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Welcome, Dear Students of Dr M A Gondal, everyone. Today, we embark 

on a detailed exploration of Chapter 5, Section 3, focusing on the "Spectral 

Characteristics of Laser Emission." This is a cornerstone topic in 

understanding how lasers actually produce the light we observe and utilize. 

We'll be delving into the intricacies that determine the precise colors, or 

more accurately, the frequencies, that a laser emits. The material we'll 

cover has been prepared by Distinguished Professor Doctor M A Gondal 

for our Physics 608 Laser Spectroscopy course here at KFUPM. Let's dive 

in. 
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Alright, let's set the stage for our discussion on the "Spectral 

Characteristics of Laser Emission." The primary goal for this block of slides, 

and indeed this section of the course, is to build a rigorous, step-by-step 

understanding of a fundamental question: How do an active medium and 

an optical resonator, working in concert, determine the exact set of 

frequencies emitted by a laser? It's not enough to say a laser emits red 

light; we need to understand which red frequencies, how narrow they are, 

and what physical processes dictate this specificity. This understanding is 

absolutely critical for anyone designing, using, or interpreting experiments 

involving lasers, especially in high-resolution spectroscopy. 

To achieve this goal, we need to dissect the problem into its key 

ingredients. These are components that we must analyze separately first, 

to understand their individual contributions, and then combine them to see 

the full picture. This approach of breaking down a complex system is a 

hallmark of physics. 

The first crucial ingredient is "The spectral gain profile of the amplifying 

transition in the medium." Let's unpack this. The "active medium," as you 

know, is where light amplification occurs. This amplification is tied to a 

specific "amplifying transition" – an electronic, vibrational, or rotational 



transition within the atoms or molecules of the medium that has a 

population inversion. This transition doesn't provide equal gain at all 

frequencies; instead, it has a "spectral gain profile." This profile is a curve, 

plotting gain as a function of frequency. It has a certain central frequency 

and a certain width, determined by the physics of the gain medium itself, 

such as Doppler broadening or lifetime broadening. Understanding the 

shape and characteristics of this gain profile is our first step because the 

laser can only oscillate at frequencies where there is sufficient gain to 

overcome losses. 
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Continuing with the key ingredients that determine laser emission 

frequencies: 

The second ingredient is "The discrete resonance spectrum (axial and 

transverse modes) of the passive optical cavity." A "passive optical cavity" 

typically consists of two mirrors facing each other. It's called "passive" 

because, at this stage of analysis, we're not yet considering the gain 

medium inside it. Such a cavity doesn't support any arbitrary frequency of 

light. Instead, it only allows standing waves to form at specific, discrete 

resonant frequencies. These are the "eigenfrequencies" of the cavity. 

These resonant frequencies are determined by the cavity's geometry, 

primarily its length. We'll see that there are "axial modes," which relate to 

standing waves along the main axis between the mirrors, and "transverse 

modes" (often denoted TEM𝑚𝑛 modes), which describe the field distribution 

in the plane perpendicular to the axis. The interplay between this discrete 

set of allowed cavity frequencies and the continuous gain profile of the 

active medium is central to laser operation. 

The third ingredient involves "The non-linear, intensity-dependent 

phenomena that arise once oscillation starts." This is where things get 

really interesting and often more complex. Once the laser begins to 

oscillate, the intensity of the light inside the cavity can become very high. 



This high intensity can, in turn, modify the properties of the active medium 

and the interaction. We're talking about phenomena such as: 

"Gain saturation": As the intensity builds up, it depletes the population 

inversion, thereby reducing the gain. This is a crucial self-regulating 

mechanism in lasers. 

"Mode competition": If multiple cavity modes fall under the gain profile, they 

might compete for the available gain. Sometimes one mode wins out, 

leading to single-mode operation; other times, multiple modes can coexist. 

"Spatial hole burning": In standing-wave cavities, the intensity pattern has 

nodes and antinodes. Saturation can occur preferentially at the antinodes, 

"burning holes" in the spatial distribution of the gain. This can allow other 

modes, whose antinodes are in different locations, to lase. 

"Mode pulling": The refractive index of the gain medium itself can be 

frequency-dependent, especially near the gain line center. This can slightly 

shift, or "pull," the actual lasing frequencies away from the passive cavity 

resonance frequencies. 

These non-linear effects are critical for understanding the stable operating 

characteristics of a real laser. 

So, what's our "Strategy for the forthcoming slides"? We'll tackle this 

systematically: 

1. First, we will "Introduce mathematical description of the passive cavity." 

We need to understand the allowed frequencies of an empty resonator. 

This provides the basic framework, the "comb" of possible frequencies. 

2. Second, we will "Insert an active medium, derive modified 

eigenfrequencies." We'll see how placing an active medium, with its own 

refractive index, inside the cavity changes the optical path length and thus 

shifts these eigenfrequencies. 
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Continuing with our strategy: 

3. Third, we will "Develop the laser threshold condition from first principles." 

This is a pivotal concept. The threshold condition defines the minimum gain 

required from the active medium to overcome all the losses in the cavity 

(like mirror transmission, absorption, scattering) for laser oscillation to 

begin. It tells us when a laser will lase. 

4. And fourth, we will "Examine line-narrowing effects, saturation physics, 

multimode behaviour, and the frequency shifts produced by dispersion in 

the gain medium." This involves looking at how the interaction of the gain 

profile and the cavity modes, along with saturation, leads to the actual 

observed laser spectrum. Line-narrowing is a key characteristic of laser 

light, and we'll explore why laser output is much narrower than the gain 

profile or the cavity resonances alone. We'll delve deeper into saturation 

physics, how multiple modes behave and interact, and quantitatively 

assess the frequency shifts due to dispersion – that's the mode pulling we 

mentioned. 

Now, to ensure clarity and consistency, let's establish some "Conventions 

adopted throughout" this discussion: 

* The symbol 𝑐 (lowercase cee) will represent the speed of light in vacuum. 

Its units will typically be meters per second, written as m s−1. The value is 

approximately 3 × 108 meters per second. 

* The symbol 𝑑 (lowercase dee) will represent the physical mirror 

separation in a linear cavity. Its units will be meters, denoted as 𝑚. 
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Continuing with our conventions: 

* The symbol 𝑛(𝜈) – that's lowercase 𝑛 as a function of 𝜈 (the Greek letter 

𝜈, representing frequency) – will denote the frequency-dependent refractive 

index of the active medium. The refractive index, as you know, is a 



dimensionless quantity. The fact that it's frequency-dependent, 𝑛(𝜈), 

especially near the atomic or molecular transition providing gain, is crucial 

for understanding phenomena like mode pulling. 

* The symbol 𝐿 (capital Ell) will represent the length of the gain medium 

inside the cavity. This is distinct from 𝑑, the total mirror separation. 𝐿 will 

also be in units of meters, 𝑚 (em). 

* The "Axial mode index 𝑞" (lowercase cue) will be an integer, belonging to 

the set of integers denoted by the symbol ℤ (from the German 'Zahlen'). 

So, 𝑞 can be zero, one, two, three, and so on. It quantifies how many half-

wavelengths of the light fit into the cavity for a particular axial mode. 

A quick note on notation: "All symbols will be re-defined on the..." 
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"...Slide where they first appear." This is just a pedagogical commitment to 

ensure clarity. Even if we introduce a symbol now, when it becomes central 

to an equation or a discussion on a later slide, we'll briefly remind you of its 

meaning. 

Finally, regarding units: "CGS and SI units will be stated explicitly when 

needed." Physics relies on consistent use of units, and while SI (Système 

International) units are generally preferred, sometimes historical context or 

convenience in certain subfields might lead to CGS (Centimeter-Gram-

Second) units. We will be explicit to avoid any confusion. 

Now that we've set the stage and defined our initial conventions, let's move 

to our first main topic: the passive resonator. 
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Alright, let's begin our quantitative journey with a "Passive Fabry-Perot 

Resonator — Eigenfrequency Review." The Fabry-Perot resonator, or 

etalon, typically consisting of two parallel mirrors, is the most fundamental 

type of optical resonator. We call it "passive" here because we are 



considering it without any gain medium inside – just the mirrors and the 

space between them. This review will establish the baseline for the 

frequencies that could resonate if there were light present. 

* First, "Consider two perfectly parallel mirrors separated by distance 𝑑." 

Imagine these two mirrors facing each other. The "perfectly parallel" is an 

idealization, but it simplifies the initial analysis. 𝑑 is the physical separation. 

"For vacuum between the mirrors, the round-trip optical path length is 2 𝑑." 

This is straightforward: light travels a distance 𝑑 from one mirror to the 

other, reflects, and travels back a distance 𝑑, completing a round trip of 2 𝑑 

(two dee). 

* Now, for light to resonate within this cavity, it must form a standing wave. 

The "Standing-wave condition" requires that the electric field must be zero 

at the surface of perfectly conducting mirrors. This leads to the condition 

that the cavity length 𝑑 must be an integer multiple of half-wavelengths. 

Equivalently, for a round trip, the phase change must be an integer multiple 

of 2𝜋. This leads to the equation shown: 

2 𝑑 = 𝑞 ×
𝑐

𝜈𝑞,vac

 

Let's break this down: "Two dee equals cue times the ratio of cee over nu 

sub cue comma vac." Here, 2 𝑑 (two dee) is the round-trip path length in 

meters. 𝑞 (cue) is the axial mode index, an integer (0,1,2,… ), as we defined 

earlier. It essentially counts the number of half-wavelengths that fit into the 

cavity length 𝑑. 𝑐 (cee) is the speed of light in vacuum, in meters per 

second. 𝜈𝑞,vac (nu sub cue comma vac) is the eigenfrequency of the 𝑞-th 

axial mode in vacuum, in Hertz. This is the specific frequency that satisfies 

the standing wave condition for that particular integer 𝑞. This equation 

fundamentally states that for a standing wave to exist, the round-trip path 

length (2 𝑑) must be an integer multiple (𝑞) of the wavelength (𝜆 =
𝑐

𝜈𝑞,vac

). 



This condition quantizes the frequencies that can exist stably within the 

passive cavity. 

Page 8: 

Continuing from the standing-wave condition, let's define the terms more 

formally: 

𝜈𝑞,vac (nu sub q comma vac): This is the "eigenfrequency of the 𝑞-th axial 

mode in vacuum," and its units are Hertz (Hz). These are the specific, 

discrete frequencies that "fit" perfectly into the cavity, forming standing 

waves. 

𝑞 (lowercase q): This is the "integer mode number," taking values like 0, 1, 

2, and so on. Each value of 'q' corresponds to a different axial mode, a 

different number of half-wavelengths across the cavity length. 

Now, we can "Solve for the eigenfrequencies" by simply rearranging the 

previous equation. If we make 𝜈𝑞,vac the subject, we get: 

𝜈𝑞,vac =
𝑞 ⋅ 𝑐

2 ⋅ 𝑑
 

Let's verbalize this: "nu sub q comma vac equals q times c, all divided by 

two times d." 

This equation is fundamental. It tells us that the allowed frequencies in a 

passive vacuum cavity are directly proportional to the mode number 'q' and 

the speed of light 𝑐, and inversely proportional to twice the cavity length 𝑑. 

This means the resonant frequencies form an equally spaced ladder or 

comb of frequencies. 

From this, we can define an "Important derived quantity – Free Spectral 

Range (FSR)." The FSR is a characteristic parameter of any Fabry-Perot 

cavity. 
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The Free Spectral Range, or FSR, is defined as the spacing between 

adjacent axial modes. Let's denote it by 𝛿𝜈 (delta nu). It's the difference 

between the frequency of mode 𝑞 + 1 and mode 𝑞. So, 

𝛿𝜈 = 𝜈𝑞+1,vac − 𝜈𝑞,vac 

Using our formula for 𝜈𝑞,vac: 

𝛿𝜈 =
(𝑞 + 1)𝑐

2 𝑑
−
𝑞 𝑐

2 𝑑
 

Factoring out 
𝑐

2 𝑑
, we get: 

𝛿𝜈 = (
𝑐

2 𝑑
) (𝑞 + 1 − 𝑞) 

Which simplifies to: 

𝛿𝜈 =
𝑐

2 𝑑
 

* So, "FSR is the constant spacing between adjacent axial modes of the 

passive cavity." This is a very important result. It means if you know the 

cavity length 'd', you immediately know the frequency separation between 

its resonant modes in vacuum. For example, a 1-meter long cavity (𝑑 =

1 m) would have a 2 𝑑 of 2 meters. If 𝑐 is 3 × 108 m/s, then FSR = 

3×108  m/s

2 m
= 1.5 × 108 Hz, or 150 Megahertz. This is a typical FSR for a 

meter-scale cavity. 

* The next point here is about the "Passive cavity half-width (power) of 

each resonance." Each of these resonant frequencies is not infinitely sharp. 

They have a finite linewidth, or half-width, often denoted 𝛥𝜈c (Delta nu sub 

c) or related to the cavity finesse. This width is "caused by mirror 

transmission 𝑇 (capital Tee) and additional losses 𝛾 (gamma)." These 

losses represent energy escaping the cavity per round trip. The derivation 

of this half-width, and the related concept of cavity Q-factor and finesse, 

"will be derived later when 𝐺(𝜈) is introduced." 𝐺(𝜈) (capital Gee of nu) will 



be our round-trip gain factor, and understanding losses is crucial for that. 

For now, just appreciate that these resonances have a finite width. 
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Now we move to a slightly more complex scenario, titled "Inserting an 

Active Medium — Effective Optical Length." Up until now, we've considered 

a vacuum between the mirrors. What happens when we place our gain 

medium, which is a dielectric material, inside this cavity? 

* The first bullet point states: "Whenever a dielectric slab of physical length 

𝐿 and frequency-dependent index 𝑛(𝜈) is placed between the mirrors, the 

effective round-trip optical path length changes." This is the key insight. 

Light travels slower in a medium with refractive index greater than one. The 

optical path length is not just the physical length, but the physical length 

multiplied by the refractive index. Since 𝑛 can be frequency-dependent, the 

optical path length also becomes frequency-dependent. 

Therefore, we need to "Replace the earlier geometric length 𝑑 by an 

effective length \(d^(\nu)\)." This 𝑑∗(𝜈) will account for the presence of the 

dielectric. 

Let's look at the "Detailed derivation" of this effective optical length for one 

pass through the cavity (the slide implies round-trip, but the \(d^(\nu)\) is 

usually defined for one pass, and then the round trip is \(2\,d^(\nu)\). Let's 

clarify as we go, the equations will make it clear. The later equation 

\(2\,d^(\nu)\) confirms \(d^(\nu)\) is one-way effective length). 

1. "Segment outside the gain medium:" If the total mirror separation is 𝑑, 

and the gain medium has a physical length 𝐿, then the remaining length 

inside the cavity is 𝑑 − 𝐿. Assuming this part is vacuum (or air, with 𝑛 ≈ 1), 

its optical length is simply its physical length. 
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So, following the derivation: 



The physical length 𝑑 − 𝐿 in vacuum contributes an optical length of 𝑑 − 𝐿. 

This is step 1. 

2. "Segment inside the gain medium:" 

The gain medium itself has a physical length 𝐿. Because it has a refractive 

index 𝑛(𝜈), this physical length 𝐿 "gives optical length 𝑛(𝜈)𝐿". This is 

because the light effectively travels 𝑛 times further, or takes 𝑛 times longer, 

to traverse this physical distance compared to vacuum. 

3. "Total optical length:" 

So, for a single pass from one mirror to the other, the total effective optical 

length, 𝑑∗(𝜈), is the sum of these two parts: 

𝑑∗(𝜈) = (𝑑 − 𝐿) + 𝑛(𝜈)𝐿 

This is the effective one-way optical path length from one mirror to the 

other when a medium of length 𝐿 and refractive index 𝑛(𝜈) is present. 

4. "Rearranged form:" 

We can rewrite this by factoring out 𝐿 from the last two terms, or rather by 

regrouping: 

𝑑∗(𝜈) = 𝑑 − 𝐿 + 𝑛(𝜈)𝐿 = 𝑑 + (𝑛(𝜈)𝐿 − 𝐿) 

So, 𝑑∗(𝜈) = 𝑑 + [𝑛(𝜈) − 1]𝐿. 

This form is quite intuitive. It says the effective length is the original 

physical length 𝑑, plus an extra term (𝑛(𝜈) − 1)𝐿. This extra term 

represents the additional optical path introduced by the medium compared 

to if that same length 𝐿 were vacuum. If 𝑛(𝜈) is greater than 1, this term is 

positive, and the effective optical length is longer than 𝑑. 

With this new effective optical length \(d^(\nu)\), "The new eigenfrequency 

condition becomes:" We simply replace 𝑑 in our previous vacuum 

eigenfrequency condition with 𝑑∗(𝜈). 
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The new eigenfrequency condition, analogous to 2 𝑑 = 𝑞 ⋅
𝑐

𝜈𝑞,vac

 for the 

vacuum case, now becomes: 

2 ⋅ 𝑑∗(𝜈) = 𝑞 ⋅
𝑐

𝜈𝑞,act

 

Here, \(d^(\nu)\) is the frequency-dependent effective one-way optical path 

length we just derived. So, \(2 \cdot d^(\nu)\) is the effective round-trip 

optical path length. 𝑞 is still our integer axial mode number. 𝑐 is the speed 

of light in vacuum. And critically, 𝜈𝑞,act denotes the active-cavity 

eigenfrequency. These are the resonant frequencies when the active 

medium is present. 

Notice a subtlety here: 𝑑∗ depends on frequency 𝜈, and the resonant 

frequency 𝜈𝑞,act itself is what we are solving for. This means the equation 

2 𝑑∗(𝜈𝑞,act) 𝜈𝑞,act

𝑐
= 𝑞 

is now an implicit equation for 𝜈𝑞,act because 𝑑∗ contains 𝑛(𝜈𝑞,act). This is 

more complex than the vacuum case where 𝑑 was a constant. This 

frequency dependence of 𝑛(𝜈) is the origin of dispersion effects like mode 

pulling, which we'll discuss in detail later. For now, this equation defines the 

new set of resonant frequencies. 
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This page provides a very helpful visual for what we've just discussed, 

under the title "Chapter 5.3: Spectral Characteristics of Laser Emission" 

and "Figure: Cavity Configurations and Optical Paths." We have two 

panels. 

Panel (a) is titled "Empty Cavity." It depicts two thick vertical black lines 

representing the mirrors. The distance between them is labeled 𝑑 with a 



double-headed arrow. A dashed red line, representing a light ray, traverses 

the cavity from left to right, labeled "Optical path = 𝑑". This illustrates the 

simple case: for an empty cavity (vacuum or air with 𝑛 ≈ 1), the one-way 

optical path length is just the physical separation 𝑑. 

Panel (b) is titled "Cavity with Active Medium." Again, we see the two 

mirrors, also separated by the physical distance 𝑑. However, now, a 

significant portion of the space between the mirrors is occupied by a light 

blue rectangle, which is labeled "Active Medium." This active medium has a 

physical length 𝐿, indicated by a double-headed arrow below it. Inside this 

active medium, the dashed red line representing the light ray's path is 

labeled "Optical path = 𝑛(𝜈)𝐿" (en of nu times Ell), where 𝑛(𝜈) is also 

shown within the blue block. The part of the cavity not filled by the active 

medium is indicated below the entire setup as "Total optical path in vacuum 

= 𝑑 − 𝐿" (dee minus Ell), which refers to the sum of vacuum path segments 

if the medium isn't filling the whole cavity. Here, it seems the medium of 

length 𝐿 is placed somewhere within 𝑑. 

The crucial formula we derived, 

𝑑∗(𝜈) = (𝑑 − 𝐿) + 𝑛(𝜈)𝐿 

assumes the remaining 𝑑 − 𝐿 is vacuum. This diagram beautifully illustrates 

that the total optical path for one pass is no longer just 𝑑, but is modified by 

the presence of the medium with its refractive index 𝑛(𝜈) over the length 𝐿. 

The term "Total optical path in vacuum = 𝑑 − 𝐿" on the diagram specifically 

refers to the portion of the cavity not occupied by the medium. So, the total 

one-way optical path is indeed (𝑑 − 𝐿) + 𝑛(𝜈)𝐿. 

This figure clearly contrasts the two scenarios and helps to visualize why 

the effective optical length 𝑑∗ must be used when an active medium is 

present. 
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Now we encounter a very important phenomenon: "Anomalous Dispersion 

and Its Spectroscopic Importance." 

The first point states: "Within the gain bandwidth of an inverted transition, 

the real part of the refractive index exhibits anomalous dispersion." Let's 

break this down. "Gain bandwidth" is the range of frequencies over which 

the active medium can provide amplification. An "inverted transition" refers 

to a pair of energy levels where the upper level is more populated than the 

lower, a necessary condition for gain. "The real part of the refractive index," 

𝑛(𝜈), is what affects the phase velocity of light and thus the optical path 

length. "Anomalous dispersion" is a specific behavior of the refractive index 

with frequency. Normally, for transparent materials far from resonance, 

refractive index increases with frequency (normal dispersion, like in a 

prism). Anomalous dispersion refers to regions where the derivative 
𝑑𝑛

𝑑𝜈
 is 

negative, meaning the refractive index decreases with increasing 

frequency. This typically occurs in the vicinity of an absorption line. For an 

inverted transition (a gain line), the behavior is related but, as we'll see, 

leads to characteristic shifts. 

The slide specifies the behavior of 𝑛(𝜈) near the center of the gain line, 

let's call it 𝜈0: 

" 𝑛(𝜈) decreases below unity on the low-frequency side (𝜈 < 𝜈0)." That is, 

for frequencies slightly less than the line center frequency 𝜈0, the refractive 

index can actually be less than 1. 

" 𝑛(𝜈) increases above unity on the high-frequency side (𝜈 > 𝜈0)." For 

frequencies slightly greater than 𝜈0, the refractive index is greater than 1. 

This "S"-shaped curve for 𝑛(𝜈) around 𝜈0, particularly the region of rapid 

change, is characteristic of anomalous dispersion associated with a gain 

feature. The fact that 𝑛(𝜈) can be less than 1 might seem surprising, as it 

implies a phase velocity (
𝑐

𝑛
) greater than 𝑐. However, this doesn't violate 



relativity, as signal velocity and group velocity are the relevant quantities for 

information transfer and are properly constrained. 

What is the "Physical reason" for this behavior? 
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Continuing with the physical reason for anomalous dispersion in a gain 

medium: 

"Kramers-Kronig relations link negative absorption (stimulated emission) to 

a dispersive phase shift." The Kramers-Kronig relations are profound 

mathematical relationships that connect the real and imaginary parts of the 

response function of a linear causal system. For electromagnetic waves 

interacting with a medium, the imaginary part of the susceptibility is related 

to absorption (or gain), and the real part is related to the refractive index 

(dispersion). So, if you have absorption or gain (which is negative 

absorption) over a certain frequency range, there must* be an associated 

variation in the refractive index over that same range and beyond. 

Stimulated emission, being negative absorption, fundamentally alters the 

dispersive properties of the medium compared to a normal absorbing 

medium. 

* "The sign change in 𝛼(𝜈) (gain instead of loss) forces a corresponding 

sign change in 
𝑑𝑛

𝑑𝜈
." Here, 𝛼(𝜈) is the absorption coefficient. If it's negative, 

we have gain. For an absorbing medium, you typically have normal 

dispersion around the absorption line. For a gain medium (negative 𝛼(𝜈)), 

this behavior of 𝑛(𝜈) flips, leading to the characteristic shape of anomalous 

dispersion we described – 𝑛(𝜈) decreasing then increasing as you sweep 

frequency through the gain line center. Specifically, 
𝑑𝑛

𝑑𝜈
 is positive on the 

wings and negative in the center for an absorption line, and this pattern is 

modified for a gain line. The slide says "sign change in 
𝑑𝑛

𝑑𝜈
," which means 

that across the resonance, the slope of 𝑛(𝜈) versus 𝜈 changes. 



* This anomalous dispersion has a very practical consequence: "Resulting 

pulling of the cavity modes:" Because the refractive index 𝑛(𝜈) changes 

rapidly with frequency near the gain line center 𝜈0, and because the active 

cavity eigenfrequencies depend on 𝑛(𝜈) through 𝑑∗(𝜈), the actual lasing 

frequencies will be affected. 

* Specifically, "Frequency of each mode is shifted towards 𝜈0 compared 

with the passive value 𝜈𝑞,vac." This is what we call "mode pulling." The gain 

medium's dispersive properties essentially "pull" the cavity resonant 

frequencies towards the center of the gain profile. If a passive cavity mode 

is slightly to one side of 𝜈0, the refractive index it experiences will shift it 

slightly closer to 𝜈0. This is a crucial effect for determining the precise 

emission frequency of a laser. 
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And to quantify this mode pulling effect: 

*   A "Quantitative expression derived in later slides (mode pulling formula)" 

will be provided. We won't derive it just yet, but we'll see a formula that 

explicitly calculates the active cavity frequency 𝜈a in terms of the passive 

cavity frequency 𝜈𝑞,𝑣𝑎𝑐 (which we can call 𝜈c or 𝜈r for cavity resonance), the 

gain line center frequency 𝜈0, and their respective linewidths. This formula 

will mathematically show how the lasing mode is a kind of "weighted 

average" of the cavity resonance and the gain line center. 

Now, let's look at a visual representation of this anomalous dispersion. 
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This slide displays a graph crucial for understanding anomalous dispersion, 

titled "Slide 4: Anomalous Dispersion and Its Spectroscopic Importance," 

with a subtitle "Anomalous Dispersion for an Inverted Transition (within gain 

bandwidth)." Let's describe this graph carefully. 



The horizontal axis represents frequency, 𝜈 (nu), with the center frequency 

of the inverted transition labeled as 𝜈0 (nu naught). Points like 𝜈0 − 𝛤 (nu 

naught minus capital Gamma), 𝜈0 −
𝛤

2
, 𝜈0 +

𝛤

2
, and 𝜈0 + 𝛤 are marked, 

suggesting 𝛤 is related to the width of the transition. The region between 

approximately 𝜈0 − 𝛤 and 𝜈0 + 𝛤 is shaded light gray, labeled "Anomalous 

Dispersion (within gain bandwidth)". 

There are two vertical axes and two curves. 

The left vertical axis is "Absorption Coefficient (𝛼(𝜈))" – that's alpha of nu. 

The curve plotted against this axis is shown in red. Since this is an inverted 

transition (a gain medium), the absorption coefficient is negative. The red 

curve shows a negative peak (a dip, meaning maximum gain) centered at 

𝜈0. It starts from a less negative value at low frequencies (e.g., 𝜈0 − 𝛤), 

becomes most negative (maximum gain) at 𝜈0, and then rises back to less 

negative values at high frequencies (e.g., 𝜈0 + 𝛤). For example, at 𝜈0, 𝛼(𝜈) 

might be -1.0 in some arbitrary units shown, while at 𝜈0 ± 𝛤, it might be 

around -0.7. This red curve represents the gain profile of the laser medium. 

The right vertical axis is "Refractive Index (𝑛(𝜈))" – en of nu. The curve 

plotted against this axis is shown in blue. This is the curve illustrating 

anomalous dispersion. Far from resonance (e.g., to the left of 𝜈0 − 𝛤 or to 

the right of 𝜈0 + 𝛤), 𝑛(𝜈) is relatively flat. As we approach 𝜈0 from the low-

frequency side, 𝑛(𝜈) decreases, dipping below a baseline value (which 

could be normalized to 1.0, as suggested by the dashed horizontal line at 

𝑛(𝜈) = 1.00). It reaches a minimum somewhere before 𝜈0 (around 𝜈0 −
𝛤

2
). 

Then, as frequency increases through 𝜈0, 𝑛(𝜈) rises sharply, crossing the 

baseline value (𝑛(𝜈) = 1.00 exactly at 𝜈0 for a symmetric gain profile), and 

then increases above the baseline, reaching a peak after 𝜈0 (around 𝜈0 +
𝛤

2
), before settling back towards the baseline at higher frequencies. The 

scale on the right shows values like 0.95, 1.00, and 1.05 for 𝑛(𝜈). 



This graph perfectly visualizes what we discussed: 1. The red curve: gain is 

maximum at 𝜈0. 𝛼(𝜈) is negative. 2. The blue curve: 𝑛(𝜈) shows the 

characteristic "S-shape" or "wiggle" through the resonance. On the low-

frequency side of 𝜈0 (𝜈 < 𝜈0), 𝑛(𝜈) can be less than 1 (if the gain is strong 

enough). On the high-frequency side (𝜈 > 𝜈0), 𝑛(𝜈) is greater than 1. The 

slope 
𝑑𝑛

𝑑𝜈
 is negative over a part of the range (e.g., between the peak and 

valley of 𝑛(𝜈)), which is the hallmark of anomalous dispersion. Critically, at 

𝜈0 itself, for a symmetric gain line, 𝑛(𝜈) is typically equal to its background 

value (often unity if the background medium is vacuum or if 𝑛 is 

normalized), and the slope 
𝑑𝑛

𝑑𝜈
 is at its most negative value here (if we 

consider the "anomalous" region centered around 𝜈0). However, looking at 

the blue curve, the steepest negative slope of 𝑛(𝜈) versus 𝜈 appears to be 

around 𝜈0. (Correction: the steepest negative slope 
𝑑𝑛

𝑑𝜈
 is actually on the 

flanks for an absorption line. For a gain line as depicted, the slope 
𝑑𝑛

𝑑𝜈
 is 

positive at 𝜈0. The "anomalous" behavior is the entire shape. The key 

feature for mode pulling is that 𝑛(𝜈) is different from its background value, 

and its derivative 
𝑑𝑛

𝑑𝜈
 is significant). Let me re-examine the graph carefully: 

At 𝜈0, 𝑛(𝜈) is 1.00. To the left of 𝜈0, 𝑛(𝜈) < 1.00. To the right, 𝑛(𝜈) > 1.00. 

The slope 
𝑑𝑛

𝑑𝜈
 at 𝜈0 is indeed positive and appears to be at its maximum 

positive value here. This is consistent with the Kramers-Kronig relations for 

a gain profile. The "anomalous" part refers to the entire dispersive feature 

linked to the resonance. The mode pulling depends on 𝑛(𝜈) itself, not just 

its derivative. 

The key takeaway is that the refractive index 𝑛(𝜈) varies significantly 

across the gain bandwidth, and this variation directly impacts the cavity 

resonance conditions, leading to mode pulling. 
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Let's now precisely define the "Net Round-Trip Gain — Precise Definition." 

This is a critical quantity for determining if a laser will oscillate. 

* We "Define 𝐺(𝜈, 2 𝑑) (capital Gee of nu comma two dee): amplitude (not 

intensity) gain factor for one round-trip of length 2 𝑑 inside the resonator." 

This is very important: 𝐺 is an amplitude gain factor. Intensity is 

proportional to amplitude squared. So, if the amplitude is multiplied by 𝐺 

after one round trip, the intensity will be multiplied by 𝐺2. The arguments 

(𝜈, 2 𝑑) remind us that it's frequency-dependent and applies to a full round 

trip within the resonator of length 'd' (so round-trip path 2 𝑑, or effective 

round trip path 2 𝑑∗). 

The mathematical definition provided is: 

𝐺(𝜈, 2 𝑑) = exp[−2𝛼(𝜈)𝐿 − 𝛾(𝜈)] 

Let's say this clearly: "Capital Gee of nu comma two dee equals the 

exponential of, open square bracket, minus two times alpha of nu times 

capital Ell, minus gamma of nu, close square bracket." 

Now, let's break down the terms in the exponent: "where" 

 𝛼(𝜈) (alpha of nu): This is the "small-signal absorption coefficient." Its units 

are inverse meters (m−1, or em to the minus one). Crucially, it is "negative 

if net gain." This means if the medium provides gain at frequency 𝜈, 𝛼(𝜈) 

will be a negative number. So, −𝛼(𝜈) would be positive. "Small-signal" 

implies this is the absorption/gain coefficient before* saturation effects 

become significant. 

* 𝐿 (capital Ell): This is the "length of the amplifying region" in meters (m, or 

em). This is the physical length of the gain medium that the light traverses. 

The term −2𝛼(𝜈)𝐿 appears in the exponent. Why 2𝛼(𝜈)𝐿? And why the 

minus sign with the alpha? If 𝛼(𝜈) is the absorption coefficient, then for 

gain, 𝛼(𝜈) is negative. Let's define 𝑔(𝜈) = −𝛼(𝜈) as the gain coefficient 

(positive for gain). Then the term would be exp[2 𝑔(𝜈)𝐿 − 𝛾(𝜈)]. The slide 



uses 𝛼(𝜈) as absorption coefficient, so if there's gain, 𝛼(𝜈) itself is 

negative. Thus, −𝛼(𝜈)𝐿 represents the amplitude gain for a single pass 

through the medium of length 𝐿. For example, if light goes through, its 

amplitude 𝐸 is 𝐸0 ⋅ exp[−𝛼(𝜈)𝐿]. If 𝛼(𝜈) is negative, say −0.1 per meter, 

and 𝐿 is 1 meter, then 𝐸 = 𝐸0 ⋅ exp(0.1). The amplitude increases. The 

factor of 2 in −2𝛼(𝜈)𝐿 will be explained on the next page, as it relates to the 

round trip. 
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Let's continue dissecting the terms in the round-trip amplitude gain factor 

𝐺(𝜈, 2 𝑑) = exp[−2𝛼(𝜈)𝐿 − 𝛾(𝜈)]. 

• 𝛾(𝜈) (gamma of nu): This is the "total passive loss factor per round-trip." 

It is "dimensionless" and represents all losses other than the 

absorptive/gain characteristic of the active medium's transition itself. It must 

be that 𝛾(𝜈) is greater than 0 for there to be actual losses. This factor 

"Includes mirror transmission, scattering, diffraction, intracavity element 

losses." So, every time light completes a round trip, its amplitude is 

diminished by a factor of exp [−
𝛾(𝜈)

2
] due to these passive losses on 

average per pass, or exp[−𝛾(𝜈)] if gamma is defined for intensity loss per 

round trip. Here, since 𝐺 is an amplitude gain factor and 𝛾(𝜈) is in the 

exponent, 𝛾(𝜈) here directly represents the amplitude attenuation exponent 

due to all these other passive losses over a round trip. A common form for 

this might be 𝛾(𝜈) = −ln(𝑅1𝑅2𝑇other) where R's are mirror reflectivities and 

𝑇other includes other transmissive losses per round trip, all for amplitude. 

However, the way it's written suggests 𝛾(𝜈) is an effective amplitude loss 

coefficient for the round trip. Let's assume 𝛾(𝜈) is defined such that 

exp(−𝛾(𝜈)) is the amplitude reduction factor from these passive losses per 

round trip. 

• Now, the explanation for the term −2𝛼(𝜈)𝐿: "The first term −2𝛼𝐿 

appears twice because the light crosses the gain medium on the forward 



and backward paths." This clarifies that −𝛼(𝜈)𝐿 is the amplitude gain for a 

single pass through the gain medium of length 𝐿. So, for a round trip, the 

light passes through the medium twice (once forward, once backward if it's 

a linear cavity and the medium doesn't fill the whole cavity, or effectively 

traverses a length 2 𝐿 if we consider the gain medium folding back on 

itself). Thus, the total amplitude gain from the active medium over one 

round trip is exp[−𝛼(𝜈)𝐿] ∗ exp[−𝛼(𝜈)𝐿] = exp[−2𝛼(𝜈)𝐿]. This makes 

perfect sense. 

• Now we arrive at the "Threshold condition:" For laser oscillation to start 

and be sustained, the gain must exactly balance the losses. If the round-

trip amplitude gain factor 𝐺 is greater than 1, the amplitude grows with each 

pass. If it's less than 1, it decays. At threshold, it's exactly stable. So, the 

threshold condition is: 

𝐺(𝜈thr, 2 𝑑) = 1 

"Capital Gee of nu sub thr (for threshold) comma two dee equals one." This 

means that at the threshold frequency 𝜈thr, the amplitude of the light wave 

remains unchanged after one complete round trip. The amplification from 

the gain medium precisely compensates for all the losses in the cavity. As 

the slide notes, this "means 'round-trip amplification equals all losses'." 

More precisely, the net round-trip amplitude change factor is unity. If 𝐺 = 1, 

then the exponent must be zero: −2𝛼(𝜈thr)𝐿 − 𝛾(𝜈thr) = 0. This implies 

−2𝛼(𝜈thr)𝐿 = 𝛾(𝜈thr). Since for gain, 𝛼 is negative, let's use 𝑔(𝜈) = −𝛼(𝜈) 

as the gain coefficient (positive for gain). Then 2 𝑔(𝜈thr)𝐿 = 𝛾(𝜈thr). This 

means the total amplitude gain from two passes through the medium, 2 𝑔𝐿, 

must equal the total amplitude loss exponent 𝛾 from all other sources per 

round trip. 
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Let's "Observe carefully" some properties of this round-trip gain 𝐺 and the 

threshold condition. 



* First, " 𝐺 is frequency dependent through both 𝛼(𝜈) and 𝛾(𝜈)." This is 

crucial. The gain coefficient 𝛼(𝜈) (or −𝛼(𝜈)) has its own spectral profile 

(e.g., Lorentzian, Gaussian). Also, losses 𝛾(𝜈) can be frequency 

dependent. For example, mirror reflectivity might vary with frequency, or 

intracavity elements like etalons will have frequency-dependent 

transmission. Therefore, the overall round-trip gain 𝐺 will vary with 

frequency, and laser oscillation will preferentially occur at frequencies 

where 𝐺 is maximized and meets the threshold condition. 

* Second, "The exponent is additive — changes in 𝛼 or 𝛾 shift the logarithm 

of 𝐺 linearly." Since 𝐺 = exp[−2𝛼𝐿 − 𝛾], if we take the natural logarithm, 

ln(𝐺) = −2𝛼𝐿 − 𝛾. So, the logarithm of the round-trip amplitude gain is 

simply the sum of the gain contribution (which is −2𝛼𝐿) and the loss 

contribution (which is −𝛾). If you change 𝛼 (e.g., by changing the pump 

power) or if you change 𝛾 (e.g., by misaligning a mirror or inserting an 

absorbing filter), ln(𝐺) changes linearly with these contributions. This 

additivity in the exponent (or logarithm of 𝐺) is often very convenient for 

analysis. For instance, at threshold, ln(𝐺) = ln(1) = 0, so −2𝛼𝐿 = 𝛾, as we 

noted earlier. 

This understanding of 𝐺, its frequency dependence, and the threshold 

condition is fundamental to figuring out which frequencies will actually lase. 
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Now we explore "How a Probe Beam Reveals the Resonator Transmission 

Spectrum." This is a conceptual and often practical way to understand the 

resonant properties of a cavity, especially one containing an active medium 

(though it can be used for passive cavities too). 

* "Thought experiment: send weak, broadband light with spectral intensity 

𝐼0(𝜈) into the cavity through mirror 𝑀1." 

Imagine we have our resonator (with or without an active medium inside). 

We take an external light source that emits over a wide range of 



frequencies (broadband). Its initial spectral intensity is 𝐼0(𝜈) – that's power 

per unit area per unit frequency interval. We direct this light towards one of 

the cavity mirrors, say 𝑀1, and some of it will be transmitted into the cavity. 

We keep the probe beam "weak" so that it doesn't significantly perturb the 

system, especially if there's an active medium that could be saturated. 

* "Multiple internal reflections lead to constructive or destructive 

interference." 

Once the light enters the cavity, it bounces back and forth between the 

mirrors. At each reflection, some light is transmitted out, and some is 

reflected back into the cavity. The light waves that have made different 

numbers of round trips inside the cavity will overlap and interfere. 

At certain frequencies – the resonant frequencies – these multiple 

reflections will interfere constructively, leading to a buildup of light intensity 

inside the cavity and strong transmission through the output mirror. 

At other frequencies (off-resonance), the interference will be destructive, 

leading to low intensity inside the cavity and weak transmission. 

This is precisely the principle of a Fabry-Perot interferometer. By 

measuring the transmitted intensity as a function of frequency, we can map 

out the resonant modes of the cavity. 
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Let's quantify the transmission of this probe beam. 

* "If amplification per pass is 𝐺(𝜈) (capital Gee of nu), mirror intensity 

transmission is 𝑇 (capital Tee), reflectivity is 𝑅 (capital Arr) (such that 𝑅 +

𝑇 + scattering = 1), then total transmitted intensity follows an Airy-type 

formula extended by gain:" 

"This statement needs careful parsing. The 𝐺(𝜈) here seems to be defined 

differently from the round-trip amplitude gain on page 18. The context 

suggests 𝐺(𝜈) here might be the intensity* gain per pass through the active 



medium, or something related to the overall gain within the cavity affecting 

the transmitted light. The Airy formula is typically for passive cavities. Let's 

look at the formula given:" 

𝐼T(𝜈) = 𝐼0(𝜈) ⋅
𝑇2 𝐺(𝜈)

[1 − 𝐺r(𝜈)]
2 + 4 𝐺r(𝜈) sin

2 (
𝜙
2
)
 

* "(I've used 𝐺r(𝜈) here for the term in the denominator based on typical 

Airy function form, where 𝐺r(𝜈) would be related to round trip 

reflectivity/gain. The slide writes 𝐺(𝜈) in the numerator and denominator, 

let's assume it's the same 𝐺(𝜈) for now and clarify.)" 

* "Let's verbalize the formula as written on the slide carefully: 'Capital Eye 

sub Tee of nu equals Capital Eye sub zero of nu, times the fraction: Tee 

squared times Capital Gee of nu, all divided by, open square bracket one 

minus Capital Gee of nu close square bracket squared, plus four times 

Capital Gee of nu times sine squared of (phi divided by two).'" 

Let's analyze this. 𝐼T(𝜈) is the transmitted spectral intensity, 𝐼0(𝜈) is the 

incident spectral intensity. 𝑇 is the intensity transmission coefficient of a 

single mirror (assuming both mirrors are identical for simplicity, or 𝑇 is for 

the output mirror, and the formula may implicitly assume properties for the 

input mirror). 

The 𝐺(𝜈) term here is tricky. If this formula is an extension of the standard 

Airy function for a Fabry-Perot with gain, 𝐺(𝜈) in the denominator is usually 

√𝑅1𝑅2 × 𝐺medium where 𝐺medium is the single-pass amplitude gain of the 

medium. And 𝐺(𝜈) in the numerator would be related to single pass gain. 

However, if we assume 𝐺(𝜈) is the round-trip amplitude gain as defined on 

page 18 (𝐺 = exp[−2𝛼𝐿 − 𝛾]), this formula takes on a specific meaning 

related to regenerative amplification. 



The term [1 − 𝐺(𝜈)]2 in the denominator is highly significant. If 𝐺(𝜈) 

approaches 1 (i.e., gain approaches losses, the threshold condition), this 

term approaches zero. 

The sin2 (
𝜙

2
) term dictates the resonant behavior. Transmission will be 

maximal when sin2 (
𝜙

2
) is zero, meaning 

𝜙

2
 is an integer multiple of 𝜋 (pi), or 

𝜙 is an integer multiple of 2𝜋. 

* "with" 

* "Phase advance per round-trip:" This is 𝜙 (the Greek letter phi). 
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The phase advance per round-trip, 𝜙(𝜈) (phi of nu), is given by: 

𝜙(𝜈) =
4𝜋 𝑑∗(𝜈) 𝜈

𝑐
 

Let's understand this. The optical path for a round trip is \(2\,d^(\nu)\). The 

wave number is 𝑘 =
2𝜋

𝜆
=

2𝜋𝜈

𝑐
. So, the phase accumulated over a path 

length 𝑃 is 𝑘𝑃 =
2𝜋𝜈

𝑐
𝑃. For a round trip, \(P = 2\,d^(\nu)\), so \[\phi(\nu) = 

\frac{2\pi\nu}{c} \times 2\,d^(\nu) = \frac{4\pi\nu d^(\nu)}{c}.\] This is correct. 

This 𝜙(𝜈) is the total phase shift experienced by a wave in one full round 

trip inside the cavity. 

* "Transmission maxima condition:" As we noted, transmission is 

maximized when the sin2(𝜙/2) term in the denominator of the Airy-like 

formula is zero. This occurs when 𝜙/2 = 𝑞𝜋, where 𝑞 is an integer. So, 

𝜙(𝜈) = 2𝜋𝑞. This is the condition for constructive interference and thus 

maximum transmission through the resonator. 

* "Exactly the active-cavity eigenfrequency condition derived earlier." Let's 

check. Our phase is 𝜙(𝜈) =
4𝜋𝜈𝑑∗(𝜈)

𝑐
. Setting this equal to 2𝜋𝑞: 



4𝜋𝜈𝑑∗(𝜈)

𝑐
= 2𝜋𝑞 

Dividing by 2𝜋 gives: 

2𝜈𝑑∗(𝜈)

𝑐
= 𝑞 

Or, 2 𝑑∗(𝜈) = 𝑞 (
𝑐

𝜈
). This is precisely the active-cavity eigenfrequency 

condition 

2 𝑑∗(𝜈) = 𝑞 (
𝑐

𝜈𝑞,𝑎𝑐𝑡
) 

that we found on page 12, if we identify 𝜈 here with 𝜈𝑞,𝑎𝑐𝑡. So, yes, the 

maxima of the transmission spectrum of this "probed" cavity occur exactly 

at the resonant eigenfrequencies of the active cavity. This confirms that 

probing the cavity transmission is a way to find its resonant modes. 

* Now, an "Important limit:" This relates back to the denominator of the 

transmission formula. 
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The important limit discussed here is critical for understanding the onset of 

laser oscillation: 

* "As 𝐺(𝜈) approaches 1 from below (written as 𝐺(𝜈) → 1−, meaning 𝐺 is 

just less than 1) and 𝜙 (phi) satisfies the resonance condition (𝜙 = 2𝜋𝑞), 

the denominator tends to zero. Let's look at the denominator from page 22: 

[1 − 𝐺(𝜈)]2 + 4 𝐺(𝜈)sin2 (
𝜙

2
). If 𝜙 is at resonance, sin2 (

𝜙

2
) = 0, so the 

second term vanishes. The denominator becomes just [1 − 𝐺(𝜈)]2. If 𝐺(𝜈) 

is approaching 1 (meaning gain is approaching losses, we are nearing 

threshold), then 1 − 𝐺(𝜈) is a small positive number, and [1 − 𝐺(𝜈)]2 is a 

very small positive number. So, the denominator indeed tends to zero. 



* "This implies that 
𝐼T

𝐼0
 diverges" (Capital Eye sub Tee divided by Capital Eye 

sub zero diverges). The ratio of transmitted intensity to incident intensity 

becomes extremely large. This divergence means that even for a very 

small input intensity 𝐼0 (perhaps from spontaneous emission within the gain 

medium itself), we can get a very large transmitted (or output) intensity 𝐼T. 

* "⇒ laser oscillation set-up." (implies laser oscillation set-up). This is 

exactly what happens in a laser. When the round-trip amplitude gain 𝐺(𝜈) 

equals 1 (threshold), the cavity can build up a strong internal field and emit 

coherent radiation, even without an external probe beam, by amplifying the 

spontaneous emission. The formula essentially shows that the resonator's 

response becomes infinitely large at resonance when 𝐺 = 1, signifying the 

system can self-sustain an oscillation. 
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This page shows a graph illustrating the "Resonator Transmission 

Spectrum: 
𝐼T(𝜈)

𝐼0
 vs. 𝜈" (Capital Eye sub Tee of nu divided by Eye sub zero, 

versus 𝜈). This plots the normalized transmitted intensity as a function of 

frequency, based on the Airy-type formula we just discussed. 

The vertical axis is "Normalized Transmitted Intensity (
𝐼T(𝜈)

𝐼0
)", ranging from 

0.0 to 1.0. The horizontal axis is "Normalized Frequency (
𝜈

𝜈𝐹𝑆𝑅
)" (nu divided 

by nu sub Eff Ess Arr), centered around 1.00 (which would correspond to a 

resonance peak). It ranges from 0.90 to 1.10. Using 𝜈𝐹𝑆𝑅 here means we 

are looking at a single resonance peak, and the width of the x-axis covers 

about 20% of an FSR. 

There are three curves plotted, for different values of the gain parameter 𝐺 

(which we assume is the 𝐺(𝜈) from the formula, representing round-trip 

amplitude gain): 1. Blue curve: 𝐺 = 0.8. This represents a situation below 

threshold (𝐺 < 1). We see a resonance peak centered at the normalized 



frequency of 1.00. The peak height is relatively low, perhaps around 0.2 on 

the vertical axis, and the resonance is fairly broad. This is typical for a 

passive cavity with some losses, or an active cavity well below threshold. 

2. Orange curve: 𝐺 = 0.99. Here, the gain is very close to 1 (just below 

threshold). The resonance peak is still centered at 1.00, but it is now much 

taller (approaching 1.0, though the formula from page 22 with 𝑇2𝐺 in 

numerator might not reach 1 unless 𝑇 is also special) and significantly 

narrower. The peak intensity is dramatically increased, and the linewidth is 

greatly reduced as 𝐺 approaches 1. This is a key feature: as you get closer 

to threshold, the cavity resonances become sharper and amplify more 

strongly. The orange curve on the graph appears to peak at about 0.8 

perhaps. 

3. Red curve: 𝐺 = 1.0. This represents the system at the threshold of 

oscillation. According to our previous discussion, when 𝐺 = 1 and we are at 

resonance, the denominator of the transmission formula becomes zero, 

and 
𝐼T

𝐼0
 should diverge. The graph here shows the red curve for 𝐺 = 1.0 as 

having a flat top at the maximum value of the y-axis (1.0) and being very 

narrow, almost like a spike that's been clipped at the top. This is a practical 

way of representing the onset of lasing – the transmission effectively 

becomes saturated or limited by other factors not in this simplified formula, 

or the output is now self-sustained laser light rather than transmitted probe 

light. The flat top at 
𝐼T

𝐼0
= 1 suggests perhaps the intensity transmission 𝑇 is 

also 1, or that 𝐺 in the numerator is also 1. The key idea is the dramatic 

sharpening and increase in peak height as 𝐺 approaches 1. 

This graph beautifully illustrates the line-narrowing effect and the surge in 

transmitted power as a cavity with gain approaches the lasing threshold. It 

visually confirms our analysis from the previous pages. 
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Now we turn to a "Graphical Visualization of the Threshold Condition." This 

provides an intuitive way to see over what frequency range a laser might 

oscillate. 

* "Procedure often used in laboratory alignment:" 

1. "Plot the unsaturated gain curve −2𝛼(𝜈)𝐿 (negative ordinate implies 

amplification) vs frequency." Remember, 𝛼(𝜈) is the absorption coefficient; 

it's negative for gain. So, −𝛼(𝜈) is the gain coefficient (let's call it 𝑔0(𝜈) for 

small-signal gain coefficient). Thus, −2𝛼(𝜈)𝐿 is 2 𝑔0(𝜈)𝐿. This term 

represents the total logarithmic amplitude gain from two passes through the 

active medium of length 𝐿. "Unsaturated" means this is the gain profile of 

the medium before any significant laser intensity builds up and causes gain 

saturation. If plotted with positive values on the y-axis representing 

amplification, this curve will typically have a bell shape (e.g., Gaussian for 

Doppler broadening, Lorentzian for homogeneous broadening). The slide 

says "negative ordinate implies amplification" if plotting −2𝛼(𝜈)𝐿 directly 

with 𝛼 negative, which could be confusing. It's clearer to think of 2 𝑔0(𝜈)𝐿 

where 𝑔0 is positive for gain. Let's assume the plot will show gain as 

positive. 

2. "On the same axis plot the frequency-dependent total losses 𝛾(𝜈)." This 

𝛾(𝜈) is the total logarithmic amplitude loss per round-trip from all sources 

other than the specific lasing transition (e.g., mirror transmission, 

scattering, diffraction, absorption by other species or optics). This loss 

curve might be relatively flat if losses are not strongly frequency-

dependent, or it might have its own spectral features. 

3. "Subtract point-wise to obtain the net gain." This means, for each 

frequency 𝜈, we calculate the difference between the gain 2 𝑔0(𝜈)𝐿 and the 

losses 𝛾(𝜈). 
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Continuing with the graphical visualization: 



The net gain, let's call it 𝛥𝛼(𝜈) (Delta alpha of nu), though this notation 

might conflict if alpha is absorption, is defined as: 

𝛥𝛼(𝜈) = −2𝛼(𝜈)𝐿 − 𝛾(𝜈) 

"Delta alpha of nu equals minus two alpha of nu times Ell minus gamma of 

nu." 

This 𝛥𝛼(𝜈) is precisely the exponent in our round-trip amplitude gain 

𝐺(𝜈) = exp[𝛥𝛼(𝜈)]. 

If −2𝛼(𝜈)𝐿 is plotted as gain (positive values), and 𝛾(𝜈) as positive losses, 

then the net gain would be Gain - Loss. The formula 𝛥𝛼(𝜈) = −2𝛼(𝜈)𝐿 −

𝛾(𝜈) is directly the exponent of 𝐺. For 𝐺 to be greater than 1 (net 

amplification), this exponent 𝛥𝛼(𝜈) must be greater than 0. 

4. "Those frequencies where 𝛥𝛼(𝜈) > 0 (Delta alpha of nu is greater than 

zero) satisfy 𝐺 > 1 (Capital Gee is greater than one) and can lase." 

This is the key. If the gain (−2𝛼𝐿) at a particular frequency exceeds the 

losses 𝛾 at that frequency, then 𝛥𝛼(𝜈) is positive, meaning 𝐺(𝜈) =

exp(positive number) will be greater than 1. This means that light at these 

frequencies will experience net amplification per round trip and can build up 

into laser oscillation. The range of frequencies where 𝛥𝛼(𝜈) > 0 is often 

called the "bandwidth for lasing." 

* "The contact points 𝛥𝛼(𝜈) = 0 mark the threshold." 

Where the net gain 𝛥𝛼(𝜈) is exactly zero, the round-trip amplitude gain 

𝐺(𝜈) is exp(0) = 1. This is precisely the threshold condition. These are the 

frequencies at the very edges of the lasing band. At these points, gain just 

equals loss. 

This graphical method allows one to quickly visualize if a laser is above 

threshold and over what range of frequencies it might lase, just by 

comparing the gain curve and the loss line. 
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This slide presents the "Graphical Visualization of Laser Threshold 

Condition" that we've just been discussing. 

Let's analyze the graph. 

The vertical axis is labeled "Gain / Loss Coefficient (Positive gain implies 

amplification)". Values range from −5 to 12 in arbitrary units. 

The horizontal axis is "Frequency (𝜈)", with arbitrary units from 0 to 100. 

There are three curves shown: 

1. A solid blue line, labeled "−2𝛼(𝜈)𝐿 (Unsaturated Gain)". This is the gain 

curve. It's a bell-shaped curve, peaking at frequency 𝜈 = 50 with a 

maximum gain value of about 10.5. It drops to near zero (or some small 

positive value representing the baseline) by 𝜈 = 20 and 𝜈 = 80. This 

represents the frequency-dependent amplification provided by the active 

medium over a round trip. 

2. A dashed red horizontal line, labeled "𝛾(𝜈) (Total Losses)". This line is 

flat, at a constant value of approximately 4.0 across all frequencies. This 

represents a scenario where the passive cavity losses are constant with 

frequency (e.g., dominated by frequency-independent mirror transmission). 

3. A solid green line, labeled "𝛥𝛼(𝜈) (Net Gain)". This curve is derived by 

subtracting the red loss line from the blue gain curve point-by-point 

𝛥𝛼(𝜈) = [−2𝛼(𝜈)𝐿] − 𝛾(𝜈). Where the blue gain curve is below the red loss 

line (e.g., for 𝜈 <∼ 33 and 𝜈 >∼ 67), the green net gain curve is negative. 

Where the blue gain curve is above the red loss line, the green net gain 

curve is positive. This positive net gain region is shaded light green and 

labeled "Lasing Region (𝛥𝛼 > 0)". The green curve peaks where the 

difference between gain and loss is greatest, at 𝜈 = 50, with a peak net 

gain of 10.5 − 4.0 = 6.5. 



The points where the green net gain curve 𝛥𝛼(𝜈) crosses the zero axis 

(i.e., where 𝛥𝛼(𝜈) = 0) are marked as "Threshold." These occur where the 

blue gain curve intersects the red loss line, around 𝜈 = 33 and 𝜈 = 67. At 

these frequencies, gain exactly equals loss, 𝐺 = 1. 

Between these two threshold frequencies, 𝛥𝛼(𝜈) > 0, so 𝐺 > 1, and the 

laser can oscillate within this frequency band. Outside this band, 𝛥𝛼(𝜈) <

0, 𝐺 < 1, and oscillation is not possible because losses exceed gain. 

This graph perfectly illustrates the concept: lasing occurs when the gain 

curve is above the loss line. The width of the lasing region depends on how 

much the peak gain exceeds the losses and the shape of the gain curve. If 

the peak of the blue curve were below the red line, there would be no 

lasing region at all. 
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Now we move to a "Case Study — Gas Laser With Doppler-Broadened 

Gain (Example 5.9a, Part 1)." This will allow us to apply the concepts we've 

learned to a concrete example, resembling a Helium-Neon (He-Ne) laser. 

* "Given parameters (He-Ne-like):" 

* First, "Line-centre small-signal absorption coefficient": 

𝛼(𝜔0) = −0.01 cm−1 

alpha at omega naught equals minus zero point zero one inverse 

centimeters. Notice this is given in terms of angular frequency 𝜔0 (omega 

naught) instead of 𝜈0 (nu naught), where 𝜔 = 2𝜋𝜈. The units are cm−1, 

which are CGS units. Since it's an absorption coefficient and we have gain, 

it's negative, as expected. This value 𝛼(𝜔0) is the absorption coefficient at 

the center of the gain line. The corresponding gain coefficient 𝑔(𝜔0) =

−𝛼(𝜔0) = +0.01 cm−1. 

* Next, "Gain cell length": 



𝐿 = 10 cm 

Capital Ell equals ten centimeters. This is the physical length of the region 

containing the active gain medium. 
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Continuing with the parameters for our case study: 

"Doppler FWHM (angular frequency)": This refers to the Full Width at Half 

Maximum of the Doppler-broadened gain profile, expressed in angular 

frequency units. 

𝛿𝜔D = 1.3 × 109 Hz × 2𝜋 = 8.17 × 109 rad s
−1

 

"delta omega sub Dee equals one point three times ten to the ninth Hertz, 

times two pi, which equals eight point one seven times ten to the ninth 

radians per second." 

Note that 1.3 × 109 Hz is 1.3 GHz, a typical Doppler width for He-Ne lasers. 

Multiplying by 2𝜋 converts this frequency width into an angular frequency 

width. So 𝛿𝜈D (delta nu sub Dee) would be 1.3 GHz. 

"Passive loss exponent per round-trip": 

𝛾 = 0.03 

"gamma equals zero point zero three." This is the 𝛾(𝜈) term from our 

threshold condition, assumed here to be constant (independent of 

frequency) and dimensionless, representing the logarithmic amplitude loss 

per round trip. 

Now, we need the "Doppler-broadened Gaussian profile for amplification 

coefficient": 

The term −2𝛼(𝜔)𝐿 is what we need for the exponent in the round-trip gain 

𝐺. For a Gaussian profile, it's given by: 



−2𝛼(𝜔)𝐿 = −2𝛼(𝜔0)𝐿 ⋅ exp [− (
𝜔 − 𝜔0

0.68 𝛿𝜔D

)
2

] 

Let's verbalize this carefully: "minus two alpha of omega times Ell equals 

minus two alpha of omega naught times Ell, times the exponential of, open 

square bracket, minus, open parenthesis, fraction, omega minus omega 

naught, divided by, zero point six eight times delta omega sub Dee, close 

parenthesis, squared, close square bracket." 

Let's analyze this expression: 

−2𝛼(𝜔0)𝐿 is the peak value of this gain term, occurring at the line center 

𝜔 = 𝜔0. 

The exp[. . . ] term describes the Gaussian shape. 

𝜔 − 𝜔0 is the detuning from the line center. 

The denominator 0.68 ⋅ 𝛿𝜔D in the Gaussian exponent is related to the 

standard deviation of the Gaussian. For a Gaussian exp (−
𝑥2

2𝜎2
), the FWHM 

is 2√2ln2 𝜎 ≈ 2.355 𝜎. If 𝛿𝜔D is the FWHM, then the relationship between 

𝛿𝜔D and the term in the exponent might involve a conversion factor. Often, 

a Gaussian line shape is written as 

𝑔(𝜔) = 𝑔(𝜔0)exp [−ln(2) ⋅ (
𝜔 − 𝜔0

𝛿𝜔D/2
)
2

] 

or 

𝑔(𝜔) = 𝑔(𝜔0)exp [− (
𝜔 − 𝜔0

𝛥𝜔
)
2

] 

where 𝛥𝜔 is related to the 1/e width. 

The factor 0.68 seems specific; 

1

2√ln2
≈ 0.6005. 



Or perhaps 𝛿𝜔D/(2√ln2) is used. Let's assume the 0.68 factor correctly 

relates 𝛿𝜔D (FWHM) to the characteristic width in the exponent for this 

specific formulation. For a Gaussian exp(−𝑥2/𝑤2), FWHM is 

2√ln2 𝑤. 

So if 𝑤 = 0.68 𝛿𝜔D, then FWHM would be 

2√ln2 (0.68 𝛿𝜔D) ≈ 1.13 𝛿𝜔D. 

This suggests 𝛿𝜔D itself might not be the FWHM of this exponential 

function, but rather related to it. Or, the form exp[−(argument)2] means the 

function is half its max when 

(argument)2 = ln2. 

So, 

𝜔 − 𝜔0

0.68 𝛿𝜔D

= √ln2 

at half-max. Then 

2(𝜔 − 𝜔0) = FWHM = 2√ln2 (0.68 𝛿𝜔D) ≈ 1.133 𝛿𝜔D. 

This suggests that 𝛿𝜔D in the formula is actually a parameter 

approximately 0.88 times the FWHM of the gain curve. Let's assume the 

formula is as given and proceed. The numerical factor is important for 

precise calculations. Often, the Gaussian is written as 

exp [−4ln(2) (
𝜔 − 𝜔0

𝛿𝜔D

)
2

]. 

However, we'll use the formula as presented. 

"Condition for positive net gain:" 

As we saw, this is 

−2𝛼(𝜔)𝐿 − 𝛾 > 0, 



or 

−2𝛼(𝜔)𝐿 > 𝛾. 
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The condition for positive net gain, and thus for lasing to be possible, is: 

−2𝛼(𝜔)𝐿 > 𝛾 

"Minus two alpha of omega times Ell is greater than gamma." 

Where −2𝛼(𝜔)𝐿 is the frequency-dependent round-trip logarithmic 

amplitude gain from the medium, and 𝛾 is the frequency-independent 

round-trip logarithmic amplitude loss. 

The slide then instructs us to "Insert numbers ⇒ determine the angular 

frequency interval satisfying the inequality." 

So, we need to plug in the given values: 

𝛼(𝜔0) = −0.01 cm−1 𝐿 = 10 cm 

So, the peak gain term is 

−2𝛼(𝜔0)𝐿 = −2 × (−0.01 cm−1) × (10 cm) = −2 × (−0.1) = +0.2 

This is a dimensionless quantity, as it's an exponent. 

The loss term is 𝛾 = 0.03. 

The Doppler width parameter is 𝛿𝜔D = 8.17 × 109 rad s
−1

. 

So the inequality becomes: 

0.2 ⋅ exp [− (
𝜔 − 𝜔0

0.68 ⋅ 𝛿𝜔D

)
2

] > 0.03 

We need to solve this for 𝜔 to find the range of frequencies where lasing 

can occur. This will give us the "lasing bandwidth." 
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We are now in "Part 2" of the "Case Study - Gas Laser With Doppler-

Broadened Gain (Example 5.9a)." 

* "Solve inequality numerically:" 

The inequality we set up on the previous page was: 

0.2 ⋅ exp [− (
𝜔 − 𝜔0

0.68 𝛿𝜔D

)
2

] > 0.03 

The slide actually writes: 

0.02 ⋅ exp [− (
𝜔 − 𝜔0

0.68 𝛿𝜔D

)
2

] > 0.03 

Let me recheck my calculation of −2𝛼(𝜔0)𝐿. 

𝛼(𝜔0) = −0.01 cm−1, 𝐿 = 10 cm. 

−2 ⋅ 𝛼(𝜔0) ⋅ 𝐿 = −2 ⋅ (−0.01 cm−1) ⋅ (10 cm) = −2 ⋅ (−0.1) = +0.2. 

So the prefactor should be 0.2, not 0.02 as written on this slide for the 

numerical inequality. 

If the slide intended 𝛼(𝜔0) = −0.001 cm−1, then −2𝛼(𝜔0)𝐿 would be 0.02. 

Let's assume there's a typo on this slide and the prefactor is indeed 0.2 

from the previous inputs. 

If we use 0.2: 

0.2 ⋅ exp[−𝑋2] > 0.03, 

where 𝑋 =
𝜔−𝜔0

0.68 𝛿𝜔D

. 

If we use 0.02 as on the slide: 

0.02 ⋅ exp[−𝑋2] > 0.03. 

Let's follow the slide's numbers for now and see the conclusion. If it uses 

0.02: 



1. "Rearrange:" Divide by 0.02: 

exp [− (
𝜔 − 𝜔0

0.68 𝛿𝜔D

)
2

] >
0.03

0.02
 

exp [− (
𝜔 − 𝜔0

0.68 𝛿𝜔D

)
2

] > 1.5 

This is what's written on the slide. 

So, the "0.02" prefactor was indeed used in the slide's subsequent steps. 

This implies that either 𝛼(𝜔0) was −0.001 cm−1 or 𝐿 was 1 cm, or there's a 

factor of 10 error in 𝛼(𝜔0) or 𝐿 values given on page 29, or in the 

calculation leading to 0.02. 

Given 𝛼(𝜔0) = −0.01 cm−1 and 𝐿 = 10 cm, the term 2𝛼(𝜔0)𝐿 is −0.2. So 

−2𝛼(𝜔0)𝐿 is +0.2. 

If the slide uses 0.02, it implies 𝑔0(𝜔0)𝐿 = 0.01 for single pass gain, where 

𝑔0 = −𝛼0. 

So 2 𝑔0(𝜔0)𝐿 = 0.02. 

Let's proceed by consistently using the slide's value of 0.02 as the starting 

point for the inequality on this page, while noting the discrepancy with page 

29. 
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Continuing with the solution based on the rearranged inequality: 

exp [− (
𝜔 − 𝜔0

0.68 𝛿𝜔D

)
2

] > 1.5 

2. "Exponential on left cannot exceed 1 ⇒ the inequality has no solution 

unless the prefactor −2𝛼(𝜔0)𝐿 is > 0.03. But the given magnitude 0.02 <

0.03 contradicts that." 



This is a critical point. The exponential term exp[−𝑌2] where 𝑌2 =

(
𝜔−𝜔0

0.68 𝛿𝜔D

)
2
 is always positive. Since 𝑌2 ≥ 0, −𝑌2 ≤ 0. Therefore, exp[−𝑌2] 

must be less than or equal to exp(0), which is 1. 

So, 

exp [− (
𝜔 − 𝜔0

0.68 𝛿𝜔D

)
2

] ≤ 1. 

Our inequality from the previous page was 

exp [− (
𝜔 − 𝜔0

0.68 𝛿𝜔D

)
2

] > 1.5. 

Since the left side can never be greater than 1, it can certainly never be 

greater than 1.5. 

This means that, with the prefactor of 0.02 for the gain term and a loss of 

0.03, there is no frequency 𝜔 for which the inequality holds. The gain is 

insufficient to overcome the losses at any frequency. 

The slide explains this: "Exponential on left cannot exceed 1 implies the 

inequality has no solution unless the prefactor −2𝛼(𝜔0)𝐿 (which was 0.02 

in the inequality setup) is greater than the loss 𝛾 (which was 0.03)." 

This logic is slightly rephrased. The original inequality was 

PeakGainFactor × GaussianShape > LossFactor. 

So, 

0.02 × GaussianShape > 0.03. 

Since 

GaussianShape ≤ 1, 

the maximum value of the left side is 



0.02 × 1 = 0.02. 

So we are asking if 

0.02 > 0.03, 

which is false. 

Therefore, the inequality 

0.02 × exp [− (
𝜔 − 𝜔0

0.68 𝛿𝜔D

)
2

] > 0.03 

has no solution. The laser will not lase with these parameters (specifically, 

if the peak round-trip gain factor −2𝛼(𝜔0)𝐿 is 0.02 and the loss 𝛾 is 0.03). 

* "Interpretation:" 

* "Pump power must be increased further until −2𝛼(𝜔0)𝐿 = 0.03." Or, more 

generally, until −2𝛼(𝜔0)𝐿 > 0.03. To reach threshold, the peak gain must at 

least equal the loss. The term −2𝛼(𝜔0)𝐿 is proportional to the small-signal 

gain, which is in turn typically proportional to the pump power. So, 

increasing pump power increases this term. Lasing will only begin when the 

peak of the gain curve −2𝛼(𝜔0)𝐿 at least touches the loss line 𝛾 = 0.03. 

* "After threshold, the valid frequency range broadens as the pump 

increases because unsaturated 𝛼(𝜔) becomes more negative." 

Once −2𝛼(𝜔0)𝐿 exceeds 0.03, there will be a range of frequencies around 

𝜔0 where 

−2𝛼(𝜔)𝐿 > 0.03. 

As the pump power increases further, −2𝛼(𝜔0)𝐿 (the peak gain) increases, 

making the gain curve taller. This means the gain curve will exceed the loss 

line over a wider range of frequencies. So, the lasing bandwidth increases. 

This case study, even with the apparent numerical inconsistency between 

slides, powerfully illustrates the threshold condition. If peak gain < loss, no 



lasing. If peak gain = loss, threshold at line center. If peak gain > loss, 

lasing over a finite bandwidth. 
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Continuing the interpretation, and perhaps implicitly correcting or clarifying 

the numerical situation: 

  * "Once −2𝛼(𝜔)𝐿 > 0.03 at line centre, approximate stimulated-

emission bandwidth:" 

  This phrasing implies that the condition for lasing is met when the gain 

at line center exceeds the loss of 0.03. (The slide uses 𝜔 here generically, 

but line center is 𝜔0.) 

  The text then gives a value for an "approximate stimulated-emission 

bandwidth":      𝛿𝜔 ≈ 2𝜋 × 3 GHz      "delta omega is 

approximately two pi times three gigahertz."   This is an angular 

frequency bandwidth. The corresponding frequency bandwidth 𝛿𝜈 would be 

3 GHz. 

  "as quoted in the text." This suggests this value comes from the 

textbook example this slide is based on (Example 5.9a). For this bandwidth 

to be achieved, the gain −2𝛼(𝜔0)𝐿 must be sufficiently above the threshold 

𝛾 = 0.03. 

  Let's see if we can work backwards. If the lasing bandwidth (FWHM of 

the region where gain > loss) is 𝛿𝜔lase, then at 𝜔 = 𝜔0 ±
𝛿𝜔lase

2
, we have 

−2𝛼(𝜔)𝐿 = 𝛾. 

  Using the Gaussian form: 

   

−2𝛼(𝜔0)𝐿 ⋅ exp [− (
𝛿𝜔lase/2

0.68 ⋅ 𝛿𝜔D

)

2

] = 𝛾. 



  We have 𝛾 = 0.03. 𝛿𝜔D = 8.17 × 109 rad/s. 𝛿𝜔lase = 2𝜋 × 3 × 109 rad/

s. 

  So, 
𝛿𝜔lase

2
= 𝜋 × 3 × 109 rad/s ≈ 9.42 × 109 rad/s. 

  The argument of the exp:   𝑋half =
𝜋×3×109

0.68×8.17×109
≈

9.42

0.68×8.17
≈

9.42

5.55
≈

1.696. 

  𝑋half
2 ≈ 2.876. 

  So, exp[−2.876] ≈ 0.0563. 

  Then, −2𝛼(𝜔0)𝐿 ⋅ 0.0563 = 0.03. 

  This would imply −2𝛼(𝜔0)𝐿 =
0.03

0.0563
≈ 0.532. 

  This peak gain value of 0.532 is much larger than the 0.2 we calculated 

from the initial parameters, or the 0.02 used in the slide's direct inequality. 

  This suggests that the 3 GHz bandwidth corresponds to a scenario 

where the pump power is significantly higher, leading to a much larger line-

center gain. 

This highlights that the actual lasing bandwidth is not just fixed but depends 

on how far above threshold the laser is operating. The initial parameters 

given on page 29 (leading to −2𝛼(𝜔0)𝐿 = 0.2) would result in a different, 

likely broader, lasing bandwidth than if it were 0.02, and certainly different 

from the one implied by the 3 GHz figure if that requires a gain of 0.532. 

The main lesson is the process of how to calculate it. 
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This page shows two graphs side-by-side, illustrating the "Gas Laser: 

Doppler-Broadened Gain vs. Loss," as a "Case Study based on Example 

5.9a (He-Ne-like laser)." These graphs are interactive in principle, with 

sliders for "Peak Small-Signal Gain 𝐺0 = −2𝛼(𝜔0)𝐿 (Pump Level)". 



Left Graph: 

The slider for Peak Small-Signal Gain 𝐺0 is set to 0.0195. This is very close 

to the 0.02 used in the problematic inequality calculation. The graph plots 

"Gain/Loss Coefficient" vs. "Frequency Detuning 
𝜔−𝜔0

2𝜋
 (GHz)". The gain 

curve (blue, bell-shaped) is 𝐺0 × GaussianShape. Its peak is at 0 detuning, 

and the height is 0.0195, labeled "𝐺0 = 0.0195". The loss line (red, dashed 

horizontal) is labeled "Loss 𝛾 = 0.03". Visually, the peak of the blue gain 

curve (0.0195) is clearly below the red loss line (0.03). In this scenario, 

Gain < Loss everywhere. Therefore, no lasing is possible. This 

corresponds to the conclusion we reached when using the 0.02 prefactor: 

the laser is below threshold. 

Right Graph: 

Here, the slider for Peak Small-Signal Gain 𝐺0 is set to 0.0565. The gain 

curve (blue, bell-shaped) now peaks at 0.0565, labeled "𝐺0 = 0.0565". The 

loss line (red, dashed horizontal) is still at "Loss 𝛾 = 0.03". Now, the peak 

of the blue gain curve (0.0565) is significantly above the red loss line (0.03). 

There is a region of frequencies around the center where the blue curve is 

above the red line. This region, where Gain > Loss, is shaded in light blue, 

indicating the frequencies where lasing can occur. The width of this shaded 

region visually represents the lasing bandwidth. The detuning axis runs 

from about −2.5 GHz to +2.5 GHz. The shaded region seems to span from 

roughly −1.5 GHz to +1.5 GHz, making the FWHM of the lasing region 

approximately 3 GHz. This matches the "stimulated-emission bandwidth 

𝛿𝜈 ≈ 3 GHz" mentioned on the previous page. This confirms that the 3 GHz 

bandwidth occurs when the peak gain −2𝛼(𝜔0)𝐿 is around 0.0565, not 0.2 

or 0.02 or 0.532 (my earlier quick estimate for 0.532 was based on a FWHM 

definition for the lasing bandwidth, whereas this graphical method uses the 

full width where gain > loss). So, to get a 3 GHz lasing bandwidth (full 

width, not FWHM), we need 𝐺0 = 0.0565 when 𝛾 = 0.03. 



These two graphs perfectly illustrate the threshold behavior: 1. If peak gain 

𝐺0 (e.g., 0.0195) is less than loss 𝛾 (0.03), no lasing. 2. If peak gain 𝐺0 

(e.g., 0.0565) is greater than loss 𝛾 (0.03), lasing occurs over a finite 

bandwidth. Increasing 𝐺0 further (by increasing pump power) would make 

the blue curve taller and the shaded lasing region wider. 
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Now we consider "Example 5.9a — Mode Counting in a 50 cm Resonator." 

We've determined the potential lasing bandwidth (e.g., 3 GHz if 𝐺0 is high 

enough). Now we need to see how many discrete cavity modes fit within 

this bandwidth. 

* "Mirror separation (physical length) 𝑑 = 50 cm = 0.5 m." "dee equals fifty 

centimeters, which equals zero point five meters." This defines our 

resonator. 

* "Passive cavity FSR (Free Spectral Range):" We use the formula 

𝛿𝜈 =
𝑐

2 𝑑
 

𝛿𝜈 =
3.00 × 108 m s−1

2 × 0.5 m
 

𝛿𝜈 =
3.00 × 108 m s−1

1.0 m
 

delta nu equals three point zero zero times ten to the eighth meters per 

second, divided by one point zero meters. 

𝛿𝜈 = 3.00 × 108 Hz = 300 MHz 

delta nu equals three point zero zero times ten to the eighth Hertz, which 

equals three hundred Megahertz. So, the axial modes of this passive 50 cm 

cavity are spaced 300 MHz apart. 



* "Amplification bandwidth supporting oscillation ≈ 3 GHz." This is the result 

from the previous discussion (page 35, right graph) when the gain was 

sufficiently high  𝐺0 = 0.0565, 𝛾 = 0.03. Let's call this 𝛥𝜈lase (Delta nu sub 

lase). 

* Now, we want to find the "Number 𝑁axial (En sub axial) of axial modes 

inside the gain band:" (More accurately, inside the bandwidth where gain 

exceeds loss). 
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To find the number of axial modes, 𝑁axial, that can fit within the lasing 

bandwidth 𝛥𝜈lase, we divide the total lasing bandwidth by the spacing 

between the modes (the FSR, 𝛿𝜈): 

𝑁axial =
𝛥𝜈lase

𝛿𝜈
 

Using the values: 

𝛥𝜈lase ≈ 3 GHz = 3000 MHz 

𝛿𝜈 = 300 MHz 

So, 𝑁axial =
3000 MHz

300 MHz
= 10 

En sub axial equals three gigahertz divided by three hundred megahertz, 

which is approximately ten. 

The slide shows the calculation: 

𝑁axial =
3 GHz

300 MHz
≈ 10 

* "These ten modes are potentially able to reach threshold; final number 

depends on saturation and competition effects elaborated in later slides." 

This is a very important caveat. Just because 10 passive cavity modes fall 

within the region where small-signal gain exceeds loss, it doesn't 



automatically mean all 10 will lase simultaneously, or that they will lase with 

equal intensity. 

Once lasing starts on one or more modes, the intensity builds up, and this 

leads to "gain saturation." The gain profile is no longer the "unsaturated" 

one we used for this calculation. Saturation can reduce the gain, potentially 

preventing some modes from reaching threshold or altering their power. 

"Competition effects" also arise because different modes might draw 

energy from the same pool of excited atoms/molecules in the gain medium. 

We will indeed elaborate on these complex but crucial effects in later 

slides. For now, we can say there are approximately 10 "candidate" modes. 
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Let's consider another case study: "Slide 11: Case Study — Solid-State / 

Dye Laser Broad Gain (Example 5.9b)." Solid-state lasers (like Ti:Sapphire) 

and dye lasers are known for having very broad gain bandwidths, much 

broader than typical gas lasers. 

* "Typical dye laser gain FWHM (Full Width at Half Maximum):" 

𝛥𝜈gain ≈ 1 × 1013 Hz 

Delta nu sub gain is approximately one times ten to the thirteenth Hertz. 

This is 10 Terahertz (THz). This is an enormous bandwidth compared to 

the ∼ GHz bandwidths for gas lasers. 

* "Using same cavity length d = 50 cm:" As in the previous example, 𝑑 =

0.5 m, which gives an FSR, 

𝛿𝜈 =
𝑐

2 𝑑
= 300 MHz = 3.0 × 108  Hz 

Now, let's calculate the number of axial modes 𝑁axial that would fit within 

this much broader gain bandwidth: 



𝑁axial =
𝛥𝜈gain

𝛿𝜈
 

𝑁axial =
1 × 1013 Hz

3.0 × 108 Hz
 

En sub axial equals one times ten to the thirteenth Hertz, divided by three 

point zero times ten to the eighth Hertz. 

𝑁axial =
1

3
× 1013−8 =

1

3
× 105 ≈ 0.333 × 105 = 3.3 × 104 

The slide shows: 

𝑁axial =
1 × 1013 Hz

3.0 × 108 Hz
≈ 3 × 104 

approximately three times ten to the fourth. So, about thirty thousand axial 

modes! 

* "Crucial observation:" This large number has significant implications. 
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The crucial observation stemming from the vast number of modes in broad-

band media is: 

* "In broad-band media, the passive cavity mode spacing is extremely fine 

compared with the gain window." We saw this: 300 MHz mode spacing 

versus a 10 THz (10,000,000 MHz) gain bandwidth. The modes are very 

densely packed under the gain curve. If the laser were to operate on all 

these modes, the output would be highly multimode and quasi-continuous 

in terms of its spectrum for many practical purposes, though still composed 

of discrete lines. 

* This leads to a practical requirement for many applications: "Additional 

intra-cavity wavelength-selective elements (gratings, prisms, etalons) 

become essential for spectroscopy-grade single-mode operation." If you 

need a laser for high-resolution spectroscopy, you typically want a single, 



well-defined, narrow frequency. With tens of thousands of potential modes, 

allowing the laser to choose freely would result in a broad, uncontrolled 

output. 

Therefore, to achieve single-mode operation, or even to select a narrow 

band of frequencies, one must insert elements inside the laser cavity that 

introduce additional losses for unwanted frequencies, effectively narrowing 

the net gain profile. 

Examples of such elements include: 

* Diffraction gratings: These disperse light by angle according to 

wavelength, and can be used in Littrow or Littman-Metcalf configurations to 

select a narrow wavelength band for feedback into the cavity. 

* Prisms: Similar to gratings, prisms disperse light by wavelength and can 

be used to tune the laser output. 

* Etalons: These are themselves Fabry-Perot interferometers. A thin, solid 

etalon inserted in the cavity will have its own set of transmission peaks, but 

with a much larger Free Spectral Range than the main cavity (because the 

etalon is thin). By aligning a transmission peak of the intracavity etalon with 

a desired main cavity mode, and ensuring other main cavity modes fall on 

the lossy regions of the etalon's transmission curve, one can enforce 

single-mode operation. Often, a hierarchy of such selective elements is 

needed (e.g., a birefringent filter for coarse tuning, then one or more 

etalons for fine mode selection). 

Without these elements, a dye laser or Ti:Sapphire laser would typically 

operate highly multimode. 
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This page displays a graph for the "Slide 11: Case Study — Solid-State / 

Dye Laser Broad Gain (Example 5.9b)," titled "Resonator Modes under 

Broad Dye Gain Curve." 



The graph shows: 

A very broad, light blue, bell-shaped curve representing the "Relative Gain" 

on the vertical axis (from 0.0 to 1.0, arbitrary units). 

The horizontal axis is "Frequency (THz relative to gain center)," ranging 

from −5 THz to +5 THz. This means the gain curve shown has a Full Width 

at Half Maximum (FWHM) of roughly 10 THz, consistent with the 𝛥𝜈gain ≈

1 × 1013 Hz given earlier. 

Underneath this extremely broad gain curve, one would imagine the very 

densely packed cavity modes. They are so close together (300 MHz 

spacing) that they cannot be individually resolved on this frequency scale 

(which spans 10 THz = 10,000 GHz = 10,000,000 MHz). The diagram 

doesn't attempt to show individual modes but rather conveys that the entire 

continuous-looking gain profile is available. 

Text annotations below the graph reiterate the parameters and results: 

"Cavity Length 𝑑 = 50 cm (Mode Spacing 𝛿𝜈 = 300 MHz)" 

"Gain FWHM 𝛥𝜈gain ≈ 10 THz (≈ 1 × 1013 Hz)" 

"Axial modes within FWHM: 𝑁axial ≈ 3.3 × 104" (consistent with our 33,000 

calculation) 

"Total modes shown (gain > 0.5%): ≈ 4.0 × 104" This implies that if we 

consider all modes where gain is above a very small threshold (0.5% of 

peak gain), the number is even larger, around 40,000. 

This visual powerfully emphasizes the challenge and necessity of mode 

selection techniques when working with such broad-gain-bandwidth laser 

media if a narrow or single frequency output is desired. Without selection, 

the laser would emit a very broad spectrum. 
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We now shift to discuss "Passive vs Active Cavity Linewidth and the Quality 

Factor." We've talked about resonant frequencies, but these resonances 

are not infinitely sharp; they have a certain linewidth. 

* "Define passive resonator finesse 𝐹p (Eff sub pee) and linewidth 𝛥𝜈p 

(Delta nu sub pee) (half-power width). For mirrors of amplitude reflectivity 𝑟 

(lowercase arr) (where 𝑇 = 1 − 𝑟2 − losses, with 𝑇 being intensity 

transmission):" 

* The "finesse," 𝐹p, of a passive Fabry–Perot resonator is a measure of its 

sharpness or quality. Higher finesse means sharper resonances and a 

greater ability to resolve closely spaced spectral lines if used as an 

interferometer. 

* The formula for finesse given here is: 

𝐹p =
𝜋√𝑟eff

1 − 𝑟eff

 

(Corrected based on common finesse definitions, slide has 𝜋√𝑟/(1 − 𝑟).) 

* Actually, the most common formula for finesse in terms of reflectivity 𝑅 =

𝑟2 is 

𝐹p =
𝜋√𝑅

1 − 𝑅
 

or 

𝐹p =
𝜋𝑅1/2

1 − 𝑅
 

If 𝑟 is amplitude reflectivity, then 𝑅 = 𝑟2. So the formula 

𝐹p =
𝜋𝑟

1 − 𝑟2
 

is often used if 𝑟 is high. 



* The slide writes: 

𝐹p =
𝜋√𝑟

1 − 𝑟
 

This seems unusual. Let's assume 𝑟 here directly refers to the effective 

amplitude reflectivity that includes all losses, not just the mirror's intrinsic 

reflectivity. More standardly, finesse for high reflectivity mirrors is 

𝐹p ≈
𝜋

1 − 𝑅eff

 

where 𝑅eff is effective intensity reflectivity, or 

𝐹p =
𝜋√𝑅1𝑅2

1 − √𝑅1𝑅2
 

for amplitude, assuming 𝑟 = √𝑅1𝑅2. Let's use the slide's formula: "Eff sub 

pee equals pi times square root of arr, divided by (one minus arr)." This 𝑟 

must be related to the round trip amplitude loss. 

* Alternatively, if 𝑟 is the amplitude reflectivity of each mirror, and losses 

are only due to transmission 

𝑇 = 1 − 𝑟2 

(assuming no scattering/absorption in mirrors), then 

𝐹p =
𝜋 𝑟

1 − 𝑟2
. 

* If 𝑟 is the single mirror amplitude reflectivity, then 𝑅 = 𝑟2 is its intensity 

reflectivity. A common formula for finesse is 

𝐹 =
𝜋√𝑅1𝑅2

1 − √𝑅1𝑅2 × (1 − 𝐴)
, 

where 𝐴 is single pass loss. Or simply 



𝐹 =
FSR

𝛥𝜈p

. 

* Let's assume the 𝑟 in the slide's formula for 𝐹p is an effective amplitude 

reflectivity per mirror accounting for all losses. 

* The passive cavity linewidth 𝛥𝜈p (Delta nu sub pee), which is the FWHM 

of the resonance peak, is related to the Free Spectral Range (FSR, 𝛿𝜈) and 

the finesse 𝐹p by: 

𝛥𝜈p =
𝛿𝜈

𝐹p
 

"Delta nu sub pee equals delta nu divided by Eff sub pee." This is a 

fundamental definition: finesse is the ratio of the mode spacing to the mode 

linewidth. So, a high finesse cavity has very narrow resonance peaks 

compared to their separation. 

* Now, what happens when we add gain? "When gain medium 

compensates losses and approaches threshold 𝐺 → 1− (Capital Gee 

approaches one from below), effective finesse rises:" 

As the net round-trip amplitude gain 𝐺 approaches 1, the resonances 

become much sharper, as we saw in the transmission spectrum graph 

(page 25). This means the effective finesse of the active* cavity increases 

dramatically. 
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The effective finesse of the active cavity, let's call it 𝐹a
∗, is given by a 

formula analogous to the passive one, but incorporating the round‐ trip 

amplitude gain 𝐺(𝜈): 

𝐹a
∗ =

2𝜋√𝐺(𝜈)

1 − 𝐺(𝜈)
 



Notice the 2𝜋 here, whereas the passive finesse formula on the previous 

page had 𝜋. This factor of 2 difference can arise from defining finesse 

based on round‐ trip phase or other conventions. The key is the (1 − 𝐺(𝜈)) 

in the denominator. As 𝐺(𝜈) approaches 1, this denominator approaches 

zero, so 𝐹a
∗ tends to infinity. 

* Corresponding active-cavity linewidth: 

The active cavity linewidth, 𝛥𝜈a, is similarly related to the FSR (𝛿𝜈) and this 

active finesse 𝐹a
∗: 

𝛥𝜈a =
𝛿𝜈

𝐹a
∗ 

Substituting the expression for 𝐹a
∗: 

𝛥𝜈a = 𝛿𝜈 (
1 − 𝐺(𝜈)

2𝜋√𝐺(𝜈)
) 

This boxed formula is extremely important. It shows how the linewidth of an 

active cavity mode behaves as the gain 𝐺(𝜈) approaches the threshold 

value of 1. 

* Limit behaviour: 

  As 𝐺(𝜈) → 1, then 𝐹a
∗ → ∞ and 𝛥𝜈a → 0. 

This is clear from the formulas. When 𝐺(𝜈) = 1, the denominator (1 −

𝐺(𝜈)) becomes zero, so \(F_\text{a}^{}\) diverges to infinity. Consequently, 

\(\Delta \nu_\text{a} = \frac{\delta \nu}{F_\text{a}^{}}\) approaches zero. 

This implies that, theoretically, at the threshold of laser oscillation, the 

linewidth of the lasing mode should become infinitely narrow! This is the 

famous line‐ narrowing effect in lasers. 
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However, the prediction of zero linewidth at threshold is an idealization. 



* "In practice quantum noise sets a lower bound on the achievable laser 

linewidth (see Sect. 5.6 — Schawlow-Townes limit)." 

This is a crucial point. Even if we could perfectly stabilize the cavity and 

operate exactly at 𝐺 = 1 (which is also an idealization, as stable oscillation 

occurs slightly above threshold where gain saturation clamps 𝐺 effectively 

to 1), there is a fundamental limit to how narrow the laser linewidth can be. 

This limit arises from "quantum noise," specifically from the unavoidable 

spontaneous emission of photons into the lasing mode by the excited 

atoms/molecules in the gain medium. Each spontaneously emitted photon 

has a random phase relative to the coherent field already in the mode. 

These random phase contributions cause the phase of the laser field to 

undergo a random walk, which, in turn, leads to a finite frequency linewidth. 

This fundamental quantum limit is known as the "Schawlow-Townes limit," 

named after Arthur Schawlow and Charles Townes, who first derived it in 

their seminal 1958 paper on the principles of lasers. We will discuss this in 

detail in Section 5.6. 

So, while the classical theory predicts 𝛥𝜈a → 0, quantum mechanics 

imposes a non-zero floor on the laser linewidth. Achieving this Schawlow-

Townes limit is a significant challenge and a benchmark for laser stability. 

Practical lasers often have linewidths much broader than this limit due to 

technical noise (vibrations, temperature fluctuations, pump power 

instability, etc.). 
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Now we consider "Off-Resonance Regions — Why Threshold Is Not Met" 

generally, even if the gain profile itself is broad. 

* "Between successive resonances, phase 𝜙 deviates from 2𝜋𝑞 by ≈ 𝜋." 

The resonant condition is 𝜙 = 2𝜋𝑞. Exactly midway between two 

resonances, say for modes 𝑞 and 𝑞 + 1, the phase would be 
2𝜋𝑞+2𝜋(𝑞+1)

2
=



2𝜋𝑞 + 𝜋. So, yes, the phase 𝜙 will differ from an integer multiple of 2𝜋 by 

about 𝜋 in the regions far from any resonance (i.e., in the "valleys" between 

the transmission peaks of the Fabry-Perot). 

* "For a Lorentzian resonance of half-width 𝛥𝜈r, loss factor 𝛽(𝜈) increases 

approximately ten-fold at |𝜈 − 𝜈0| ≈ 3𝛥𝜈r." 

This point refers to the shape of the cavity transmission peaks if they are 

Lorentzian. The loss factor mentioned here, 𝛽(𝜈), isn't the same 𝛾 we used 

for threshold, but rather related to how quickly the cavity's ability to support 

a mode deteriorates as we move off resonance. 

A Lorentzian line shape falls off as 

1

1 + (
𝜈 − 𝜈0
𝛥𝜈r

)
2. 

At 𝜈 − 𝜈0 = 𝛥𝜈r (at the half-width point), the function is 
1

2
. 

At 𝜈 − 𝜈0 = 3𝛥𝜈r, the term (
𝜈−𝜈0

𝛥𝜈r

)
2
= 32 = 9. So the Lorentzian is 

1

1+9
=

1

10
. 

This means the transmission of the cavity (or its ability to sustain a mode) 

drops by a factor of 10 when you are about 3 half-widths away from the 

resonance center. This is a property of the Lorentzian lineshape. So, if a 

cavity mode is not excited, the light that is off-resonance from this mode 

experiences significantly higher effective losses or lower transmission. 

* "Since the gain curve decays away from 𝜈0, net gain quickly turns 

negative outside the immediate vicinity of each mode." 

This is the combined effect. We have a gain curve (e.g., Gaussian or 

Lorentzian) provided by the active medium. We also have the comb of 

cavity resonances, each with its own finite width (e.g., 𝛥𝜈r). 



For lasing to occur, a cavity resonance peak must overlap significantly with 

a region where the gain medium provides amplification greater than the 

total cavity losses. 

If a cavity mode is far from the center of the gain curve, the gain 𝑔(𝜈) 

available at that mode's frequency might be too low to overcome the losses 

𝛾. 

Furthermore, even if a frequency falls under the broad gain envelope, if it's 

not very close to a cavity resonance, the effective "cavity loss" for that 

specific frequency is very high (due to destructive interference), so it won't 

lase. Lasing requires both sufficient gain AND being on a cavity resonance. 
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This leads to the conclusion regarding off-resonance regions: 

- "Conclusion: lasing occurs only in narrow frequency slots centred at cavity 

resonances; broad 'valleys' remain non-lasing despite active medium 

present." 

This summarizes the situation well. The laser does not simply emit light 

across the entire gain profile of the active medium. Instead, the output 

spectrum is "filtered" or "selected" by the optical resonator. 

Lasing will only occur at, or very near, the discrete resonant frequencies of 

the cavity (the 𝜈𝑞,𝑎𝑐𝑡). 

And, of these cavity resonances, only those that also fall within the 

frequency region where the gain provided by the active medium is sufficient 

to overcome all losses will actually lase. 

So, the laser output consists of a set of discrete frequencies, "narrow 

frequency slots." 

The "broad 'valleys'" between these cavity resonances will not support 

lasing, even if those frequencies are well within the gain bandwidth of the 



active medium. This is because light at those frequencies does not satisfy 

the standing wave condition (or the 𝜙 = 2𝜋𝑞 phase condition) and therefore 

does not build up coherently within the resonator. It experiences destructive 

interference. 

This interplay between the continuous gain profile and the discrete cavity 

modes is what shapes the fundamental output spectrum of a laser. 
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Now we introduce another crucial concept: "Introduction to Gain Saturation 

— The Basic Concept." So far, we've mostly talked about the "small-signal" 

gain, which is the gain experienced by a very weak light field that doesn't 

significantly alter the populations of the energy levels in the gain medium. 

However, once laser oscillation starts and the intensity inside the cavity 

builds up, this is no longer true. 

"Population inversion 𝛥𝑁 = 𝑁2 −𝑁1 created by pumping." 

This is the prerequisite for gain. 𝑁2 is the population density of the upper 

laser level, and 𝑁1 is that of the lower laser level. Pumping (optical, 

electrical, etc.) establishes 𝑁2 > 𝑁1 for an inverted transition. 

"Stimulated emission rate for one frequency component 𝜈:" 

The rate at which atoms/molecules are stimulated to emit photons from 

level 2 to level 1 by the presence of radiation at frequency 𝜈 is given by: 

𝑅stim(𝜈) = 𝐵21 ⋅ 𝜌(𝜈) ⋅ 𝑔(𝜈 − 𝜈0) ⋅ 𝑁2 

Let's define these terms: 

𝐵21: This is the "Einstein B-coefficient" for stimulated emission. It's a 

fundamental property of the specific atomic or molecular transition, 

quantifying how strongly the transition interacts with light. Its units would be 

related to (energy density)−1 time
−1

 or (intensity)−1 frequency time
−1

. 

Standard units are $\text{m}^{3\,\text}{J}^{-1}\,\text{s}^{-2}$. 



Page 47: 

Continuing with the terms in the stimulated emission rate 𝑅stim(𝜈) = 𝐵21 ⋅

𝜌(𝜈) ⋅ 𝑔(𝜈 − 𝜈0) ⋅ 𝑁2: 

* 𝜌(𝜈) (rho of nu): This is the "spectral energy density" of the radiation field 

at frequency 𝜈, inside the gain medium. Its units are Joules per cubic meter 

per Hertz (J m
−3

 Hz
−1
). It's a measure of how much electromagnetic 

energy is present at that frequency. 

* 𝑔(𝜈 − 𝜈0) (gee of nu minus nu naught): This is the "normalized line-shape 

function." It describes the frequency profile of the transition (e.g., 

Lorentzian, Gaussian), centered at 𝜈0. It's normalized such that its integral 

over all frequencies is unity (∫ 𝑔(𝜈 − 𝜈0) 𝑑𝜈 = 1). It ensures that stimulated 

emission is most efficient at the line center and falls off according to the 

transition's natural shape. It's dimensionless. 

* 𝑁2 (En sub two): This is the population density of the upper laser level 

(number of atoms/molecules per unit volume in state 2). 

Now, the crucial consequence of stimulated emission: 

* "As intra-cavity intensity 𝐼 (capital Eye) grows, 𝜌(𝜈) ∝ 𝐼 (rho of nu is 

proportional to Eye) grows, hence 𝑅stim depletes 𝑁2." 

The spectral energy density 𝜌(𝜈) is directly proportional to the light intensity 

𝐼(𝜈) inside the cavity. As the laser starts to oscillate, 𝐼(𝜈) increases. This 

increases 𝜌(𝜈), which in turn increases the stimulated emission rate 𝑅stim. 

Each stimulated emission event takes one atom/molecule from the upper 

state 𝑁2 to the lower state 𝑁1. So, a high 𝑅stim leads to a rapid depletion of 

the population 𝑁2 (and an increase in 𝑁1). This reduces the population 

inversion 𝛥𝑁 = 𝑁2 −𝑁1. 

* "Under steady-state operation:" 



In continuous-wave (CW) laser operation, a steady state is reached where 

the rate at which the pump excites atoms into 𝑁2 is balanced by all the 

rates depleting 𝑁2 (stimulated emission, spontaneous emission, non-

radiative decay). The dominant depletion process for 𝑁2 in a lasing mode is 

stimulated emission. So, "pump rate = stimulated emission rate" 

(approximately, for the lasing transition). 

* This leads to the population inversion being "pinned" to a smaller value:   

⇒ inversion is 'pinned' to a smaller value 𝛥𝑁thr (Delta En sub thr). 

As intensity rises, stimulated emission rises, which reduces the inversion. 

The gain is proportional to the inversion. The system will stabilize when the 

gain (which depends on the now reduced inversion) is just enough to 

balance the losses. This means the inversion 𝛥𝑁 will be clamped or 

"pinned" at the value it needs to have to sustain oscillation at that particular 

intensity, which is precisely the threshold inversion 𝛥𝑁thr required for gain 

to equal loss. If the pump tries to increase the inversion above this, the 

intensity will rise, increasing 𝑅stim, which will drive the inversion back down 

to 𝛥𝑁thr. This is a self-regulating negative feedback mechanism. 
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And the name for this crucial process is: 

* "This process is termed gain saturation." The gain of the medium 

becomes saturated because the population inversion is depleted by the 

strong stimulated emission driven by the laser's own internal field. The gain 

coefficient 𝑔(𝜈) is no longer the "small-signal" gain 𝑔0(𝜈) (which depends 

on the unsaturated inversion), but rather a reduced, "saturated" gain 𝑔s(𝜈) 

which depends on the (now lower) inversion 𝛥𝑁thr. 

* "It introduces nonlinearity necessary for amplitude stability." This is a 

profound point. Gain saturation is a non-linear process because the gain 

itself becomes dependent on the intensity of the light. 



If there were no gain saturation (i.e., if gain were independent of intensity), 

then once gain exceeded loss, the laser intensity would theoretically grow 

indefinitely, which is unphysical. 

Gain saturation provides the mechanism for the laser to reach a stable 

output power. If the intensity tries to rise above the steady-state value, the 

gain saturates more, reducing the net gain, and pushing the intensity back 

down. If the intensity drops, gain saturation lessens, net gain increases, 

and intensity is pushed back up. This is what allows a laser to operate at a 

constant output power once it's above threshold. 

So, gain saturation is not a detrimental effect to be avoided; it's an 

essential physical process for the stable operation of virtually all lasers. 
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Now we look at how gain saturation manifests in different types of 

broadened lines, starting with "Homogeneous Broadening — Uniform 

Saturation Across Frequency." 

* "For a homogeneously broadened line:" 

What is homogeneous broadening? In a homogeneously broadened 

transition, all atoms or molecules in the gain medium behave identically. 

They all have the same line center frequency and the same lineshape (e.g., 

a natural lifetime broadened line, or a collisionally broadened line in a gas 

at high enough pressure, or transitions in perfect crystals at low 

temperatures). There's no statistical distribution of resonance frequencies 

among the atoms. 

* The consequence is: "All atoms/molecules 'see' every frequency 

component equally well." 

More precisely, every atom has the same response curve. So, if there is a 

light field at a particular frequency 𝜈 within the gain profile, it can interact 



with any of the atoms in the upper laser state because they all share that 

same gain profile. 

* Therefore, "Saturation of one laser mode reduces gain for the entire line 

profile." 

This is the key characteristic of homogeneous saturation. If a single laser 

mode at frequency 𝜈L starts to lase and builds up intensity, it will deplete 

the population inversion 𝑁2. Since all atoms contribute to the entire gain 

profile, this depletion of 𝑁2 reduces the gain across the whole profile, not 

just at 𝜈L. The gain curve 𝑔(𝜈) retains its shape but is uniformly scaled 

down in amplitude. 

* "Standard saturation formula (derivation recalled from rate equations):" 

The effect of this saturation on the gain coefficient can be quantified. We 

usually derive this from a steady-state analysis of the rate equations for the 

populations 𝑁1 and 𝑁2. 
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The standard saturation formula for a homogeneously broadened gain 

coefficient, 𝛼𝑠,hom(𝜈) (alpha sub ess comma hom of nu), where 's' denotes 

saturated and 'hom' for homogeneous, is: 

𝛼𝑠,hom(𝜈) =
𝛼0(𝜈)

1 + 𝑆
 

which can also be written as: 

𝛼𝑠,hom(𝜈) =
𝛼0(𝜈)

1 +
𝐼
𝐼s

 

alpha sub ess comma hom of nu, equals alpha sub zero of nu, divided by, 

open parenthesis one plus capital Ess close parenthesis. This also equals 

alpha sub zero of nu, divided by, open parenthesis one plus capital Eye 

over capital Eye sub ess close parenthesis. 



Let's define these terms: "where" 

* 𝛼0(𝜈) (alpha sub zero of nu): This is the "small-signal gain coefficient 

(before saturation)." (Note: if alpha is absorption coefficient, then gain is 

−𝛼. If this formula is for the gain coefficient itself, then 𝛼0(𝜈) should be 

positive for gain. Let's assume 𝛼0(𝜈) here represents the magnitude of the 

gain, or that it is the absorption coefficient which becomes less negative, 

i.e. closer to zero or even positive if saturation is very strong and turns gain 

into loss). More commonly, 𝑔s(𝜈) =
𝑔0(𝜈)

1+
𝐼

𝐼s

 where 𝑔 is gain. If 𝛼 is absorption, 

then 𝛼s =
𝛼0

1+𝑆
 would mean a negative 𝛼0 (small signal gain) becomes less 

negative. This is consistent. So 𝛼0(𝜈) is the unsaturated absorption 

coefficient (negative for gain). 

* 𝐼s (capital Eye sub ess): This is the "saturation intensity." It is a 

characteristic parameter of the gain medium and the transition. It is defined 

as "the intensity for which 𝑆 = 1," meaning the intensity at which the gain 

coefficient is reduced to half its small-signal value (i.e., 𝛼𝑠,hom(𝜈) =
𝛼0(𝜈)

2
). Its 

units are typically Watts per square meter (W/m²) or Watts per square 

centimeter (W/cm²). 

* 𝑆 ≡
𝐼

𝐼s
 (Capital Ess is identically equal to Capital Eye over Eye sub ess): 

This is the "dimensionless saturation parameter." It's the ratio of the actual 

intensity 𝐼 of the light at frequency 𝜈 to the saturation intensity 𝐼s. 𝑆 

quantifies how strongly the transition is being saturated. If 𝑆 ≪ 1, saturation 

is weak. If 𝑆 ≫ 1, saturation is strong. 

* "Consequence:" 
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The consequence of this uniform saturation in a homogeneously 

broadened medium is: 



* "Once one mode reaches high intensity, the gain for neighbouring modes 

drops as well ⇒ mode competition, often resulting in single-frequency 

output for perfectly homogeneous media." 

This is a very significant outcome. Imagine several cavity modes lie under 

the homogeneously broadened gain curve. Let's say the mode closest to 

the peak of 𝛼0(𝜈) starts to lase first. 

As its intensity 𝐼 builds up, it saturates the entire gain profile 𝛼0(𝜈), 

reducing it to 

𝛼s(𝜈) =
𝛼0(𝜈)

1 +
𝐼
𝐼s

. 

This reduction in gain occurs for all frequencies, including those of the 

other nearby cavity modes. If the first mode is strong enough, it can 

suppress the gain for all other modes below the threshold level (where gain 

equals loss). 

This is "mode competition": the modes compete for the available saturated 

gain. In a perfectly homogeneous medium, the mode that is best positioned 

(usually highest gain-to-loss ratio) will tend to capture all the available 

energy and suppress all other modes. 

This "often results in single-frequency output." This is why lasers based on 

homogeneously broadened gain media (like some solid-state lasers or dye 

lasers when carefully designed) have a natural tendency towards single-

mode operation, provided other effects like spatial hole burning (which we'll 

see next) are minimized. If one mode can use up all the inversion, no other 

mode can start. 

This is a powerful mechanism for achieving spectrally pure laser output. 
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Now we contrast this with the case of "Inhomogeneous Broadening — 

Selective Saturation and Hole Burning." 

"In inhomogeneous ensembles (Doppler, Stark, inhomogeneous crystal 

fields):" 

What is inhomogeneous broadening? In this case, different atoms or 

molecules in the gain medium have slightly different resonant frequencies. 

They are not all identical. This can arise from several physical 

mechanisms: 

  ◦ Doppler broadening: In a gas, atoms/molecules are moving with a 

distribution of velocities. Due to the Doppler effect, each atom "sees" the 

light (or emits light) at a frequency shifted according to its velocity 

component along the light propagation direction. The overall gain profile is 

a superposition of many narrower, Doppler-shifted homogeneous lines. 

  ◦ Stark broadening: Electric fields (e.g., from ions and electrons in a 

plasma) can shift energy levels, and if these fields are non-uniform, they 

lead to a distribution of transition frequencies. 

  ◦ Inhomogeneous crystal fields: In some solid-state gain media 

(especially glasses or imperfect crystals), individual active ions may sit in 

slightly different local environments within the host material. These 

variations in the local crystal field can lead to slightly different transition 

frequencies for different ions. 

The overall observed gain profile is the envelope of these many distinct, 

narrower sub-profiles. 

"Individual molecules respond only to frequencies within their narrow 

homogeneous sub-profile 𝛥𝜈hom (Delta nu sub hom)." 

Each atom or molecule (or group of atoms with the same local 

conditions/velocity) has its own intrinsic, much narrower homogeneous 

lineshape (e.g., determined by natural lifetime or collisions), centered at its 



specific resonant frequency. It only interacts strongly with light that falls 

within this narrow homogeneous width 𝛥𝜈hom. 

"A strong monochromatic field at 𝜈L (nu sub Ell) 'burns a hole' in the overall 

population distribution 𝛥𝑁(𝜈) (Delta En of nu)." 

This is the critical difference from homogeneous saturation. If you apply a 

strong laser field at a specific frequency 𝜈L, it will primarily interact with and 

saturate only those atoms/molecules whose individual resonant 

frequencies are close to 𝜈L (i.e., within about 𝛥𝜈hom of 𝜈L). These atoms will 

have their population inversion 𝑁2 −𝑁1 depleted. Atoms whose resonant 

frequencies are far from 𝜈L will be largely unaffected. 

This creates a "hole" in the distribution of population inversion when plotted 

against frequency. At 𝜈L, the inversion is reduced (saturated), while away 

from 𝜈L, the inversion remains largely at its unsaturated value. This is 

known as "spectral hole burning." The "hole" appears in 𝛥𝑁 as a function of 

𝜈, where 𝜈 here represents the resonant frequency of a particular subgroup 

of atoms. 
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Let's look at the "Calculated saturated gain coefficient" for an 

inhomogeneously broadened line, 𝛼𝑠,𝑖𝑛ℎ(𝜈). The formula is different from 

the homogeneous case: 

𝛼𝑠,𝑖𝑛ℎ(𝜈) =
𝛼0(𝜈)

√1 + 𝑆
 

This can also be written as: 

𝛼𝑠,𝑖𝑛ℎ(𝜈) =
𝛼0(𝜈)

√1 +
𝐼
𝐼s

 

Notice the square root in the denominator, √1 + 𝑆, compared to (1 + 𝑆) for 

the homogeneous case. This means that for a given saturation parameter 𝑆 



(or 
𝐼

𝐼s
), an inhomogeneously broadened line saturates more slowly, or less 

severely, than a homogeneously broadened one. The gain reduction is less 

pronounced. 

* "Two competing trends with rising 𝐼 (intensity):" Why this √1 + 𝑆 

dependence? It arises from two effects: 

1. "Population depletion ⇒ gain ∝
1

1+𝑆
." For the specific subgroup of atoms 

that are resonant with the saturating field at 𝜈L, their population inversion is 

depleted according to the homogeneous saturation law, so their 

contribution to gain reduces as 
1

1+𝑆
. This is the "depth" of the hole burned. 

2. "Spectral hole broadening ⇒ effective number of contributing molecules 

∝ √1 + 𝑆." As the intensity 𝐼 of the saturating field increases, it doesn't just 

saturate the atoms exactly at 𝜈L more deeply. It also starts to saturate 

atoms whose resonant frequencies are slightly further away from 𝜈L. The 

"hole" burned in the spectral distribution of inversion becomes not only 

deeper but also wider. This effect is known as power broadening of the 

homogeneous linewidth. The width of the hole, 𝛥𝜈hole, increases with 

intensity, approximately as 

𝛥𝜈hom ⋅ √1 + 𝑆 

The "effective number of contributing molecules" to the gain at frequency 𝜈L 

is related to this hole width. As the hole broadens, more atoms from the 

inhomogeneous distribution are brought into resonance with the saturating 

field (due to power broadening of their individual homogeneous lines), but 

they are also saturated. 

The "Net result given above" 
1

√1+𝑆
 comes from a more detailed calculation 

that combines these effects. Essentially, while the peak of the hole 

saturates like 
1

1+𝑆
, the hole also broadens, bringing more atoms into play. 

The overall effect on the macroscopic gain coefficient 𝛼𝑠,𝑖𝑛ℎ(𝜈) at the 



frequency of the saturating light results in the 
1

√1+𝑆
 dependence. This is 

typically derived for a Lorentzian homogeneous lineshape and a much 

broader inhomogeneous profile. 
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This page and the next visually illustrate "Spectral Hole Burning in 

Inhomogeneously Broadened Media." We have two plots here, (a) and (b). 

The vertical axis for both is "Population Inversion (𝛥𝑁)" (Delta En), ranging 

from 0.0 to 1.0 (arbitrary units). The horizontal axis is "Frequency (𝜈)", 

ranging from -100 to 100 (arbitrary units), centered at 𝜈0 (nu naught), which 

is the center of the inhomogeneous profile. 

(a) "Unsaturated Inhomogeneous Profile (𝛥𝑁0(𝜈))" (Delta En sub naught of 

nu) 

This shows a broad, smooth, typically Gaussian-shaped curve representing 

the distribution of population inversion before any strong monochromatic 

light is applied. The peak is at 𝜈0. This is the overall profile that determines 

the small-signal gain 𝛼0(𝜈). 

(b) "Narrow Hole (Low Intensity)" 

Now, a monochromatic laser field at frequency 𝜈L (nu sub Ell) is applied. 𝜈L 

is shown as a vertical dashed line, slightly offset from 𝜈0 for illustration 

(though the hole would be centered at 𝜈L). 

The population inversion profile is now modified. We see a "dip" or a "hole" 

burned into the profile, centered at 𝜈L. 

The annotation "𝑆 = 1.0" indicates that the intensity of the laser field 𝐼L is 

equal to the saturation intensity 𝐼s for the individual homogeneous packets. 

At 𝜈L, the population inversion is reduced significantly (by a factor of 2 for 

𝑆 = 1 if it were purely homogeneous saturation at the peak of the hole). 



Away from 𝜈L, the profile remains largely unperturbed, still following the 

original unsaturated shape. 

The width of this hole is related to the homogeneous linewidth 𝛥𝜈hom, 

possibly slightly power-broadened if 𝑆 = 1.0 leads to some broadening. 

This graph clearly shows that only a selective group of atoms (those 

resonant with 𝜈L) has been saturated. Atoms with resonant frequencies far 

from 𝜈L still have their full inversion and can contribute to gain at those 

other frequencies. 
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This is panel (c) of the spectral hole burning illustration, titled "(c) Wider, 

Deeper Hole (High Intensity)." The axes are the same: "Population 

Inversion (𝛥𝑁)" vs. "Frequency (𝜈)". The monochromatic laser is still at 𝜈L 

(dashed vertical line). 

Now, the annotation says 𝑆 = 10.0. This means the intensity 𝐼L is ten times 

the saturation intensity 𝐼s. This is a strong saturation regime. What do we 

observe in the population inversion profile? The hole centered at 𝜈L is now 

much "deeper" – the population inversion at 𝜈L is very strongly reduced, 

much closer to zero. 

And, crucially, the hole is also significantly "wider" than in the 𝑆 = 1.0 case. 

This is due to power broadening. The strong field at 𝜈L can now effectively 

saturate atoms whose resonant frequencies are further away from 𝜈L 

because their individual homogeneous lines have been broadened by the 

strong field. The formula for the power-broadened homogeneous linewidth 

is approximately 𝛥𝜈hom′ = 𝛥𝜈hom × √1 + 𝑆. 

With 𝑆 = 10, √1 + 10 = √11 ≈ 3.3. So the hole width is roughly 3.3 times 

the low-intensity homogeneous linewidth. 

These three panels (unsaturated, 𝑆 = 1 hole, 𝑆 = 10 hole) beautifully 

demonstrate: 1. Selective saturation at the laser frequency 𝜈L. 2. The hole 



becomes deeper as intensity increases. 3. The hole becomes wider (power 

broadening) as intensity increases. 

The key implication is that even if one mode burns a hole, other modes at 

different frequencies might still be able to lase if they can find enough 

unsaturated atoms elsewhere in the inhomogeneous profile. This makes 

simultaneous multi-mode oscillation more likely in inhomogeneously 

broadened lasers compared to homogeneously broadened ones. 
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We now turn to a different kind of hole burning, not in the spectral domain, 

but in the spatial domain: "Spatial Hole Burning — Standing-Wave 

Saturation Pattern." This occurs specifically in linear (standing-wave) 

resonators. 

* "In a linear resonator the field is a standing wave:" A linear resonator is 

typically formed by two mirrors. The electromagnetic field inside, for a given 

lasing mode, forms a standing wave pattern. This standing wave has fixed 

positions of nodes (where the electric field amplitude is always zero) and 

antinodes (where the electric field amplitude oscillates with maximum 

strength). 

The electric field 𝐸(𝑧) along the cavity axis 'z' can be described by: 

𝐸(𝑧) = 𝐸0cos (
2𝜋𝑧

𝜆
) 

or 

𝐸(𝑧) = 𝐸0sin (
2𝜋𝑧

𝜆
) 

depending on boundary conditions. 

"Eee of zee equals Eee sub zero times cosine of (two pi zee over lambda)." 

(Assuming a mirror at 𝑧 = 0 means 𝐸 must be zero, so a sine function 



might be more appropriate if 𝑧 = 0 is a mirror. However, intensity is 𝐸2, so 

cos2 or sin2 behave similarly in terms of periodic zeros). 

The important part is the sinusoidal spatial variation. 

This results in "nodes at mirrors, antinodes inside." (More accurately, 

nodes at perfectly conducting mirrors. Antinodes occur at positions where 
2𝜋𝑧

𝜆
 is an integer multiple of 𝜋 for cosine, or (𝑛 +

1

2
) 𝜋 for sine relative to a 

node). 

* "Local intensity I(z) ∝ |E(z)|² = E₀ ² cos²(2πz/λ)." "Capital Eye of zee is 

proportional to the magnitude of Eee of zee squared, which equals Eee sub 

zero squared times cosine squared of (two pi zee over lambda)." 

The intensity of the light is proportional to the square of the electric field 

amplitude. So, the intensity 𝐼(𝑧) also has a spatially varying pattern: 

It will be maximum at the antinodes of the E-field. 

It will be zero at the nodes of the E-field. 

This creates a periodic grating-like pattern of high and low intensity along 

the cavity axis. 

* "Saturation therefore occurs only at the antinodes." Or, more precisely, 

saturation is strongest at the antinodes where the intensity is highest, and 

weakest (or non-existent) at the nodes where the intensity is lowest (or 

zero). So, the gain medium experiences spatially non-uniform saturation. 

Atoms located near the antinodes of the standing wave will be strongly 

saturated. Atoms located near the nodes will experience very little intensity 

and thus remain largely unsaturated. 
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Consequences of this spatial hole burning: 



* "Nodes remain unsaturated ⇒ residual inversion." At the spatial locations 

of the standing wave nodes, the intensity is zero (or very low). Therefore, 

the gain medium at these locations is not significantly saturated. There 

remains a substantial population inversion (residual inversion) in these 

regions. 

* "Another mode shifted by 𝜆/4 can exploit these unsaturated regions ⇒ 

multiple modes may co-exist even in homogeneous media." This is a 

critical consequence for multi-mode operation. Consider a lasing mode with 

wavelength 𝜆, which creates a standing wave and burns spatial holes. 

Now, think about another potential cavity mode. If this second mode has a 

slightly different wavelength (and thus frequency), its standing wave pattern 

will be spatially shifted relative to the first mode's pattern. A particularly 

relevant case is a mode whose antinodes fall where the first mode had its 

nodes. The nodes of cos2 (
2𝜋𝑧

𝜆
) are where 

2𝜋𝑧

𝜆
= (𝑛 +

1

2
) 𝜋, so 𝑧 =

(𝑛+
1

2
)𝜆

2
=

(2 𝑛+1)𝜆

4
. The antinodes are at 𝑧 =

𝑛𝜆

2
. If another mode (mode 2) has its 

antinodes at the nodes of mode 1, it can utilize the population inversion that 

was left unsaturated by mode 1. The condition for this spatial 

complementarity is often simplified by saying a mode shifted by 𝜆/4 (in 

terms of path length for its peaks relative to the original wave's peaks) can 

exist. More precisely, if the antinodes of a second potential lasing mode are 

located in the regions of minimal saturation (the nodes of the first mode), 

then this second mode can reach threshold by drawing on this "unused" 

inversion. This "implies multiple modes may co-exist even in homogeneous 

media." Recall that for a perfectly homogeneous medium without spatial 

hole burning, we expected strong mode competition leading to single-mode 

output. Spatial hole burning provides a mechanism that can undermine this, 

allowing several modes to lase simultaneously by drawing gain from 

different spatial regions of the active medium. Each mode "burns its own 

spatial holes" but leaves gain for other modes whose spatial patterns are 

different. 
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This page shows a diagram illustrating the "Spatial Hole Burning — 

Standing-Wave Saturation Pattern," specifically "(a) Standing-Wave 

Intensities." 

The vertical axis is "Intensity 
𝐼(𝑧)

𝐼max

" (Eye of zee divided by Eye max), ranging 

from 0.0 to 1.0. 

The horizontal axis is "Position 𝑧," marked in units of wavelength 𝜆: 
1

4
𝜆, 

1

2
𝜆, 

3

4
𝜆, 𝜆, 

5

4
𝜆, etc., up to 

9

4
𝜆. 

Two thick gray vertical bars at the ends might represent the cavity mirrors, 

though their exact position relative to the 𝜆 markings isn't fully specified 

(e.g. if a mirror is at 𝑧 = 0, we should have a node there). The plot extends 

a bit beyond 2𝜆. 

Two sinusoidal intensity patterns are shown: 

1. A solid blue curve, labeled "𝐼1(𝑧) ∝ cos2 (
2𝜋𝑧

𝜆
) (Saturating)". This 

represents the intensity profile of the primary lasing mode. It shows peaks 

(antinodes) at 𝑧 = 0, 
𝜆

2
, 𝜆, 

3𝜆

2
, 2𝜆, ... and nodes (zero intensity) at 𝑧 =

𝜆

4
, 
3𝜆

4
, 

5𝜆

4
, 
7𝜆

4
, ... (This assumes the cosine function starts at a maximum at 𝑧 = 0. If 

𝑧 = 0 were a mirror, we'd expect a sine function for 𝐸, so sin2 for 𝐼, starting 

at zero). Let's assume the 𝑧-axis is relative to an antinode. 

2. A dashed red curve, labeled "𝐼2(𝑧) ∝ sin2 (
2𝜋𝑧

𝜆
) (Exploiting)". This 

represents the intensity profile of a potential second mode that is spatially 

out of phase with the first one. Its peaks (antinodes) are precisely where 

the blue curve has its nodes (e.g., at 
𝜆

4
, 
3𝜆

4
, 
5𝜆

4
, ...). Its nodes are where the 

blue curve has its antinodes. 



The idea is that the blue "saturating" mode reduces the gain at its 

antinodes. The red "exploiting" mode can then lase by using the gain that 

remains at its antinodes (which were the nodes of the blue mode). 

This figure clearly visualizes how two spatially distinct standing wave 

patterns can exist. If 𝐼1 saturates the gain where it is strong, 𝐼2 finds 

unsaturated gain where it is strong. 
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This is part (b) of the spatial hole burning illustration, showing the "(b) 

Population Inversion Profile 𝑁(𝑧)" (Capital En of zee). 

The axes are similar: vertical is "Population Inversion 𝑁(𝑧)" (ranging from 0 

up to 𝑁0, the unsaturated inversion), and horizontal is "Position 𝑧" (in units 

of 
𝜆

4
, 
𝜆

2
, etc.). 

We see: 

* A dotted horizontal line at the top, labeled "𝑁0 (Initial Inversion)". This is 

the uniform population inversion before any lasing occurs. 

A solid green curve, labeled "𝑁(𝑧) (Saturated Inversion)". This shows the 

population inversion profile after* the first mode (𝐼1 from the previous slide, 

the cos2 wave) has started lasing and caused saturation. The green curve 

shows periodic dips. These dips, labeled "Spatial Hole," occur at the 

locations of the antinodes of 𝐼1 (e.g., at 𝑧 = 0, 
𝜆

2
, 𝜆, ...). At these positions, 

the strong intensity of 𝐼1 has depleted the inversion. Between these dips, 

the green curve rises back up, approaching the original 𝑁0 level. These 

peaks in the saturated inversion profile occur at the locations of the nodes 

of 𝐼1 (e.g., at 𝑧 =
𝜆

4
, 
3𝜆

4
, ...). These are the "Unsaturated Regions." 

This graph is the direct consequence of the intensity pattern 𝐼1(𝑧). Where 

𝐼1(𝑧) is high, 𝑁(𝑧) is low (saturated). Where 𝐼1(𝑧) is low, 𝑁(𝑧) remains high 

(unsaturated). 



A second mode, like 𝐼2(𝑧) whose antinodes align with these unsaturated 

regions (peaks in the green 𝑁(𝑧) curve), can then find sufficient gain to 

lase. 

This clearly shows the spatial modulation of gain available to other modes 

due to the standing wave pattern of an existing mode. 
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Now we look at a "Quantitative Treatment of Spatial Hole-Burning Mode 

Spacing." This is Example 5.10 in some texts. 

* "Suppose gain medium length 𝐿 is short and is located a distance 𝑎 

(lowercase ay) from mirror 𝑀1 (capital Em sub one)." 

* "Condition for two standing waves of wavelengths 𝜆1 (lambda sub one) 

and 𝜆2 (lambda sub two) to have maxima separated by 
𝜆

𝑝
:" (lambda divided 

by 𝑝, where 𝑝 is an integer). 

This condition relates to how efficiently a second mode can utilize the gain 

left over by a first mode. If their antinodes are spatially shifted such that 

they sample different parts of the gain medium, they can coexist more 

easily. The 
𝜆

𝑝
 separation is a bit abstract here. A more direct condition is 

often related to the phase shifts within the gain medium. 

The equation given is: 

𝑚𝜆1 = 𝑎 = (𝑚 +
1

𝑝
) 𝜆2 

Here, 'm' is an integer (a mode number related to how many half-

wavelengths fit in distance 𝑎). 

This equation seems to be setting up a condition where the gain medium at 

distance 𝑎 experiences an antinode for 𝜆1 (if 𝑎 =
𝑚𝜆1

2
 for field, or 𝑎 = 𝑚𝜆1 



for some reference points). And for 𝜆2, the same location 𝑎 corresponds to 

a slightly different phase (𝑚 +
1

𝑝
). 

This is a somewhat specialized setup. The parameter 'p' (often 𝑝 = 2 for 
𝜆

4
 

shift of intensity peaks, or 𝑝 = 4 for fields) relates to the spatial relationship 

between modes that might allow them to coexist due to spatial hole 

burning. For 𝑝 = 2, it means that at distance 𝑎, one mode has 𝑚 half-

wavelengths, and another has 𝑚+
1

2
 half-wavelengths, meaning one has 

an antinode and the other has a node (or vice-versa) within the gain 

medium if 𝑎 is the location of the medium. 

Let's take this as the starting point for relating frequencies. 
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Continuing from the condition 𝑚𝜆1 = 𝑎 and (𝑚 +
1

𝑝
) 𝜆2 = 𝑎: 

* "where m is an integer." 

* "Convert to frequency (𝜈 =
𝑐

𝜆
):" From 𝑚𝜆1 = 𝑎, we have 𝜆1 =

𝑎

𝑚
. So, 𝜈1 =

𝑐

𝜆1
=

𝑚𝑐

𝑎
. 

From (𝑚 +
1

𝑝
) 𝜆2 = 𝑎, we have 𝜆2 =

𝑎

(𝑚+
1

𝑝
)
. So, 𝜈2 =

𝑐

𝜆2
=

(𝑚+
1

𝑝
)𝑐

𝑎
. 

These are the frequencies of two modes whose standing wave patterns 

have a specific spatial relationship (defined by 'p') within the gain medium 

located at 'a'. 

* "Spacing between spatial-hole-burning modes:" This is 𝛿𝜈𝑠𝑝 (delta nu sub 

ess pee), the frequency difference 𝜈2 − 𝜈1: 



𝛿𝜈𝑠𝑝 = 𝜈2 − 𝜈1 = [
(𝑚 +

1
𝑝
) 𝑐

𝑎
] − [

𝑚𝑐

𝑎
] 

𝛿𝜈𝑠𝑝 =
𝑐

𝑎
(𝑚 +

1

𝑝
− 𝑚) =

𝑐

𝑎
(
1

𝑝
) 

So, 𝛿𝜈𝑠𝑝 =
𝑐

𝑎𝑝
. 

This is a key result. It gives the frequency separation between two modes 

that are "spatially compatible" in the sense that one can use the gain left by 

the other due to spatial hole burning, for a gain medium at distance 'a' and 

a spatial shift factor 'p'. 

* "Expressed relative to axial FSR 𝛿𝜈 =
𝑐

2 𝑑
:" The axial FSR (Free Spectral 

Range) of the main cavity is 𝛿𝜈𝑎𝑥𝑖𝑎𝑙 =
𝑐

2 𝑑
. We want to relate 𝛿𝜈𝑠𝑝 to this. 
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The relationship between 𝛿𝜈𝑠𝑝 (delta nu sub ess pee) and the axial FSR 𝛿𝜈 

(delta nu, which is 
𝑐

2 𝑑
) is given by: 

𝛿𝜈𝑠𝑝 =
2 𝑑

𝑎𝑝
 𝛿𝜈 

Let's verify this. We have 𝛿𝜈𝑠𝑝 =
𝑐

𝑎𝑝
 and 𝛿𝜈 =

𝑐

2 𝑑
. So, 

𝛿𝜈𝑠𝑝

𝛿𝜈
=

𝑐
𝑎𝑝
𝑐
2 𝑑

=
𝑐

𝑎𝑝
⋅
2 𝑑

𝑐
=
2 𝑑

𝑎𝑝
. 

Thus, 𝛿𝜈𝑠𝑝 =
2 𝑑

𝑎𝑝
 𝛿𝜈. This is correct. 

This formula tells us that the characteristic frequency spacing for modes 

that can coexist due to spatial hole burning depends on the ratio of the total 

cavity length 𝑑 to the distance 𝑎 of the gain medium from a mirror, and on 



the factor 𝑝. If the gain medium is short and centrally located (𝑎 ≈
𝑑

2
), and if 

𝑝 = 2 (corresponding to modes that are spatially orthogonal with respect to 

where they draw gain), then 

𝛿𝜈𝑠𝑝 ≈
2 𝑑

(
𝑑
2
) ⋅ 2

 𝛿𝜈 =
2 𝑑

𝑑
 𝛿𝜈 = 2𝛿𝜈. 

This means the spatial hole burning modes would be spaced by twice the 

normal axial mode FSR. This is a common result for a short gain medium in 

the center of a cavity, allowing modes 𝑞,  𝑞 + 2,  𝑞 + 4,  … to lase if the 

fundamental mode is 𝑞. 

* Now, a condition for single-mode operation even with spatial hole burning: 

If the homogeneous gain width 𝛥𝜈ℎ𝑜𝑚 is less than or equal to 
2

3
(
𝑑

𝑎
) 𝛿𝜈, only 

one spatial-hole-burning mode can survive. The term (
𝑑

𝑎
) 𝛿𝜈 is not 𝛿𝜈𝑠𝑝. 

Let's re-examine 

𝛿𝜈𝑠𝑝 =
2 𝑑

𝑎𝑝
 𝛿𝜈. 

If 𝑝 = 2, 𝛿𝜈𝑠𝑝 =
𝑑

𝑎
𝛿𝜈. The condition given is "If the homogeneous gain width 

<
2

3
𝛿𝜈𝑠𝑝" (using 𝑝 = 2 to get 𝛿𝜈𝑠𝑝 =

𝑑

𝑎
𝛿𝜈), only one spatial-hole-burning 

mode can survive. 

This implies that if the homogeneous linewidth (which determines the width 

of the spectral hole burned by a lasing mode) is narrower than about 
2

3
 of 

the frequency spacing 𝛿𝜈𝑠𝑝 to the next "competing" spatial hole burning 

mode, then that next mode will fall too far into the spectrally burned hole of 

the first mode to lase. In other words, for a second mode to take advantage 

of the spatial hole, it must also find sufficient spectral gain. If the spectral 

hole burned by the first mode is wide enough to suppress gain at the 

frequency of the second potential spatial mode, then only one mode will 



lase. The factor 
2

3
 is specific and might come from a detailed calculation of 

how much gain is needed. The general idea is: 𝛥𝜈ℎ𝑜𝑚 < 𝛿𝜈𝑠𝑝 is needed for 

robust single mode operation in this context. 

Page 63: 

Now we have "Example 5.10 — Numerical Illustration of Spatial Hole 

Burning." This corresponds to "Slide 19" by its internal numbering. 

* "Given:" * "Cavity length 𝑑 = 100 cm." * "Gain medium length 𝐿 = 0.1 cm. 

This is indeed a short gain medium compared to 𝑑." * "Distance from mirror 

𝑎 = 5 cm. This is the distance of this short gain medium from one of the 

cavity mirrors." * "Desired separation index 𝑝 = 3. This 'p' value determines 

the spatial relationship between the modes we are considering for 

coexistence due to spatial hole burning." 

We need to calculate 𝛿𝜈 (FSR) and 𝛿𝜈sp (spatial hole burning mode 

spacing). 
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Let's perform the "Calculated quantities:" 

1. First, the axial mode FSR, 𝛿𝜈: 

𝛿𝜈 =
𝑐

2 𝑑
 

𝑐 = 3.00 × 108 m/s = 3.00 × 1010 cm/s 

(since 𝑑 is in cm). 

𝑑 = 100 cm 

. So 

2 𝑑 = 200 cm 

. 



𝛿𝜈 =
3.00 × 1010 cm/s

200 cm
 

The slide shows: 

𝛿𝜈 =
𝑐

2 𝑑
=
3.00 × 108

2
 Hz = 150 MHz 

. 

This calculation on the slide implicitly used 𝑑 = 1m not 𝑑 = 100 cm = 1m in 

the denominator for 

3 × 108

2 × 1
= 1.5 × 108 Hz = 150 MHz 

. 

Let's re-do it with 𝑑 = 100 cm = 1m. 

𝛿𝜈 =
3.00 × 108 m/s

2 × 1.0 m
= 1.50 × 108 Hz = 150 MHz 

. 

So, FSR 𝛿𝜈 = 150 MHz. This is correct. 

2. Next, the spacing between spatial-hole-burning modes, 𝛿𝜈sp: 

𝛿𝜈sp =
𝑐

𝑎𝑝
 

. 

𝑎 = 5 cm 

. 

𝑝 = 3 

. 



So, 

𝑎𝑝 = 5 cm × 3 = 15 cm 

. 

𝛿𝜈sp =
3.00 × 1010 cm/s

15 cm
=
300

15
× 108 Hz = 20 × 108 Hz = 2.0 × 109 Hz

= 2.0 GHz 

. 

"delta nu sub ess pee equals 
𝑐

𝑎𝑝
 which is two hundred centimeters (this 

seems to be 2 𝑑 written here instead of 𝑐) ... " 

Let's look at the slide's formula: 

𝛿𝜈sp = (
2 𝑑

𝑎𝑝
) 𝛿𝜈 

. 

This is the safer formula to use if 𝛿𝜈 is already calculated. 

2 𝑑 = 200 cm 

. 

𝑎 = 5 cm 

. 

𝑝 = 3 

. 

𝛿𝜈 = 150 MHz 

. 

𝛿𝜈sp =
200 cm

(5 cm × 3)
× 150 MHz 



. 

𝛿𝜈sp =
200

15
× 150 MHz =

40

3
× 150 MHz = 40 × 50 MHz = 2000 MHz

= 2.0 GHz 

. 

The slide shows: 

𝛿𝜈sp = (
2 𝑑

𝑎𝑝
) 𝛿𝜈 =

200 cm

(5 cm × 3)
× 150 MHz ≈ 2.0 GHz 

. 

This calculation is correct. The spatial hole burning modes are separated 

by 2.0 GHz. 

* "Interpretation:" 
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The interpretation of these calculated values is: 

* "If the homogeneous width of the gain profile 𝛥𝜈hom (Delta nu sub hom) is 

less than 2.0 GHz, spatial hole burning will not allow more than one mode 

⇒ single-mode operation feasible." 

Let's analyze this. The characteristic spacing 𝛿𝜈sp for modes that could 

coexist due to spatial hole burning is 2.0 GHz. 

If a first mode is lasing, it burns both a spectral hole (of width roughly 

𝛥𝜈hom) and spatial holes. 

For a second "spatial" mode to lase, it must find gain both spectrally and 

spatially. 

If 𝛥𝜈hom is less than 𝛿𝜈sp (2.0 GHz), it means that the spectral hole burned 

by the first lasing mode is narrower than the frequency gap to the next 

potential spatial hole burning mode. 



This means that the next spatial mode (at a frequency 𝜈1 ± 𝛿𝜈sp) would fall 

outside (or on the very wings of) the spectral hole of the first mode. So it 

seems it could lase. 

The statement on the slide is: "If 𝛥𝜈hom < 2.0 GHz, spatial hole burning will 

not allow more than one mode." This implies that if 𝛥𝜈hom is narrow, the first 

mode is so dominant or efficient that it suppresses others. 

This seems counterintuitive to the usual argument that if 𝛥𝜈hom is small 

compared to 𝛿𝜈sp, other modes can find gain. 

Perhaps the logic is: for a mode at 𝜈1 + 𝛿𝜈sp to lase, it needs gain. The 

mode at 𝜈1 will burn a spectral hole of width ∼ 𝛥𝜈hom around 𝜈1. If 𝛥𝜈hom <

𝛿𝜈sp, then the mode at 𝜈1 + 𝛿𝜈sp is spectrally distinct. 

The condition for the second mode (at 𝜈1 + 𝛿𝜈sp) to be suppressed by the 

first mode (at 𝜈1) would normally be if the spectral hole burned by 𝜈1 is wide 

enough to reduce the gain at 𝜈1 + 𝛿𝜈sp below threshold. This happens if 

𝛥𝜈hom is comparable to or larger than 𝛿𝜈sp. 

So, if 𝛥𝜈hom > 𝛿𝜈sp, the spectral hole is broad, and the first mode would 

suppress the second one, leading to single mode operation. 

If 𝛥𝜈hom < 𝛿𝜈sp, the spectral hole is narrow, and the second mode at 𝜈1 +

𝛿𝜈sp might be able to lase because it's spectrally far enough away from the 

hole, AND it benefits from the spatial hole. This would lead to multimode 

operation. 

The slide's statement: "If 𝛥𝜈hom < 2.0 GHz, spatial hole burning will not 

allow more than one mode ⇒ single-mode operation feasible." 

This means if the homogeneous width is narrower than the spatial mode 

separation, we get single mode. This is the opposite of my reasoning 

above. 



Let's re-think. The condition for a second mode to lase is that the gain 

available to it is above threshold. Spatial hole burning provides gain 

spatially. Spectral hole burning removes gain spectrally. 

If 𝛥𝜈hom is very small, the spectral hole is very narrow. A mode at 𝜈1 + 𝛿𝜈sp 

is far from this narrow spectral hole, so spectrally it sees lots of gain. 

Spatially, it also sees gain. So it should lase. This leads to multimode. 

If 𝛥𝜈hom is large (e.g., 𝛥𝜈hom ≈ 𝛿𝜈sp), the spectral hole is wide. The mode at 

𝜈1 + 𝛿𝜈sp now falls within this wide spectral hole. So it is suppressed. This 

leads to single mode. 

Therefore, the statement on the slide seems to be reversed. It should likely 

be: "If the homogeneous width 𝛥𝜈hom is greater than ∼ 2.0 GHz (i.e., 

comparable to or larger than 𝛿𝜈sp), then the spectral hole burned by the first 

mode is wide enough to suppress other spatial hole burning modes, 

potentially leading to single-mode operation." Or, "If 𝛥𝜈hom < 2.0 GHz, 

multiple modes can coexist due to spatial hole burning." 

Let's assume there might be a nuance I'm missing or a specific context 

from the textbook. However, standard understanding suggests narrower 

𝛥𝜈hom (relative to mode spacing) facilitates multimode behavior when 

spatial hole burning is present. The slide's phrasing might imply that if 

𝛥𝜈hom is very small, the system is so "homogeneous" spectrally that one 

mode dominates completely, despite spatial effects. This would only be 

true if spatial hole burning was not effective enough to allow the second 

mode. 

Let's take the slide's statement at face value for now: if 𝛥𝜈hom < 2.0 GHz 

(our calculated 𝛿𝜈sp), then single-mode operation is feasible due to spatial 

hole burning not allowing more than one mode. This would imply that the 

primary mode saturates the spatially available gain so effectively that even 

if other modes are spectrally clear, they can't find enough spatial gain. This 

would be a strong effect of the primary mode. 
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Now we discuss methods for "Eliminating Spatial Hole Burning — Ring 

Lasers." Spatial hole burning is a consequence of the standing wave 

pattern in a linear cavity. If we can eliminate the standing wave, we can 

eliminate spatial hole burning. 

"In a unidirectional ring cavity the field is purely travelling wave." 

  A ring laser uses three or more mirrors to guide the light beam in a 

closed loop. If the laser is made to operate unidirectionally (i.e., light travels 

only clockwise, or only counter-clockwise, but not both), then the field 

inside the cavity is a "travelling wave," not a standing wave. Optical 

isolators or other non-reciprocal elements are often used to enforce 

unidirectional operation. 

"Intensity 𝐼 is uniform along the propagation axis ⇒ no nodes and 

antinodes." 

  For a pure travelling wave, the intensity is ideally constant along the 

path of the beam within the gain medium (ignoring absorption or gain 

effects for a moment, just focusing on the wave pattern). There are no fixed 

positions of zero intensity (nodes) or maximum intensity (antinodes) like in 

a standing wave. 

"Result:" 

  • "Entire gain medium experiences the same saturation ⇒ no spatial 

holes."     Since the intensity is uniform spatially (along the beam 

path within the gain medium), every part of the gain medium experiences 

the same light intensity. Therefore, gain saturation occurs uniformly 

throughout the volume of the gain medium that interacts with the beam. 

There are no unsaturated regions left behind due to a standing wave 

pattern. 



  • "Higher overall extraction efficiency; favoured in high-power lasers."     

Because the entire gain medium contributes to the amplification (it's all 

being saturated and contributing photons to the lasing mode), ring lasers 

can often achieve higher extraction efficiency – meaning they can convert 

more of the stored energy in the gain medium into laser output. This is 

particularly advantageous for high-power laser systems where maximizing 

output is crucial. By avoiding "dead zones" of unused inversion at the 

nodes, more of the pumped volume can contribute. 
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Let's look at "Practical ring implementations:" 

* "Four-mirror folded ring (bow-tie)." This is a common configuration for ring 

lasers. Four mirrors are arranged to form a path that looks like a bow-tie. 

This geometry can be designed to include a focus within the gain medium 

and can accommodate other intracavity elements. 

* "Fibre ring lasers." Optical fibers can also be used to create ring cavities. 

A loop of optical fiber, with a section of doped fiber acting as the gain 

medium, and a fiber coupler to extract output, can form a very compact and 

stable ring laser. These are widely used in telecommunications and 

sensing. 

* "Unidirection enforced with optical isolators or Faraday rotators." To 

ensure that the ring laser operates with a travelling wave in only one 

direction (and not as a standing wave cavity due to reflections allowing both 

directions), a non-reciprocal element is usually inserted into the cavity. An 

"optical isolator" allows light to pass in one direction but blocks or highly 

attenuates it in the reverse direction. This is often based on the "Faraday 

effect," where a magnetic field applied to a special material (like a Faraday 

rotator made of TGG crystal or YIG) rotates the plane of polarization of 

light. Combined with polarizers, this can create one-way transmission. By 

forcing unidirectional operation, standing waves are suppressed, and thus 

spatial hole burning is eliminated. This then allows the mode competition in 



a homogeneously broadened medium to effectively lead to single-mode 

operation if desired (or at least, it removes one mechanism for multimode 

operation). 
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Now we summarize "Homogeneous vs Inhomogeneous — Consequences 

for Multimode Operation." 

"Homogeneous gain:" 

   

"Strong mode competition through shared population." 

  As we discussed, in a homogeneously broadened medium, all atoms 

are identical and share the same gain profile. If one mode starts lasing and 

saturates the gain, it affects the gain available to all other potential modes. 

This leads to strong competition. 

   

"Tends towards single-mode output if spatial hole burning and technical 

noise can be suppressed." 

  The asterisk is important. The natural tendency of a purely 

homogeneous system is single-mode output. However, if spatial hole 

burning is present (as in a linear cavity), it can enable multimode operation 

by allowing different modes to access different spatial regions of gain. 

"Technical noise" (like vibrations causing slight changes in cavity length, or 

pump fluctuations) can also sometimes cause the lasing mode to hop 

between different cavity modes, or allow multiple modes to lase if the 

competition isn't perfectly decisive. If these factors are controlled (e.g., by 

using a ring cavity to eliminate spatial hole burning, and by stabilizing the 

laser), then homogeneous gain media are good candidates for single-

frequency operation. 



"Inhomogeneous gain:" 
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Continuing with the consequences for inhomogeneous gain: 

* "Minimal competition; each mode taps a distinct sub-ensemble." In an 

inhomogeneously broadened medium, different cavity modes can interact 

with different groups (sub-ensembles) of atoms/molecules, those whose 

individual Doppler-shifted or site-shifted resonant frequencies align with the 

specific cavity mode. Since these sub-ensembles are largely independent 

(a mode at 𝜈1 saturates atoms around 𝜈1, leaving atoms around 𝜈2 for a 

different mode), the competition between modes is much weaker than in 

the homogeneous case. One mode burning a spectral hole at its frequency 

doesn't necessarily prevent another mode, far away in frequency, from 

lasing using a different group of atoms. 

* "Many axial and transverse modes can oscillate simultaneously." As a 

result of this weaker competition and the availability of distinct gain 

packets, inhomogeneously broadened lasers (like He-Ne or Argon ion 

lasers) often operate on multiple axial modes simultaneously, especially if 

no mode selection elements are used. They can also support multiple 

transverse modes (TEM𝑚𝑛 modes) if the cavity design allows. 

* "Real media are mixed; the ratio 𝛿𝜈/𝛥𝜈hom (delta nu divided by Delta nu 

sub hom) dictates competition strength." In reality, no gain medium is 

perfectly homogeneous or perfectly inhomogeneous. There's often a mix. 

The homogeneous linewidth 𝛥𝜈hom of the individual atomic packets is finite. 

The cavity axial modes are spaced by 𝛿𝜈 (the FSR). 

The ratio of these two, 𝛿𝜈/𝛥𝜈hom, is crucial. 

If 𝛥𝜈hom ≫ 𝛿𝜈 (homogeneous linewidth is much larger than mode spacing), 

then several cavity modes fall within one homogeneous packet. These 

modes will compete strongly, as in a purely homogeneous system. The 

medium behaves more homogeneously. 



If 𝛥𝜈hom ≪ 𝛿𝜈 (homogeneous linewidth is much smaller than mode 

spacing), then each cavity mode essentially interacts with its own distinct 

group of atoms. The modes are well separated compared to the spectral 

hole width. Competition is weak. The medium behaves more 

inhomogeneously. 

So, this ratio determines whether the laser behaves more like a 

homogeneous or inhomogeneous system in terms of mode competition. 

* "Transverse modes (TEM𝑚,𝑛) complicate the spectrum because they have 

different longitudinal frequencies in non-confocal resonators." We've mostly 

focused on axial modes (𝑞). Transverse ElectroMagnetic modes, TEM𝑚𝑛, 

describe the intensity distribution in the plane perpendicular to the cavity 

axis. The fundamental mode is TEM00 (a Gaussian beam). Higher-order 

modes (TEM01, TEM10, etc.) have more complex spatial patterns. 

In general, for a non-confocal resonator (most resonators are not perfectly 

confocal), the resonant frequencies of these transverse modes are not 

degenerate with the axial modes. The frequency of a TEM𝑚𝑛𝑞 mode is 

given by 

𝜈𝑚𝑛𝑞 =
𝑐

2 𝑑
[𝑞 +

1

𝜋
(𝑚 + 𝑛 + 1)arccos√𝑔1 𝑔2] 

where 𝑔1 and 𝑔2 are cavity stability parameters. 

This means that for a given axial mode number 𝑞, different transverse 

modes (different 𝑚,𝑛) will have slightly different resonant frequencies. This 

adds further complexity to the laser output spectrum, effectively creating 

more "lines" unless measures are taken to suppress these higher-order 

transverse modes. 
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This brings us to "Designing Cavities to Suppress Higher-Order Transverse 

Modes." For many applications, especially in spectroscopy or when a high-



quality beam profile is needed, operation in the fundamental TEM00 mode 

is desired. Higher-order transverse modes have more complex spatial 

profiles and typically larger divergence. 

* "Key tools:" How can we achieve TEM00 operation? 

1. "Choose mirror radii such that the resonator is stable only for TEM00." 

The stability conditions for a resonator depend on the mirror curvatures and 

separation. It's possible to design a cavity that is on the edge of a stability 

zone, where it might be stable for the lowest-loss TEM00 mode but unstable 

(and thus highly lossy) for higher-order modes, which tend to be spatially 

larger. This is a more advanced technique. 

2. "Insert intracavity apertures matched to the Gaussian beam waist." This 

is the most common method. The TEM00 mode has the smallest spot size 

within the cavity. Higher-order transverse modes are spatially larger. By 

inserting an aperture (a pinhole or adjustable iris) inside the cavity, typically 

at a location where the TEM00 beam waist is, one can introduce significant 

losses for the larger higher-order modes, effectively preventing them from 

lasing. The aperture is sized to allow the TEM00 mode to pass with minimal 

loss, while clipping and attenuating the higher-order modes. 

3. "Employ unstable or confocal resonator geometries when high power is 

needed but single transverse mode is tolerated." This point seems a bit 

contradictory. "Single transverse mode is tolerated" sounds like higher 

orders are okay. Perhaps it means "when high power is needed AND single 

transverse mode operation is desired." Unstable resonators are often 

used for high-power lasers with large gain volumes. They don't confine the 

beam in the traditional sense but allow it to expand and fill the gain volume, 

with output typically taken via diffraction around one of the mirrors. They 

can produce good beam quality (though not necessarily pure TEM00 in the 

same sense as stable resonators) and high power. Confocal resonators 

(𝑑 = 𝑅1 = 𝑅2 = 𝑅) have the property that the resonant frequencies of all 

transverse modes are degenerate (or nearly so for a perfectly aligned 



confocal cavity). This means all TEM𝑚𝑛𝑞  modes for a given 𝑞 + (𝑚 + 𝑛) 

would have the same frequency. This can lead to a cleaner spectrum in 

some senses but doesn't inherently suppress higher-order modes; they just 

overlap in frequency with the TEM00 modes of different 𝑞. The point about 

"single transverse mode is tolerated" might be a typo for "is desired" or "is 

critical". If single transverse mode is merely "tolerated", then one might not 

need to do much. If it's "desired," apertures are key for stable resonators. 

Unstable resonators are a different class often used for high gain systems 

to extract power efficiently with good beam quality, often resembling a 

single transverse mode after propagation. 
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The benefits and implications of achieving single transverse mode 

operation (typically TEM00): 

"Benefit: a Gaussian beam with minimal divergence, higher spatial 

coherence." 

The TEM00 mode has a Gaussian intensity profile. A pure Gaussian beam 

has the property of minimal beam divergence for a given beam waist size; 

it's diffraction-limited. This means it can be focused to the smallest spot 

and will spread out the least as it propagates. 

It also exhibits high "spatial coherence." This means that the phase of the 

wavefront is well-defined and correlated across the beam's cross-section. 

High spatial coherence is essential for applications like interferometry, 

holography, and anything requiring a clean, predictable wavefront. 

"Spectral implication: still potentially multimode in frequency unless axial 

mode selection is also enforced." 

This is a crucial reminder. Suppressing higher-order transverse modes 

(making the laser operate in TEM00) only cleans up the spatial profile of the 

beam. 



It does not automatically mean the laser will operate on a single axial mode 

(i.e., a single frequency). 

A TEM00 laser can still have multiple axial modes (𝑞,  𝑞 + 1,  𝑞 + 2,  … ) 

lasing simultaneously if they all fall under the net gain curve. 

So, if true single-frequency operation is required, one must employ 

techniques to select a single axial mode (like intracavity etalons, as 

discussed for dye lasers) in addition to ensuring TEM00 operation. The two 

are separate (though related) aspects of controlling the laser output. 
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Let's look at "Example 5.11 — HeNe Laser Detailed Mode Count." This is 

Slide 23. 

We'll revisit the Helium-Neon laser example with some specific parameters 

to count how many modes might actually lase. 

* "Parameters recap:" * " 𝜆 = 632.8 nm." (lambda equals six hundred thirty-

two point eight nanometers). This is the classic red He-Ne laser 

wavelength. * "Doppler width 1.5 GHz (FWHM)." This is the Full Width at 

Half Maximum of the inhomogeneous Doppler-broadened gain profile of the 

neon transition. Let's call this 𝛥𝜈D. * "Cavity length 𝑑 = 1.0 m." (dee equals 

one point zero meters). * "Axial mode spacing 𝛿𝜈 = 150 MHz." (delta nu 

equals one hundred fifty megahertz). This is the FSR for a 1m cavity: 

𝛿𝜈 =
𝑐

2 𝑑
=
3 × 108 m/s

2 × 1 m
= 1.5 × 108 Hz = 150 MHz 

This is consistent. 
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Continuing with the HeNe laser example: 

* "Gain above threshold ≈ 1.2 GHz wide." This is the width of the frequency 

region where the small-signal gain curve is above the loss line (like the 



shaded region in the graph on page 28 or 35). Let's call this 𝛥𝜈lase. It's 

given as 1.2 GHz. This is narrower than the full Doppler width of 1.5 GHz, 

which is expected, as only the central part of the gain curve will typically be 

above threshold. 

* "Potential axial modes 𝑁 ≈ 8." We can calculate this as 𝑁 =
𝛥𝜈lase

𝛿𝜈
=

1.2 GHz

150 MHz
=

1200 MHz

150 MHz
=

120

15
= 8. So, approximately 8 axial cavity modes fall 

within the region where gain exceeds loss. 

Now, we need to consider the "Homogeneous linewidth contributions:" 

Even though the He-Ne laser line is primarily Doppler (inhomogeneously) 

broadened, each individual neon atom (or velocity group of atoms) has an 

underlying homogeneous linewidth, 𝛥𝜈hom. This 𝛥𝜈hom determines the width 

of the spectral hole that a lasing mode will burn. 

Several factors contribute to 𝛥𝜈hom: 

* "Natural width 20 MHz." This arises from the finite radiative lifetime of the 

upper laser level (related to the Einstein 𝐴21 coefficient). 𝛥𝜈natural =
𝐴21

2𝜋
. A 

typical value is given as 20 MHz. 

* "Pressure width ≈ 20 MHz." This is due to collisional broadening. 

Collisions between neon atoms (and with helium atoms) interrupt the phase 

of the emission, leading to broadening. At typical He-Ne laser pressures, 

this contributes about 20 MHz. 

* "Power broadening (example 𝐼/𝐼s = 10): increases to ≈ 100 MHz." If a 

mode is lasing with significant intensity, it will power-broaden its own 

homogeneous linewidth. The power-broadened homogeneous linewidth 

𝛥𝜈hom′ is approximately 𝛥𝜈hom′ ≈ 𝛥𝜈hom × √1 + 𝐼/𝐼s. The "bare" 𝛥𝜈hom (from 

natural + pressure broadening) would be around 20 MHz + 20 MHz =

40 MHz. If 𝐼/𝐼s = 10 (strong saturation), then √1 + 10 = √11 ≈ 3.317. So, 

𝛥𝜈hom′ ≈ 40 MHz × 3.317 ≈ 132.7 MHz. The slide says it "increases to ≈



100 MHz." This is in the same ballpark and suggests the example uses 

specific values for 𝐼s and 𝐼, or a slightly different base 𝛥𝜈hom. Let's use 

𝛥𝜈hom′ ≈ 100 MHz as the effective homogeneous linewidth of a lasing mode 

under these conditions. 
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Now, we compare the effective homogeneous linewidth 𝛥𝜈hom′ with the 

axial mode spacing 𝛿𝜈. 

• We found 𝛥𝜈hom′ (the power-broadened homogeneous width, i.e., the 

width of the spectral hole burned by a lasing mode) to be around 100 MHz. 

• We found the axial mode spacing 𝛿𝜈 to be 150 MHz. 

• "Since homogeneous width < 𝛿𝜈 (𝛥𝜈hom′ < 𝛿𝜈, i.e., 100 MHz <

150 MHz), modes do not overlap strongly ⇒ simultaneous oscillation of 

several independent modes yields stable multi-line spectrum (Fig. 5.27a)." 

This is the key comparison for an inhomogeneously broadened laser like 

He-Ne. The spectral hole burned by one lasing mode (width ∼ 100 MHz) is 

narrower than the spacing to the next cavity mode (150 MHz away). 

This means that if mode 𝑞 is lasing, it burns a hole around its frequency 𝜈q. 

The adjacent modes 𝜈𝑞−1 and 𝜈𝑞+1 are 150 MHz away. They fall largely 

outside this 100 MHz wide spectral hole. 

Therefore, these adjacent modes can still find unsaturated (or less 

saturated) atoms in the inhomogeneous Doppler profile to provide them 

with gain. 

Because the spectral holes are relatively isolated and don't strongly overlap 

and suppress neighbors, "simultaneous oscillation of several independent 

modes" is possible. 



The laser will likely operate on several of the ∼ 8 potential axial modes. 

Each mode will burn its own ∼ 100 MHz wide spectral hole in the ∼ 1.2 GHz 

wide gain-above-threshold profile. 

This results in a "stable multi-line spectrum." The output will consist of 

several discrete frequencies, separated by 150 MHz. "Fig. 5.27a" in the 

textbook would presumably show such a spectrum. 

This is characteristic behavior for a He-Ne laser: it's often multimode unless 

specific measures are taken to force single-mode operation (which is 

harder for inhomogeneously broadened lasers). 
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Let's consider another example: 

Slide 24: Example 5.12 — Argon-Ion Laser Multimode Dynamics 

Argon-ion lasers are another important class of gas lasers, capable of 

higher powers than He-Ne, often operating on blue or green lines. 

"Key numerical data:" 

   

"Doppler width 8–10 GHz." This is the inhomogeneous width of the gain 

lines. This is significantly broader than 1.5 GHz for He-Ne. 

   

"Resonator length 𝑑 = 1.2 m ⇒ 𝛿𝜈 = 125 MHz." 

    Let's check the FSR: 

     

𝛿𝜈 =
𝑐

2 𝑑
=
3 × 108 m/s

2 × 1.2 m
=
3 × 108

2.4
 Hz = 1.25 × 108 Hz = 125 MHz 



    This is correct.     So, the cavity modes are spaced 

125 MHz apart. 

   

"Homogeneous width ≫ 𝛿𝜈 due to:" (𝛥𝜈hom is much greater than 𝛿𝜈). 

    This is a crucial difference from the He-Ne case we just saw 

(where 𝛥𝜈hom′ was < 𝛿𝜈).     Why is 𝛥𝜈hom so large in an Argon-ion 

laser? 

   

"Electron-ion pressure broadening." 

    Argon-ion lasers operate with a high-current electrical discharge, 

creating a hot, dense plasma. In this plasma, collisions between the argon 

ions and electrons are very frequent and energetic. These collisions cause 

significant broadening of the homogeneous linewidth of the lasing 

transitions. This "pressure broadening" (or more accurately, Stark 

broadening from the microfields of charged particles and direct collisional 

dephasing) can make 𝛥𝜈hom very large, often several hundred MHz or even 

into the GHz range, depending on discharge conditions. 
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Continuing with the Argon-ion laser: 

* "High intracavity power (10–100 W) ⇒ strong power broadening." Argon-

ion lasers can generate high continuous-wave powers. The intensity inside 

the laser cavity can be extremely high (kilowatts or megawatts per cm²). 

This leads to a very large saturation parameter 𝐼/𝐼s, and thus very strong 

power broadening of the already large homogeneous linewidth. So, the 

effective 𝛥𝜈hom′ can become extremely broad, potentially many GHz. 

* "Resulting behaviour:" 



* " 𝛥𝜈hom ≫ 𝛿𝜈 ⇒ intense mode competition." (Here, 𝛥𝜈hom should be 

understood as 𝛥𝜈hom′, the power-broadened homogeneous width). If the 

effective homogeneous width 𝛥𝜈hom′ is much larger than the axial mode 

spacing 𝛿𝜈 (125 MHz in this example), it means that the spectral hole 

burned by one lasing mode is broad enough to encompass and affect many 

adjacent cavity modes. For example, if 𝛥𝜈hom′ is 1 GHz, it covers 
1000

125
= 8 

cavity modes. This situation leads to "intense mode competition" because 

many cavity modes are essentially trying to draw gain from the same 

homogeneously broadened packet of ions. The laser starts to behave more 

like a homogeneously broadened system, where one mode (or a few 

closely-knit modes) might try to dominate. 

* "However, technical perturbations (cavity length jitter, discharge noise) 

constantly redistribute gain ⇒ observed spectrum fluctuates randomly (Fig. 

5.27b)." While the large 𝛥𝜈hom′ might suggest a tendency towards fewer 

modes due to competition, Argon-ion lasers are notorious for having 

unstable, fluctuating multimode spectra. The "technical perturbations" are 

significant: 

* Cavity length jitter: Vibrations, thermal drifts cause the cavity length 𝑑 to 

change slightly, which shifts all the cavity mode frequencies 𝜈q =
𝑞𝑐

2 𝑑
. 

* Discharge noise: The plasma discharge is inherently noisy, leading to 

fluctuations in temperature, ion density, and thus gain. 

These perturbations "constantly redistribute gain" among the competing 

modes. No single mode can stably dominate. The laser might jump 

between different sets of modes, or the relative intensities of the lasing 

modes might fluctuate rapidly. The "observed spectrum fluctuates 

randomly." If you look at the output of such a laser with a fast spectrometer, 

you would see the pattern of lasing modes changing over time. "Fig. 5.27b" 

in the textbook would likely show this kind of unstable, "spiky" spectrum, 

perhaps averaged over time to look like a broad envelope but 



instantaneously quite different. This makes free-running Argon-ion lasers 

less suitable for applications requiring high spectral stability or single-

frequency operation without active stabilization measures (like an 

intracavity etalon, which is often used). 
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Let's consider a third type of laser: "Slide 25: Example 5.13 — Dye Laser 

Spectral Features." 

Dye lasers use organic dye molecules in a liquid solvent as the gain 

medium. They are known for their broad tunability. 

• "Liquid dye medium: gain FWHM of order 2 × 1013 Hz (≈

20 nm at 600 nm)."  "gain Full Width at Half Maximum of order two times 

ten to the thirteenth Hertz." This is 20 THz.  This is an extremely broad 

gain bandwidth, similar to what we saw for "solid-state/dye laser broad 

gain" earlier (page 38 had 1 × 1013 Hz).  A bandwidth of 20 THz at a 

center wavelength of 600 nm corresponds to a wavelength range of about 

20 nm. 

  

𝛥𝜆 ≈
𝜆2𝛥𝜈

𝑐
=
(600 nm)2 ⋅ (2 × 1013 Hz)

3 × 108 m/s
=
(3.6 × 10−13 m2) ⋅ (2 × 1013 Hz)

3 × 108 m/s

=
7.2 m

3 × 108 m/s
= 2.4 × 10−8 m = 24 nm 

 So, ≈ 20 nm is correct. 

• "With d = 0.75 m, axial modes N ~ 10⁵." (d is cavity length, N is number 

of modes)  FSR   

𝛿𝜈 =
𝑐

2 𝑑
=
3 × 108 m/s

2 × 0.75 m
=
3 × 108

1.5
 Hz = 2 × 108 Hz = 200 MHz 

 Number of modes   



𝑁 =
𝛥𝜈gain

𝛿𝜈
=
2 × 1013 Hz

2 × 108 Hz
= 1013−8 = 105 

 So, about one hundred thousand axial modes fit under this gain curve! 

• "Homogeneous profile dominates, yet refractive index fluctuations in the 

liquid cause mode coupling ⇒ time-dependent multimode emission."  Dye 

laser transitions in liquid solutions are primarily homogeneously broadened. 

The rapid interactions (collisions, solvent relaxation) around the dye 

molecules ensure that all molecules share energy quickly and have a 

similar response. The homogeneous linewidth 𝛥𝜈hom can be quite large, on 

the order of THz itself (though usually smaller than the full gain bandwidth).  

Because 𝛥𝜈hom is typically much larger than 𝛿𝜈 (THz vs 200 MHz), we 

would expect strong mode competition, potentially leading to few modes or 

single-mode operation if spatial hole burning is managed (e.g., in a ring dye 

laser, or with a jet stream for the dye).  However, a complication arises: 

"refractive index fluctuations in the liquid cause mode coupling."  The 

liquid dye solution is subject to turbulence, thermal gradients, and micro-

bubbles, especially in the pumped region (often a high-intensity focused 

laser beam is used for pumping). These effects cause rapid, random 

fluctuations in the local refractive index of the dye solution.  These 

refractive index fluctuations act like a time-varying phase perturbation 

inside the cavity. They can scatter light between different cavity modes 

("mode coupling") and effectively disrupt the clean mode competition that 

would otherwise occur.  This leads to "time-dependent multimode 

emission." Even if the laser tries to settle on one mode, these fluctuations 

can kick it into other modes or allow several modes to lase simultaneously 

in an unstable manner. 

• "Pulsed dye lasers:"  Many dye lasers are pumped by pulsed lasers 

(e.g., Nd:YAG, excimer lasers) and therefore operate in a pulsed mode. 
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Continuing with pulsed dye lasers: 



* "Gain builds up in 𝜇s-scale (microsecond scale); spectrum integrates over 

hopping—final bandwidth ≈ 1 nm." 

In a pulsed dye laser, the pump pulse might last nanoseconds to 

microseconds. During this time, the gain builds up, lasing starts, and the 

laser might "hop" between different sets of modes due to the refractive 

index fluctuations and the rapid evolution of conditions. 

If we measure the output spectrum integrated over the entire laser pulse, 

we don't see the instantaneous sharp modes, but rather a broadened 

envelope. This time-integrated "final bandwidth" can be around 1 nm. 

A 1 nm bandwidth at 600 nm corresponds to a frequency bandwidth of: 

𝛥𝜈 =
𝑐 𝛥𝜆

𝜆2
=
(3 × 108 m/s) (1 × 10−9 m)

(600 × 10−9 m)2
=

3 × 10−1

3.6 × 10−13
 Hz ≈ 0.83 × 1012 Hz

≈ 0.8 THz. 

So, even though the gain bandwidth is ∼ 20 THz, and there are 105 modes, 

the time-averaged output of a simple pulsed dye laser might be around 

0.8 THz wide (1 nm). This is still very broad for spectroscopy. 

* "To obtain tunable single-mode operation:" 

Given this natural tendency for broad, multimode emission, if we need 

narrow, tunable, single-frequency output from a dye laser (which is one of 

their key applications due to broad gain), we must implement aggressive 

mode selection techniques. 

* "Introduce diffraction grating, prism, or birefringent filter inside cavity 

(Sect. 5.4)." 

These are intracavity tuning elements that provide wavelength-dependent 

loss, effectively narrowing the gain bandwidth to select a much smaller 

region of frequencies. 



* Diffraction grating: Often used in Littrow or Littman-Metcalf 

configuration, it acts like a frequency-selective mirror. * Prism: Can be 

used for tuning, though often provides broader selection. Multiple prisms 

(Brewster-angle prisms) can be used for dispersion without high loss. * 

Birefringent filter (Lyot filter): This consists of one or more birefringent 

plates between polarizers. It acts as a wavelength-dependent transmission 

filter, with multiple transmission peaks. By rotating the plates, the passband 

can be tuned. 

These elements provide coarse to medium tuning. For true single-mode 

operation, one typically also needs one or more intracavity etalons, as 

mentioned in Section 5.4 (which we'll cover later, or refers to a 

previous/next section in the text). The combination of these elements 

restricts lasing to a single axial and transverse mode. 
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This page shows a graph illustrating "Pulsed Dye Laser Spectral Features." 

The horizontal axis is "Wavelength (nm)," ranging from 580 nm to 620 nm, 

centered around 600 nm. 

There are several features depicted: 

1. A very broad, light blue, bell-shaped curve representing the "Gain Profile 

FWHM ≈ 20 nm." This is the overall gain bandwidth of the dye, spanning 

roughly from 590 nm to 610 nm at half maximum. This corresponds to the 

20 THz frequency bandwidth. 

2. Inside this broad gain profile, there is a much narrower, black, spiky 

structure. This is labeled "Integrated Lasing Spectrum FWHM ≈ 1 nm." This 

represents the time-averaged output of the pulsed dye laser if only coarse 

tuning elements (or none) are used. It's much narrower than the gain 

profile, but still broad (1 nm, which we found is ∼ 0.8 THz). This black region 

is not smooth but shown with many fine spikes and gaps. 



3. Annotations within this black region point to "Clusters of modes" and 

"Gaps." The "Clusters of modes" suggests that the output isn't a single 

continuous band but is composed of groups of cavity modes that happen to 

lase during the pulse. The "Gaps" indicate regions where, even within this 

1 nm envelope, there might be no laser output. 

4. A note at the bottom explains: "Clusters/gaps due to mode coupling, 

transient effects, and/or unintended etalon effects." * Mode coupling: 

Caused by refractive index fluctuations in the liquid dye, as discussed. * 

Transient effects: In pulsed operation, the populations and intensity are 

rapidly changing, so steady-state conditions may not be reached. This can 

lead to complex spectral dynamics. * Unintended etalon effects: 

Sometimes, other parallel surfaces within the laser cavity (like the windows 

of the dye cell, or even a misaligned etalon) can act as weak etalons, 

creating unwanted modulation in the spectrum, leading to clusters and 

gaps. 

This graph vividly illustrates the challenge: how to go from the broad 20 nm 

gain profile, through an uncontrolled ∼ 1 nm multimode output, to a desired 

single, narrow frequency for spectroscopy. This requires the sophisticated 

intracavity elements mentioned. 
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We now address "Non-Uniform Intensity Distribution Within a Multimode 

Band." This is Slide 26. 

Even when a laser is operating multimode over a certain spectral band, the 

intensity is not necessarily smooth across that band. 

"Laser spectral density 𝐼L(𝜈, 𝑡) is not smooth — contains peaks and holes:" 

If multiple axial modes are lasing simultaneously, their phases and 

amplitudes can fluctuate, or they can interfere. 



The instantaneous spectral density (intensity as a function of frequency and 

time) is given as a sum over modes 𝑘: 

𝐼L(𝜔, 𝑡) =∑𝐴k

k

(𝑡)cos2[𝜔k𝑡 + 𝛷k(𝑡)] 

Let's clarify this formula. Usually, the intensity of mode 𝑘 is 𝐴k(𝑡). The 

cos2[𝜔k𝑡 + 𝛷k(𝑡)] term seems to imply some kind of interference beating or 

modulation, but if 𝐴k(𝑡) is the intensity envelope of mode 𝑘 at frequency 𝜔k, 

then the spectral density would be a sum of narrow peaks centered at each 

𝜔k. 

𝐼L(𝜔, 𝑡) = ∑𝐴k

k

(𝑡)𝐿(𝜔 − 𝜔k, 𝑡) 

where 𝐿 is the lineshape of mode 𝑘. 

The formula 𝐴k(𝑡)cos
2[𝜔k𝑡 + 𝛷k(𝑡)] looks more like the electric field or a 

component of it, squared. 

If 𝜔k are the mode frequencies and 𝛷k(𝑡) are their phases, then if these 

modes interfere on a detector, they can produce beat frequencies. 

However, if this 𝐼L(𝜔, 𝑡) is meant to be the spectral intensity, it would be a 

series of peaks at 𝜔k. The cos2 term is unusual for spectral density itself. 

Perhaps it refers to the fact that even within what appears to be a 

continuous band, if you resolve it finely, it's made of discrete modes, and 

their relative strengths 𝐴k(𝑡) can fluctuate, leading to a "spiky" or non-

smooth time-averaged spectrum. Let's assume 𝐴k(𝑡) is the amplitude (or 

related to amplitude) of mode 𝑘 at frequency 𝜔k, and 𝛷k(𝑡) is its phase. 

The squaring suggests intensity, but the cos2(𝜔k𝑡 + ⋯ ) part is problematic 

for a spectral density which should be a function of 𝜔, not explicitly of 𝑡 in 

this form. 



Let's reinterpret: 𝐼L(𝜔, 𝑡) might be the overall output intensity in time, 

resulting from beating of modes. If it is the spectral density, then it should 

be 

𝐼L(𝜔, 𝑡) =∑𝑃k

k

(𝑡)𝛿(𝜔 − 𝜔k) 

for ideal modes, where 𝑃k is power of mode 𝑘. 

Given the context of "peaks and holes" in spectral density, it likely means 

that the envelope of 𝑃k(𝑡) over 𝑘 (i.e., over frequency) is not smooth. 

"Time-averaged output:" 

What we often measure with a spectrometer is the time-averaged spectral 

density. 
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The time-averaged spectral output ⟨𝐼(𝜔)⟩ is given by: 

⟨𝐼(𝜔)⟩ =
1

𝑇
∫ [∑𝐴k

𝑘

(𝑡)cos2(𝜔k𝑡 + 𝛷k(𝑡))]
𝑇

0

𝑑𝑡 

"The time average of ⟨𝐼(𝜔)⟩ equals one over 𝑇, times the integral from zero 

to 𝑇, of the sum over 𝑘 of 𝐴k(𝑡) times cosine squared of 𝜔k𝑡 + 𝛷k(𝑡), dt." 

If 𝐴k(𝑡) and 𝛷k(𝑡) are slowly varying compared to 
1

𝜔k

 but perhaps fluctuate 

over the averaging time 𝑇, this average could still be non-smooth if the set 

of 𝜔k that are active changes, or their relative amplitudes 𝐴k change. 

If 𝐴k(𝑡) represents the slowly varying envelope of mode 𝑘 at frequency 𝜔k, 

and cos2 represents its lineshape (unlikely), the issue is simpler: the 𝐴k 

values themselves (the mode powers) may not form a smooth envelope. 

* "For spectroscopic scanning, holes cause artificial features if the scanning 

time < 𝑇." 



Imagine you are trying to measure an absorption spectrum by scanning the 

laser frequency across an absorption line. If the laser's output power 

spectrum 𝐼L(𝜔) has its own "holes" or "peaks" (i.e., it's not a flat baseline), 

and if these features in the laser spectrum fluctuate or are stable but sharp, 

they can be mistaken for absorption features of the sample, or they can 

distort the true absorption features. 

This is particularly problematic if the time 𝑇scan it takes to scan the laser 

over a spectral feature is shorter than the characteristic time 𝑇 over which 

the laser's own spectral output averages to something smooth. Or, if the 

laser has fixed "holes" in its multimode output, these will appear as 

structure in any recorded spectrum. 

* "Experimental remedy:" 

How can we get a smoother effective laser spectrum for scanning? 

* "Wobble the cavity length 𝑑(𝑡) = 𝑑0 + 𝛿𝑑sin(2𝜋𝑓𝑡) with 𝑓 >
1

𝑇
." 

Here, 𝑑0 is the mean cavity length, 𝛿𝑑 is a small modulation amplitude, and 

𝑓 is the modulation frequency. 𝑇 would be the desired averaging time for 

the spectroscopic measurement. By rapidly modulating ("wobbling") the 

cavity length, all the axial mode frequencies 𝜈q =
𝑞𝑐

2 𝑑(𝑡)
 are swept back and 

forth in frequency. 

* "Rapidly modulates all 𝜔k ⇒ smoother averaged spectrum." 

If this wobbling is fast enough (𝑓 >
1

𝑇measurement per point

), then each 

measurement point in the spectroscopic scan effectively averages over 

many different instantaneous sets of laser modes. This "smears out" the 

sharp peaks and holes in the laser's intrinsic multimode spectrum, leading 

to a more uniform, smoother effective output spectrum over the averaging 

time. This reduces baseline artifacts in the measured absorption spectrum. 

This technique is sometimes called "mode scrambling" or "dithering." 
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Slide 27: 

Now we introduce a subtle but important effect: "Mode Pulling — Concept 

Introduction." 

* "Even after mode selection, the exact frequency of a laser mode differs 

from the passive cavity resonance 𝜈r (nu sub arr) because of the 

frequency-dependent index 𝑛(𝜈) (en of nu)." Suppose we've managed to 

select a single axial and transverse mode. We might think its frequency is 

simply given by the passive cavity condition 𝜈r =
𝑞𝑐

2 𝑑
. 

However, this is not quite right. The active gain medium itself has a 

refractive index 𝑛(𝜈) that is frequency-dependent, especially near the gain 

line center due to anomalous dispersion (as we saw on pages 14-17). 

The actual lasing frequency 𝜈a (nu sub ay, for active) will be determined by 

the round-trip phase condition including 𝑛(𝜈), i.e., \(\nu_\text{a} = \frac{q 

c}{2 d^(\nu_\text{a})}\), where \(d^(\nu_\text{a}) = d - L + n(\nu_\text{a})L\). 

Because 𝑛(𝜈a) is generally not equal to 1 (the vacuum value), 𝜈a will be 

different from the passive cavity resonance 𝜈r (which assumes n=1 

throughout). 

* "This shift is called mode pulling." The presence of the dispersive gain 

medium "pulls" the lasing frequency away from where it would have been 

for an empty cavity. 

* "Two intuitive viewpoints:" 

1. "Cavity view: refractive index changes effective length 𝑑∗ (dee star)." 

This is the view we've mostly used so far. The refractive index 𝑛(𝜈) of the 

gain medium changes the optical path length inside the cavity to \(d^(\nu)\). 

Since the resonance condition is \(q\lambda = 2\,d^\), a change in 𝑑∗ (due 



to 𝑛(𝜈) being different from 1 and varying with 𝜈) will change the resonant 

wavelength and thus the frequency. 
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The second intuitive viewpoint for mode pulling: 

2. "Gain medium view: phase of standing wave adjusted so that round-trip 

phase remains an integer multiple of 𝜋 (pi) in presence of dispersion." 

(Should be integer multiple of 2𝜋 for phase, or for path length, integer 

multiple of 𝜆). 

The total round-trip phase shift 𝜙(𝜈) must equal 2𝜋𝑞 for resonance. 

𝜙(𝜈) =
2𝜋𝜈

𝑐
[2((𝑑 − 𝐿) + 𝑛(𝜈)𝐿)] 

(Using the one-way optical path (𝑑 − 𝐿) + 𝑛(𝜈)𝐿). 

The term 𝑛(𝜈)𝐿 introduces a phase shift (
2𝜋𝜈

𝑐
) 𝑛(𝜈)𝐿 within the gain medium 

(for one pass). 

If 𝑛(𝜈) varies with frequency, the laser frequency 𝜈 must adjust itself slightly 

so that this total phase condition is met. 

The frequency 𝜈 will shift from the passive cavity value 𝜈r to a new value 𝜈a 

such that the new phase 𝜙(𝜈a) (which includes 𝑛(𝜈a)) is equal to 2𝜋𝑞. 

This adjustment of 𝜈a to maintain the phase condition in the presence of the 

dispersive 𝑛(𝜈) is mode pulling. 

* "Quantitative derivation on next slide." 

We will now derive a formula that quantifies this frequency shift. 
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Let's proceed with the "Mode Pulling — Mathematical Derivation Step-by-

Step." (Slide 28) 



* Passive cavity phase per round-trip: 

Let 𝜈p (nu sub pee) be the resonant frequency of the passive cavity (what 

we called 𝜈r or 𝜈𝑞,𝑣𝑎𝑐 before). The round-trip phase 𝛷p (Capital Phi sub pee) 

for this passive cavity is: 

𝛷p = 2𝜋𝜈p (
2 𝑑

𝑐
) = 𝑚𝜋 

Capital Phi sub pee equals two pi nu sub pee, times (two dee over cee), 

equals em pi. 

Note: 𝑚 here must be an even integer, 𝑚 = 2 𝑞, for the phase to be 2 𝑞𝜋. If 

𝑚 is just an integer, it means 𝑚𝜆/2 = 𝑑 for path length. Let's assume 𝑚𝜋 

represents 2 𝑞𝜋, so 𝑚 is effectively the axial mode number 𝑞 if we use 2𝜋 

for phase. Or, if 𝑚 is 𝑞, then the phase shift is 𝑞𝜋 for a single pass if node-

node. 

Let's stick to 𝛷 = 2𝜋𝑞 for round-trip phase for resonance. 

So, 2𝜋𝜈p (
2 𝑑

𝑐
) = 2𝜋𝑞, which simplifies to 𝜈p (

2 𝑑

𝑐
) = 𝑞, or 𝜈p =

𝑞𝑐

2 𝑑
. This is 

correct. 

The slide uses 𝑚𝜋. This would be correct if 𝑚 is the number of full 

wavelengths in a round trip, then 𝑚 ⋅ 2𝜋. If 𝑚 is the number of half-

wavelengths in a single trip 𝑑, then 𝑚 ⋅ 𝜋 for single trip phase. This can be 

confusing. Let's assume 𝑚𝜋 here means "an integer multiple of 𝜋 that 

satisfies resonance." 

The standard condition is round trip phase = 2𝜋𝑞. So, 2𝜋𝜈p (
2 𝑑

𝑐
) = 2𝜋𝑞. 

* Active cavity phase: 

Let 𝜈a (nu sub ay) be the actual lasing frequency in the active cavity. 



The round-trip phase 𝛷a (Capital Phi sub ay) includes the refractive index 

𝑛(𝜈a) of the gain medium (assuming it fills the cavity of length 𝑑 for 

simplicity here, or 𝑑 is 𝑑∗). 

𝛷a = 2𝜋𝜈a (
2 𝑑 𝑛(𝜈a)

𝑐
) = 𝑚𝜋 (again, 𝑚𝜋 should be 2𝜋𝑞) 

Capital Phi sub ay equals two pi nu sub ay, times (two dee en of nu sub ay, 

over cee), equals em pi. 

This formula implies the gain medium of index 𝑛(𝜈a) fills the entire cavity 

length 𝑑. If it's of length 𝐿 within 𝑑, then 

𝛷a =
2𝜋𝜈a

𝑐
⋅ 2[(𝑑 − 𝐿) + 𝑛(𝜈a)𝐿]. 

The derivation will likely simplify this. For resonance, 𝛷p = 𝛷a = 2𝜋𝑞. 

So, 𝜈p 𝑑 = 𝜈a[(𝑑 − 𝐿) + 𝑛(𝜈a)𝐿] (after dividing by 2𝜋(2/𝑐) and 𝑞). This is 

one way to get 𝜈a. 

Let's follow the slide's approach which seems to use a Taylor expansion, 

likely of 𝛷a(𝜈) around 𝜈p. 
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The slide proceeds by expanding 𝛷(𝜈) (which is 𝛷a(𝜈)) in a Taylor series 

around 𝜈p (the passive cavity resonance). This is a common technique 

when the shift 𝜈a − 𝜈p is small. The phase for the active cavity is 

𝛷a(𝜈) =
4𝜋𝜈

𝑐
[(𝑑 − 𝐿) + 𝑛(𝜈)𝐿]. 

* "Expand 𝛷(𝜈) in Taylor series around 𝜈p:" (The slide writes 𝛷(𝜈) which 

refers to 𝛷a(𝜈)) * 𝛷a(𝜈a) ≈ 𝛷a(𝜈p) + (
𝑑𝛷a

𝑑𝜈
) |𝜈p

(𝜈a − 𝜈p) * The slide writes: 

𝛷a ≈ 𝛷p + (
∂𝛷

∂𝜈
) |𝜈p

(𝜈a − 𝜈p) + [𝛷a(𝜈a) − 𝛷p(𝜈a)] = 𝑚𝜋 



* This expansion is a bit unusual. 𝛷p is 𝛷passive(𝜈p). The derivative term 

(
∂𝛷

∂𝜈
) |𝜈p

 needs clarification on which 𝛷 it is (active or passive). 

* The term [𝛷a(𝜈a) − 𝛷p(𝜈a)] looks like the difference in phase between 

active and passive cavities, evaluated at 𝜈a. 

* This equation is effectively setting 𝛷a(𝜈a) = 𝑚𝜋 (resonance for active 

cavity). 

Let's assume a standard approximation for small pulling: 

* The active cavity resonance 𝜈a must satisfy 

𝛷active(𝜈a) = 2𝜋𝑞. 

* The passive cavity resonance 𝜈p satisfies 

𝛷passive(𝜈p) = 2𝜋𝑞. 

* So 𝛷active(𝜈a) = 𝛷passive(𝜈p). 

* 𝛷active(𝜈) =
4𝜋𝜈

𝑐
[(𝑑 − 𝐿) + 𝑛(𝜈)𝐿]. 

* 𝛷passive(𝜈) =
4𝜋𝜈

𝑐
 𝑑. 

* The slide's 𝛷a seems to be the active phase, and 𝛷p the passive phase at 

𝜈p. 

* "Setting 𝛷p = 𝑚𝜋 and rearranging yields:" If 

𝛷p = 𝛷passive(𝜈p) = 𝑚𝜋 (i.e. 2𝜋𝑞), 

and we want 𝛷active(𝜈a) = 𝑚𝜋, then the equation implies: 

(
∂𝛷

∂𝜈
) |𝜈p

(𝜈a − 𝜈p) + [𝛷a(𝜈a) − 𝛷p(𝜈a)] = 0. 



* Partial 𝛷 partial 𝜈 evaluated at 𝜈p, times (𝜈a − 𝜈p), plus open bracket 

𝛷a(𝜈a) − 𝛷p(𝜈a) close bracket, equals zero. 

* The slide states this is "identical to Eq. (5.72)" from the textbook. This 

equation relates the frequency shift 𝜈a − 𝜈p to the difference in phase 

response of the active and passive cavities. 

* The term 𝛷a(𝜈a) − 𝛷p(𝜈a) can be written as 

4𝜋𝜈a

𝑐
 𝐿 (𝑛(𝜈a) − 1). 

This is the extra phase due to the medium of length 𝐿. 

* The derivative (
∂𝛷

∂𝜈
) |𝜈p

 is related to the group delay or cavity storage time. 

For a passive cavity, 𝛷p(𝜈) =
4𝜋𝜈𝑑

𝑐
, so 

∂𝛷p

∂𝜈
=
4𝜋𝑑

𝑐
= 2𝜋 (

2 𝑑

𝑐
) = 2𝜋 𝜏rt, 

where 𝜏rt is the round trip time. 

This formulation is a bit dense without the context of Eq. (5.72). However, 

the goal is to find 𝜈a − 𝜈p. 

* "Need dispersion relation linking 𝑛(𝜈) to gain coefficient 𝛼(𝜈):" To solve 

this, we need an expression for 𝑛(𝜈), specifically how it varies around the 

gain line because of the gain 𝛼(𝜈) (or 𝑔(𝜈) = −𝛼(𝜈)). This is given by the 

Kramers-Kronig relations, often approximated for a Lorentzian gain line. 
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The dispersion relation linking 𝑛(𝜈) to the absorption coefficient 𝛼(𝜈) 

(where gain corresponds to negative 𝛼(𝜈)) near a resonance 𝜈0 is given 

(often for a Lorentzian line) as: 

𝑛(𝜈) = 1 + (
𝜈0 − 𝜈

𝛥𝜈m

) ⋅ (
𝑐

2𝜋𝜈
)𝛼(𝜈) 



Let's define the terms: 

* 𝜈0 (nu naught): "centre frequency of gain line." 

 𝛥𝜈m (Delta nu sub em): This is related to the width of the gain line. The 

slide defines it as 𝛥𝜈m =
𝛾m

2𝜋
: "homogeneous half-width." Here 𝛾m would be 

the HWHM in angular frequency units if 𝛥𝜈m is HWHM in Hz. Or, if 𝛾m is the 

full homogeneous linewidth (angular), then 𝛥𝜈m is the FWHM (Hz) if the 

relation is 𝛥𝜈m =
𝛾m

2𝜋
. Let's assume 𝛥𝜈m is the HWHM in Hz of the gain line 

profile*. (Often 𝛥𝜈L or 𝛥𝜈h used for this). 

* 𝑐 is speed of light. 𝛼(𝜈) is the absorption coefficient (negative for gain). 

The 2𝜋𝜈 in the denominator is sometimes approximated as 2𝜋𝜈0 if the 

frequency range is narrow. This formula gives the change in refractive 

index due to the resonant gain/absorption feature 𝛼(𝜈). The 1 is the 

background refractive index (vacuum). 

* "After algebra (see next slide) obtain the mode-pulled frequency." By 

substituting this expression for 𝑛(𝜈) into the phase condition equation 

(implicitly, through Eq. 5.72 from the previous slide), and performing some 

algebraic manipulations (which can be quite involved), one can derive an 

expression for the actual lasing frequency 𝜈a. 
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This slide presents the "Final Formula and Limiting Cases" for Mode 

Pulling. (Slide 29) 

* "Derived expression:" 

The actual lasing frequency 𝜈a is given by: 

𝜈a =
𝜈r𝛥𝜈m + 𝜈0𝛥𝜈r

𝛥𝜈m + 𝛥𝜈r

 

Let's define the terms in this very important formula: "where" (Definitions 

continue on the next page) 



𝜈a: is the actual frequency of the laser mode (the mode-pulled frequency). 

𝜈r: is the passive cavity resonance frequency (what we called 𝜈p or 𝜈𝑞,𝑣𝑎𝑐 

earlier). This is the frequency the mode would have if there were no gain 

medium dispersion. 

𝜈0: is the center frequency of the gain line profile. 

𝛥𝜈m: is the HWHM (Half Width at Half Maximum) of the gain line (the "m" 

might stand for medium or molecular transition). This was on the previous 

slide. 

𝛥𝜈r: is the HWHM of the passive cavity resonance (the "r" for resonator). 

This formula is beautifully intuitive: the actual lasing frequency 𝜈a is a 

weighted average of the passive cavity frequency 𝜈r and the gain line 

center frequency 𝜈0. The weighting factors are the half-widths of the other 

feature: 𝜈r is weighted by 𝛥𝜈m, and 𝜈0 is weighted by 𝛥𝜈r. 
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Let's continue with the definitions and interpretation for the mode pulling 

formula: 

𝜈a =
𝜈r 𝛥𝜈m + 𝜈0 𝛥𝜈r

𝛥𝜈m + 𝛥𝜈r

 

* 𝛥𝜈r =
𝑐 𝛾loss

4𝜋𝑑
 (Corrected formula likely from context, slide has 

𝑐𝛾

4𝜋𝑑
 without 

specifying 𝛾). The slide says 𝛥𝜈r =
𝑐𝛾

4𝜋𝑑′
. This 𝛾 seems to be related to cavity 

losses. More commonly, 𝛥𝜈r (the HWHM of the passive cavity resonance) 

is related to the FSR and finesse 𝐹p: 

𝛥𝜈r =
FWHMcavity

2
=
𝛿𝜈/𝐹p

2
=
𝑐/(2 𝑑𝐹p)

2
=

𝑐

4 𝑑𝐹p
 



If the 𝛾 on the slide here refers to the round-trip intensity loss (1 − 𝑅eff), 

and 𝐹p ≈ 𝜋/(1 − 𝑅eff), then 𝛥𝜈r ≈
𝑐(1−𝑅eff)

4𝜋𝑑
. So if 𝛾 = (1 − 𝑅eff), this is 

consistent. The definition given is: "passive cavity resonance half-width 

(determined by total losses 𝛾)." This means 𝛥𝜈r is the HWHM of the cavity 

resonance. Its narrowness depends on cavity losses: low loss means high 

finesse and small 𝛥𝜈r. 

* "Interpretation:" * "Weighted average of cavity resonance 𝜈r and gain 

centre 𝜈0." This is clear from the form of the equation. * "Weighting factors 

are respective half-widths." This is the key insight. Whichever feature 

(cavity resonance or gain line) is "sharper" (has a smaller half-width) has 

more influence on the other. No, that's not right. The weighting of 𝜈r is 
𝛥𝜈m

𝛥𝜈m+𝛥𝜈r

 and the weighting of 𝜈0 is 
𝛥𝜈r

𝛥𝜈m+𝛥𝜈r

. So, if 𝛥𝜈m (gain linewidth) is much 

larger than 𝛥𝜈r (cavity linewidth), i.e., 𝛥𝜈m ≫ 𝛥𝜈r, then 𝜈a ≈
𝜈r  𝛥𝜈m

𝛥𝜈m

= 𝜈r. This 

means if the gain line is very broad and the cavity resonance is very sharp, 

the lasing frequency 𝜈a is pulled very little and stays close to 𝜈r. The sharp 

cavity dominates. Conversely, if 𝛥𝜈r ≫ 𝛥𝜈m (cavity resonance is very broad, 

gain line is very sharp), then 𝜈a ≈
𝜈0  𝛥𝜈r

𝛥𝜈r

= 𝜈0. The lasing frequency is pulled 

strongly towards the gain line center 𝜈0. The sharp gain line dominates. 

This makes sense: the resulting frequency is pulled towards the "sharper" 

of the two original frequencies (passive cavity or gain line center). (Wait, 

the weighting is by the other's width. If 𝛥𝜈m is large, it means 𝜈r has a large 

weight. So, if gain line is broad, frequency is pulled towards 𝜈r. If cavity line 

is broad (small finesse), frequency is pulled towards 𝜈0. This is it!) So, the 

laser frequency 𝜈a will be closer to 𝜈r if 𝛥𝜈m is large (broad gain line). It will 

be closer to 𝜈0 if 𝛥𝜈r is large (broad cavity resonance). This means 𝜈a is 

pulled towards the component (𝜈r or 𝜈0) whose associated feature (𝛥𝜈r or 

𝛥𝜈m respectively) is NARROWER. Yes, this is correct. The formula 

effectively says the output frequency 𝜈a is "pulled" from 𝜈r towards 𝜈0 by an 



amount proportional to 𝛥𝜈r and inversely proportional to 𝛥𝜈m (for small 

pulls). 

* "Gas lasers typical numbers:" * 𝛥𝜈r ∼ 1 MHz. (Delta nu sub arr is around 

one megahertz). This is the HWHM of a typical good quality passive cavity 

resonance. FWHM would be ∼ 2 MHz. (This implies a finesse. If FSR is 

150 MHz, FWHM 2MHz means Finesse = 150/2 = 75. This is reasonable.) 
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Continuing with typical numbers for gas lasers: 

• 𝛥𝜈m ∼ 100 MHz. (Delta nu sub em is around one hundred megahertz). 

This is the HWHM of the homogeneous gain line profile. (This could be, for 

instance, the pressure-broadened linewidth in a He-Ne laser, not the much 

larger Doppler width). The mode pulling phenomenon is driven by the 

dispersion associated with the part of the gain that is actually being "used" 

by the mode, which can be related to the homogeneous packet. 

• "Simplified form for 𝛥𝜈r ≪ 𝛥𝜈m:" (Delta nu sub arr is much less than 

Delta nu sub em). This is the common case for gas lasers: sharp cavity 

resonance (𝛥𝜈r ∼ 1 MHz), broader homogeneous gain line (𝛥𝜈m ∼

100 MHz). In this limit, the formula 

𝜈a =
𝜈r𝛥𝜈m + 𝜈0𝛥𝜈r

𝛥𝜈m + 𝛥𝜈r

 

can be approximated. 

Divide numerator and denominator by 𝛥𝜈m: 

𝜈a =
𝜈r + 𝜈0 (

𝛥𝜈r

𝛥𝜈m
)

1 +
𝛥𝜈r

𝛥𝜈m

 

Using binomial expansion 

(1 + 𝑥)−1 ≈ 1 − 𝑥 



for small 𝑥 =
𝛥𝜈r

𝛥𝜈m

: 

𝜈a ≈ (𝜈r + 𝜈0 (
𝛥𝜈r

𝛥𝜈m

))(1 −
𝛥𝜈r

𝛥𝜈m

) 

𝜈a ≈ 𝜈r − 𝜈r (
𝛥𝜈r

𝛥𝜈m

) + 𝜈0 (
𝛥𝜈r

𝛥𝜈m

) − 𝜈0 (
𝛥𝜈r

𝛥𝜈m

)
2

 

Ignoring the squared term: 

𝜈a ≈ 𝜈r + (𝜈0 − 𝜈r) (
𝛥𝜈r

𝛥𝜈m

) 

This is the formula given on the slide: 

𝜈a ≈ 𝜈r + (
𝛥𝜈r

𝛥𝜈m

) (𝜈0 − 𝜈r) 

"nu sub ay is approximately nu sub arr, plus (Delta nu sub arr over Delta nu 

sub em) times (nu naught minus nu sub arr)." 

• "Mode pulled only slightly towards 𝜈0." Since 𝛥𝜈r ≪ 𝛥𝜈m, the ratio 
𝛥𝜈r

𝛥𝜈m

 is 

small (e.g., 
1 MHz

100 MHz
= 0.01). So the shift 𝜈a − 𝜈r is only a small fraction of the 

detuning 𝜈0 − 𝜈r. This means 𝜈a stays very close to 𝜈r. The pulling is weak, 

which is expected if the cavity is much sharper than the gain line feature 

causing the dispersion. 

• "Pulling magnitude proportional to detuning (𝜈0 − 𝜈r)." The further the 

passive cavity mode 𝜈r is from the gain line center 𝜈0, the larger the pull 

𝜈a − 𝜈r will be (for a fixed ratio of linewidths). The pulling is zero if 𝜈r = 𝜈0 

(cavity tuned to line center). 
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Let's consider the "Practical Consequences of Mode Pulling." (Slide 30) 



* "In line-centre operation (𝜈r ≈ 𝜈0) pulling is negligible." This follows 

directly from the formula 

𝜈a − 𝜈r ≈ (
𝛥𝜈r

𝛥𝜈m

) (𝜈0 − 𝜈r) 

If 𝜈r = 𝜈0, then (𝜈0 − 𝜈r) = 0, so 𝜈a = 𝜈r. There is no pulling. This is an 

important operating point for minimizing pulling effects. 

* "Near slope of gain curve:" (This refers to when 𝜈r is on the slope of the 

gain curve, i.e., detuned from 𝜈0). * "Small cavity length drifts ⇒ large 

frequency drifts partially cancelled by pulling." This is a subtle but beneficial 

effect. Suppose the cavity length 𝑑 changes by a small amount 𝛥𝑑 (e.g., 

due to thermal expansion or vibration). This would cause the passive cavity 

frequency 

𝜈r =
𝑞𝑐

2𝑑
 

to shift by 

𝛥𝜈𝑟,drift = −(
𝑞𝑐

2𝑑2
)𝛥𝑑 = −

𝜈r

𝑑
𝛥𝑑 

This can be a large frequency drift. However, as 𝜈r drifts, the detuning 

(𝜈0 − 𝜈r) changes. This change in detuning causes the mode pulling 

(𝜈a − 𝜈r) to change in a way that partially counteracts the initial drift of 𝜈r. 

The pulling term shifts 𝜈a towards 𝜈0. So, if 𝜈r drifts away from 𝜈0, the 

pulling effect increases, pulling 𝜈a back towards 𝜈0 more strongly. If 𝜈r drifts 

towards 𝜈0, the pulling effect weakens. This results in the actual lasing 

frequency 𝜈a being somewhat more stable against cavity length drifts than 

𝜈r would be on its own. The gain medium effectively provides a kind of 

"restoring force" that pulls 𝜈a back towards 𝜈0. This is sometimes called 

"frequency pulling compensation" or "self-correction." The degree of 

cancellation depends on the pulling factor 



𝛥𝜈r

𝛥𝜈m

. 

* "Stabilization schemes exploit or compensate for this." Understanding 

mode pulling is crucial for designing laser frequency stabilization systems. 

If you are stabilizing the laser by locking 𝜈r to an external reference (e.g., 

another stable cavity), you need to be aware that 𝜈a will still be affected by 

pulling if 𝜈0 drifts or if the pulling factor changes. Some schemes might try 

to lock 𝜈a directly to an atomic reference, which bypasses issues with 𝜈r 

drift and pulling relative to 𝜈r. Other schemes might actively control 𝜈r to 

keep 𝜈a stable, using knowledge of the pulling effect. For example, if 𝜈0 is 

known and stable, one can lock 𝜈r to a specific offset from 𝜈0 to achieve a 

desired 𝜈a. 

* "For precision spectroscopy:" This is where mode pulling becomes 

extremely important. 
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Continuing with practical consequences for precision spectroscopy: 

* "Mode pulling introduces systematic error if laser is locked to cavity rather 

than atomic reference." This is a major concern. Many laser stabilization 

schemes involve locking the laser's cavity length 𝑑 (and thus 𝜈r) to a high-

finesse, stable but passive reference cavity (e.g., made of ultra-low 

expansion glass, kept in vacuum and temperature controlled). This can 

make 𝜈r very stable. However, the actual lasing frequency 𝜈a is what 

interacts with the atoms in a spectroscopy experiment. If 𝜈a = 𝜈r +

PullingTerm, and if the PullingTerm changes (e.g., due to drifts in the gain 

line center 𝜈0, or changes in laser power affecting 𝛥𝜈m or 𝛥𝜈r through 

saturation effects), then 𝜈a will drift even if 𝜈r is perfectly stable. This drift in 

𝜈a would appear as a systematic error in frequency measurements if one 

assumes 𝜈a = 𝜈r. Locking directly to an "atomic reference" (e.g., using 

saturated absorption spectroscopy to lock 𝜈a to the center of an 



unperturbed atomic transition) avoids this particular systematic error, 

because you are then directly controlling 𝜈a. 

* "Correction requires knowledge of 𝛥𝜈m, 𝛥𝜈r, and detuning." If one must 

lock to a passive cavity and needs to know 𝜈a very accurately, then one has 

to measure or model the mode pulling effect. This requires knowing all the 

parameters in the mode pulling formula: 𝜈r (from the lock to the reference 

cavity), 𝜈0 (the gain line center, which might drift), 𝛥𝜈m (gain line HWHM, 

might depend on operating conditions), and 𝛥𝜈r (cavity HWHM, might also 

vary if intracavity losses change). Accurately determining all these to 

correct for mode pulling can be very challenging. 

* "[IMAGE REQUIRED: Plot showing cavity resonance (vertical lines) and 

gain curve; arrows indicating mode shift towards centre as gain slope 

steepens.]" This describes a conceptual diagram: Imagine a broad gain 

curve (like a Gaussian). Underneath it, show several sharp vertical lines 

representing the passive cavity resonant frequencies 𝜈r. Then, for each 𝜈r, 

show an arrow pointing from 𝜈r towards the center of the gain curve (𝜈0). 

The length of this arrow would represent the magnitude of the pull (𝜈a − 𝜈r). 

The arrows should be longer for 𝜈r values further from 𝜈0 (on the slopes of 

the gain curve) because the detuning (𝜈0 − 𝜈r) is larger there. The phrase 

"as gain slope steepens" is a bit ambiguous. The pulling is largest where 

the detuning (𝜈0 − 𝜈r) is large, i.e., on the flanks of the gain curve. The 

slope of the refractive index curve 𝑛(𝜈) is what directly drives the pulling, 

and this slope 
𝑑𝑛

𝑑𝜈
 is related to the gain curve 𝛼(𝜈) via Kramers-Kronig. 

Typically, 
𝑑𝑛

𝑑𝜈
 is largest near the center of a resonance for a gain line. The 

pulling magnitude 𝜈a − 𝜈r is proportional to (𝜈0 − 𝜈r) ⋅
𝛥𝜈r

𝛥𝜈m

. It is this detuning 

factor that is key. 
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We now reach a "Summary of Key Quantitative Relationships." This is 

Slide 31. This slide recaps some of the most important formulas we've 

encountered for describing laser spectra. 

* "Passive cavity FSR (Free Spectral Range):" 

𝛿𝜈 =
𝑐

2 𝑑
 

"delta nu equals cee divided by two dee." This gives the constant spacing 

between adjacent axial modes of an empty (passive) cavity of length 𝑑. 

"Round-trip gain factor:" (This refers to the round-trip amplitude* gain factor 

𝐺) 

𝐺(𝜈) = exp[−2𝛼(𝜈)𝐿 − 𝛾(𝜈)] 

"Capital Gee of nu equals exponential of, open square bracket, minus two 

alpha of nu times capital Ell, minus gamma of nu, close square bracket." 

Here, 𝛼(𝜈) is the absorption coefficient of the gain medium (negative for 

gain) of length 𝐿. 𝛾(𝜈) is the total passive logarithmic amplitude loss per 

round-trip. For lasing, 𝐺(𝜈) must be ≥ 1. 

* "Active cavity linewidth:" (This is the FWHM of a lasing mode, 𝛥𝜈a, 

approaching threshold) The formula given here is slightly different from 

page 42, missing a 2𝜋 factor, or 𝛿𝜈 is FSR. The formula on page 42 was 

𝛥𝜈a = 𝛿𝜈 ⋅ (
1 − 𝐺(𝜈)

2𝜋√𝐺(𝜈)
) 

where 𝛿𝜈 was FSR. The equation is not fully written on this summary slide, 

but it's implied by the next slide. Let's look at page 93 for the full formula. 
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Continuing the summary of key relationships, the active cavity linewidth 

formula is given at the top of this page: 



𝛥𝜈a = 𝛿𝜈 ⋅
1 − 𝐺

2𝜋√𝐺
 

"Delta nu sub ay equals delta nu times, fraction: (one minus capital Gee) 

divided by (two pi times square root of capital Gee)." 

Here, 𝛿𝜈 is the FSR (
𝑐

2 𝑑
). 𝐺 is the round-trip amplitude gain 𝐺(𝜈). As 𝐺 →

1−, 𝛥𝜈a → 0. This is the Schawlow-Townes narrowing before considering 

quantum noise. 

* "Saturated gain coefficients:" How the gain (or absorption coefficient 𝛼) is 

reduced by the presence of laser intensity. 

* "Homogeneous:" For a homogeneously broadened medium. 

𝛼s =
𝛼0

1 + 𝐼/𝐼s
 

"alpha sub ess equals alpha sub zero, divided by (one plus capital Eye 

over capital Eye sub ess)." Here, 𝛼0 is the small-signal absorption 

coefficient, 𝛼s is the saturated absorption coefficient, 𝐼 is the intensity, and 

𝐼s is the saturation intensity. If 𝛼0 is for gain (negative), then 𝛼s becomes 

less negative. 

* "Inhomogeneous:" For an inhomogeneously broadened medium. 
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The saturated gain coefficient for an inhomogeneously broadened medium: 

𝛼s =
𝛼0

√1 +
𝐼
𝐼s

 

Again, 𝛼s saturates more slowly (denominator is larger, so |𝛼s| is larger, 

closer to |𝛼0|) compared to the homogeneous case for the same 
𝐼

𝐼s
. 

* Mode pulling: The formula for the actual lasing frequency 𝜈a: 



𝜈a =
𝜈r𝛥𝜈m + 𝜈0𝛥𝜈r

𝛥𝜈m + 𝛥𝜈r

 

Where 𝜈r is passive cavity resonance, 𝜈0 is gain line center, 𝛥𝜈m is HWHM 

of gain line, and 𝛥𝜈r is HWHM of passive cavity resonance. 

* A final crucial comment: "Each equation requires understanding of the 

definitions and units provided earlier; together they form the quantitative 

backbone for predicting and controlling laser spectra." This is absolutely 

true. These equations are not just abstract symbols; each term has a 

physical meaning, units, and depends on specific characteristics of the 

laser system. Mastering these relationships is essential for anyone who 

wants to design lasers, understand their output, diagnose problems, or use 

them for high-precision applications like laser spectroscopy. You need to 

know what each symbol represents, how it's typically measured or 

calculated, and how it influences the others. This set of formulas, built up 

step-by-step, allows us to move from basic principles to a fairly 

sophisticated understanding of why a laser emits the specific frequencies it 

does, how narrow those frequencies can be, and how they might shift or 

change. 
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Slide 32 

Alright, let's move to our "Concluding Remarks and Next Steps" for this 

chapter on the spectral characteristics of laser emission. This is Slide 32. 

* The first key takeaway is a crucial one: "The frequency composition of 

laser emission is not a simple direct mirror of the gain profile; it emerges 

from a rich interplay of:" This is perhaps the most important conceptual 

summary. One might naively think that if you have a gain medium with a 

certain spectral gain curve, the laser will just emit light across that entire 

curve. But that's not the case. The actual spectrum is far more structured 



and selective, resulting from a complex interplay of several factors that 

we've discussed. These factors include: 

* "Cavity resonance conditions." The optical resonator only supports 

discrete frequencies (axial and transverse modes) where standing waves 

can form. This imposes the first level of selection. The laser can only 

operate at or very near these allowed cavity frequencies. * "Gain saturation 

(homogeneous vs inhomogeneous)." Once lasing begins, the intensity 

builds up and saturates the gain. How this saturation occurs – whether 

uniformly across the gain profile (homogeneous) or by burning selective 

spectral holes (inhomogeneous) – dramatically affects which modes can 

lase and how they compete with each other. * "Spatial hole burning and 

transverse-mode structure." In linear cavities, the standing wave pattern 

leads to spatial variations in saturation, which can allow multiple modes 

(even in a homogeneous medium) to coexist by drawing gain from different 

regions. The presence of higher-order transverse modes (TEM𝑚𝑛) also 

adds complexity to the spectrum, as these modes have their own distinct 

frequencies. * "Dispersive frequency shifts (mode pulling)." The refractive 

index of the gain medium itself is frequency-dependent, especially near the 

gain line. This causes the actual lasing frequencies to be "pulled" away 

from the passive cavity resonances, towards the center of the gain line. 

The magnitude of this pulling depends on the relative widths of the cavity 

resonance and the gain line. 

It's the combination of all these effects – the discrete cavity modes, the 

shape of the gain, how the gain saturates, where it saturates spatially, and 

how the medium's dispersion shifts frequencies – that ultimately 

determines the detailed spectral output of any given laser. 
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Continuing with our concluding remarks: 

"Experimental control levers:" 



Given this complex interplay, what tools do we have as experimentalists to 

influence and control the laser's spectral output? We have several "levers": 

1. "Adjust cavity length 𝑑 and geometry." Changing the cavity length 𝑑 

directly changes the FSR (
𝑐

2 𝑑
) and shifts the entire comb of axial mode 

frequencies. Fine-tuning 𝑑 is essential for selecting a specific mode or 

tuning the laser. Cavity geometry (mirror curvatures, stability parameters) 

affects the transverse mode spacing and stability, and can be used to favor 

or suppress certain modes (like TEM00). 

2. "Shape gain profile via temperature, pressure, and pumping." The gain 

profile 𝛼(𝜈) (or 𝑔(𝜈)) is not always fixed. For some gain media, temperature 

can affect the center frequency and width. For gas lasers, pressure 

influences collisional broadening and thus 𝛥𝜈hom. Pumping level directly 

controls the magnitude of the small-signal gain, which determines how far 

above threshold the laser operates and thus the width of the lasing band 

𝛥𝜈lase. 

3. "Insert selective elements (etalons, gratings, birefringent filters)." As 

we've discussed, particularly for broad-gain media or when single-

frequency operation is critical, intracavity elements are used to introduce 

frequency-dependent losses. These "tune" the net gain curve, allowing us 

to pick out a single axial and transverse mode and often to tune its 

frequency over a portion of the gain bandwidth. 

"Subsequent chapters/slides will extend these concepts to:" 

This section has laid the groundwork. Where do we go from here? We will 

build upon these ideas to explore even more advanced topics in laser 

spectroscopy: 

  

"Linewidth narrowing mechanisms (Schawlow-Townes limit)." We briefly 

mentioned that there's a fundamental quantum limit to laser linewidth. We 



will delve into the physics of this limit and explore techniques and cavity 

designs that aim to approach it, leading to ultra-narrow linewidth lasers. 

  

"Active frequency stabilization techniques." Beyond passive stability and 

basic mode selection, achieving very high frequency stability (e.g., parts in 

1015 or better) requires active feedback systems. These involve locking the 

laser frequency to an external stable reference, such as an atomic 

transition or a high-finesse optical cavity, using techniques like the Pound-

Drever-Hall method. 
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And further extensions of these concepts will include: 

"Tunable and mode-locked laser systems." 

We've touched on tunability achieved by intracavity elements. We'll explore 

various designs for broadly tunable lasers, which are workhorses for 

spectroscopy. 

"Mode-locked laser systems" are a different but related topic. By forcing 

many axial modes of a laser to oscillate with a fixed phase relationship, one 

can generate trains of ultra-short (femtosecond or picosecond) pulses of 

light. Understanding the axial mode structure 𝛿𝜈 =
𝑐

2 𝑑
 is fundamental to 

mode-locking, as the pulse repetition rate is typically equal to the FSR or a 

sub-harmonic. Mode-locked lasers have their own unique spectral 

characteristics (a broad comb of phase-locked frequencies). 

Finally, "Mastery of today's material equips you to design, diagnose, and 

optimize laser sources for high-resolution spectroscopy and other precision 

applications." 

This is the ultimate goal. The detailed understanding of how active media 

and optical resonators interact to define the laser's spectral output is not 

just academic. It is intensely practical. 



If you are performing high-resolution spectroscopy, you need to know if 

your laser is single-mode, what its linewidth is, how stable its frequency is, 

and what might be causing unwanted spectral features or drifts. 

If you are designing a laser system for a specific application, you need to 

choose the right gain medium, design an appropriate resonator, and 

incorporate the necessary control elements to achieve the desired spectral 

performance (e.g., specific wavelength, narrow linewidth, tunability, power 

level). 

If your laser isn't behaving as expected (e.g., it's multimode when you want 

single-mode, or its frequency is unstable), the concepts covered here – 

gain saturation, spatial and spectral hole burning, mode pulling, 

competition, cavity resonances – provide the framework for diagnosing the 

problem and finding a solution. 

Many "other precision applications," from optical clocks and metrology to 

coherent communication and quantum information processing, rely heavily 

on lasers with exquisitely controlled spectral properties. 

So, the material we've covered in this chapter, while detailed, forms an 

essential toolkit for any physicist or engineer working seriously with lasers. 

It's the foundation upon which many advanced laser techniques and 

applications are built. 

This concludes our discussion for Chapter 5.3. Thank you. 

  


