ𝜈L 

That is, capital 𝑃𝑠𝑝, equals capital 𝑁i, times capital 𝑉m, times capital 𝐴𝑖𝑘, 

times ℎ (Planck's constant) times 𝜈L (the laser frequency). 

Let's break down the terms in this equation: * 𝑃𝑠𝑝 (Psp): Total power 

(energy per unit time, in Watts) emitted spontaneously from the active 

volume. * 𝑁i (Nᵢ): The population density of atoms in the upper laser level 𝐸i 

(number of atoms per unit volume, e.g., in units of cm⁻ ³ or m⁻ ³). * 𝑉m (Vₖ): 

The volume of the active gain medium (e.g., in cm³ or m³). So, 𝑁iVm
 is the 

total number of atoms in the upper laser level. * 𝐴𝑖𝑘 (Aᵢₖ): The Einstein A-

coefficient, or rate of spontaneous emission per atom (in 𝑠−1). * ℎ: Planck's 

constant (approximately 6.626 × 10−34 Joule-seconds). * 𝜈L (νL): The laser 

frequency (in Hertz), which is approximately 
𝐸i−𝐸k

ℎ
. So, ℎ𝜈L is the energy of a 

single spontaneously emitted photon. 



The final bullet simply clarifies: 

* ℎ = Planck's constant, 𝜈L = laser frequency. 

The crucial point for laser linewidth is that some of this spontaneously 

emitted power, with its random phase, will inevitably be directed into the 

specific mode in which the laser is oscillating. 
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Now, let's consider where these spontaneously emitted photons go. 

• Photons are emitted into all available electromagnetic modes 

within the fluorescence bandwidth (often characterized by the 

Doppler width, 𝛥𝜈D, 𝛥𝜈D). This is a critical distinction from stimulated 

emission, which preferentially adds photons into the existing lasing mode. 

Spontaneous emission is, by its nature, random. An excited atom doesn't 

"know" about the laser field when it decides to emit spontaneously (unless 

it's undergoing stimulated emission instead). So, these photons can go into 

any direction, any polarization, and any frequency allowed by the energy 

difference and the lineshape of the transition. The fluorescence bandwidth, 

𝛥𝜈D, (for example, the Doppler width in a gas laser, or a more general gain 

bandwidth in other lasers) defines the range of frequencies over which 

these spontaneous emissions occur. 

• The Number of spatial and polarisation modes per unit volume in a 

given bandwidth, 𝛥𝜈D, is given by a well-known formula from 

electromagnetic theory. Let 𝑁modes represent this density of modes:   

𝑁modes is approximately equal to 
8𝜋𝜈L

2𝛥𝜈D

𝑐3
 

That is, 

𝑁modes ≈
8𝜋𝜈L

2𝛥𝜈D

𝑐3
. 

Let's examine the terms: 



 • 𝑁modes: Number of electromagnetic modes per unit volume per unit 

frequency range (if 𝛥𝜈D were unity), but here it's the number of modes per 

unit volume within the bandwidth 𝛥𝜈D. So its units would be something like 

modes per cubic meter. 

 • 𝜈L: The central laser frequency (in Hertz). The 𝜈L
2 term indicates that 

the density of modes increases rapidly with frequency. 

 • 𝛥𝜈D: The fluorescence bandwidth (e.g., Doppler width) over which 

spontaneous emission occurs (in Hertz). 

 • 𝑐: The speed of light in the medium (in meters per second). The 𝑐3 in 

the denominator comes from the three-dimensional nature of space and the 

dispersion relation for light. 

 • The factor of 8𝜋 includes a factor of 2 for two independent 

polarizations, and factors related to integrating over solid angle and 

frequency space. 

This formula tells us that there is a vast number of electromagnetic modes 

available for spontaneously emitted photons to go into, especially at optical 

frequencies where 𝜈L is large. Only a tiny fraction of these will happen to 

align with the specific single mode of the laser resonator. 
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Building on the concept of many available modes for spontaneous 

emission, we arrive at a very important consequence: 

* The Mean photon number per mode from spontaneous emission is 

much, much less than 1 (≪ 1). 

This means that, if you pick any single one of those numerous 

electromagnetic modes (including the specific mode that will eventually 

lase), the average number of photons spontaneously emitted into that 

particular mode at any given time (before lasing action dominates) is very 

small, typically a tiny fraction of a single photon. 



Therefore, the initial optical field is dominated by vacuum fluctuations 

until the laser reaches threshold. 

Before the laser turns on and stimulated emission takes over to populate 

the lasing mode with a large number of coherent photons, that mode is 

essentially "empty" or, more accurately, contains only the zero-point energy 

associated with vacuum fluctuations. The occasional spontaneously 

emitted photon that happens to find its way into this mode is a rare event. 

This has a profound implication for how a laser starts up: it's these vacuum 

fluctuations, or a "seed" photon from spontaneous emission, that initiate the 

process of stimulated emission. Once stimulated emission begins to build 

up a significant photon population in the cavity mode (i.e., the laser reaches 

threshold), then the field in that mode is no longer dominated by vacuum 

fluctuations but by the coherent, amplified laser light. 

However, even above threshold, spontaneous emission continues. And 

those spontaneous photons that do get coupled into the lasing mode, 

though few in number compared to the stimulated photons, are the ones 

that carry random phases and contribute to the fundamental laser linewidth. 

The fact that the mean number per mode is small highlights that only a tiny 

fraction of the total spontaneous emission actually ends up in the lasing 

mode, but that tiny fraction is critically important for the linewidth. 
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This slide provides a helpful visual: Spontaneous Emission: Energy 

Levels and Emission Bandwidth. It consists of two diagrams. 

On the left side, we see the "Spontaneous Emission Process" illustrated 

with an energy level diagram: 

* The vertical axis represents Energy. * Two horizontal black lines denote 

two energy levels: an upper laser level labeled 𝐸i and a lower laser level 

labeled 𝐸k. * A blue circle on the level 𝐸i represents an atom (or molecule, 

or ion) in the excited state. * A black downward arrow shows this atom 



transitioning from 𝐸i to 𝐸k. This represents the decay process. * From the 

atom, several red wavy arrows emanate, symbolizing the spontaneously 

emitted photons. These arrows point in various directions, emphasizing the 

random nature of the emission direction. One of these red arrows is labeled 

ℎ𝜈L, indicating the energy of the emitted photon. * The transition itself is 

labeled with 𝐴𝑖𝑘, the Einstein A-coefficient, representing the probability per 

unit time for this spontaneous decay. 

This diagram visually reinforces that spontaneous emission from an excited 

atom can result in photons going into many different directions (modes). 

Only if one of these red arrows happens to align perfectly with the laser 

cavity's optical axis and mode structure will it contribute to the field within 

that specific lasing mode. 

On the right side, we see a graph representing the "Emission Spectrum": 

* The vertical axis is Intensity, and the horizontal axis is frequency, 𝜈. * A 

blue, bell-shaped curve (typically Gaussian for Doppler broadening, or 

Lorentzian for natural/collisional broadening) is plotted. This curve 

represents the fluorescence bandwidth or the gain bandwidth of the 

transition. It shows the range of frequencies over which spontaneous 

emission can occur. * The spectrum is centered around the nominal laser 

frequency, labeled 𝜈L on the frequency axis (though shown as 𝜈L with a tick 

mark, it implies the center). * A horizontal double-arrow line segment near 

the half-maximum points of the curve is labeled 𝛥𝜈D. This indicates the Full 

Width at Half Maximum (FWHM) of the emission spectrum, which could 

be, for example, the Doppler width in a gas laser. 

This spectrum shows that spontaneously emitted photons are not all at 

exactly the same frequency 𝜈L, but are spread over a range 𝛥𝜈D. If the 

laser cavity has a very narrow resonance (narrow 𝛥𝜈c), it will only 

effectively interact with or amplify those spontaneously emitted photons 

whose frequencies fall within that narrow cavity resonance. 



Together, these two diagrams illustrate that spontaneous emission is a 

random process both in terms of direction and, to some extent, frequency 

(within 𝛥𝜈D). This randomness is the root of its contribution to laser noise. 
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Let's now put some numbers to these concepts with a Numerical 

Illustration – Spontaneous Photons in a Helium-Neon (HeNe) Laser. 

The HeNe laser is a common, well-understood system, often used as an 

example. We're considering the red HeNe line at a wavelength 𝜆 =

632.8 nanometers. 

Here are some typical parameters: 

* Stationary upper-level population density: 𝑁i ≈ 1010 cm−3. This 𝑁i is 

the number of helium or neon atoms (specifically, the species responsible 

for the upper state of the lasing transition) per unit volume that are in the 

excited state ready to lase or emit spontaneously. 

* Einstein coefficient: 𝐴𝑖𝑘 ≈ 108 s−1. This means that an atom in the 

upper laser level will, on average, spontaneously emit a photon and decay 

to the lower level about 100 million times per second if left on its own. 

From these, we can calculate the: 

* Spontaneous photon rate per unit volume: Let this be 𝑅𝑠𝑝. 𝑅𝑠𝑝 =

𝑁i𝐴𝑖𝑘 = 1018 photons s−1 cm−3. This is a huge number! Every cubic 

centimeter of the active medium is spewing out 1018 spontaneous photons 

every second. These are radiated in all directions over the fluorescence 

bandwidth. 

Now, let's consider the modes: 

* Modes in Doppler bandwidth at a wavelength 𝜆 = 632.8 nanometers: 

We need to use the formula for 𝑁modes from page 13: 



𝑁modes ≈
8𝜋 𝜈L

2 𝛥𝜈D

𝑐3
. 

First, let's find 𝜈L: 

𝜈L =
𝑐

𝜆
=

3 × 1010 cm/s

632.8 × 10−7 cm
≈ 4.74 × 1014 Hz. 

For a HeNe laser, the Doppler width 𝛥𝜈D is typically around 1.5 GHz 

(1.5 × 109 Hz). Plugging these into the formula for 𝑁modes: 

𝑁modes ≈
8𝜋 ⋅ (4.74 × 1014 Hz)2 ⋅ (1.5 × 109  Hz)

(3 × 1010 cm/s)3
. 

$$N_{\text{modes}} \approx \frac{8\pi \cdot 2.25 \times 

10^{29}\,\text{Hz}^{2} \cdot 1.5 \times 10^{9}\,\text{Hz}}{2.7 \times 

10^{31}\,\text{cm}^{3\,\text}{s}^{-3}}.$$ 

$$N_{\text{modes}} \approx \frac{8.48 \times 10^{48}\,\text{Hz}^{3}}{2.7 

\times 10^{31}\,\text{cm}^{3\,\text}{s}^{-3}}.$$ 

Since Hz = s−1, Hz
3
= s−3, this cancels out. 

𝑁modes ≈ 3.14 × 1017 modes/cm
3.

 

The next slide gives a value for 𝑁modes, let's see how it compares. It seems 

the calculation here is for 𝑁modes (density of modes). 
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Continuing our numerical illustration for the HeNe laser: 

The slide states: 𝑁modes ≈ 3 × 108 modes cm
−3

. 

There seems to be a discrepancy between this value and my quick 

calculation on the previous page, which yielded a much larger number 

(around 3 × 1017 modes cm
−3

). The formula for 𝑁modes is 



𝑁modes =
8𝜋𝜈𝐿2𝛥𝜈D

𝑐3
. 

Perhaps the 𝛥𝜈D used for the slide's value is much smaller, or there's a 

different interpretation of 𝑁modes here. For the sake of continuity with the 

slide's argument, let's proceed using the value provided on the slide, which 

is 𝑁modes ≈ 3 × 108 modes cm
−3

. This value represents the density of 

electromagnetic modes available within the Doppler broadened 

fluorescence bandwidth. 

Now, let's calculate the Photon flux into a single mode: 

The slide presents an equation: 

𝛷 =
𝑅sp

𝑁modes

≈ 3 × 109 photons s
−1
. 

Let's check this using the slide's 𝑅sp and 𝑁modes: 

𝛷 =
1018 photons s

−1 cm−3

3 × 108 modes cm
−3  

𝛷 ≈ 3.33 × 109 photons s
−1 per mode. 

This result seems consistent. So, 𝛷 here represents the rate at which 

spontaneous photons are emitted into any single, specific mode (like the 

lasing mode). While the total rate 𝑅sp is enormous (1018 photons s
−1 cm−3), 

it's distributed among a very large number of available modes (3 ×

108 modes cm
−3

 according to the slide). Thus, the rate into any one mode 

is substantially smaller, about 3 billion photons per second per mode. 

Next, the Mean photon density in that mode: 

The slide gives an equation: 

⟨𝑛ph⟩ =
𝛷

𝑐
≤ 0.1. 



Here, ⟨𝑛ph⟩ represents the average number of spontaneously emitted 

photons occupying that single lasing mode at any given instant. 

Let's analyze 𝛷/𝑐: 𝛷 is in photons s−1 per mode. 𝑐 is the speed of light (3 ×

1010 cm s−1). So 𝛷/𝑐 would have units of 

photons s
−1
 mode

−1

cm s−1
= photons cm

−1 mode
−1, 

which is a linear density of photons per mode. However, the result "≤ 0.1" 

is dimensionless, suggesting ⟨𝑛ph⟩ is an average number of photons, not a 

density. 

This expression ⟨𝑛ph⟩ =
𝛷

𝑐
 is a common simplification, often meaning 𝛷 ×

𝜏photon where 𝜏photon is a characteristic time like 1/𝑐 multiplied by a 

characteristic length of the mode, or more accurately, 𝛷 × 𝜏cavity where 

𝜏cavity is the photon lifetime in the cavity for that mode. 

If 𝜏cavity for a HeNe laser is, for instance, around 30 picoseconds (3 ×

10−11 s), then 

⟨𝑛ph⟩ ≈ (3 × 109 photons s
−1
 mode

−1
) × (3 × 10−11 s)

≈ 0.09 photons per mode. 

This is consistent with the "≤ 0.1" value. 

The crucial takeaway here is that, due to spontaneous emission alone, the 

average occupation number of any given mode (including the one that will 

lase) is very small – significantly less than one photon. The mode is mostly 

"empty" of spontaneously generated photons at any instant. 
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Now, let's put this very small number of spontaneous photons per mode 

into perspective: 



- Compare this with approximately 107 (ten million) photons per mode 

under 1 mW lasing conditions. 

When a laser is operating, say a 1 mW HeNe laser, the number of 

stimulated photons occupying the lasing mode is enormous – on the order 

of 107! This is calculated from the power 

𝑃 =
𝑛photons ⋅ ℎ𝜈

𝜏cavity

 

where 𝑛photons is the number of photons in the cavity, ℎ𝜈 is photon energy, 

and 𝜏cavity is photon lifetime. Or, if it's output photons per second, it's 
𝑃

ℎ𝜈
 

photons/sec, and then considering how many are in the mode at once. 

Regardless of the precise calculation, the number is huge. 

So, we have about 0.1 spontaneous photons in the mode versus 

10,000,000 stimulated photons in the mode. 

This comparison leads to a vital conclusion: 

The spontaneous contribution is negligible to the amplitude (or 

intensity) of the laser output once it's lasing. Adding 0.1 random 

photons to a field of 10,000,000 coherent photons hardly changes the total 

number or the total power. 

However, this tiny spontaneous contribution is crucial for the phase 

of the laser light. Each of those 0.1 "average" spontaneous photons (or 

more accurately, each spontaneous photon event that adds a photon to the 

mode) carries a random phase. When it adds to the existing strong, 

coherent field of stimulated photons, it slightly perturbs the phase of that 

total field. It's the accumulation of these tiny, random phase kicks from 

ongoing spontaneous emission that leads to phase diffusion and ultimately 

defines the fundamental Schawlow-Townes linewidth. 

So, spontaneous emission: insignificant for amplitude noise in an operating 

laser, but paramount for phase noise and the fundamental linewidth. 
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We now shift our focus to another type of fundamental noise: Photon-

Number (Shot) Noise and its relation to Amplitude Stabilisation. While 

we just concluded that spontaneous emission is key for phase noise, let's 

briefly examine noise in the photon number itself. 

* The Output power, 𝑃, of a laser relates to the average output photon 

rate, n‐ bar (𝑛‾). The equation is: 

𝑛‾ =
𝑃

ℎ𝜈L

 

That is, 𝑛‾ =
𝑃

ℎ𝜈L

. Here, n‐ bar (𝑛‾) is the average number of photons emitted 

by the laser per unit time (e.g., photons per second). 𝑃 is the laser's output 

power (e.g., in Watts or Joules per second). ℎ𝜈L is the energy of a single 

laser photon ( ℎ is Planck's constant, 𝜈L is the laser frequency). This 

equation simply states that the average photon rate is the total energy per 

second (power) divided by the energy per photon. 

* Let's look at an example: A 1 mW laser where the photon energy ℎ𝜈L is 

approximately 2 eV. (Note: 2 eV corresponds to a wavelength of about 620 

nanometers, which is in the visible red range, typical for lasers like HeNe). 

For these parameters, the slide states: n‐ bar is approximately 8 ×

1015 s−1 ( 𝑛‾ ≈ 8 × 1015 s−1 ). Let's quickly verify this. 1 mW = 10−3 J/s. 

1 eV ≈ 1.602 × 10−19 J. So, 2 eV ≈ 3.204 × 10−19 J. 

𝑛‾ =
10−3 J/s

3.204 × 10−19 J/photon
≈ 3.12 × 1015 photons/s 

The slide's value of 8 × 1015 s−1 is about 2.5 times larger. This discrepancy 

might arise if "P" in the slide's context refers to intracavity power which can 

be higher than output power, or if n‐ bar here includes a factor related to 

cavity Q or lifetime. For our purposes, the exact number isn't as critical as 



the fact that it's a very large number of photons per second. Let's proceed 

with the slide's value. 

* Now, for the Statistical distribution of emitted photons in a 

one‐ second observation window (for a coherent state, which is a 

good model for an ideal laser field): it obeys the Poisson law. A 

coherent state has photon number statistics that follow a Poisson 

distribution. This means that if you count the number of photons arriving in 

a fixed time interval, that number will fluctuate from interval to interval 

around the mean value 𝑛‾, according to Poisson statistics. 
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Continuing with the Poisson statistics of photon emission: 

The Poisson probability distribution function, 𝑝(𝑛), gives the probability of 

observing exactly 'n' photons in a given time interval when the average 

number of photons expected in that interval is 𝑛‾. The formula is: 

𝑝(𝑛) =
𝑛‾𝑛 𝑒−𝑛‾

𝑛!
 

Here, 𝑒 is Euler's number (the base of natural logarithms), and 𝑛! is the 

factorial of 𝑛. 

Now, let's consider the fluctuations: 

* The Relative root-mean-square (rms) fluctuation due to this photon 

statistics (which is shot noise) is given by: 

The square root of (the expectation value of (capital Delta n squared)) 

divided by n-bar, equals one divided by (the square root of n-bar), 

which is much, much less than 1. 

That is, 
√⟨(𝛥𝑛)2⟩

𝑛‾
=

1

√𝑛‾
≪ 1. 

Let's break this down: 



* 𝛥𝑛 = 𝑛 − 𝑛‾  is the deviation of the actual photon number 'n' from the 

average '𝑛‾ '. * ⟨(𝛥𝑛)2⟩ is the variance of the photon number, which for a 

Poisson distribution is equal to the mean, 𝑛‾. * So, √⟨(𝛥𝑛)2⟩ = √𝑛‾ is the 

standard deviation of the photon number. * The relative fluctuation is then 

√𝑛‾

𝑛‾
=

1

√𝑛‾
. 

Since 𝑛‾ (the average number of photons, say, per coherence time or per 

measurement interval) is typically very large in a laser beam (e.g., 107 

photons per mode as mentioned earlier, or even larger rates per second), 

√𝑛‾  is also large, making 
1

√𝑛‾
 a very small number. For example, if 𝑛‾ = 106, 

then 
1

√𝑛‾
= 10−3 or 0.1%. This means that the relative fluctuations in the 

laser's amplitude due to shot noise are generally very small. 

Furthermore, there's a powerful mechanism in lasers that suppresses 

amplitude fluctuations: 

* Gain saturation: This is a self-regulating mechanism. If an 

instantaneous fluctuation causes 𝑛 (the number of photons in the cavity 

mode) to rise above its steady-state value, the increased stimulated 

emission rate depletes the population inversion (𝑁2 − 𝑁1) more rapidly. As 

the population inversion is depleted, the gain of the laser medium 

drops. A lower gain means less amplification, so the photon number 𝑛 

then tends to fall back towards its steady-state value. Conversely, if 𝑛 

drops, the inversion builds up, increasing the gain, which brings 𝑛 back up. 

This negative feedback loop ensures that the amplitude (and thus the 

photon number) is quite stable and self-corrects against perturbations. 
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Considering the small relative magnitude of shot noise 
1

√𝑛‾
 and the strong 

stabilizing effect of gain saturation on amplitude, we reach an important 

conclusion regarding noise contributions to the laser linewidth: 



* Result: Amplitude noise contributes very little to the laser linewidth, 

𝛥𝜈L. The dominant effect is phase noise. 

This is a critical point that shapes our entire approach to understanding the 

fundamental laser linewidth. While there are fluctuations in the amplitude 

(intensity) of the laser, these are generally small and well-regulated. 

Moreover, small changes in amplitude do not directly translate to a 

significant broadening of the spectral line in the same way that phase 

changes do. 

It's the random fluctuations in the phase of the laser's electromagnetic field, 

primarily driven by spontaneous emission events, that cause the frequency 

to "jitter" or "diffuse" around its central value. This phase diffusion is what 

directly leads to the spectral broadening we identify as the laser linewidth. 

Therefore, when we delve into the Schawlow-Townes theory, our primary 

focus will be on understanding the origins and consequences of phase 

noise, as this is the key to the intrinsic linewidth of a laser. The dash at the 

end of the slide suggests we're moving on from this specific point, having 

established the dominance of phase noise. 
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Now, let's explore a Geometric Picture – using an Amplitude-Phase 

Representation to visualize what's happening with the laser field. This 

provides a very intuitive way to understand phase diffusion. 

• We can represent the laser's electric field using a Complex electric-

field phasor. 

  Recall that a real, time-varying field 𝐸(𝑡) = 𝐴(𝑡)cos[𝜔0𝑡 + 𝜙(𝑡)] can be 

thought of as the real part of a complex phasor 𝐸̃(𝑡) = 𝐴(𝑡)𝑒𝑖𝜙(𝑡) 𝑒𝑖𝜔0𝑡. If we 

move into a frame rotating at the carrier frequency 𝜔0, we can look at the 

slowly varying complex amplitude (or phasor): 



  E tilde equals A times e to the power of (i phi)   That is, 𝐸̃ =

𝐴𝑒𝑖𝜙. 

  Here, E tilde (𝐸̃) is the complex phasor representing the field.   A is 

its instantaneous real amplitude.   φ is its instantaneous phase.   In a 

polar diagram (complex plane), this phasor is a vector of length 𝐴, making 

an angle 𝜙 with the real axis. 

Now, consider the behavior of 𝐴 and 𝜙 in a real laser: 

• The amplitude A is limited to a narrow annulus, capital Delta A (𝛿𝐴), 

by the gain saturation mechanism we discussed. 

  Imagine this phasor in the complex plane. Because gain saturation 

strongly stabilizes the amplitude, the tip of the phasor 𝐸̃ doesn't just wander 

anywhere. Its length 𝐴 is constrained to be very close to its average value. 

So, if you plotted the trajectory of the phasor's tip, it would mostly stay 

within a thin ring, or annulus, of radial width 𝛿𝐴. 

• In contrast, the phase phi (𝜙) performs a random walk from 0 to 2 pi 

(and beyond). 

  While the amplitude 𝐴 is tightly controlled, there's no such strong 

restoring force for the phase 𝜙. As we'll see, spontaneous emission causes 

𝜙 to take random steps. Over time, these steps accumulate, and the phase 

angle can wander all over the 0 to 2𝜋 range, and indeed, can accumulate 

to values much larger than 2𝜋 (though it's usually considered modulo 2𝜋). 

This leads directly to the concept of: 

• Phase diffusion: This is caused by incremental random "kicks" to 

the phase phi (𝜙) each time a spontaneous photon enters the cavity 

mode. 

  Each spontaneously emitted photon that gets coupled into the lasing 

mode adds vectorially to the existing strong coherent field. Since the 



spontaneous photon has a random phase relative to the coherent field, this 

addition causes a small, random change in the phase (a "kick") of the total 

field. These kicks are typically small, but they are continuous and random, 

leading to the diffusive behavior of 𝜙. 
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This page elaborates on a crucial difference between amplitude and phase 

dynamics: 

* There is no equivalent restoring force for phase. 

This is a key distinction. For amplitude, as we discussed, gain saturation 

acts like a restoring force: if the amplitude gets too high, gain drops and 

pulls it back down; if it gets too low, gain increases and pulls it back up. 

This keeps the amplitude confined. 

However, for the phase 𝜙, there isn't such a direct, strong restoring 

mechanism in a simple laser. If a spontaneous emission event kicks the 

phase by a small amount, there's nothing inherent in the basic laser 

process that tries to pull the phase back to its original value. The phase is 

"free to wander." 

Therefore, the phase undergoes an unbounded Brownian motion. 

This is a direct consequence of the lack of a restoring force and the 

presence of random phase kicks. Brownian motion, or a random walk, 

describes a process where successive steps are random. Over time, the 

displacement from the origin (in this case, the change in phase from its 

initial value) can grow without limit. 

Mathematically, this is characterized by the variance of the phase 

change: 

The variance, given by the expectation value of (the quantity 𝜙(𝑡) 

minus 𝜙(0), squared), is proportional to 𝑡. 



That is, 

⟨[𝜙(𝑡) − 𝜙(0)]2⟩ ∝ 𝑡. 

Here, 𝜙(0) is the phase at some initial time 𝑡 = 0, and 𝜙(𝑡) is the phase at 

a later time 𝑡. The mean square change in phase grows linearly with time. 

This is a hallmark of a diffusive process. The longer you wait, the further 

the phase is likely to have drifted from its starting point, on average. 

This unbounded phase diffusion is precisely what leads to a finite linewidth 

in the laser's spectrum. If the phase were perfectly stable, the linewidth 

would be zero (a delta function in frequency). But because the phase 

wanders, the instantaneous frequency (related to 
𝑑𝜙

𝑑𝑡
) also fluctuates, 

leading to a spread of frequencies in the output. 
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This slide presents a beautiful visual illustration titled Amplitude-Phase 

Representation: Phase Diffusion. This diagram helps to solidify the 

concepts we've just discussed. 

We are looking at a polar plot in the complex plane. 

The origin is at the center. The horizontal axis can be thought of as the 

Real part of the complex field 𝐸 (Re(𝐸)), and the vertical axis as the 

Imaginary part of 𝐸 (Im(𝐸)). 

A large, light gray annulus (a ring) is drawn, centered at the origin. This 

annulus represents the region where the tip of the electric field phasor is 

primarily confined. The radial thickness of this annulus is labeled delta A 

(𝛿𝐴), representing the small fluctuations in the amplitude 𝐴 allowed by gain 

saturation. The phasor's length (amplitude 𝐴) stays mostly within this ring. 

An example phasor is drawn as a black arrow originating from the center. 

Its length is labeled 𝐴, and its angle with the positive real axis is labeled phi 

(𝜙). This is our 𝐸̃ = 𝐴𝑒𝑖𝜙. 



The most important feature is the "Blue path". This is a jagged, wiggly line 

that shows the trajectory of the tip of the phasor over time. Notice several 

key things about this path: 

  – It largely stays within the gray annulus, meaning the amplitude 𝐴 

does not change much.   – However, the path wanders significantly in 

the angular direction (phase 𝜙). It performs a random walk around the 

circle.   – The little blue arrows along the path indicate the random 

"kicks" or steps the phasor takes. Each step has a random component both 

radially (affecting 𝐴 slightly within 𝛿𝐴) and tangentially (affecting 𝜙 

significantly). 

The caption reads: "Blue path: Random walk of phasor tip over time." 

This diagram perfectly encapsulates the idea: 

1. Amplitude 𝐴 is relatively stable, confined to a narrow range 𝛿𝐴 due to 

gain saturation. 2. Phase 𝜙 is not stable; it diffuses randomly over time due 

to the accumulation of small, random phase kicks (primarily from 

spontaneous emission). 

This random walk of the phase is the very essence of phase diffusion, and 

it's the direct cause of the fundamental laser linewidth. 
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Now we move to formalize this phase diffusion in a Phase Diffusion 

Model, with the goal of Deriving the Lorentzian Spectrum that 

characterizes the laser line. 

* First, we Assume a small time increment, delta t (𝛿𝑡). Over this small 

time step, the change in phase is also small. We can write the phase at 

time 𝑡 + 𝛿𝑡 as: 

𝜙(𝑡 + 𝛿𝑡) = 𝜙(𝑡) + 𝛿𝜙 That is, 𝜙(𝑡 + 𝛿𝑡) = 𝜙(𝑡) + 𝛿𝜙. Here, 𝛿𝜙 is the 

small, random change (or "kick") in phase that occurs during the time 

interval 𝛿𝑡. 



* Next, we characterize this random phase increment 𝛿𝜙: delta phi (𝛿𝜙) is 

assumed to be a Gaussian random variable with zero mean and variance 

equal to 2 𝐷𝛿𝑡. Let's unpack this: 

* Zero mean (⟨𝛿𝜙⟩ = 0): This means that, on average, a phase kick is 

equally likely to be positive or negative. There's no preferred direction for 

the phase change in any individual step. 

* Gaussian: The probability distribution of these small phase kicks is 

assumed to be Gaussian. This is often justified by the central limit theorem 

if 𝛿𝜙 results from many even smaller underlying random processes. 

* Variance ⟨(𝛿𝜙)2⟩ = 2 𝐷𝛿𝑡: This is the crucial part. The variance (mean 

square value) of the phase kick is proportional to the time interval 𝛿𝑡. The 

proportionality constant is 2 𝐷. * 𝐷 here is a very important parameter 

called the Phase-diffusion coefficient. It quantifies how rapidly the phase 

diffuses. A larger 𝐷 means more rapid phase diffusion and larger phase 

kicks per unit time. 

* This leads to the formal definition of the Phase-diffusion coefficient, D, 

which has units of Hertz (Hz) if phase is in radians: The phase-diffusion 

coefficient 𝐷 is defined from the long-term behavior of the phase variance 

that we saw earlier (⟨[𝜙(𝑡) − 𝜙(0)]2⟩ ∝ 𝑡). Specifically: 

D equals one-half times the time derivative of (the expectation value 

of (the quantity phi of t minus phi of zero, squared)) That is, 𝐷 =
1

2

𝑑

𝑑𝑡
⟨[𝜙(𝑡) − 𝜙(0)]2⟩. 

Since ⟨[𝜙(𝑡) − 𝜙(0)]2⟩ = 2 𝐷𝑡 (from the properties of 𝛿𝜙 for many steps), 

taking 
𝑑

𝑑𝑡
 gives 2 𝐷, and then 

1

2
× 2 𝐷 = 𝐷. So this is consistent. 

If 𝐷 has units of Hertz, it implies that the variance 2 𝐷𝑡 has units of radians 

squared (since phase is in radians). So 𝐷 itself would have units of 

$\text{rad}^{2/\text}{s}$. However, 𝐷 is often quoted directly in Hz when 

relating it to spectral linewidths. This convention arises because the 



spectral linewidth (FWHM) will turn out to be 2 𝐷 (if 𝐷 is HWHM in angular 

frequency) or 𝐷/(2𝜋) if 𝐷 is related to phase variance in 

$\text{rad}^{2/\text}{s}$ and linewidth in Hz. Let's assume the units of 𝐷 

given as Hz on the slide are consistent with its use in defining the spectral 

FWHM later. 
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Now that we have established the model for phase diffusion, characterized 

by the coefficient 𝐷, let's see its consequences for the laser's properties. 

* First, the Time-domain correlation function of the field. 

The phase diffusion process causes the laser's electric field to lose 

correlation with itself over time. The auto-correlation function, \(G(t) = 

\langle E^(0)E(t) \rangle\), describes how similar the field at time 𝑡 is to the 

field at time 0 (where \(E^\) is the complex conjugate). For a field 

undergoing pure phase diffusion (assuming constant amplitude 𝐴), this 

correlation function decays exponentially: 

The expectation value of 𝐸∗(0)𝐸(𝑡) equals 𝐴2, times 𝑒−𝐷|𝑡|. 

That is, 

⟨𝐸∗(0)𝐸(𝑡)⟩ = 𝐴2𝑒−𝐷|𝑡|. 

Here, 𝐴 is the constant amplitude of the field (or 𝐸0 from earlier). The term 

𝑒−𝐷|𝑡| shows that the correlation decays exponentially with a rate 𝐷. The 

absolute value of 𝑡, |𝑡|, indicates that the decay is symmetric for positive 

and negative time lags. The coefficient 𝐷 here directly determines the rate 

of this decorrelation. A larger 𝐷 means faster decorrelation. 

Note: For this correlation function to lead to a power spectrum, 𝐴 should be 

more like 𝐸0. 

* Next, the Fourier transform of this exponential decay gives the 

Lorentzian power spectrum. 



This is a standard result from Fourier analysis, often encapsulated in the 

Wiener-Khinchin theorem, which states that the power spectral density of a 

stationary random process is the Fourier transform of its autocorrelation 

function. When you Fourier transform an exponential decay like 𝑒−𝐷|𝑡|, you 

get a Lorentzian lineshape in the frequency domain. The power spectrum, 

|𝐸(𝜈)|2, is given as: 

The absolute value of 𝐸(𝜈) squared, equals 
𝐸0
2𝐷2

(𝜈−𝜈0)
2+𝐷2

. 

That is, 

|𝐸(𝜈)|2 =
𝐸0
2𝐷2

(𝜈 − 𝜈0)
2 + 𝐷2. 

Let's analyze this Lorentzian function: 

* 𝐸0
2 is related to the peak intensity or total power. * 𝜈0 is the center 

frequency of the laser line. * 𝐷 (the phase diffusion coefficient from the 

exponent of the correlation function) appears in the denominator as 𝐷2. 

This 𝐷 represents the Half Width at Half Maximum (HWHM) of this 

Lorentzian spectral peak, in units of frequency (e.g., Hertz). The numerator 

𝐸0
2𝐷2 ensures the correct peak height. At resonance ( 𝜈 = 𝜈0 ), the 

denominator is 𝐷2, so |𝐸(𝜈0)|
2 = 𝐸0

2. Thus, 𝐸0
2 is the peak spectral density. 

The formula should probably read (Peak Value 𝐷2) / [(𝜈 − 𝜈0)
2 + 𝐷2] or if 

𝐸0 is field amplitude, then the total power 𝑃 would be proportional to 𝐸0
2, 

and the peak spectral density is 
𝑃

𝜋𝐷
 or similar. A more standard form is 

𝑆(𝜈) =
𝑆peak𝐷

2

(𝜈−𝜈0)
2+𝐷2

. So 𝐸0
2 in the numerator of the slide's equation represents 

the peak spectral density. 

* From this Lorentzian lineshape, the Full Width at Half Maximum 

(FWHM) of the spectrum equals: 

capital Delta nu sub L equals 2D 



That is, 

𝛥𝜈L = 2 𝐷. 

This is a fundamental result: if 𝐷 is the HWHM of the Lorentzian (which it is, 

as it appears squared with the frequency term in the denominator), then the 

full width at half maximum is twice that value. 

So, the laser linewidth 𝛥𝜈L is directly proportional to the phase diffusion 

coefficient 𝐷. Understanding and calculating 𝐷 is therefore key to 

determining the fundamental laser linewidth. 
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This page offers an important clarification regarding terminology, which can 

often be a source of confusion: 

By historical convention, many texts quote half-width at half-

maximum, 𝐷; we shall use full width, capital 𝛥𝜈L (𝛥𝜈L). 

This is a crucial point of attention. 

When discussing spectral lineshapes, especially Lorentzians: 

* The parameter 𝐷, as it appeared in the denominator of our Lorentzian 

power spectrum ((𝜈 − 𝜈0)
2 + 𝐷2) and as the decay constant in the time-

domain correlation function 𝑒−𝐷|𝑡|, represents the Half Width at Half 

Maximum (HWHM) of the spectral line, assuming 𝐷 is in frequency units 

(like Hertz). 

* The Full Width at Half Maximum (FWHM), which is the more common 

experimental measure of linewidth and is denoted here as 𝛥𝜈L, is therefore 

twice the HWHM. So, 𝛥𝜈L = 2 𝐷. 

The slide explicitly states that while some literature might refer to "D" as 

"the linewidth" (implying HWHM), this course or this particular discussion 

will consistently use 𝛥𝜈L to mean the full width. This is good practice for 



clarity. So, whenever we derive or discuss 𝐷, remember that to get the 

actual, full laser linewidth 𝛥𝜈L, we will multiply 𝐷 by two. 

The triple dash at the end suggests this is just a point of clarification before 

we proceed. 
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Now we delve into the Physical Origin of the Diffusion Coefficient D. 

We've defined D and seen its role in the lineshape, but where does it come 

from fundamentally? 

* The first bullet point gives us the microscopic starting point: Each 

spontaneously emitted photon that enters the lasing mode adds an 

uncertain phase, 𝛿𝜙, which is on the order of 
1

√𝑛‾
. Here, 𝑛‾ is the average 

number of coherent photons already present in the lasing mode. When a 

single spontaneous photon (with random phase and an amplitude roughly 

corresponding to "one photon") adds to the strong existing field (containing 

𝑛‾ photons), the resulting perturbation to the phase of the total field is 

inversely proportional to the amplitude of that existing field. The field 

amplitude is proportional to √𝑛‾ . Thus, the phase kick 𝛿𝜙 scales as 
1

√𝑛‾
. This 

means the more photons already in the mode, the smaller the phase kick 

from a single spontaneous event – the coherent field is "stiffer" against 

phase perturbations if it's stronger. 

* Next, how often do these phase-perturbing events occur? The Rate of 

such events (i.e., the rate of these phase kicks) is proportional to the 

spontaneous photon rate into the mode, which we can call 𝑁sp. 𝑁sp 

here is the number of spontaneously emitted photons that are successfully 

coupled into the specific lasing mode per unit time (units of s−1). The more 

frequently these spontaneous photons arrive, the more frequently the 

phase is kicked. 



* Now, putting it together and Including the cavity photon lifetime, 𝜏c, 

and considerations of output coupling, yields a proportionality for D: The 

slide states: D is proportional to 𝑁sp, times 
1

2𝜋𝑛‾𝜏c

. That is, 

𝐷 ∝
𝑁sp

2𝜋𝑛‾𝜏c

. 

Let's examine the terms and their roles: * 𝑁sp (spontaneous photon rate 

into the mode, s−1): As 𝑁sp increases, 𝐷 increases. More spontaneous 

photons mean more phase kicks, faster diffusion. This makes sense. * 𝑛‾ 

(average number of coherent photons in the mode): As 𝑛‾ increases, 𝐷 

decreases (since 𝑛‾ is in the denominator). A stronger coherent field is more 

resistant to phase perturbations from individual spontaneous photons. This 

also makes sense. * 𝜏c (cavity photon lifetime, s): As 𝜏c increases (meaning 

a higher 𝑄 cavity, narrower cavity resonance), 𝐷 decreases. A longer 

photon lifetime means photons stay in the cavity longer, and the field has 

more "memory." A narrow cavity resonance (long 𝜏c) also means it's 

"harder" for off-resonant spontaneous photons to be accepted into the 

mode, or they have less impact. The factor 
1

2𝜋𝜏c

 is essentially the cavity 

resonance half-width, 𝛥𝜈c (HWHM). So, 𝐷 is proportional to 
𝑁sp

𝑛‾
, scaled by 

something related to the cavity bandwidth. A common form for the HWHM 

linewidth 𝐷 (which is 𝛥𝜈L/2) is 

𝐷 ≈
𝑁sp

4𝜋𝑛‾
 𝐾, 

where 𝐾 is an excess noise factor often near 1 for simple cases, and 𝑁sp 

here is the rate. This simplified form doesn't explicitly show 𝜏c. The 

Schawlow-Townes formula, which we are building towards, will incorporate 

these factors more precisely. The proportionality shown on the slide is a 

step in that direction, highlighting the key physical dependencies. We 

should be careful about the precise prefactors and dimensional 

consistency, which will become clearer in the full Schawlow-Townes 



derivation. The crucial insight here is that 𝐷 increases with the rate of "bad" 

spontaneous photons and decreases with the number of "good" coherent 

photons and with longer cavity lifetimes (narrower cavity resonances). 
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Let's explore the implications of the dependencies we just discussed for the 

diffusion coefficient 𝐷, and consequently, for the laser linewidth. 

* The first bullet point considers the effect of laser power: 

Larger output power, 𝑃𝐿 (𝑃𝐿), implies a larger average number of photons 

in the cavity, 𝑛‾. (Since power is proportional to 𝑛‾/𝜏𝑐). 

A larger 𝑛‾, as we saw, leads to a smaller diffusion coefficient 𝐷 (because 𝑛‾ 

is in the denominator of the expression for 𝐷). 

And a smaller 𝐷 means a narrower linewidth 𝛥𝜈𝐿 = 2 𝐷. 

So, the conclusion is: Higher laser output power generally leads to a 

narrower fundamental linewidth. This is a very important practical 

consequence. If you want a spectrally pure laser (small 𝛥𝜈𝐿), operating it at 

higher power (assuming other factors are optimized) is beneficial, up to 

other limiting effects not considered here. 

* The second bullet point considers the effect of the laser cavity's 

properties: 

A smaller cavity bandwidth, 𝛥𝜈𝑐 (which corresponds to a higher cavity 

finesse, 𝐹), decreases the fraction of spontaneous photons accepted into 

the lasing mode. 

Think of the cavity as a filter. Spontaneous emission occurs over a broader 

fluorescence bandwidth 𝛥𝜈𝐷. The cavity resonance, with width 𝛥𝜈𝑐, only 

"accepts" or strongly interacts with those spontaneously emitted photons 

whose frequencies fall within this narrow 𝛥𝜈𝑐. If 𝛥𝜈𝑐 is made smaller (e.g., 

by using higher reflectivity mirrors, leading to higher finesse and longer 



photon lifetime 𝜏𝑐), then a smaller fraction of the total spontaneous 

emission spectrum will effectively couple into the lasing mode and perturb 

its phase. 

Hence, a smaller 𝛥𝜈𝑐 also reduces 𝐷. 

This also makes intuitive sense: a "sharper" cavity filter leads to less phase 

noise from spontaneous emission, thus a smaller 𝐷 and a narrower laser 

linewidth. 

These two points – higher power and narrower cavity bandwidth – are key 

design principles for achieving lasers with very narrow Schawlow-Townes 

limited linewidths. The triple dash indicates we're moving to define these 

cavity properties more formally. 
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Now we turn to Slide 10: Cavity Properties – Definitions and Relations. 

Understanding these is essential because, as we just saw, the cavity plays 

a crucial role in determining the laser linewidth. 

* First, let's define the Resonator half-width, capital Delta nu sub c (𝛥𝜈c). 

This 𝛥𝜈c is a measure of the sharpness of the cavity's resonance peaks 

when you plot its transmission or stored energy as a function of frequency. 

It's determined by mirror losses (absorption and scattering) and 

output coupling (the intentional transmission of light out of the cavity to 

form the laser beam). The relationship between 𝛥𝜈c and the photon lifetime 

in the cavity, 𝜏c, is: 

𝛥𝜈c =
1

2𝜋𝜏c

 

That is, 𝛥𝜈c =
1

2𝜋𝜏c

. Here, 𝜏c is the photon lifetime in the cavity (in seconds). 

It represents the average time a photon, once inside the cavity, will survive 

before being lost due to mirror imperfections or output coupling. 𝛥𝜈c as 

defined here is the Half Width at Half Maximum (HWHM) of the cavity 



resonance, in Hertz. A longer photon lifetime 𝜏c corresponds to a narrower 

cavity resonance 𝛥𝜈c, meaning the cavity is more selective in frequency. 

* Next, a very important parameter characterizing a resonator is its Quality 

factor, 𝑄. The 𝑄 factor is a dimensionless quantity that represents the 

"quality" of a resonator. A higher 𝑄 means lower losses and a sharper 

resonance. 
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Continuing with cavity properties: 

The Quality factor, Q, is defined as: 

Q equals nu sub L divided by (2 times capital Delta nu sub c) 

That is, 

𝑄 =
𝜈L

2𝛥𝜈c

 

Here: * 𝜈L is the laser's operating frequency (which is also the center 

frequency of the cavity resonance we are considering). * 𝛥𝜈c is the Half 

Width at Half Maximum (HWHM) of the cavity resonance, as defined on 

the previous page (𝛥𝜈c =
1

2𝜋𝜏c

). * Therefore, 2𝛥𝜈c is the Full Width at Half 

Maximum (FWHM) of the cavity resonance. 

So, Q is the ratio of the resonant frequency to the FWHM of the resonance. 

A high Q factor means the FWHM (2𝛥𝜈c) is very small compared to the 

resonant frequency 𝜈L, indicating a very sharp, selective resonance. 

Another important parameter for optical cavities, especially Fabry-Pérot 

type cavities, is the Finesse, capital F (F). 

* The Finesse is defined as the ratio of the Free Spectral Range (FSR) of 

the cavity to the FWHM of its resonance. The FSR is the frequency spacing 

between adjacent longitudinal modes of the cavity. The slide gives the 

formula: 



Capital F equals (Free Spectral Range) divided by capital Delta nu sub 

c, which equals c divided by (2 times d times capital Delta nu sub c). 

That is, 

𝐹 =
FSR

𝛥𝜈c

=
𝑐

2 𝑑 𝛥𝜈c

 

Let's be careful here with 𝛥𝜈c. If 𝛥𝜈c from the Q-factor definition (and page 

30) is HWHM, then the FWHM of the cavity resonance is 2𝛥𝜈c. The Free 

Spectral Range (FSR) for a simple two-mirror cavity of length 𝑑 is 
𝑐

2 𝑑
. So, 

Finesse 𝐹 =
FSR

FWHMcavity

=
𝑐/(2 𝑑)

2𝛥𝜈𝑐,HWHM

. This would be 

𝐹 =
𝑐

4 𝑑 𝛥𝜈𝑐,HWHM

 

However, the slide's formula 𝐹 =
𝑐

2 𝑑 𝛥𝜈c

 implies that the 𝛥𝜈c used in this 

specific finesse formula is the Full Width at Half Maximum (FWHM) of the 

cavity resonance, not the HWHM. This is a common convention for finesse 

definition. So, if 𝛥𝜈𝑐,FWHM is the full width of the cavity resonance, then 𝐹 =
FSR

𝛥𝜈𝑐,FWHM

. Let's assume for this finesse formula on the slide, 𝛥𝜈c represents 

FWHM. It's important to be aware of whether 𝛥𝜈c refers to HWHM or 

FWHM as conventions can vary. For the Schawlow-Townes derivation, 𝛥𝜈c 

often refers to the FWHM of the passive cavity. 

Now, the significance of these parameters for laser linewidth: * A high Q or 

a high Finesse (F) implies a narrow cavity resonance width 𝛥𝜈c 

(FWHM). This, in turn, filters out most of the broad spectrum of 

spontaneously emitted photons, only allowing those very close to the 

cavity resonance to build up. This filtering action is key to achieving a 

small laser linewidth, capital Delta nu sub L (𝛥𝜈L). Essentially, a high-Q, 

high-Finesse cavity is more "choosy" about which spontaneous photons it 

allows to interact strongly with the mode, thus reducing the phase noise. 
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This page shows a diagram illustrating a simple Fabry-Pérot cavity, which 

is the basis for many lasers. The slide indicates "[IMAGE REQUIRED: 

Simple Fabry-Pérot cavity drawing with length 𝑑, reflectivities 𝑅1, 𝑅2, 

indicating 𝜏c, photon paths, and output coupling.]" I will describe the 

provided image. 

The diagram depicts a basic optical resonator. 

• We see two parallel mirrors, represented as gray rectangular blocks.   

• The left mirror is labeled R sub 1 (𝑅1), indicating its reflectivity.   • 

The right mirror is labeled R sub 2 (𝑅2), indicating its reflectivity. 

• The distance between the two mirrors is labeled 𝑑, representing the 

length of the cavity. 

• Inside the cavity, between the mirrors, the label tau sub c (𝜏c) (Photon 

Lifetime) is present, signifying that this cavity structure is characterized by a 

certain average time a photon will exist within it before being lost or 

coupled out. 

• A red arrow (light ray) is shown incident on the left mirror (𝑅1) from 

outside the cavity. 

• A portion of this light enters the cavity and is shown as a red line 

bouncing back and forth multiple times between 𝑅1 and 𝑅2. This 

represents the resonant light path within the cavity. 

• Each time the light hits the right mirror (𝑅2), a fraction of it is transmitted 

through. This transmitted light is shown as a red arrow exiting the cavity to 

the right, labeled Output Coupling. This is the useful laser beam. 

This simple diagram visually captures the essential elements of a Fabry-

Pérot resonator: two mirrors forming a cavity of length 𝑑. The reflectivities 

𝑅1 and 𝑅2 (along with any other losses) determine the photon lifetime 𝜏c, 

and consequently, the cavity's Q-factor, finesse (𝐹), and resonance width 



(𝛥𝜈c). The output coupling through one of the mirrors (typically 𝑅2) allows 

the laser light to be extracted. The Schawlow-Townes linewidth is 

fundamentally tied to the properties of such a cavity, interacting with the 

gain medium placed within it. 
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We are now ready to begin to begin the Step-by-Step Derivation of the 

Schawlow-Townes Limit, which is a landmark result in laser physics. This 

is presented on Slide 11. 

The derivation Starts from the phase-diffusion width (which is the half-

width) 𝐷. 

Recall that 𝛥𝜈L (the full linewidth) = 2 𝐷. So, 𝐷 is the HWHM of the laser's 

spectral line. 

A key formula, incorporating the factors we've discussed, for this phase-

diffusion half-width 𝐷 is given as: 

𝐷 equals (1 divided by 4 pi) times (h nu sub L divided by P sub L) times 

(capital Delta nu sub c, squared) times (the quantity N sub s p plus N sub t 

h plus 1). 

That is, 

𝐷 =
1

4𝜋
⋅
ℎ𝜈L

𝑃L

⋅ (𝛥𝜈c)
2 ⋅ (𝑁𝑠𝑝 + 𝑁𝑡ℎ + 1) 

Let's break down the terms in this crucial starting equation for 𝐷 (the laser 

line HWHM): 

𝐷: The half-width at half-maximum of the laser emission spectrum, in Hertz. 

ℎ: Planck's constant. 

𝜈L: The laser frequency, in Hertz. So, ℎ𝜈L is the energy of a single laser 

photon. 



𝑃L: The output power of the laser, in Watts. The ratio 
ℎ𝜈L

𝑃L

 has units of 

(Joules) / (Joules/second) = seconds. It represents the energy per photon 

divided by the energy per second, effectively an inverse photon rate scaled 

by ℎ. More accurately, 
𝑃L

ℎ𝜈L

 is the photon output rate. So 
ℎ𝜈L

𝑃L

 is 1 over this 

rate. 

𝛥𝜈c: This is the Full Width at Half Maximum (FWHM) of the passive 

optical resonator's resonance, in Hertz. (Note: some derivations use 

HWHM for 𝛥𝜈c and adjust prefactors. We must be consistent with how 𝛥𝜈c 

relates to 𝑄 or 𝜏c.) The (𝛥𝜈c)
2 term shows a strong dependence on the 

cavity quality. 

(𝑁𝑠𝑝 + 𝑁𝑡ℎ + 1): This is a dimensionless factor representing the effective 

number of noise photons. We'll define these terms on the next page. 

  ○ 𝑁𝑠𝑝 relates to spontaneous emission.   ○ 𝑁𝑡ℎ relates to thermal 

(blackbody) radiation within the cavity mode.   ○ The "+1" is profoundly 

important – it represents the contribution of vacuum fluctuations or zero-

point energy of the electromagnetic field. It ensures there's a fundamental 

linewidth even if 𝑁𝑠𝑝 and 𝑁𝑡ℎ were zero (which they aren't). This term is 

sometimes called the "one noise photon per mode" contribution that is 

always present. 

The term 
ℎ𝜈L

𝑃L

  (𝛥𝜈c)
2 has units of (seconds) (Hertz squared) = Hertz. So 𝐷 is 

in Hertz, which is correct for a linewidth (HWHM). 

The factor 
1

4𝜋
 is a numerical prefactor that arises from the detailed 

derivation relating phase variance to spectral properties. 

The "where" at the bottom of the slide indicates that the next page will 

clarify 𝑁𝑠𝑝 and 𝑁𝑡ℎ. 
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Continuing the derivation of the Schawlow-Townes limit, let's define the 

terms in the noise factor (𝑁sp + 𝑁th + 1) from the equation for 𝐷 on the 

previous page. 

* 𝑁sp represents the number of spontaneous photons per second (𝑠−1) in 

the lasing mode. More precisely, 𝑁sp in this context is often taken as 

𝑛sp =
𝑁2

𝑁2 −
𝑁1𝑔2
𝑔1

 

which is the "spontaneous emission factor" or "population inversion factor." 

It's a dimensionless quantity, typically greater than or equal to 1, that 

accounts for the fact that not all atoms are in the upper state (incomplete 

inversion). If 𝑁sp were truly a rate (𝑠−1), the units in the 𝐷 formula would be 

incorrect as discussed. So, let's interpret 𝑁sp here as this dimensionless 

factor related to the degree of inversion and how effectively spontaneous 

emission contributes noise relative to the stimulated emission process. For 

an ideal four-level laser, 𝑁sp can approach 1. For a three-level laser, it can 

be larger. 

* 𝑁th represents the number of thermal photons per second (𝑠−1) in the 

lasing mode. These are photons from blackbody radiation corresponding to 

the temperature of the cavity. The slide correctly notes that 𝑁th is 

(negligible at optical frequencies, where 𝑁th is much, much less than 1). 

The average number of thermal photons per mode is given by the Planck 

distribution Bose-Einstein factor, 

1

𝑒
ℎ𝜈L
𝑘𝑇 − 1

 

At optical frequencies (ℎ𝜈L ≫ 𝑘𝑇, where 𝑘 is Boltzmann's constant and 𝑇 is 

temperature), this factor is extremely small. So, for most lasers operating in 

the visible or near-infrared, the contribution of thermal photons to the 

linewidth is negligible compared to spontaneous emission and vacuum 



fluctuations. We can usually set 𝑁th ≈ 0. Again, if 𝑁th were a rate, unit 

issues arise. So, similar to 𝑁sp, 𝑁th here should be understood as the 

effective number of thermal noise photons, which is dimensionless and 

very small. 

* The "+1" term in (𝑁sp +𝑁th + 1) counts vacuum fluctuations. This is the 

contribution from the zero-point energy of the electromagnetic field in the 

lasing mode. It's always present, even at zero temperature and with perfect 

inversion. This "1" ensures that there's a fundamental quantum limit to the 

linewidth that cannot be surpassed. 

Now, we take the next step: 

* Multiplying 𝐷 (the half-width) by 2 converts it to the full linewidth, capital 

𝛥𝜈𝐿 (𝛥𝜈𝐿). 𝛥𝜈𝐿 = 2 𝐷. Using the expression for 𝐷 from the previous page: 

𝐷 =
1

4𝜋

ℎ𝜈L

𝑃L

(𝛥𝜈c)
2(𝑁sp + 𝑁th + 1) 

So, 

𝛥𝜈𝐿 = 2 ×
1

4𝜋

ℎ𝜈L

𝑃L

(𝛥𝜈c)
2(𝑁sp +𝑁th + 1) 

𝛥𝜈𝐿 =
1

2𝜋

ℎ𝜈L

𝑃L

(𝛥𝜈c)
2(𝑁sp +𝑁th + 1) 

* However, the formula presented on the slide for 𝛥𝜈𝐿 is: 

 

𝛥𝜈𝐿 = 2 𝐷 =
𝜋ℎ𝜈L(𝛥𝜈c)

2(𝑁sp +𝑁th + 1)

2𝑃L

 

That is, 

𝛥𝜈𝐿 = 2 𝐷 =
𝜋ℎ𝜈L(𝛥𝜈c)

2(𝑁sp +𝑁th + 1)

2𝑃L

 



Let's compare the prefactors. My direct doubling of 𝐷 gives a prefactor of 
1

2𝜋
. The slide's formula for 𝛥𝜈𝐿 has a prefactor of 

𝜋

2
. The ratio is 

𝜋/2

1/(2𝜋)
= 𝜋2 

This means there's a factor of 𝜋2 difference between simply doubling the 𝐷 

formula from the previous slide and the 𝛥𝜈𝐿 formula presented here. This 

often arises from choices in defining 𝛥𝜈c (e.g., angular vs. regular 

frequency, or whether it represents the cold cavity or includes effects of the 

gain medium like dispersion). The Schawlow-Townes original paper and 

various textbook derivations can have slightly different forms depending on 

these definitions. For consistency, we will proceed with the formula for 𝛥𝜈𝐿 

as written on this slide, assuming it is the intended expression for this 

derivation path. The key dependencies (on ℎ𝜈L, 𝑃L, (𝛥𝜈c)
2, and the noise 

photon sum) are the most critical aspects. 
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Now we approach the celebrated result. 

The Minimum possible value for the laser linewidth, 𝛥𝜈L, is reached 

under ideal conditions. These conditions are: 

   

When exactly one spontaneous photon per cavity lifetime effectively 

initiates the stimulated chain that leads to a phase perturbation. This 

is encapsulated by setting the term (𝑁𝑠𝑝 + 𝑁𝑡ℎ + 1) to its minimum effective 

value. 

   

The slide states this minimum is achieved when 𝑁𝑠𝑝 = 1 (if 𝑁𝑠𝑝 is the 

population factor, its minimum is 1 for a perfect 4-level system), and 𝑁𝑡ℎ ≈

0 (which is true for optical frequencies). 



   

If we take the expression for 𝛥𝜈L from the previous page: 

     

𝛥𝜈L =
𝜋ℎ𝜈L(𝛥𝜈c)

2 (𝑁𝑠𝑝 + 𝑁𝑡ℎ + 1)

2𝑃L

 

    And if the term (𝑁𝑠𝑝 + 𝑁𝑡ℎ + 1) effectively becomes 2 in the most 

fundamental quantum limit (where the "+1" for vacuum fluctuations is 

always there, and the 𝑁𝑠𝑝 term effectively contributes another "1" for the 

minimal spontaneous emission noise in an ideal laser), then the formula 

simplifies. This "factor of 2" for the total effective noise photons (one "real" 

spontaneous photon + one "vacuum" photon) is a common feature in 

refined Schawlow-Townes derivations. 

This simplification yields the celebrated Schawlow-Townes formula for 

the fundamental quantum-limited laser linewidth, denoted here as 𝛥𝜈𝑆𝑇: 

The formula is presented in a box:   capital Delta nu sub S T equals 

(pi h nu sub L, times capital Delta nu sub c squared) divided by (P sub 

L). 

That is, 

𝛥𝜈𝑆𝑇 =
𝜋ℎ𝜈L(𝛥𝜈c)

2

𝑃L

 

Comparing this to the formula for 𝛥𝜈L on the previous page, we see that the 

term (𝑁𝑠𝑝 + 𝑁𝑡ℎ + 1) has effectively been replaced by 2 to arrive at this final 

expression for 𝛥𝜈𝑆𝑇. 

𝛥𝜈L =
𝜋ℎ𝜈L(𝛥𝜈c)

2

2𝑃L

⋅ (𝑁𝑠𝑝 + 𝑁𝑡ℎ + 1) 

If (𝑁𝑠𝑝 + 𝑁𝑡ℎ + 1) → 2, then 



𝛥𝜈𝑆𝑇 =
𝜋ℎ𝜈L(𝛥𝜈c)

2

2𝑃L

⋅ 2 =
𝜋ℎ𝜈L(𝛥𝜈c)

2

𝑃L

 

This is consistent. This is the Schawlow-Townes limit, representing the 

narrowest possible linewidth a laser can achieve, dictated by quantum 

noise. 

Let's highlight the Key insight from this formula: 

  The fundamental laser linewidth 𝛥𝜈𝑆𝑇 is proportional to the square of 

the passive cavity linewidth (𝛥𝜈c)
2, and inversely proportional to the output 

power 𝑃L. 

  This tells us exactly what to do to design a laser with an extremely 

narrow intrinsic linewidth: 

  1. Make the passive cavity resonance 𝛥𝜈c as narrow as possible (i.e., 

use very high reflectivity mirrors, make a high-𝑄, high-Finesse cavity). The 

squared dependence means this is very effective. 

  2. Operate the laser at as high an output power 𝑃L as practically 

possible (while maintaining other desired characteristics). 

This formula is a cornerstone of laser physics. 
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Slide 12 

Let's look at some Practical Calculation Examples using the Schawlow-

Townes formula: 

𝛥𝜈𝑆𝑇 =
𝜋 ℎ 𝜈L (𝛥𝜈c)

2

𝑃L

 

First, for a Helium-Neon (HeNe) laser operating at a wavelength of 

632.8 nanometers: 

  Given parameters: 



   

Laser frequency, 𝜈L = 5 × 1014 Hz. 

    (This corresponds to 𝜆 =
𝑐

𝜈L

=
3×108  m/s

5×1014  Hz
= 0.6 × 10−6 m = 600 nm, 

which is close to 632.8 nm). 

   

Passive cavity FWHM linewidth, 𝛥𝜈c = 1 MHz = 1 × 106 Hz. 

    (This is a typical value for a HeNe laser cavity with reasonable 

mirrors). 

   

Output power, 𝑃L = 1 mW = 1 × 10−3 W. 

  Plugging these into the Schawlow-Townes formula (with ℎ ≈ 6.626 ×

10−34 J·s): 

   

𝛥𝜈𝑆𝑇 =
𝜋 (6.626 × 10−34 J·s) (5 × 1014 s−1) (1 × 106 s−1)2

1 × 10−3 J/s
 

   

𝛥𝜈𝑆𝑇 =
𝜋 ⋅ 6.626 ⋅ 5 ⋅ 10−34+14+12

10−3
 Hz 

   

𝛥𝜈𝑆𝑇 =
103.084 × 10−8

10−3
 Hz 

   

𝛥𝜈𝑆𝑇 = 103.084 × 10−5 Hz ≈ 1.03 × 10−3 Hz. 

  The slide gives the result:   𝛥𝜈L is approximately 1.0 × 10−3 Hz. 



  This is 1 milliHertz (mHz). Our calculation agrees perfectly. So, the 

fundamental quantum limit for a typical HeNe laser is incredibly small, 

around a milliHertz! 

Next, for an Argon-ion laser operating at a wavelength of 488 

nanometers: 

  Given parameters: 

   

Laser frequency, 𝜈L = 6 × 1014 Hz. 

    (𝜆 =
𝑐

𝜈L

=
3×108  m/s

6×1014  Hz
= 0.5 × 10−6 m = 500 nm, close to 488 nm). 

   

Passive cavity FWHM linewidth, 𝛥𝜈c = 3 MHz = 3 × 106 Hz. 

    (Argon ion lasers often have shorter, lossier cavities than HeNes, 

so a broader 𝛥𝜈c). 

   

Output power, 𝑃L = 1 W. 

    (Argon lasers are capable of much higher powers than HeNes). 

  Plugging these in: 

   

𝛥𝜈𝑆𝑇 =
𝜋 (6.626 × 10−34 J·s) (6 × 1014 s−1) (3 × 106 s−1)2

1 J/s
 

   

𝛥𝜈𝑆𝑇 =
𝜋 ⋅ 6.626 ⋅ 6 ⋅ 9 ⋅ 10−34+14+12

1
 Hz 

   



𝛥𝜈𝑆𝑇 = 𝜋 ⋅ 357.804 × 10−8 Hz 

   

𝛥𝜈𝑆𝑇 ≈ 1124.07 × 10−8 Hz ≈ 1.124 × 10−5 Hz. 

  The slide gives the result:   𝛥𝜈L is approximately 1.1 × 10−5 Hz. 

  This is 11 microHertz (𝜇Hz). Again, our calculation agrees very well.   

Notice that even though the Argon laser has a broader cavity linewidth 𝛥𝜈c 

(which tends to increase 𝛥𝜈𝑆𝑇), its much higher output power 𝑃L (which 

tends to decrease 𝛥𝜈𝑆𝑇) results in an even narrower fundamental linewidth 

than the HeNe example. 

These examples dramatically illustrate just how small the Schawlow-

Townes quantum limits are for common lasers. 
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Following these practical calculations, the crucial takeaway is emphasized: 

* These values (the calculated Schawlow-Townes linewidths of 

milliHertz for HeNe and tens of microHertz for Argon-ion) are many 

orders of magnitude narrower than technical noise can presently 

allow. 

This is the stark reality. While quantum mechanics permits these incredibly 

sharp spectral lines, the real world of engineering and experimental physics 

imposes much broader linewidths due to "technical noise." These technical 

noise sources, such as mechanical vibrations of the laser cavity, 

temperature fluctuations, electronic noise in power supplies, acoustic 

disturbances, and instabilities in the gain medium, typically broaden the 

laser line far beyond its Schawlow-Townes limit. 

For the HeNe example, we calculated a ∼ 1 mHz limit. A real HeNe laser 

might have a linewidth of many kHz or even MHz, so that's a factor of 106 

to 109 broader! 



For the Argon-ion laser, ∼ 11 𝜇Hz limit. A real one might be many MHz 

broad. 

This huge gap between the fundamental quantum limit and typical achieved 

linewidths highlights two things: 

1. The profound challenge experimentalists face in trying to approach the 

quantum limit. It requires extraordinary efforts in stabilization and noise 

suppression. 2. The Schawlow-Townes limit serves as an ultimate 

benchmark – a theoretical "brick wall" that we cannot surpass, no matter 

how perfect our engineering. 

Understanding this gap is essential for appreciating the ongoing research 

and development in ultra-stable lasers. 
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This slide provides a compelling visual comparison: Laser Linewidths: 

Theoretical Limits vs. Typical Achieved Values. This is a bar chart that 

graphically illustrates the gap we just discussed. 

* The vertical axis represents Linewidth, capital 𝛥𝜈 (Δν), in Hertz (Hz), 

plotted on a logarithmic scale. The scale spans from 10−6 Hz (microHertz) 

at the bottom to 106 Hz (MegaHertz) at the top, covering twelve orders of 

magnitude. 

* The horizontal axis lists several common types of lasers: * HeNe 

(Helium-Neon laser) * Ar-ion (Argon-ion laser) * ECDL (External Cavity 

Diode Laser) * Fiber (Fiber laser) * TiSap (Titanium-Sapphire laser) 

* For each laser type, there are two bars: * A blue bar representing the 

Schawlow-Townes Limit (the theoretical minimum linewidth). * An orange 

bar representing the Typical Achieved linewidth in practice. 

Let's look at the trends: 



* HeNe: The blue bar (Schawlow-Townes) is very low, around 10−3 Hz 

(milliHertz), consistent with our calculation. The orange bar (Typical 

Achieved) is much higher, around 103 to 104 Hz (kiloHertz). A gap of about 

6-7 orders of magnitude. 

* Ar-ion: The blue bar is even lower, around 10−5 Hz (tens of microHertz). 

The orange bar is very high, perhaps 105 to 106 Hz (hundreds of kHz to 

MHz). An even larger gap of 10-11 orders of magnitude. 

* ECDL (External Cavity Diode Laser): Blue bar around 10−3 Hz. Orange 

bar around 105 Hz (hundreds of kHz), though state-of-the-art ECDLs can 

be much narrower. 

* Fiber Lasers: Blue bar very low, perhaps 10−5 Hz or less. Orange bar 

around 103 Hz (kHz) for typical systems, but specialized fiber lasers can 

get much narrower, even sub-Hertz. 

* Ti:Sapphire Lasers: Blue bar very low, around 10−4 Hz. Orange bar 

around 105 Hz. 

The visual message is striking: for all these laser types, the orange bars 

(typical achieved linewidths) are dramatically taller (broader) than the 

blue bars (theoretical Schawlow-Townes limits). This underscores the 

fact that in most practical lasers, the observed linewidth is dominated by 

technical noise, not by the fundamental quantum noise described by 

Schawlow and Townes. Closing this gap is a major ongoing effort in laser 

science and technology. 

Page 39: 

Slide 13: 

Now, let's discuss the Experimental Reality – Comparison with 

Achieved Linewidths in more detail. 

* For Typical good single-mode gas lasers (like HeNe or Argon-ion) or 

dye lasers, achieved with moderate experimental effort: 



The laser linewidth, 𝛥𝜈L, is typically in the range of 104 to 106 Hertz 

(104 − 106 Hz). 

This means linewidths from about 10 kiloHertz to 1 MegaHertz. This 

corresponds to the "orange bars" we saw on the previous graph for many 

common systems. While this is already very monochromatic compared to 

other light sources, it's still far from the milliHertz or microHertz Schawlow-

Townes limits. "Moderate effort" implies standard laboratory setups without 

extreme stabilization measures. 

* However, with State-of-the-art ultra-stabilised systems, the situation 

can be dramatically improved. These systems often involve: 

* Using reference cavities made from materials with ultra-low thermal 

expansion (ULE) coefficients, like ULE glass or Zerodur, to minimize length 

fluctuations due to temperature changes. * Sophisticated vibration isolation 

platforms to shield the laser and cavity from mechanical disturbances. * 

Advanced electronic feedback (servo) systems to actively lock the laser 

frequency to the stable reference cavity or to an atomic transition. In such 

highly engineered systems, it's possible to achieve: 𝛥𝜈L ≤ 1 Hz. This is a 

phenomenal achievement! Linewidths at the Hertz level or even sub-Hertz 

level have been demonstrated for various types of lasers when extreme 

stabilization techniques are employed. This brings us much closer to the 

fundamental limits for some systems, though still many orders of magnitude 

away for others where the S-T limit is in the microHertz range. 

This shows that while the Schawlow-Townes limit is a theoretical floor, 

meticulous engineering can significantly reduce technical noise, pushing 

laser performance towards that fundamental boundary. 
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So, what causes the Remaining gap between the measured linewidth 

(even in state-of-the-art systems) and the Schawlow-Townes (ST) 

limit? 



The slide lists several culprits, all of which are essentially forms of residual 

technical noise that haven't been perfectly eliminated: 

• Residual cavity-length fluctuations, often denoted by fluctuations 

in the optical path length 𝑛 ⋅ 𝑑 (nd). Even with ULE materials and 

vibration isolation, there will still be some tiny changes in the effective 

cavity length due to temperature drifts, mechanical creep, or 

uncompensated vibrations. 

• Acoustic and electronic noise in servo loops. The very feedback 

systems used to stabilize the laser can themselves introduce noise. 

Acoustic noise can vibrate components, and electronic noise in detectors, 

amplifiers, and actuators within the servo loop can translate into frequency 

fluctuations of the laser. 

• Environmental temperature drifts inducing index changes. Small 

changes in the ambient temperature can affect the refractive index 𝑛 of air 

(if any part of the beam path is in air) or of intracavity optical components, 

again shifting the cavity's resonant frequency. 

These are the persistent enemies of ultra-narrow linewidths. 

Recognizing these challenges, Research continues on advanced 

techniques to close this gap further and push lasers closer to their 

quantum-limited performance. Some of these techniques include: 

• Spectral hole burning: In some gain media, it's possible to use one 

laser to "burn" a very narrow spectral hole in the gain profile. A second 

laser can then be locked to this sharp feature, effectively narrowing its 

linewidth. 

• Active cancellation: This involves more sophisticated feedback and 

feed-forward schemes to sense and actively cancel out noise sources. For 

example, measuring vibrations and applying counter-vibrations, or sensing 

temperature drifts and actively correcting them. 



• Cryogenic cavities: Operating the reference cavity at very low 

(cryogenic) temperatures can dramatically reduce thermal expansion 

effects, Brownian motion of the mirror surfaces (a fundamental thermal 

noise limit in itself, distinct from Schawlow-Townes), and other 

temperature-sensitive noise sources. This is a frontier area for achieving 

extremely high frequency stability and narrow linewidths. 

The quest for " quieter " lasers is an ongoing and exciting field of research. 
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We now arrive at a very important distinction, highlighted on Slide 14: 

Linewidth vs. Frequency Stability – Do Not Confuse! These two terms 

describe different aspects of a laser's spectral purity, and it's crucial to 

understand the difference. 

* First, Linewidth, capital 𝛥𝜈L: This is the intrinsic spectral width of the 

laser line, primarily due to random phase diffusion. This is what the 

Schawlow-Townes limit describes. It refers to how "fuzzy" or "spread out" 

the laser's frequency is at any given instant, or over very short timescales. 

It's related to the coherence time of the laser – how long the phase remains 

predictable. A narrow 𝛥𝜈L means high coherence. 

* Second, Frequency stability: This refers to the ability of the line 

centre, 𝜈0, of the laser spectrum to remain constant over time. It's about 

how much the average frequency of the laser drifts, wanders, or jitters over 

longer timescales (seconds, minutes, hours, or even longer). A laser could 

have a very narrow instantaneous linewidth (𝛥𝜈L is small) but its center 

frequency 𝜈0 could be drifting all over the place. Conversely, a laser could 

have a relatively broad instantaneous linewidth but its center frequency 

might be, on average, very stable. 

These are two distinct figures of merit for a laser. 



* The slide then gives some Example achievements in frequency stability, 

which we'll see on the next page. These achievements often involve 

locking the laser to a very stable external reference. 
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Continuing with examples of frequency stability: 

We often characterize frequency stability by the fractional frequency 

fluctuation, 
𝛿𝜈

𝜈
, where 𝛿𝜈 is the typical fluctuation or drift of the center 

frequency 𝜈 over a specified observation time. 

* For dye lasers locked to molecular references (e.g., an absorption line 

in iodine vapor): Achieved stabilities can be 
𝛿𝜈

𝜈
≤ 10−15. This is an 

incredible level of stability – one part in 1015! This means if the laser 

frequency is, say, 5 × 1014 Hz, the fluctuation 𝛿𝜈 is less than 0.5 Hz. 

* For cavity-stabilised HeNe lasers or solid-state lasers (where the laser 

is locked to an ultra-stable Fabry-Pérot reference cavity, like the ULE 

cavities mentioned earlier): Stabilities can be even better, reaching 
𝛿𝜈

𝜈
≤

10−16. This is approaching the stability required for the most advanced 

optical atomic clocks. 

Now, the crucial link (or lack thereof) between linewidth and stability: 

A narrow linewidth is a necessary but not sufficient* condition for 

excellent frequency stability. 

You generally need a laser with a reasonably narrow intrinsic linewidth 

(𝛥𝜈L) as a starting point because it's easier to lock a "clean" narrow line to a 

reference. If the laser line itself is very broad and noisy, it's hard to define 

its center precisely enough for tight locking. 

However, just having a narrow intrinsic linewidth (e.g., a laser that is close 

to its Schawlow-Townes limit if it were perfectly isolated) does not 



guarantee that its center frequency 𝜈0 will be stable over time. That center 

frequency can still drift due to slow changes in the cavity length, 

temperature, etc., unless active stabilization measures are taken. 

Therefore, for excellent long-term frequency stability, active feedback 

and referencing (to an atomic transition or a stable cavity) are 

absolutely required. These servo systems work to keep the laser's center 

frequency locked to the reference, correcting for drifts. 
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This slide provides an excellent visual: Distinction Between Linewidth 

and Frequency Stability, showing two plots that clearly illustrate the 

difference. 

Both plots show Intensity on the vertical axis and Frequency (𝜈) on the 

horizontal axis. 

* Plot A is titled: "Broad Linewidth, Good Stability." * This plot shows a 

single, wide, bell-shaped curve. The width of this curve, indicated by a 

red double arrow and labeled 𝛥𝜈L(broad), represents a broad 

instantaneous laser linewidth. So, at any given moment, the laser's 

emission is spread over a relatively wide range of frequencies. * However, 

a vertical dashed blue line indicates the center frequency, 𝜈0. The label 

"Good Stability" (in green) and the fact that only a single, fixed peak is 

shown imply that this center frequency 𝜈0 is very stable over time; it doesn't 

drift. * So, this laser is "fuzzy" but its average color is very constant. 

* Plot B is titled: "Narrow Linewidth, Poor Stability." This plot shows 

several snapshots (solid blue line, and fainter dotted lines) of a very 

narrow* bell-shaped curve. The width of this narrow peak, indicated by a 

red double arrow and labeled 𝛥𝜈L(narrow), represents a narrow 

instantaneous laser linewidth. So, at any given moment, the laser is 

emitting a very pure frequency. * However, the center frequency of this 

narrow peak, labeled 𝜈0(𝑡), is shown to be shifting over time. The purple 



double arrow labeled 𝛿𝜈(drift) indicates the range over which this center 

frequency wanders. The label "Poor Stability" (in red) highlights this drift. 

* So, this laser is instantaneously "sharp" but its average color changes or 

drifts over time. 

This pair of diagrams is extremely effective in communicating that linewidth 

(the instantaneous "fuzziness") and stability (the long-term constancy of the 

center frequency) are independent characteristics of a laser. For many 

high-precision applications, you need both a narrow linewidth and good 

frequency stability. 
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Finally, let's consider the Implications for Ultra-High-Resolution 

Spectroscopy and other applications that stem from understanding and 

controlling laser linewidths. 

This is Slide 15. 

* The first point is directly relevant to spectroscopists: The resolution limit 

of a spectroscopic measurement is often set by the probe-laser 

linewidth rather than the intrinsic linewidth of the sample (e.g., an 

atomic or molecular transition). If your laser line is broader than the 

natural linewidth of the transition you are studying, you will not be able to 

resolve the true shape or width of the sample's spectral feature. The 

measured spectrum will be a convolution of the sample's spectrum and 

your laser's spectrum, effectively "smeared out" by the laser. Therefore, to 

perform ultra-high-resolution spectroscopy, you need a laser whose 

linewidth 𝛥𝜈L is significantly narrower than the features you aim to resolve. 

* The connection to coherence length: A long coherence length, which 

results from a narrow linewidth, enables powerful interferometric 

techniques. We saw that 𝐿c ≈
𝑐

𝜋𝛥𝜈L

. For very narrow linewidths, 𝐿c can be 

enormous. For example, gravitational-wave detectors (like LIGO and 

Virgo) use lasers with sub-Hertz linewidths. This gives them coherence 



lengths of hundreds of thousands of kilometers, which is essential for 

maintaining phase coherence of the light over the long arms of their 

interferometers (several kilometers long) and for detecting the incredibly 

tiny changes in arm length caused by passing gravitational waves. 

* Knowledge of the Schawlow-Townes (ST) limit has practical engineering 

implications: Knowledge of the ST limit guides the engineering of laser 

systems designed for ultra-high precision and stability. It tells us what 

to focus on when trying to achieve the narrowest possible linewidths. 

Specifically, it guides the design of: 
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Continuing with how knowledge of the Schawlow-Townes limit guides 

engineering: 

* Cavity finesse and mirror coatings: The ST limit shows that linewidth is 

proportional to (𝛥𝜈c)
2, the square of the passive cavity linewidth. To make 

𝛥𝜈c small, we need high finesse, which in turn requires high-reflectivity 

mirror coatings with minimal losses. So, efforts in developing ultra-high 

quality mirrors are directly motivated by the desire to reduce 𝛥𝜈c and 

approach the ST limit. 

* Output coupling: This involves a trade-off. The ST formula shows 

linewidth is inversely proportional to output power 𝑃L. To get high 𝑃L, you 

might need significant output coupling. However, higher output coupling 

generally means lower finesse and broader 𝛥𝜈c (as more energy is lost per 

round trip). So, there's an optimization problem to balance high power (for 

low ST linewidth) with high finesse (also for low ST linewidth via small 𝛥𝜈c). 

Understanding the ST framework helps in making these design choices. 

Pump-noise suppression and thermal design: While the ST limit itself 

assumes these technical noise sources are absent, striving to reach the ST 

limit means aggressively tackling them. Suppressing noise in the pump 

source (which can affect 𝑁𝑠𝑝 or cause other fluctuations) and meticulous 



thermal design of the laser cavity (to minimize 𝛥𝜈c fluctuations due to 

temperature) are critical steps in reducing the actual linewidth towards the 

fundamental* ST limit. 

Beyond spectroscopy and interferometry, there are other profound 

implications: 

* Understanding the phase noise foundation (which leads to the ST 

limit) is critical for next-generation optical clocks targeting 10−18 

(10−18) fractional stability. Optical atomic clocks are the most precise 

instruments ever built. Their performance relies on lasers with exceptional 

stability and narrow linewidths to probe ultra-narrow atomic transitions. The 

fundamental limit to how well these lasers can perform is ultimately tied to 

phase noise mechanisms like those described by Schawlow and Townes. 

Reaching stabilities of 1 part in 1018 (which means being able to keep time 

accurately to within a second over the age of the universe) requires 

pushing laser technology to its absolute quantum limits. 

And a final concluding thought: 

* The Schawlow-Townes framework remains a cornerstone for 

designing, diagnosing, and pushing laser systems toward quantum-

limited performance. Even though the original formula has seen 

refinements and extensions (e.g., to include bad-cavity effects, 

semiconductor laser specifics like the linewidth enhancement factor), its 

core insights about the role of spontaneous emission, cavity properties, and 

power remain fundamentally important. It provides the language and the 

conceptual tools for physicists and engineers working to create ever more 

perfect sources of coherent light. 

The triple dash indicates the end of this section on laser linewidths. This 

has been a deep dive, from basic definitions to fundamental quantum limits 

and practical implications. I hope this has given you a thorough 

understanding of why lasers have linewidths and what determines their 

ultimate spectral purity. 



And with that, we conclude our detailed exploration of the linewidths of 

single-mode lasers, culminating in the elegant and profoundly insightful 

Schawlow-Townes limit. We've journeyed from the initial, perhaps 

unsettling, question of why an idealized source like a laser should even 

possess a non-zero linewidth, all the way to understanding the quantum 

mechanical origins of that width. 

We've seen that the random phase kicks imparted by spontaneously 

emitted photons, coupled into the lasing mode, lead to phase diffusion – a 

random walk of the laser field's phase in the complex plane. This diffusion, 

in turn, manifests as a Lorentzian lineshape in the frequency domain, with a 

full width at half maximum that is fundamentally limited. The Schawlow-

Townes formula provided us with a quantitative prediction for this limit, 

revealing its dependence on crucial parameters like the laser power, the 

photon energy, and, very significantly, the square of the passive cavity 

linewidth. 

The numerical examples for HeNe and Argon-ion lasers dramatically 

illustrated just how incredibly narrow these fundamental limits are – 

milliHertz down to microHertz! Yet, as the comparison charts and 

discussion of experimental reality showed, achieving these limits is an 

ongoing, monumental challenge due to the pervasive nature of technical 

noise. Vibrations, thermal effects, electronic noise – these are the practical 

hurdles that often dominate the observed linewidths by many orders of 

magnitude. 

However, the Schawlow-Townes limit is far from being a mere academic 

curiosity. It serves as an indispensable benchmark, guiding the 

sophisticated engineering efforts in ultra-stabilization techniques, from ULE 

cavities and vibration isolation to advanced servo-locking schemes and 

cryogenic systems. The pursuit of this quantum limit is what drives 

innovation in areas like ultra-high-resolution spectroscopy, gravitational 

wave detection, and, perhaps most notably, the development of next-



generation optical atomic clocks striving for unprecedented levels of 

precision. 

It's also crucial to carry forward the distinction between the intrinsic 

linewidth 𝛥𝜈L and long-term frequency stability 𝛿𝜈/𝜈. A narrow linewidth is 

necessary for good stability, but active referencing and feedback are 

paramount for ensuring that the laser's center frequency remains anchored 

over time. 

So, the Schawlow-Townes framework isn't just a formula; it's a conceptual 

cornerstone. It helps us understand the ultimate performance boundaries 

imposed by quantum mechanics and provides a clear roadmap for 

designing, diagnosing, and continually pushing laser technology towards 

that elusive quantum-limited frontier. This understanding is vital for anyone 

engaged in advanced laser spectroscopy or applications demanding the 

highest spectral purity and stability. 

That brings us to the end of the material presented in these slides on laser 

linewidths. We'll pause here for this topic. In our next lecture, we will build 

upon these concepts as we explore further aspects of laser behavior and 

their spectroscopic applications. Are there any immediate, burning 

questions on what we've covered today regarding laser linewidths? 


