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Alright everyone, welcome to this segment of our Phys 608 Laser 

Spectroscopy course. Today, we're diving into a critical component of any 

laser system: the laser resonator. This is covered in Chapter 5, section 2, 

of our material. These notes have been prepared by Distinguished 

Professor Doctor M A Gondal for our course here at KFUPM, Term 251. 

Laser resonators are truly at the heart of what makes a laser a laser – they 

provide the optical feedback necessary for sustained oscillation and play a 

crucial role in determining the laser's output characteristics, such as its 

mode structure, beam quality, and frequency spectrum. So, let's begin our 

exploration. 
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To guide our discussion on laser resonators, let's first outline our overall 

orientation and learning goals for this topic. First, Goal 1: We aim to situate 

laser resonator theory within the broader context of basic electromagnetic 

cavity physics. Many of you will have encountered E&M cavities in other 

courses, perhaps in the context of microwaves. We'll build upon those 

foundational concepts and see how they adapt and specialize when we 

move to optical frequencies and the specific requirements of lasers. 

Understanding this lineage is key to grasping why resonators behave the 

way they do. 

Second, Goal 2: We will strive to build a rigorous, symbol-by-symbol 

derivation of every key formula. This includes expressions for losses within 

the cavity, the quality factor (or 𝑄 factor, which is a measure of the 

resonator's efficiency), the Fresnel number (a crucial dimensionless 

parameter characterizing diffraction), and the mode spectra (the set of 

frequencies the resonator can support). A deep understanding here 

requires us to unpack the mathematics and the physics behind each term. 



Third, Goal 3: We will contrast different types of resonator geometries. We'll 

start with idealized closed cavities, then move to the more practical open 

stable resonators which are common in many lasers. We'll also explore 

deliberately unstable resonators, which are used in high-gain systems, and 

ring geometries, which offer unique advantages like unidirectional 

operation. We'll examine these in step-wise detail, highlighting their 

respective pros and cons. 

And finally, Goal 4, which is very practical: We want to provide design rules 

that a practicing experimentalist can immediately apply. This includes how 

to estimate and control beam spot sizes, how diffraction loss scales with 

resonator parameters, how to read and interpret stability charts for 

resonator design, and other crucial rules-of-thumb. The aim here is to 

bridge theory with practical application, enabling you to design or analyze 

real-world laser systems. These four goals will form the backbone of our 

journey through laser resonators. 
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Let's begin our exploration with the simplest, most idealized starting point: 

Closed, Perfectly Conducting Cavities. Our first bullet point defines a 

"closed cavity." Imagine an enclosure, like a metallic box, whose walls are 

perfectly reflecting. This means that any electromagnetic wave 

encountering a wall is reflected with 100% efficiency, no energy is 

absorbed by the walls, and no energy is transmitted through them. 

Furthermore, there are no apertures, no holes or openings, so no radiation 

can escape. This is, of course, an idealization, but it provides a 

fundamental basis for understanding how electromagnetic fields can be 

confined and can form standing wave patterns. 

The second point concerns dimensions. We'll often refer to a characteristic 

linear size, denoted by the symbol 𝐿. For example, if our cavity is a cube, 𝐿 

could be the length of an edge. If it's a more complex shape, 𝐿 might 

represent the largest internal distance. This dimension is crucial because it 



sets the scale for the wavelengths of the electromagnetic modes that can 

exist within the cavity. 

The third point is particularly relevant for our interest in lasers, which 

operate at optical frequencies. For optical frequencies, the wavelength, 𝜆, 

is typically very, very small – on the order of hundreds of nanometers. The 

characteristic dimension of a macroscopic cavity, 𝐿, might be on the order 

of centimeters or meters. Therefore, we almost always have the condition 

that the wavelength 𝜆 is much, much less than the cavity dimension 𝐿 (𝜆 ≪

𝐿). This has profound implications. It means that the cavity is 

electromagnetically very large, and it can support an enormous number of 

resonant modes. Think of it like a violin string: a longer string can support 

more harmonics. A large cavity is similar, but in three dimensions. This high 

density of modes is something we'll come back to, as it presents both 

challenges and opportunities for laser design. 
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Continuing with our discussion of closed, perfectly conducting cavities, we 

now consider the electromagnetic fields within them. 

The first bullet point introduces the concept of electromagnetic normal 

modes. These are specific spatial patterns of the electromagnetic field that 

can exist as standing waves within the cavity. For a wave to be a "standing 

wave" or a "normal mode," it must satisfy the boundary conditions imposed 

by the perfectly conducting walls on all six faces of our conceptual box 

cavity. For a perfect conductor, the tangential component of the electric 

field must be zero at the walls, and the normal component of the magnetic 

field must also be zero. These conditions restrict the possible wavelengths 

and, therefore, the frequencies of the electromagnetic fields that can stably 

exist inside the cavity. 

Now, if these cavity walls are not at absolute zero temperature, but are at 

some finite wall temperature, capital 𝑇, the cavity will be filled with thermal 

radiation. The system will reach thermal equilibrium. In this situation, the 



spectral energy density of the radiation field inside the cavity is described 

by Planck's distribution, a cornerstone of quantum mechanics. 

The formula for Planck's distribution of spectral energy density, 𝜌(𝜈, 𝑇) 

(often written as 𝜌𝜈(𝑇)), is given as: 

𝜌(𝜈, 𝑇) =
8𝜋ℎ𝜈3

𝑐3
⋅

1

𝑒
ℎ𝜈
𝑘B𝑇 − 1

 

Let's break this down carefully. 

On the left, 𝜌(𝜈, 𝑇), is the spectral energy density. Its units, as shown in the 

final bullet point, are Joules per cubic meter per Hertz (J m
−3
 Hz

−1
). This 

means it represents the energy per unit volume, per unit frequency interval, 

at a specific frequency 𝜈 and temperature 𝑇. 

Now for the terms on the right: ℎ is Planck's constant, approximately 

6.626 × 10−34 Joule-seconds. It’s the fundamental constant of quantum 

mechanics, linking energy to frequency. 𝜈 (Greek letter nu) is the frequency 

of the electromagnetic radiation in Hertz. 𝑐 is the speed of light in vacuum, 

approximately 3 × 108 meters per second. So, the term 
8𝜋ℎ𝜈3

𝑐3
 represents 

the energy density of modes if each mode had exactly ℎ𝜈 energy, multiplied 

by the density of modes (which goes as 𝜈2, as we'll see). 

The second part of the expression, 
1

𝑒

ℎ𝜈
𝑘B𝑇−1

, is the crucial Bose-Einstein 

factor. This term gives the average number of photons, or energy quanta, 

per mode at frequency 𝜈 and temperature 𝑇. 𝑘B is Boltzmann's constant, 

approximately 1.38 × 10−23 Joules per Kelvin. It connects temperature to 

energy. 𝑇 is the absolute temperature in Kelvin. The quantity ℎ𝜈 is the 

energy of a single photon of frequency 𝜈. The ratio 
ℎ𝜈

𝑘B𝑇
 compares the 

photon energy to the characteristic thermal energy. 



This entire Planck distribution formula was revolutionary because it 

correctly described the black-body spectrum, avoiding the ultraviolet 

catastrophe predicted by classical physics. It arose from Planck's 

hypothesis that energy is quantized and from the statistical mechanics of 

photons as bosons. 
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Let's continue by defining some of the constants we just encountered and 

then look more closely at the concept of mode density. First, a quick recap 

of the constants: 'h' is Planck's constant. 'k sub B' is the Boltzmann 

constant. 'c' is the vacuum speed of light. These are fundamental constants 

that appear throughout physics, especially in quantum mechanics and 

thermodynamics. 

Now, a crucial component embedded within Planck's law is the mode 

density per unit volume. This tells us how many distinct electromagnetic 

modes, or resonant states, are available within a certain frequency interval, 

𝑑𝜈, per unit volume of the cavity. 

The expression for this is given as: 

𝑛(𝜈) 𝑑𝜈 =
8𝜋𝜈2

𝑐3
 𝑑𝜈 

Here, 'n of nu' represents the number of modes per unit volume per unit 

frequency interval. So, 𝑛(𝜈) 𝑑𝜈 is the number of modes per unit volume in 

the small frequency range from 𝜈 to 𝜈 + 𝑑𝜈. 

Notice the 𝜈2 dependence: the density of available states increases rapidly 

with frequency. The 𝑐3 in the denominator means that for a given 

frequency, if 𝑐 were smaller, there would be more modes. The factor of 8𝜋 

comes from considering a 3D space and two polarization states for light. 

The final bullet point gives us a vital piece of insight: "Result obtained by 

counting integer lattice points in k-space octant." This is a beautiful piece of 



physics. To derive the mode density, one typically considers a rectangular 

cavity (a box). The boundary conditions (that the tangential E-field is zero 

on the walls) force the wave solutions to be standing waves, meaning the 

wave vector components (𝑘x, 𝑘y, 𝑘z) can only take on discrete values, 

proportional to integers divided by the cavity dimensions (e.g., 𝑘x =
𝑛x𝜋

𝐿x

). 

These allowed (𝑘x, 𝑘y, 𝑘z) values form a grid, or lattice, in "k-space" (wave-

vector space). Each point on this lattice represents a possible mode. For a 

large cavity (where 𝐿 is much greater than 𝜆), these points are very closely 

packed. We can then approximate the number of modes by finding the 

volume in k-space corresponding to a certain frequency range and dividing 

by the "volume per mode" in k-space. 

The "octant" refers to the fact that we only consider positive values for the 

integers 𝑛x, 𝑛y, 𝑛z for unique standing wave solutions. Additionally, for each 

k-vector (each mode (𝑛x, 𝑛y, 𝑛z)), there are two independent polarization 

states for electromagnetic waves. 

Combining these factors and converting from k (wavenumber, related to 𝜈 

by 𝑘 =
2𝜋𝜈

𝑐
) to frequency 𝜈 leads to the 

8𝜋𝜈2

𝑐3
 result for mode density per unit 

volume per unit frequency. This derivation is a classic piece of statistical 

mechanics and E&M theory. 
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Now, let's look at a direct consequence of Planck's law and the Bose-

Einstein statistics for photons, specifically focusing on the mean photon 

occupation number per mode, especially in the optical range. 

The first point presents the formula for the mean photon number per mode, 

which we'll denote as 𝑛‾(𝜈, 𝑇). This is precisely the Bose-Einstein 

distribution factor that we saw in Planck's law: 



𝑛‾(𝜈, 𝑇) =
1

𝑒
ℎ𝜈
𝑘B𝑇 − 1

 

This 𝑛‾ represents the average number of photons occupying a single 

electromagnetic mode of frequency 𝜈 when the system is in thermal 

equilibrium at temperature 𝑇. It's a fundamental result from quantum 

statistical mechanics for bosons, which photons are. 

Now, let's consider the implications for typical conditions encountered in 

laser spectroscopy. The second bullet point is crucial: "For visible/near-IR 

frequencies at room temperature, ℎ𝜈 is much, much greater than 𝑘B𝑇." 

Let's quantify this. For visible light, say green light around 550 nanometers, 

the photon energy ℎ𝜈 is about 2.25 electron volts (eV). At room 

temperature, say 300 Kelvin, the thermal energy 𝑘B𝑇 is about 0.025 

electron volts, or about 1/40th of an eV. 

So, ℎ𝜈 is indeed much larger than 𝑘B𝑇 – roughly by a factor of 100 in this 

example. 

What does this mean for 𝑛‾? If ℎ𝜈 is much greater than 𝑘B𝑇, then the term 
ℎ𝜈

𝑘B𝑇
 in the exponential is a large positive number. Let's say it's 𝑋, where 𝑋 ≫

1. Then exp(𝑋) is a very, very large number. Subtracting 1 from a very, 

very large number still leaves a very, very large number. So, 𝑛‾ becomes 1 

divided by (a very, very large number), which means 𝑛‾ is a very, very small 

number. 

The slide indicates that 𝑛‾ is approximately 10−19 to 10−12. 

Think about how incredibly small these numbers are! For instance, 10−12 

means there's, on average, only one photon in a trillion modes of that 

frequency, or a mode is occupied by a photon for only one trillionth of the 

time. For 10−19, it's even more sparse. 



This is a profoundly important result: at room temperature, optical modes 

are essentially empty of thermal photons. The thermal background provides 

virtually no photons in the visible or near-infrared range. 
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Given the extremely low thermal photon occupation numbers in the optical 

range that we just discussed, let's consider the consequences for emission 

processes within such a closed cavity. 

The first bullet point states: "Hence stimulated emission (which is 

proportional to 𝑛‾) is utterly negligible compared to spontaneous emission 

inside such a cavity." 

Recall Einstein's A and B coefficients. The rate of stimulated emission is 

proportional to 𝐵 𝜌, where 𝜌 is the energy density, or equivalently, 

proportional to 𝐵 𝑛‾, the number of photons already in the mode. If 𝑛‾ is 

vanishingly small (like 10−12 or less), then the rate of stimulated emission 

induced by these thermal photons will also be vanishingly small. 

Spontaneous emission, on the other hand, occurs even if 𝑛‾ is zero; its rate 

is given by the A coefficient. So, in a thermal cavity at room temperature, 

spontaneous emission will overwhelmingly dominate any stimulated 

emission that might be seeded by the thermal photon background. 

The second bullet point draws a critical conclusion from this: "Therefore a 

large closed cavity with 𝐿 much, much greater than 𝜆 is a poor laser 

resonator – the gain medium cannot build one mode far above the 

background." 

Why is this so? Laser action relies on achieving a condition where 

stimulated emission dominates spontaneous emission into the desired 

lasing mode. If you place a gain medium (an مجموعه of excited atoms or 

molecules) inside this thermally cold cavity, the excited species will 

primarily decay via spontaneous emission, radiating photons into any of the 

myriad available modes more or less randomly. 



Because 𝑛‾ for the thermal field is so low, there's no pre-existing "strong" 

mode of thermal photons to preferentially stimulate emission into a single, 

coherent mode. The gain medium itself has to provide the photons to build 

up the field. While it does this, it's competing with spontaneous emission 

into all other modes. For a closed cavity with many, many modes (since 

𝐿 ≫ 𝜆), it's very difficult for the gain medium to funnel enough stimulated 

photons into one specific mode to make it stand out significantly from the 

"background" of spontaneously emitted light, which is diffuse and spread 

over many modes. 

The phrase "cannot build one mode far above the background" means that 

achieving a high-intensity, coherent, single-mode laser output is extremely 

challenging under these conditions. This is precisely why practical lasers 

use open resonators, which have very different properties, as we will see. 
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Now, we transition from the idealized closed cavity to concepts more 

directly applicable to real laser resonators. We'll start by introducing the 

idea of a loss factor, 𝛽k, and the stored energy, 𝑊k. The first bullet point 

asks us to "Consider the k-th cavity eigenmode (frequency 𝜈k)." In any 

resonant structure, there will be a set of discrete frequencies, 𝜈k (where k is 

an index like 1, 2, 3, etc.), at which the cavity can resonate. Each of these 

corresponds to a specific spatial field pattern, an eigenmode. 

Next, we define 𝑊k(𝑡) – that's capital W, subscript k, as a function of time 𝑡. 

This represents the instantaneous electromagnetic energy stored in that 

specific k-th mode. The units for this energy will be Joules, denoted by 

capital J. 

Now, in any real cavity, energy is not stored indefinitely. There are always 

loss mechanisms. The third bullet point is key: "Lump all energy-removal 

processes (...) into a single first-order loss constant 𝛽k." These energy-

removal processes are numerous: 



- Mirror transmission: If a mirror is not 100% reflective (e.g., an output 

coupler), some energy is lost through transmission. - Scattering: 

Imperfections on mirror surfaces or within intracavity components can 

scatter light out of the mode. - Diffraction: Due to the wave nature of light 

and finite mirror sizes, some light will spread out and miss the mirrors, 

especially in open cavities. - Absorption: Mirror coatings or other intracavity 

elements (even the gain medium itself if not pumped, or if there are 

parasitic absorptions) can absorb energy. 

Instead of tracking each of these individually for now, we group their 

combined effect for the k-th mode into a single parameter: 𝛽k. This 𝛽k is 

called a "first-order loss constant," and its units are inverse seconds (s−1). 

"First-order" means that the rate of energy loss from the mode is directly 

proportional to the energy currently stored in that mode. A higher 𝛽k means 

higher losses, or a faster rate of energy decay. 

This leads us to the fundamental differential equation shown at the bottom: 

𝑑𝑊k

𝑑𝑡
= −𝛽k𝑊k 

This equation states that the rate of change of energy stored in the k-th 

mode (
𝑑𝑊k

𝑑𝑡
) is negative (indicating loss) and proportional to the energy 𝑊k 

currently in that mode, with 𝛽k being the constant of proportionality. This is 

the mathematical statement of a first-order decay process, identical in form 

to radioactive decay, for example. 
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Given the first-order differential equation for energy decay in a mode, 
𝑑𝑊k

𝑑𝑡
=

−𝛽k𝑊k, we can find its formal solution. 

The first bullet point presents this solution: 

𝑊k(𝑡) = 𝑊k(0) exp(−𝛽k𝑡) 



Here, 𝑊k(𝑡) is the energy in the 𝑘-th mode at any time 𝑡. 𝑊k(0) is the initial 

energy stored in that mode at time 𝑡 = 0. The term exp(−𝛽k𝑡) shows that 

the energy decays exponentially with time, at a rate determined by the loss 

constant 𝛽k. 

The parenthetical note "(energy “ring-down” measurement!)" is very 

important. This exponential decay is directly observable. If you can 

somehow excite a cavity mode (inject some energy into it) and then 

abruptly stop the excitation, the light intensity (and thus energy) within the 

cavity will "ring down" or decay exponentially. By measuring the rate of this 

decay, you can experimentally determine 𝛽k. This is the basis of cavity ring-

down spectroscopy (CRDS), a very sensitive absorption measurement 

technique. 

From the loss constant 𝛽k, we can define a very intuitive quantity: the 

photon lifetime in that mode. This is presented in the second bullet point: 

𝜏k =
1

𝛽k

 

Here, 𝜏k (Greek letter tau, subscript 𝑘) is the photon lifetime for the 𝑘-th 

mode. It represents the characteristic time constant of the exponential 

decay. Specifically, it's the time it takes for the energy in the mode to decay 

to 
1

𝑒
 (about 37%) of its initial value. 

A mode with high losses (large 𝛽k) will have a short photon lifetime (small 

𝜏k). Conversely, a low-loss mode (small 𝛽k) will have a long photon lifetime 

– photons "survive" longer in such a mode. This concept of photon lifetime 

is central to understanding laser resonators. For lasing to occur, the gain 

must be able to overcome losses within the photon lifetime. 

Page 10: 

Now we introduce another extremely important figure of merit for any 

resonant system, including laser cavities: the Quality Factor, usually 



denoted by capital 𝑄. We'll look at the Q factor for the 𝑘-th mode, 𝑄k. This 

slide gives a precise definition and interpretation. 

First, let's consider the duration of one optical cycle for the 𝑘-th mode: 

Capital 𝑇 =
1

𝜈k

, where 𝜈k is the frequency of the mode. This is just the period 

of the oscillation. 

The slide then provides a definition for the Quality factor: 𝑄k = 2𝜋 ×
(energy stored)

(energy lost per radian)
. Let's unpack this "energy lost per radian" idea, as it 

connects directly to the standard definition of 𝑄. 

The standard definition of 𝑄 for an oscillator is 𝑄 = 𝜔0
(Average Energy Stored)

(Average Power Loss)
, 

where 𝜔0 = 2𝜋𝜈0 is the resonant angular frequency. 

In our case, Energy Stored is 𝑊k. The Power Loss (rate of energy loss) is 

−
𝑑𝑊k

𝑑𝑡
, which from the previous page is 𝛽k𝑊k. 

So, 𝑄k =
2𝜋𝜈k𝑊k

𝛽k𝑊k

. 

The 𝑊k terms cancel, leading to: 𝑄k =
2𝜋𝜈k

𝛽k

. This is the equation shown on 

the slide derived from the first definition. 

Now, let's see how the "energy lost per radian" definition connects. 

Power loss 𝑃L = 𝛽k𝑊k. 

In one optical cycle (duration 𝑇 =
1

𝜈k

), the field oscillates through 2𝜋 radians 

of phase. 

The energy lost in one full cycle (2𝜋 radians) is 𝛥𝑊cycle = 𝑃L × 𝑇 =
𝛽k𝑊k

𝜈k

. 

So, the energy lost per radian of optical oscillation is 
𝛥𝑊cycle

2𝜋
=

𝛽k𝑊k

2𝜋𝜈k

. 



If we use the slide's phrasing: 𝑄k = 2𝜋 ×
(Energy Stored)

(Energy Lost per Cycle)
. No, the slide 

says: 𝑄k =
(Energy Stored)

(Energy Lost per Radian of Oscillation)
. Using our expression for energy 

lost per radian: 𝑄k =
𝑊k

𝛽k𝑊k
2𝜋𝜈k

=
2𝜋𝜈k

𝛽k

. 

This is indeed consistent! So, 𝑄 is (Energy Stored) divided by (Energy Lost 

per Radian of Oscillation phase). It's a clever way to define it. The factor of 

2𝜋 in the common 𝑄 = 2𝜋
(Energy Stored)

(Energy Lost per Cycle)
 definition is absorbed into the 

"per radian" denominator here. 

The Q factor is dimensionless. A high 𝑄 value means that the resonator 

stores energy efficiently, with relatively low losses per optical cycle. 

The next bullet point emphasizes this: "High-𝑄 implies photon executes 

many oscillations before amplitude drops appreciably." Since 𝑄k =
2𝜋𝜈k

𝛽k

, and 

the photon lifetime 𝜏k =
1

𝛽k

, we can write 𝑄k = 2𝜋𝜈k𝜏k. 

As 𝜈k𝜏k is the number of oscillations during one lifetime 𝜏k (since 𝜈k is 

cycles per second and 𝜏k is seconds), 𝑄k is 2𝜋 times the number of 

oscillations the energy effectively persists in the cavity. So a high 𝑄 means 

many oscillations. 

Finally, "Rule-of-thumb conversions" refers to the relationships between 𝑄, 

𝛽k, and other parameters like resonance width, which we'll see on the next 

slide. 
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This page continues our discussion of the Quality Factor 𝑄k and its 

relationship to other important resonator parameters. 

The first bullet point gives us a direct relationship between the photon 

lifetime 𝜏k and the Q-factor 𝑄k: 𝜏k =
𝑄k

2𝜋𝜈k

. This can be easily seen from the 



definition of 𝑄k we just established: 𝑄k =
2𝜋𝜈k

𝛽k

. Since 𝜏k =
1

𝛽k

, we can 

substitute 𝛽k =
1

𝜏k

 into the 𝑄k expression to get 𝑄k = 2𝜋𝜈k𝜏k. Rearranging 

this for 𝜏k gives the formula on the slide. This equation tells us that for a 

given frequency 𝜈k, a higher Q-factor directly implies a longer photon 

lifetime. 

The second bullet point introduces the concept of resonance width: 

"Resonance half-width (HWHM) 𝛥𝜈 =
𝛽k

2𝜋
, which also equals 

𝜈k

𝑄k

." Let's be 

precise about the width. When a resonator is driven by an external source, 

its response (e.g., the energy stored) will be sharply peaked around its 

resonant frequencies 𝜈k. This peak has a characteristic width. 

If 𝛽k is the energy decay rate (units s−1), then the Full Width at Half 

Maximum (FWHM) of the power resonance curve, when plotted as a 

function of frequency (𝜈 in Hertz), is given by 𝛥𝜈FWHM =
𝛽k

2𝜋
. The slide 

denotes 𝛥𝜈 as the "Resonance half-width (HWHM)". If 𝛥𝜈 is indeed HWHM, 

then HWHM =
FWHM

2
=

𝛽k

4𝜋
. However, the subsequent equality, 𝛥𝜈 =

𝜈k

𝑄k

, is 

standard if 𝛥𝜈 represents the FWHM. That is, 𝑄k =
𝜈k

𝛥𝜈FWHM

. 

Let's check the consistency: If 𝛥𝜈 =
𝛽k

2𝜋
 (i.e., FWHM), then substituting 𝛽k =

2𝜋𝜈k

𝑄k

 gives 

𝛥𝜈 =

2𝜋𝜈k

𝑄k

2𝜋
=
𝜈k

𝑄k

. 

This is perfectly consistent. So, it appears that 𝛥𝜈 on this slide, despite 

being labeled HWHM, is being used in the formula as if it were the FWHM. 

Or, perhaps 𝛽k is defined as an amplitude decay rate in some conventions 

that would lead to this. Given 𝛽k =
1

𝜏k

 where 𝜏k is photon (energy) lifetime, 

𝛽k is an energy decay rate. 



So, I will interpret 𝛥𝜈 here as the FWHM for consistency of the formulas: 

The Full Width at Half Maximum of the resonance, 𝛥𝜈, is given by 
𝛽k

2𝜋
. And 

this 𝛥𝜈 is also equal to 
𝜈k

𝑄k

. 

This last relationship, 𝑄k =
𝜈k

𝛥𝜈
 (FWHM), is a very common and useful 

definition of 𝑄: it's the resonant frequency divided by the bandwidth of the 

resonance. A high 𝑄 resonator, therefore, not only has low losses and long 

photon lifetime but also a very sharp, narrow frequency response. This is 

critical for achieving frequency selectivity in lasers. 
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Now we address a very practical aspect of laser design: Selecting a Single 

Oscillating Mode via Loss Engineering. Lasers often need to operate on a 

single mode for coherence and specific applications, but a resonator can 

typically support many modes. How do we choose just one? 

The first bullet point sets the stage: "Assume different modes possess very 

different 𝛽k." Recall that 𝛽k is the loss constant for the 𝑘-th mode. If we can 

design the resonator such that one desired mode (say, the fundamental 

TEM00 mode) has a significantly lower 𝛽k (lower loss) than all other modes, 

then that low-loss mode will be the first to reach the lasing threshold and 

will dominate, suppressing other modes. This is the principle of "loss 

engineering." 

The second bullet point gives an example: "fabricate extra intracavity 

aperture or slightly mis-align mirrors such that only one Gaussian-like mode 

has small losses." An intracavity aperture (a small opening) will 

preferentially introduce losses for higher-order transverse modes because 

these modes typically have a larger spatial extent (they are "wider") than 

the fundamental Gaussian mode. So, they get clipped more by the 

aperture. Slightly misaligning the mirrors can also disproportionately 

increase the losses for higher-order modes or make the resonator unstable 



for them, while the fundamental mode might still be sustainable. The goal is 

to make 𝛽k very small for the desired mode and much larger for all 

unwanted modes. 

The slide then introduces the concept of gain. "Unsaturated gain per round-

trip (small-signal) in active medium: 𝐺(𝜈) = 𝛼(𝜈)𝐿 where..." Here, 𝐺(𝜈) is 

the gain at frequency 𝜈. 𝛼(𝜈) is the small-signal gain coefficient, and 𝐿 is 

the length of the gain medium. It's important to clarify what 𝐺(𝜈) represents. 

If 𝛼(𝜈) is the small-signal intensity gain coefficient (units of per meter, e.g., 

𝑚−1, as indicated in the next bullet), then 𝛼(𝜈)𝐿 is the total gain exponent 

for a single pass through a gain medium of length 𝐿. In this case, the 

intensity amplification factor would be exp(𝛼(𝜈)𝐿). If 𝛼(𝜈)𝐿 is small, then 

exp(𝛼(𝜈)𝐿) is approximately 1 + 𝛼(𝜈)𝐿, and 𝐺(𝜈) = 𝛼(𝜈)𝐿 would represent 

the fractional intensity gain per pass. For lasing threshold conditions, we 

usually consider the round-trip gain. So, if 𝐿 is the length of the gain 

medium and it's traversed twice per round trip, the round-trip gain exponent 

might be 2𝛼(𝜈)𝐿. Let's assume for now that 𝐺(𝜈) as defined here refers to 

the gain exponent experienced over one effective pass or one round trip, 

and we'll see how it's used in the threshold condition on the next slide. 

The final bullet point clarifies 𝛼: "𝛼 = small-signal gain coefficient [𝑚−1]." 

This is the gain per unit length provided by the active medium when it is not 

saturated (i.e., when the stimulating intensity is low). Its units are inverse 

meters. 
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Continuing with the theme of selecting a single oscillating mode, this page 

refines the gain and loss considerations. 

First, "capital L equals length of gain medium." This confirms the 𝐿 used in 

the gain expression 𝐺(𝜈) = 𝛼(𝜈)𝐿 on the previous slide refers to the 

physical length of the active material providing amplification. 



Now, the crucial "Net gain" condition for mode 𝑘 is presented: 𝐺(𝜈k) > 𝛾k, 

where 𝛾k = 𝛽k ⋅
2 𝑑

𝑐
. And there's an extra "L" after this on the slide, which 

appears to be a typo; I will omit it as it's not standard in this context. 

Let's interpret this carefully. 

𝐺(𝜈k) is the gain for mode 𝑘. Based on the previous slide, if 𝐺(𝜈k) =

𝛼(𝜈k)𝐿gain medium, this is the single-pass gain exponent. For a standing wave 

cavity, the light usually passes through the gain medium twice per round 

trip. So, the round-trip gain exponent would typically be 2𝛼(𝜈k)𝐿gain medium. 

Let's assume 𝐺(𝜈k) here implicitly refers to the total round-trip gain 

exponent. 

On the right side, 𝛾k is the round-trip loss exponent. 𝛽k is the loss rate in 

units of per second (s−1). The term "2d over c" is the time it takes for light 

to make one round trip in a resonator of geometric length 𝑑 (where 𝑑 is the 

separation between mirrors, and 𝑐 is the speed of light). Let's call this 𝑇𝑟𝑡 

(round-trip time). 

So, 𝛾k = 𝛽k  𝑇𝑟𝑡 represents the total dimensionless loss exponent 

experienced by the mode 𝑘 in one round trip. For example, if energy 

decays as exp(−𝛽k𝑡), then in one round trip time 𝑇𝑟𝑡, the energy is reduced 

by a factor 

exp(−𝛽k𝑇𝑟𝑡) = exp(−𝛾k). 

Therefore, the condition 

𝐺round-trip exponent(𝜈k) > 𝛾round-trip loss exponent 

means that the gain experienced in one round trip must be greater than the 

loss experienced in one round trip for the mode amplitude to grow and for 

lasing to occur. This is the fundamental laser threshold condition. 

The next bullet clarifies: 



2 𝑑

𝑐
= 𝑇𝑟𝑡 (round-trip time in resonator of geometric length 𝑑). 

Finally, the "Design principle" is reiterated: "make 𝛾k tiny for one target 

mode, large for all others." By engineering the losses (𝛽k, and thus 𝛾k) to be 

very different for different modes, and ensuring that the gain 𝐺(𝜈k) is 

sufficient to overcome the losses only for the desired mode (or a small 

number of modes), we can achieve single-mode, or few-mode, laser 

operation. The mode with the highest 𝐺(𝜈k) − 𝛾k value will "win" the 

competition for the available gain. 
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We've been discussing closed cavities and the general concepts of loss 

and gain. Now, let's focus on why practical lasers almost universally use 

"Open" Optical Resonators and understand their core motivation. 

The first bullet point defines an "open" resonator: "Open = mirrors do not 

form a closed metallic box - free space exists outside." Unlike the idealized 

sealed cavities we discussed earlier, open resonators typically consist of 

two (or more) mirrors facing each other, but the space around and beyond 

the mirrors is open. This means radiation is not perfectly confined; it can 

escape, particularly through diffraction if the mirrors are finite, or 

intentionally through a partially transmissive mirror. 

The slide then lists "Advantages relative to closed cavity." These are crucial 

for understanding why lasers are built this way. 

1. "Dramatically smaller number of supportable transverse modes implies 

easier single-mode selection." In a closed cavity where the dimensions 𝐿 

are much larger than the wavelength 𝜆, we found an extremely high density 

of modes. This makes it very hard to select just one. Open resonators, 

especially stable open resonators (which use curved mirrors, as we'll see), 

are designed to preferentially support a limited set of well-behaved 

transverse modes, often Gaussian-like beams (TEM𝑚𝑛 modes). Higher-



order transverse modes in these open resonators tend to be larger spatially 

or have different divergence properties, making them more susceptible to 

losses from finite mirror sizes or strategically placed apertures. This greatly 

simplifies the task of achieving single transverse mode operation, which is 

often desired for good beam quality. 

2. "Light retraces same path (on-axis) many times, amplifying along gain 

medium each pass." While light also makes many passes in a closed 

cavity, open resonators are specifically engineered to ensure that a well-

defined beam path exists between the mirrors. The gain medium is placed 

along this path. Each time the light reflects and passes through the gain 

medium, it is amplified. This cumulative amplification over many passes is 

what allows the laser intensity to build up from noise to a powerful, 

coherent beam. The "on-axis" part is key for stable resonators supporting a 

fundamental mode. 
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Continuing with the advantages and characteristics of "Open" Optical 

Resonators: 

3. "Coupling out usable laser power is trivial (make one mirror partially 

transmitting)." This is a huge practical advantage. If you had a perfect 

closed cavity with 100% reflecting walls, you couldn't get any light out! In an 

open resonator, one of the mirrors is intentionally designed to be partially 

transmitting. This mirror is called the output coupler. A certain fraction of 

the intracavity light "leaks" through this mirror on each pass, forming the 

usable output laser beam. The reflectivity of this output coupler is a critical 

design parameter, balancing the need for sufficient feedback (high 

reflectivity) with efficient power extraction (not too high reflectivity). 

However, openness comes with a "Penalty," as the slide notes: "new loss 

channels appear." Because the system is no longer a perfectly sealed box, 

there are additional ways for energy to be lost from the desired resonating 

mode. These include: 



"Walk-off or “geometrical” losses of off-axis rays." 

 If a light ray inside the resonator is not perfectly aligned with the optical 

axis defined by the mirrors, or if the mirrors themselves are slightly tilted, 

the ray can "walk off" the edge of one of the mirrors after a certain number 

of bounces. This is a geometrical loss because it depends on the ray's 

trajectory and the finite size of the mirrors. 

"Diffraction losses at finite-sized mirrors." 

 Light is a wave, and when it is constrained by an aperture (like the edge 

of a mirror), it diffracts, meaning it spreads out. Even if a beam is perfectly 

aligned, some of its energy will spread beyond the edges of the mirrors on 

subsequent passes due to this diffraction. This is an unavoidable 

fundamental loss mechanism in any resonator with finite-sized 

components. The magnitude of diffraction loss depends on the wavelength, 

mirror sizes, and mirror separation, often characterized by the Fresnel 

number. 

"Mirror coating transmission/absorption/scattering." 

 Real mirrors are not perfect reflectors.  - Transmission: As mentioned, 

the output coupler is designed to transmit. Even mirrors intended to be 

"high reflectors" might have some residual transmission.  - Absorption: 

The coatings on the mirrors (and the mirror substrate itself) can absorb a 

small fraction of the incident light, converting it to heat.  - Scattering: 

Imperfections in the mirror surface (roughness, dust, coating defects) can 

scatter light out of the well-defined beam path. All these contribute to the 

overall loss that the gain in the laser medium must overcome. 
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Now let's quantify one specific type of loss in an open resonator: Round-

Trip Reflection Losses, and we'll look at an exact formula for this. 



The first bullet says: "Let mirrors 𝑀1, 𝑀2 have intensity reflectivities 𝑅1, 𝑅2 

(dimensionless, passive cavity)." So, we have a cavity formed by two 

mirrors, Mirror 1 and Mirror 2. 𝑅1 is the fraction of intensity reflected by 

Mirror 1, and 𝑅2 is the fraction reflected by Mirror 2. These are 

dimensionless numbers between 0 and 1 (e.g., 𝑅 = 0.99 means 99% 

reflectivity). We are considering a "passive cavity," meaning no gain 

medium is present for now; we're just looking at how light bounces and 

gets attenuated by imperfect reflections. 

The next line presents an equation: 

𝐼after = 𝑅1𝑅2𝐼0exp(−𝛾R) 

This equation needs careful interpretation. If 𝐼0 is the intensity just before 

starting a round trip, and the only losses are due to reflection from mirrors 

with reflectivities 𝑅1 and 𝑅2, then after one round trip (hitting 𝑀1 then 𝑀2, or 

𝑀2 then 𝑀1, and returning to the starting plane in the same direction), the 

intensity 𝐼after should simply be 𝐼0 × 𝑅1 × 𝑅2. 

The term exp(−𝛾R) in the slide's equation 𝐼after = 𝑅1𝑅2𝐼0exp(−𝛾R) seems to 

imply that 𝛾R accounts for additional losses beyond 𝑅1 and 𝑅2, or there's a 

slight redundancy if 𝛾R itself is defined from 𝑅1 and 𝑅2. Let's look at the 

next definition. 

Define reflection loss exponent 

𝛾R = −ln(𝑅1𝑅2) = |ln𝑅1| + |ln𝑅2| 

This definition is standard for the round-trip loss exponent due to 

reflectivities 𝑅1 and 𝑅2. If exp(−𝛾R) represents the fraction of intensity 

remaining after one round trip due to reflections only, then 

exp(−𝛾R) = 𝑅1 × 𝑅2. 

Taking the natural logarithm of both sides gives 

−𝛾R = ln(𝑅1𝑅2), 



so 

𝛾R = −ln(𝑅1𝑅2). 

Since 𝑅1 and 𝑅2 are less than or equal to 1, 𝑅1 × 𝑅2 is also less than or 

equal to 1. The natural logarithm of a number less than 1 is negative. So, 

−ln(𝑅1𝑅2) is a positive quantity, which is what we expect for a loss 

exponent. For example, if 𝑅1 = 0.9 and 𝑅2 = 0.9, then 

𝑅1𝑅2 = 0.81. 

ln(0.81) is approx −0.21. So 𝛾R ≈ 0.21. 

The equality 

𝛾R = −ln(𝑅1𝑅2) = −(ln𝑅1 + ln𝑅2) = −ln𝑅1 − ln𝑅2 

is also correct. And since ln𝑅1 and ln𝑅2 are negative, −ln𝑅1 is |ln𝑅1| and 

−ln𝑅2 is |ln𝑅2|. Thus, 

𝛾R = |ln𝑅1| + |ln𝑅2|. 

This is a useful form, adding the individual logarithmic losses. 

Given this definition of 𝛾R, the initial equation should perhaps be 

𝐼after = 𝐼0exp(−𝛾R) 

if 𝛾R encompasses all round-trip losses. If 𝛾R is only due to reflection, then 

𝐼after

𝐼0
= 𝑅1 × 𝑅2 = exp(−𝛾R). 

I will proceed with the interpretation that 

𝛾R = −ln(𝑅1𝑅2) 

is the round-trip intensity attenuation exponent due to mirror reflectivities. 

The final bullet points to the next concept: "Time for one round-trip (two 

traversals of length 𝑑)." This time, 𝑇𝑟𝑡 will be 



𝑇𝑟𝑡 =
2 𝑑

𝑐
, 

where 𝑑 is the cavity length and 𝑐 is the speed of light. 

Page 17 

This page continues from the definition of round-trip reflection losses. 

First, we have the round‐ trip time: 𝑇𝑟𝑡 =
2 𝑑

𝑐
. This is the time it takes light to 

travel from one mirror to the other and back again, a total distance of 2 𝑑, at 

speed 𝑐. 

Next, "Resulting decay constant associated only with mirror reflectances: 

𝛽R =
𝛾R  𝑐

2 𝑑
." Let's understand this. 𝛽R is a loss rate (units of s−1), similar to 

the 𝛽k we saw earlier, but here it's specifically the loss rate due to mirror 

reflectivities only. 𝛾R is the dimensionless loss exponent per round trip. This 

amount of loss occurs over a time 𝑇𝑟𝑡 =
2 𝑑

𝑐
. So, the average rate of loss is 

indeed 𝛽R =
𝛾R

𝑇𝑟𝑡
=

𝛾R
2 𝑑

𝑐

=
𝛾R  𝑐

2 𝑑
. This is correct. 

The final bullet point defines the "Photon lifetime due solely to reflection," 

denoted as 𝜏R: 𝜏R =
1

𝛽R

. This is the standard definition of lifetime from a 

decay rate. Substituting our expression for 𝛽R, we get: 𝜏R =
2 𝑑

𝑐 𝛾R

. 

Now, if we substitute 𝛾R = −ln(𝑅1 𝑅2) (which is a positive number if 𝑅1, 𝑅2 <

1), the expression becomes: 𝜏R =
2 𝑑

𝑐 [−ln(𝑅1  𝑅2)]
. The slide's final form is 𝜏R =

2 𝑑

𝑐 ln(𝑅1  𝑅2)
. This is problematic because ln(𝑅1 𝑅2) is a negative quantity for 

𝑅1, 𝑅2 < 1, which would make 𝜏R negative, and a lifetime must be positive. 

There's likely a minus sign missing in the denominator of the slide's final 

printed expression, or an implicit understanding that ln(𝑅1 𝑅2) should be 

taken as its absolute magnitude in this context. To be correct and 

unambiguous, it should be: 𝜏R =
2 𝑑

𝑐 [−ln(𝑅1  𝑅2)]
 or 𝜏R =

2 𝑑

𝑐 |ln(𝑅1  𝑅2)|
. 



Let's consider an example: if 𝑅1 = 𝑅2 = 𝑅 (symmetric cavity), then 𝛾R =

−2ln𝑅. If 𝑅 is very close to 1, let 𝑅 = 1 − 𝜀, where 𝜀 is small and positive 

(e.g., 𝜀 = 1 − 𝑅 is the loss per mirror). Then ln𝑅 = ln(1 − 𝜀) is 

approximately −𝜀. So, 𝛾R is approximately 2𝜀. Then 𝜏R is approximately 
2 𝑑

𝑐 2𝜀
=

𝑑

𝑐 𝜀
=

𝑑

𝑐 (1−𝑅)
. This makes sense: lifetime is cavity length divided by 

speed of light times loss per mirror (if only one mirror is lossy, or average 

loss if both are). This form is often seen for high reflectivity mirrors. The key 

is that 𝛾R or the term involving ln(𝑅1 𝑅2) in the denominator must represent 

a positive loss quantity. 
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This slide, titled "Geometric Walk-Off & Reflection Losses – Visual Aid," 

provides a helpful diagram to illustrate one of the loss mechanisms in open 

resonators. 

The diagram depicts a simple two-mirror resonator. We see two parallel, 

flat mirrors, labeled M1 on the left and M2 on the right. They are separated 

by a distance 'd', which is indicated as 𝑑 = 450 (the units, perhaps 

millimeters or arbitrary units, are not specified but should be consistent). 

The mirrors also have a finite vertical size, indicated by 𝐷 = 200. 

Two types of rays are shown: 

1. An "On-axis ray (confined)" is shown in red. This ray starts perpendicular 

to M1, travels to M2, reflects, travels back to M1, reflects, and continues 

this pattern, remaining confined between the mirrors. This represents the 

ideal behavior for a perfectly aligned ray in a plane-parallel resonator. 

2. An "Inclined ray (walk-off loss)" is shown in blue. This ray starts from M1 

but is slightly tilted upwards. It travels to M2, reflects, then travels back to 

M1. After reflecting from M1, its angle is such that when it travels towards 

M2 again, it completely misses the edge of mirror M2 and "Escapes" the 

cavity. 



This is precisely what "geometric walk-off loss" means. If rays are not 

perfectly aligned or if the mirrors are not perfectly parallel, or if rays 

originate off-axis, they can, after a number of reflections, simply miss one 

of the mirrors due to their trajectory and the finite extent of the mirrors. This 

constitutes a loss of energy from the resonator. This type of loss is 

particularly important for misaligned resonators or can be a dominant loss 

mechanism in certain types of "unstable" resonators, where it's sometimes 

used to extract the laser beam. It's distinct from diffraction loss, which is 

due to the wave nature of light spreading out. Walk-off is a ray optics 

concept. 
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This slide, "Fabry-Perot Interferometer vs. Laser Resonator Geometry," 

draws a comparison between a familiar optical instrument and the 

resonators typically used in lasers, highlighting key geometrical differences. 

First, it considers a "Standard FPI in spectroscopy" (FPI stands for Fabry-

Perot Interferometer). 

- A key characteristic of a typical FPI is that the "Mirror separation 𝑑 is of 

order few millimetres." So, 𝑑 is quite small. 

- In contrast, the "Mirror diameter 2 𝑎 is many times larger than 𝑑." Here, 𝑎 

would be the radius of the mirrors. This means that the mirrors are very 

broad compared to their separation (𝑎 ≫ 𝑑). 

Next, it contrasts this with a "Typical gas-laser resonator." 

- For these, the mirror separation 𝑑 is approximately 20 centimeters to 2 

meters. 

The mirror diameter for these laser resonators will be discussed on the next 

slide, and that will complete the comparison of aspect ratios. The key 

takeaway starting to emerge is that laser resonators are often "long and 

skinny" compared to FPIs being "short and broad." 
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Continuing the comparison between Fabry-Perot Interferometer and Laser 

Resonator geometries: 

For the typical gas-laser resonator, the slide now specifies: * "Mirror 

diameter 2 𝑎 is approximately 1 centimeter." This means the mirror radius 𝑎 

is about 0.5 centimeters. 

Now, let's combine this with the mirror separation for lasers (𝑑 ∼ 20 cm to 

2 m = 200 cm from the previous slide). If 𝑎 = 0.5 cm and 𝑑 ranges from 

20 cm to 200 cm, it's clear that 𝑑 is much larger than 𝑎. For example, if 𝑑 =

20 cm, then 
𝑑

𝑎
=

20

0.5
= 40. If 𝑑 = 200 cm, 

𝑑

𝑎
=

200

0.5
= 400. This leads to the 

crucial point: "Thus reversed aspect ratio 𝑎 ≪ 𝑑." In FPIs, we had 𝑎 ≫ 𝑑 

(mirror radius much larger than separation). In many laser resonators, we 

have 𝑎 ≪ 𝑑 (mirror radius much smaller than separation, or at least not 

vastly larger). 

The "Consequence" of this reversed aspect ratio is profound: * "Diffraction 

effects cannot be ignored in lasers; they dominate the round-trip loss 

budget if not mitigated." When the mirrors are not extremely large 

compared to their separation (and in relation to the wavelength), the natural 

spreading of light due to diffraction becomes a major loss mechanism. Light 

diffracting at the edge of one mirror might spread out too much to be fully 

intercepted by the other mirror. Mitigating these diffraction losses, often 

through the use of curved mirrors, is a central theme in laser resonator 

design. 

The final point offers a bridge: "Many FPI analytic results (Airy spectrum, 

finesse) still apply, provided diffraction is handled explicitly." Concepts like 

the Airy function, which describes the transmission of a Fabry-Perot etalon 

as a function of frequency, and finesse, which measures the sharpness of 

the interference fringes, are still fundamentally relevant to understanding 

the spectral properties of laser resonators. However, for a complete picture 



of laser resonators, these must be augmented by a careful treatment of 

diffraction and the spatial mode structure of the beam, which are less 

critical in the idealized plane-wave analysis of FPIs that assume negligible 

diffraction. 
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This slide, "Diffraction at a Finite Mirror – Aperture Analogy," delves into the 

nature of diffraction losses. 

The first bullet point draws an important analogy: "Plane wave impinging on 

mirror of radius 𝑎 = plane wave passing a circular aperture of same size." 

When a light wave reflects off a mirror of finite size (say, a circular mirror of 

radius '𝑎'), the reflected wave behaves as if it has passed through an 

aperture of the same dimensions. The edges of the mirror effectively "cut 

off" parts of the wavefront, leading to diffraction effects, just like an aperture 

would. 

The second point describes a key feature of this diffraction: "First angular 

minima of Fraunhofer diffraction pattern at 𝜃1 ≈ ±
1.22𝜆

2 𝑎
." This formula 

describes the angular position of the first dark ring in the Fraunhofer 

diffraction pattern (the Airy pattern) produced by a circular aperture of 

radius '𝑎' (so diameter 𝐷 = 2 𝑎). - 𝜃1 is the angle, measured from the 

central axis, to this first minimum. - 𝜆 is the wavelength of light. - 2 𝑎 is the 

diameter of the circular mirror/aperture. 

The factor 1.22 is a well-known constant for circular apertures. 

The third point clarifies the origin of this constant: "(1.22 originates from first 

zero of 𝐽1)." The intensity distribution in the Airy pattern is described by a 

function involving the first-order Bessel function of the first kind, 𝐽1. 

Specifically, 

Intensity(𝜃) ∝ [
2𝐽1(𝑥)

𝑥
]

2

, 



where 𝑥 =
𝜋𝐷

𝜆
sin(𝜃). The first zero of the 𝐽1(𝑥) function (not 

𝐽1(𝑥)

𝑥
) occurs 

when its argument is approximately 3.8317. This value, when related back 

to the angle 𝜃, gives rise to the 1.22 factor in the formula 

sin(𝜃1) =
1.22𝜆

𝐷
. 

For small angles, sin(𝜃1) ≈ 𝜃1. 

The final bullet point highlights the consequence of this diffraction: 

"Integrated intensity outside central lobe (the Airy disk) is approximately 

16% of total implies that portion misses second mirror which implies it's 

lost." The central bright spot of the Airy pattern is called the Airy disk. It 

contains about 84% of the total energy of the diffracted wave. The 

remaining 16% is distributed in the outer rings. If the light, after diffracting 

from the first mirror, travels to a second mirror, and if that second mirror is 

not large enough to capture these outer rings (or even a significant portion 

of the central disk if the spreading is severe), then that 16% (or more) of 

the energy is lost from the resonator on that pass. This illustrates how 

diffraction contributes to resonator losses. 
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Continuing from the discussion of diffraction at a finite mirror, this slide lists 

the key parameters that control the fraction of light lost due to this 

diffraction. If a portion of the diffracted light misses the second mirror and is 

lost, what determines how large this lost fraction is? 

The slide identifies three key parameters: 

1. "Wavelength 𝜆." The extent of diffraction is directly proportional to the 

wavelength. Longer wavelengths diffract more for a given aperture size. 

So, 𝜃1 (the angle of the first minimum) is proportional to 𝜆. If 𝜆 is larger, the 

beam spreads more, potentially leading to greater losses. 



2. "Mirror radius 𝑎." The mirror radius 𝑎 (or diameter 2 𝑎) appears in the 

denominator of the diffraction angle formula (𝜃1 ∼
𝜆

2 𝑎
). This means that 

diffraction is inversely proportional to the mirror size. Smaller mirrors cause 

more angular spread. If 𝑎 is decreased, 𝜃1 increases, leading to more 

spreading and potentially higher losses. 

3. "Mirror separation 𝑑 (determines solid angle accepted by opposite 

mirror)." After light diffracts from the first mirror with a certain angular 

spread (e.g., characterized by 𝜃1), it travels a distance 𝑑 to the second 

mirror. Over this distance, the linear extent of the spread will be 

approximately 𝑑 times 𝜃1. 

The second mirror, of radius 𝑎, subtends a certain solid angle as viewed 

from the first mirror. If the diffracted beam spreads beyond this acceptance 

angle, energy is lost. A larger 𝑑 means the beam has more distance over 

which to spread, so for a fixed angular diffraction and fixed second mirror 

size, a larger 𝑑 will generally lead to more of the diffracted light missing the 

second mirror. Conversely, if 𝑑 is very small, the beam might not spread 

much before hitting the second mirror, even if the angular diffraction is 

present. 

These three parameters – 𝜆, 𝑎, and 𝑑 – are collectively captured in a single 

dimensionless quantity called the Fresnel Number, which we will define 

next. Understanding how these individual parameters influence loss helps 

in appreciating the significance of the Fresnel number. 
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This slide introduces a very important dimensionless parameter in 

resonator theory: the Fresnel Number, denoted as 𝑁F (or sometimes just 

𝑁). It provides a quantitative measure of how significant diffraction effects 

are for a given resonator geometry. 

The first bullet gives the "Formal definition for a two-mirror resonator": 



• 𝑁F equals 𝑎2, divided by the product of 𝜆 and 𝑑.   So, 𝑁F =
𝑎2

𝜆𝑑
. 

  Here:   – 𝑎 is the radius of the mirrors (assuming circular mirrors 

of equal radius for simplicity here, or a characteristic transverse dimension 

if they are not circular or are unequal).   – 𝜆 is the wavelength of light.   

– 𝑑 is the separation distance between the mirrors. 

The Fresnel number is dimensionless because 𝑎2 has units of length-

squared, and 𝜆𝑑 (wavelength times distance) also has units of length-

squared. 

Next, the slide offers "Interpretations (choose whichever aids intuition)": 

1. "Zone counting – number of half-period Fresnel zones across mirror as 

seen from the opposite one." 

This is a very insightful way to understand 𝑁F. Imagine you are at the 

center of one mirror (say, 𝑀1) looking towards the other mirror (𝑀2). You 

can divide the surface of 𝑀2 into concentric zones, called Fresnel zones, 

such that the path length from your observation point on 𝑀1 to successive 

zones on 𝑀2 differs by half a wavelength (
𝜆

2
). 

The radius of the 𝑚-th Fresnel zone on 𝑀2 (as viewed from the center of 

𝑀1, distance 𝑑 away) is approximately 

𝑟m = √𝑚 𝜆 𝑑 . 

If the actual radius of mirror 𝑀2 is 𝑎, and this radius encompasses 𝑁F 

Fresnel zones, then we can set 

𝑎 = 𝑟𝑁F
= √𝑁F  𝜆 𝑑 . 

Squaring both sides gives 

𝑎2 = 𝑁F  𝜆 𝑑 , 

which rearranges to 



𝑁F =
𝑎2

𝜆 𝑑
 . 

So, 𝑁F literally counts how many half-period Fresnel zones, as defined by 

the geometry and wavelength, fit into the radius of the mirror. 

A large 𝑁F (many zones) implies that the mirror is large relative to the scale 

of diffraction effects. This usually means diffraction losses are small, and 

the resonator behaves more like a geometrical optics system. 

A small 𝑁F (e.g., 𝑁F ∼ 1 or less) means the mirror only covers one or a few 

Fresnel zones. This indicates that diffraction effects are very strong and will 

be a dominant factor in determining the resonator's properties and losses. 
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We continue with interpretations of the Fresnel Number, 𝑁F. 

2. "Area ratio – mirror area divided by area of diffraction-limited spot after 

propagation 𝑑." 

This interpretation needs to be handled with a bit of care in its phrasing. 

The Fresnel number 𝑁F =
𝑎2

𝜆𝑑
 can be thought of as the ratio of the mirror's 

characteristic area (taken as 𝑎2, not 𝜋𝑎2 for this definition) to a 

characteristic area 𝜆𝑑. 

The term 𝜆𝑑 represents the area of the first Fresnel zone (if 𝜋 is absorbed 

into definition of "area"). More intuitively, 𝜆𝑑 is a measure of the transverse 

area over which light from a point source would spread due to diffraction 

after traveling a distance 𝑑. 

So, 𝑁F essentially tells you how many of these "diffraction cells" of area 𝜆𝑑 

can fit into the mirror area 𝑎2. 

If 𝑁F is large, the mirror is large enough to intercept many such diffraction-

spread regions, implying diffraction doesn't cause the beam to "miss" the 

mirror significantly. 



If 𝑁F is small, the mirror area is comparable to or smaller than this 

characteristic diffraction area, so diffraction will cause a significant portion 

of the beam to spread beyond the mirror edges. 

3. "Mode parameter – gauge of expected diffraction loss; larger 𝑁F implies 

lower loss." 

This is the most practical consequence. The Fresnel number is a direct 

indicator of the severity of diffraction losses. 

- If 𝑁F ≫ 1 (e.g., 𝑁F > 10-100): Diffraction losses are generally small. The 

resonator is said to be in the "geometrical optics limit" or "high Fresnel 

number regime." 

- If 𝑁F is around 1 (e.g., 0.5 < 𝑁F < 5): Diffraction losses are significant and 

play a crucial role in shaping the modes and determining their stability. 

- If 𝑁F ≪ 1: Diffraction losses are extremely high, and it's very difficult to 

establish a stable resonating mode. 

The slide also includes a "Simple condition for negligible diffraction after 𝑛 

passes of a plane wave: 𝑁F > 𝑛." 

This rule of thumb often arises in the context of numerical modeling of 

resonators (like the Fox-Li method). It suggests that for iterative 

calculations to converge stably to a mode profile over 𝑛 iterations 

(representing 𝑛 round trips or passes), the Fresnel number should be larger 

than 𝑛. Physically, it implies that if a beam makes many passes, it will 

progressively spread due to diffraction. For the beam to remain well-

confined within the mirrors after 𝑛 such passes, the initial Fresnel number 

(characterizing a single pass) must be sufficiently large. If 𝑁F is too small, 

the beam diffracts too rapidly, and a stable mode may not form or might be 

very lossy. 
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This slide, "Worked Examples – Quantifying 𝑁F," provides concrete 

calculations of the Fresnel number to build our intuition. 

* "Example 1 – high-resolution planar Fabry-Perot Interferometer (FPI)" 

The parameters given are: - Mirror separation 𝑑 = 1 cm = 0.01 m. - Mirror 

radius 𝑎 = 3 cm = 0.03 m. (Note: For FPIs, often the diameter is much 

larger than 𝑑, here radius 𝑎 is 3x the separation 𝑑, so 𝑎 ≫ 𝑑 holds). - 

Wavelength 𝜆 = 500 nm = 500 × 10−9 m = 5 × 10−7 m. Now, we calculate 

𝑁F using the formula 

𝑁F =
𝑎2

𝜆𝑑
. 

𝑁F =
(0.03 m)2

(5 × 10−7 m) (0.01 m)
 

𝑁F =
9 × 10−4 m2

5 × 10−9 m2 

𝑁F =
9

5
× 10−4−(−9) = 1.8 × 105. 

The slide calculation shows 1.8 × 105, which is correct. The implication is 

stated: "Immense 𝑁F implies diffraction utterly negligible; FPI finesse limited 

by coating only." A Fresnel number of 180,000 is indeed very large. This 

confirms our earlier understanding that for typical FPIs with 𝑎 ≫ 𝑑, 

diffraction effects are minimal. The performance of such an FPI (like its 

ability to resolve closely spaced spectral lines, quantified by its finesse) will 

be primarily determined by the reflectivity of its mirror coatings and their 

flatness, not by light diffracting past the edges of the mirrors. 

* "Example 2 – gas-laser resonator with plane mirrors" The parameters for 

this case are: - Mirror separation 𝑑 = 50 cm = 0.5 m. - Mirror radius 𝑎 =

0.1 cm = 0.001 m. - Wavelength 𝜆 = 500 nm = 5 × 10−7 m. The calculation 

for this example's 𝑁F will be on the next slide. We can already anticipate 



that since 'a' is much smaller than 'd' here (0.1 cm vs 50 cm), 𝑁F is likely to 

be much smaller than in the FPI example. 
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This page continues with the second worked example for quantifying the 

Fresnel Number, 𝑁F, for a gas-laser resonator with plane mirrors. 

The parameters were: 𝑑 = 50 cm (0.5 m), 𝑎 = 0.1 cm (0.001 m), and 𝜆 =

500 nm (5 × 10−7 m). 

The calculation of 𝑁F is shown: 

𝑁F =
𝑎2

𝜆 𝑑
 

𝑁F =
(0.001 m)2

(5 × 10−7 m)(0.5 m)
 

𝑁F =
1 × 10−6 m2

2.5 × 10−7 m2 

𝑁F =
1

0.25
= 4 

So, for this gas-laser resonator configuration, the Fresnel number 𝑁F is 4. 

Now, let's consider the implication, as stated in the second bullet point: 

"If 𝑛 ∼ 50 passes needed for gain to reach threshold, condition 𝑁F > 𝑛 not 

met implies diffraction dominates losses." 

Here, 𝑛 represents the number of passes (or round trips) light needs to 

make through the gain medium for the laser intensity to build up to the 

threshold for oscillation. If, for example, this laser requires about 50 passes 

(𝑛 = 50), we then compare 𝑁F with 𝑛. 

We found 𝑁F = 4. The condition for low diffraction effects over 𝑛 passes 

was 𝑁F > 𝑛. 



In this case, 4 is NOT greater than 50. The condition is not met. 

The consequence is that "diffraction dominates losses." A Fresnel number 

of 4 for a plane-parallel resonator already indicates significant diffraction 

loss per pass. 

Over 50 passes, the cumulative effect of this diffraction would be extremely 

severe. Such a laser configuration (long cavity, relatively small plane 

mirrors) would likely be very inefficient or might not lase at all, because the 

gain might not be able to overcome these substantial diffraction losses. 

This highlights why simple plane-parallel mirror resonators can be 

problematic for typical laser dimensions unless 𝑁F is kept reasonably high, 

or other mechanisms (like curved mirrors) are used to control diffraction. 
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Now that we understand the Fresnel number 𝑁F, let's look at how it relates 

to an "Approximate Diffraction Loss Per Transit." 

The first bullet point states: "For slowly varying plane-wave assumption, 

empirical scaling: 𝛾D is approximately 
1

𝑁F

." Here, 𝛾D (gamma sub D) 

represents the fractional power loss due to diffraction per transit (i.e., for a 

single pass from one mirror to the other). This is an empirical scaling, 

meaning it's a rule of thumb derived from observations and more complex 

calculations, particularly for plane-parallel resonators when the field can be 

approximated as a slowly varying plane wave. The condition for this 

approximation is "valid for 𝑁F ≥ 1." So, if 𝑁F = 4 (as in our previous laser 

example), then 𝛾D would be approximately 
1

4
, or 25%. This is a very high 

loss per single pass. If the light makes a round trip (two transits), the total 

diffraction loss would be even more substantial if this formula is applied 

naively per transit. Often, 𝛾D ∼
1

𝑁F

 is quoted as the round-trip diffraction loss 

for the lowest-order mode of a plane-parallel resonator. Let's assume for a 

moment that 𝛾D here refers to the round-trip diffraction loss exponent. If 𝑁F 



is large, say 𝑁F = 100, then 𝛾D ∼ 0.01, or 1% round-trip diffraction loss, 

which is more manageable. 

The second bullet point considers the total loss: "Combined reflection + 

diffraction loss exponent: 𝛾tot = 𝛾R + 𝛾D." Here, 𝛾tot is the total round-trip 

loss exponent. 𝛾R is the round-trip loss exponent due to mirror reflectivities, 

which we defined earlier as 𝛾R = −ln(𝑅1𝑅2). 𝛾D is the round-trip loss 

exponent due to diffraction. So, this equation simply states that the total 

loss exponent is the sum of the loss exponent from reflections and the loss 

exponent from diffraction. This assumes these are the only two loss 

mechanisms present, or the dominant ones. For a laser to operate, the 

round-trip gain must exceed this total round-trip loss exponent, 𝛾tot. 
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This page presents a "Design takeaway" related to controlling diffraction 

losses (𝛾D) and reflection losses (𝛾R). 

The bullet point states: "Design takeaway – doubling mirror radius 𝑎 halves 

𝛾D (quadratic in 𝑎), whereas improving reflectivity requires exponential 

improvement (𝑅 approaches 1)." 

Let's analyze the first part: "doubling mirror radius 𝑎 halves 𝛾D (quadratic in 

𝑎)." We just learned that 𝛾D is approximately proportional to 
1

𝑁F

 for round-trip 

losses (or per transit loss). And 𝑁F =
𝑎2

𝜆𝑑
. So, 𝛾D is approximately 

proportional to 
𝜆𝑑

𝑎2
. This means 𝛾D is proportional to 

1

𝑎2
. If you double the 

mirror radius 𝑎 (i.e., 𝑎 becomes 2 𝑎), then 𝑎2 becomes (2 𝑎)2 = 4 𝑎2. 

Therefore, 𝛾D should become 
1

4
 of its original value, not 

1

2
. The statement on 

the slide, "doubling mirror radius 𝑎 halves 𝛾D," implies that 𝛾D is 

proportional to 
1

𝑎
, which is not consistent with 𝛾D ∼

1

𝑁F

. The parenthetical 

remark "(quadratic in 𝑎)" is also confusing in this context. If 𝛾D is halved 

when 𝑎 is doubled, that's an inverse linear relationship. If it were quadratic 



in 𝑎 in the denominator, 𝛾D ∼
1

𝑎2
, then doubling 𝑎 would make 𝛾D four times 

smaller. There seems to be an inconsistency here. I will proceed by 

emphasizing the 𝛾D ∼
1

𝑎2
 relationship from the Fresnel number, which 

means diffraction loss decreases rapidly with increasing mirror radius. 

Now for the second part: "whereas improving reflectivity requires 

exponential improvement (𝑅 approaches 1)." 𝛾R = −ln(𝑅1𝑅2). For 

simplicity, let 𝑅1 = 𝑅2 = 𝑅, so 𝛾R = −2ln𝑅. If 𝑅 is close to 1, let 𝑅 = 1 − 𝜖, 

where 𝜖 = (1 − 𝑅) is the small fractional loss per mirror reflection. Then 

ln𝑅 = ln(1 − 𝜖) is approximately −𝜖 (for small 𝜖). So, 𝛾R is approximately 

2𝜖 = 2(1 − 𝑅). This means the round-trip reflection loss exponent is linearly 

proportional to (1 − 𝑅), the imperfection in reflectivity. To halve 𝛾R, you 

need to halve (1 − 𝑅). For example, if 𝑅 goes from 0.98 (loss 0.02) to 0.99 

(loss 0.01), 𝛾R is halved. The phrase "exponential improvement" when 𝑅 

approaches 1 might refer to the practical difficulty or cost of manufacturing 

mirrors with extremely high reflectivities. For example, to get from 𝑅 = 0.99 

to 𝑅 = 0.999, and then to 𝑅 = 0.9999, each step requires significantly more 

effort, more dielectric coating layers, and higher precision. So, while the 

mathematical relationship between 𝛾R and (1 − 𝑅) is linear for high 𝑅, 

achieving those incremental improvements in 𝑅 itself can be technologically 

challenging, perhaps in a way that feels "exponentially" harder. I will 

interpret it in terms of this practical challenge. 
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This slide marks an important conceptual shift: "Why Curved Mirrors Help – 

Intuitive Picture." We've seen that plane-parallel mirrors can suffer from 

high diffraction losses, especially if the Fresnel number is not very large. 

Curved mirrors offer a solution. 

The first bullet explains the fundamental action: "Curved (concave) mirrors 

act like lenses implies they re-focus diffracted field back toward axis. Net 

effect." This is the key insight. A concave mirror has a focusing effect. As a 



beam propagates in a resonator and naturally spreads due to diffraction, a 

concave mirror can counteract this spreading by refocusing the light. If the 

mirror curvatures and separation are chosen correctly, the beam can be 

made to repeatedly pass between the mirrors, with its diffractive spreading 

continually compensated by the focusing action of the mirrors. This leads to 

a stable, confined beam path. 

The second bullet point elaborates: "On-axis wavefront curvature matched 

to mirror curvature implies it stabilises Gaussian-like modes." For a stable 

mode to exist in a resonator with curved mirrors, the wavefront of the beam 

must match the curvature of the mirror at the surface of that mirror. If this 

condition is met at both mirrors, the beam effectively "fits" into the 

resonator, and its shape reproduces itself after each round trip. These self-

reproducing modes in stable resonators with curved mirrors are often (and 

for the fundamental mode, always) Gaussian beams, or higher-order 

Hermite-Gaussian or Laguerre-Gaussian modes, which have a 

characteristic Gaussian intensity profile in their transverse dimension. 

The third bullet addresses losses: "Outer parts of beam still lost, but 

dramatically less than in flat-flat cavity of same 𝑁F." Even with curved 

mirrors, if the mirrors are of finite size, some diffraction loss will occur 

because the Gaussian beam has tails that extend indefinitely. However, 

because the beam is actively refocused and confined, these losses are 

typically much, much lower than for a plane-parallel (flat-flat) resonator with 

a comparable Fresnel number (calculated using mirror radius 𝑎 and 

separation 𝑑). 

Finally, a specific and very important configuration is mentioned: "Confocal 

configuration (to be detailed next) is..." (continued on next slide). The 

confocal resonator is a special type of stable resonator with curved mirrors 

that has particularly elegant properties and often serves as a benchmark. 
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This page continues the sentence about the confocal configuration from the 

previous slide. "...the optimal compromise of minimum spot size & minimum 

diffraction loss for a given 𝑑." 

Let's expand on why the confocal resonator is often considered such an 

"optimal compromise." A confocal resonator, as we'll define formally soon, 

consists of two identical spherical mirrors of radius of curvature 𝑅, 

separated by a distance 𝑑 equal to 𝑅. 

This configuration offers several advantages: 

1. Low Diffraction Loss: Confocal resonators are known for their very low 

diffraction losses compared to many other stable configurations, especially 

for a given mirror size. The refocusing is very effective. 

2. Well-Defined Mode Structure: They robustly support Hermite-Gaussian 

(or Laguerre-Gaussian) modes. 

3. Alignment Stability: Confocal resonators are relatively insensitive to 

small misalignments (tilts) of the mirrors compared to, for example, plane-

parallel or concentric resonators. This makes them easier to work with in 

practice. 

4. Minimum Spot Size Consideration: The phrase "minimum spot size" 

here should be understood in context. While a concentric resonator (𝑑 =

2 𝑅) can produce a smaller spot size at the mirrors, it is very sensitive to 

alignment. The confocal resonator provides a reasonably small beam waist 

at its center, and the spot sizes on the mirrors are 𝑤s = √2 𝑤0, which are 

well-behaved. It strikes a good balance: the spot sizes are not excessively 

large (which would require very large mirrors) nor excessively small (which 

might lead to very high intensity and potential damage to optics in high-

power lasers). 

So, "optimal compromise" means it balances low loss, ease of alignment, 

and manageable mode sizes effectively for a given mirror separation 𝑑 



(which equals 𝑅 in this case). It's a very practical and widely analyzed 

resonator type. 
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This slide presents a very effective visual comparison titled "Optical 

Resonator: Diffraction Spreading vs. Refocusing." It consists of two 

diagrams, (a) and (b). 

Diagram (a) is labeled "Diffraction Spreading (Plane Mirrors)." It shows two 

flat, parallel mirrors, Mirror 1 on the left and Mirror 2 on the right, separated 

by a distance 𝑑. A beam of light, with an initial radius 𝑎 at Mirror 1, is 

depicted propagating towards Mirror 2. As it propagates, the beam is 

shown spreading outwards due to diffraction. The shaded region in light 

blue represents the main part of the beam. A pink shaded area at the top 

and bottom, beyond the edge of Mirror 2, is labeled "Diffraction Loss." This 

visually illustrates how, in a plane-mirror resonator, the natural tendency of 

light to diffract causes part of the beam to expand beyond the dimensions 

of the second mirror, leading to energy loss. 

Diagram (b) is labeled "Refocusing Effect (Concave Mirrors)." This diagram 

also shows two mirrors, Mirror 1 and Mirror 2, separated by distance 𝑑. 

However, these mirrors are now concave (curved inwards). A beam of light 

is shown propagating between them. This beam is labeled "Stable 

Gaussian Mode." 

Crucially, the beam does not continuously spread out and miss the mirrors. 

Instead, it is shown to be confined. It has a narrower "waist" in the center of 

the resonator and expands as it approaches each mirror. The curvature of 

the beam's wavefront at each mirror is drawn to match the curvature of that 

mirror. This refocusing action of the concave mirrors counteracts the 

diffractive spreading. 

A caption below this diagram states: "Refocusing minimizes diffraction 

loss." 



This pair of diagrams powerfully illustrates the fundamental advantage of 

using curved mirrors in laser resonators: they can guide and confine the 

light, leading to the formation of stable modes with significantly lower 

diffraction losses compared to simple plane-mirror configurations of similar 

dimensions. The concept of the beam "fitting" the mirrors is central to 

stable resonator theory. 
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This slide, "Transition to Field-Distribution Analysis – Beyond Plane 

Waves," signals a move towards a more rigorous, wave‐ optics based 

understanding of resonator modes. 

The first bullet point makes a crucial statement: "Open resonator modes 

are not plane waves; amplitude 𝐴(𝑥, 𝑦) must adapt until self-reproducing." 

While plane waves are a useful concept for basic Fabry-Perot theory, the 

actual modes that exist in open resonators (especially those with curved 

mirrors or significant diffraction) have complex transverse amplitude and 

phase distributions, 𝐴(𝑥, 𝑦), where 𝑥 and 𝑦 are coordinates transverse to 

the direction of propagation. The defining characteristic of a resonator 

mode is that its field distribution must be "self-reproducing." This means 

that after one complete round trip within the resonator (e.g., from mirror 1 to 

mirror 2 and back to mirror 1), the electric field's complex amplitude 

distribution must be identical to its starting distribution, apart from a 

constant multiplicative factor. This factor accounts for the loss and phase 

shift incurred during the round trip. 

The slide then introduces an "Iterative modelling technique (Fox-Li)" which 

was historically very important for first calculating these mode structures. 

It's a numerical approach: 

1. "Start with arbitrary trial field on mirror." One begins by assuming some 

initial field distribution on one of the resonator mirrors. This could be a 

simple plane wave, a Gaussian, or even random noise. Let's call this 

𝐴0(𝑥′, 𝑦′). 



2. "Propagate to other mirror using Kirchhoff-Fresnel integral." Using the 

principles of diffraction theory, specifically the Kirchhoff-Fresnel (or similar, 

like Rayleigh-Sommerfeld) diffraction integral, one calculates how this initial 

field 𝐴0(𝑥′, 𝑦′) on the first mirror propagates through space to the second 

mirror. This will result in a new field distribution, say 𝐴1_intermediate(𝑥, 𝑦), on 

the surface of the second mirror. 

3. "Multiply by mirror aperture." The second mirror has a finite size and a 

certain reflectivity. So, the field 𝐴1_intermediate(𝑥, 𝑦) is then "acted upon" by 

the second mirror. This typically means multiplying it by the mirror's 

reflectivity function (which might be complex if there are phase shifts on 

reflection) and an aperture function that is 1 inside the mirror's clear 

aperture and 0 outside. This gives the field 𝐴1_reflected(𝑥, 𝑦) just after 

reflection from the second mirror. 

The process would then continue by propagating this field back to the first 

mirror, applying its aperture/reflectivity, and so on. 
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This page continues the description of the Fox-Li iterative modeling 

technique. 

4. "Repeat until convergence factor 𝐶 stabilises (eigenvalue problem)." 

After the field is propagated from mirror 1 to mirror 2 and reflected (as 

described on the previous slide), it is then propagated back from mirror 2 to 

mirror 1 and reflected from mirror 1. This completes one full round trip. 

Let 𝐴n(𝑥, 𝑦) be the field distribution on mirror 1 after 'n' such round trips. 

The Fox-Li method involves repeatedly applying this round-trip propagation 

operator. If a stable mode exists, this iterative process will eventually 

converge. This means that the shape of the field distribution 𝐴n(𝑥, 𝑦) will 

stop changing significantly from one iteration to the next. Instead, it will 

reproduce itself, merely multiplied by a complex constant 𝐶 after each 



round trip: 𝐴n(𝑥, 𝑦) will become 𝐶 ⋅ 𝐴𝑛−1(𝑥, 𝑦). This complex constant 𝐶 is 

the eigenvalue of the round-trip propagation integral operator, and the 

converged field distribution 𝐴(𝑥, 𝑦) is the corresponding eigenfunction (the 

mode). 

The magnitude of 𝐶, |𝐶|, gives the attenuation of the field amplitude per 

round trip. So, |𝐶|2 is the intensity reduction factor per round trip. The loss 

per round trip is 1 − |𝐶|2. The phase of 𝐶, arg(𝐶), gives the phase shift 

experienced by the mode during one round trip. This phase shift is crucial 

for determining the resonant frequencies of the cavity. 

The slide further notes: "Integral kernel reflects scalar diffraction theory; 

solutions give both loss 𝛾D and phase shift 𝜙." The "integral kernel" is the 

mathematical function (derived from Kirchhoff-Fresnel theory) that 

describes how each point on one mirror contributes to the field at each 

point on the other mirror. This kernel embodies the physics of scalar 

diffraction. 

The solutions to this eigenvalue problem (the eigenfunctions 𝐴(𝑥, 𝑦) and 

eigenvalues 𝐶) provide: - The loss, 𝛾D (where 𝛾D might be related to 1 −

|𝐶|2, representing diffraction loss primarily if mirror reflectivities are handled 

separately or assumed perfect in the propagation integral itself). - The 

phase shift per round trip, 𝜙 = arg(𝐶). 

This iterative approach, pioneered by Fox and Li in the early 1960s, was 

instrumental in understanding the modes of open optical resonators for the 

first time, revealing the existence of Hermite-Gaussian modes. 

Page 34: 

This slide, "Kirchhoff-Fresnel Propagation Integral – Explicit Form," 

presents the mathematical tool used in the Fox-Li method for propagating 

the field. 

The equation shown is: 



𝐴n(𝑥, 𝑦) = −
𝑖

𝜆
∬ 𝐴𝑛−1

mirror 1

(𝑥′, 𝑦′)exp[−𝑖𝑘𝑝cos(𝜃)]
𝑑𝑥′ 𝑑𝑦′

𝑝
 

Let's break this down: 

- 𝐴n(𝑥, 𝑦) is the complex amplitude of the electric field at a point (𝑥, 𝑦) on 

mirror 2 (the observation mirror). - 𝐴𝑛−1(𝑥′, 𝑦′) is the complex amplitude of 

the field at a point (𝑥′, 𝑦′) on mirror 1 (the source mirror from the (𝑛 − 1)th 

iteration or previous transit). - The integral sums the contributions from all 

such source points (𝑥′, 𝑦′) on mirror 1 to the field at (𝑥, 𝑦) on mirror 2. - 𝜆 is 

the wavelength of light. - 𝑖 is the imaginary unit, √−1. So −𝑖/𝜆 is a complex 

prefactor. - 𝑘 is the wavenumber, 𝑘 =
2𝜋

𝜆
. - 𝑝 is the distance between the 

source point (𝑥′, 𝑦′) on mirror 1 and the observation point (𝑥, 𝑦) on mirror 2. 

This is defined below. - The term 
1

𝑝
 represents the 1/𝑟 decrease in 

amplitude for a spherical wave emanating from (𝑥′, 𝑦′). - The term 

exp[−𝑖𝑘𝑝cos(𝜃)] is the phase factor. Usually, a spherical wave from (𝑥′, 𝑦′) 

arriving at (𝑥, 𝑦) would have a phase exp(−𝑖𝑘𝑝) or exp(𝑖𝑘𝑝) depending on 

convention. The cos(𝜃) term inside the exponent is unusual for the phase 

path length. More commonly, cos(𝜃) (an obliquity factor, where 𝜃 is the 

angle 𝑝 makes with the normal to the source surface) would appear as a 

multiplicative factor, often approximated as 1 for paraxial rays. If 𝑝cos(𝜃) is 

meant to be the optical path length along the 𝑧-axis (𝑑), then this is a strong 

approximation. Given the definition of 𝑝 on the slide, it's most likely that the 

phase term should be exp(−𝑖𝑘𝑝), and cos(𝜃) is an obliquity factor that 

might be approximated differently in some forms of the Kirchhoff integral. I 

will assume standard Huygens-Fresnel form where exp(−𝑖𝑘𝑝) is the phase. 

The slide then provides "Coordinate definitions (see Fig.)," referring to a 

figure which is on page 36. 

* 𝑝 = √𝑑2 + (𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 This is the correct Euclidean distance 

between a point (𝑥′, 𝑦′) on mirror 1 (assumed to be at 𝑧 = 0, for instance) 



and a point (𝑥, 𝑦) on mirror 2 (at 𝑧 = 𝑑), where 𝑑 is the axial separation of 

the mirrors. 

* 𝜃 equals angle between 𝑝 and optical axis. (Optical axis is the 𝑧-axis). 

This 𝜃 is typically the obliquity angle. cos(𝜃) =
𝑑

𝑝
. 

* "Stationarity condition." This refers to the fact that when the iterative 

process converges, the field becomes "stationary" or self-reproducing 

under the action of this integral propagation for a round trip. 

Page 35: 

This page continues the discussion of the iterative propagation and 

convergence to an eigenmode. 

The first line states: "𝐴n(𝑥, 𝑦) = 𝐶 ⋅ 𝐴𝑛−1(𝑥, 𝑦)". This equation, in the context 

of the Fox-Li iteration, describes the condition when convergence to an 

eigenmode is achieved. If 𝐴(𝑥, 𝑦) is an eigenmode of the resonator, then 

after one complete round-trip propagation (which involves two applications 

of an integral like the one on the previous slide, one for each transit 

between mirrors, plus reflections), the resulting field distribution is simply 

the original field distribution 𝐴(𝑥, 𝑦) multiplied by a complex constant 𝐶. So, 

if 𝐴𝑛−1(𝑥, 𝑦) represents the field of a mode on a mirror at the start of a 

round trip, then 𝐴n(𝑥, 𝑦) is the field on the same mirror after that round trip, 

and it's equal to 𝐶 times 𝐴𝑛−1(𝑥, 𝑦). 

The complex constant 𝐶, the eigenvalue, is given as: "𝐶 =

√1 − 𝛾Dexp(𝑖𝜙)". Let's analyze this: 

- The magnitude of 𝐶 is |𝐶| = √1 − 𝛾D. Since 𝐶 is the amplitude factor per 

round trip, |𝐶|2 is the intensity factor per round trip. So, |𝐶|2 = 1 − 𝛾D. This 

means 𝛾D is the fractional intensity loss per round trip due to diffraction 

(assuming mirror reflectivities are handled separately or are perfect). This 

is consistent. 



- The phase of 𝐶 is 𝜙. So, exp(𝑖𝜙) is the phase factor per round trip. 𝜙 

represents the total phase shift the mode accumulates in one round trip, 

beyond the basic 2𝜋𝑞 for an ideal plane wave in a simple cavity. This 

phase shift is crucial for determining the exact resonant frequencies of the 

modes. 

The final bullet point summarizes the mathematical nature of the problem: 

"Ultimately leads to homogeneous Fredholm integral equation for unknown 

eigenfields 𝐴(𝑥, 𝑦)." The condition 𝐴(𝑥, 𝑦) = 𝐶 ⋅

(Integral Operator acting on 𝐴(𝑥′, 𝑦′)) is a homogeneous Fredholm integral 

equation of the second kind. It's an eigenvalue equation where 𝐴(𝑥, 𝑦) are 

the eigenfunctions (the transverse mode patterns) and 𝐶 are the 

corresponding eigenvalues (giving loss and phase shift). "Homogeneous" 

means there is no external source term driving the system; we are looking 

for the natural resonant modes. Solving this equation yields the set of 

modes that the resonator can support. 

Page 36: 

This page contains the image that was referenced on page 34 for defining 

the coordinates in the Kirchhoff-Fresnel propagation integral. The caption 

requests: "[IMAGE REQUIRED: Geometry of two parallel square apertures 

separated by 𝑑; annotate 𝑥, 𝑥′, 𝑦, 𝑦′, 𝑝, 𝜃.]" 

The diagram shown depicts: 

- Two parallel planes, representing Mirror 1 (M1) on the left and Mirror 2 

(M2) on the right. They appear as square apertures. 

- The mirrors are separated by an axial distance 𝑑, indicated along the 

horizontal optical axis (which we can consider the 𝑧-axis). 

- A point on M1 is labeled with coordinates (𝑥′, 𝑦′). For clarity, this point is 

shown with a small red circle. The 𝑥′ and 𝑦′ axes are shown local to M1. 



- A point on M2 is labeled with coordinates (𝑥, 𝑦), also with a small red 

circle and local 𝑥, 𝑦 axes. 

- A blue line segment labeled 𝑝 connects the point (𝑥′, 𝑦′) on M1 to the 

point (𝑥, 𝑦) on M2. This visually represents the distance 𝑝 used in the 

integral. 

- The angle 𝜃 (often denoted by Greek letter theta, though 𝜗 is used on the 

slide image if one looks closely at the symbol near point (𝑥′, 𝑦′) on M1, 

representing the angle between 𝑝 and the normal to M1) is the angle that 

the line 𝑝 makes with the optical axis (the 𝑧-axis, normal to the mirrors if 

they are parallel to the 𝑥-𝑦 plane). From the geometry, if the mirrors are in 

planes 𝑧 = 0 and 𝑧 = 𝑑, then cos(𝜃) =
𝑑

𝑝
. 

This diagram perfectly illustrates the geometry for the integral: we are 

calculating the field at (𝑥, 𝑦) on M2 by summing contributions from all 

source points (𝑥′, 𝑦′) on M1, with each contribution involving the distance 𝑝 

and potentially the obliquity angle 𝜃. 

Page 37: 

This slide, "Paraxial Approximation & Series Expansion of 𝑝," introduces a 

crucial simplification for solving the propagation integral analytically in 

many cases. 

The first bullet states: "For |𝑥|, |𝑥′|, |𝑦|, |𝑦′| ≪ 𝑑 we expand 𝑝." This is the 

paraxial approximation. It assumes that the transverse dimensions of the 

beam (𝑥, 𝑦 on one mirror, 𝑥′, 𝑦′ on the other) are much smaller than the 

separation 𝑑 between the mirrors. This means the light rays are 

propagating at small angles with respect to the optical axis (the 𝑧-axis). 

Under this condition, the distance 𝑝 can be approximated. Recall 

𝑝 = √𝑑2 + (𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2. 

We can write this as 



𝑝 = 𝑑√1 +
(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2

𝑑2
. 

Using the binomial expansion √1 + 𝑢 ≈ 1 +
𝑢

2
 for small 𝑢 (where 𝑢 =

(𝑥−𝑥′)2+(𝑦−𝑦′)2

𝑑2
), we get: 

𝑝 ≈ 𝑑 (1 +
(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2

2 𝑑2
) 

𝑝 ≈ 𝑑 +
(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2

2 𝑑
. 

This is the Fresnel approximation for the path length, and it's shown 

correctly on the slide. 

The second bullet point describes the consequences of using this 

approximation in the Kirchhoff-Fresnel integral: "Substitute in exponential, 

neglect slow prefactor variation implies integral separates into product of 

two 1-D Fresnel integrals." 

- When this approximate 𝑝 is substituted into the phase term exp(−𝑖𝑘𝑝) of 

the integral, it becomes: 

exp(−𝑖𝑘𝑑) ⋅ exp (−𝑖𝑘 
(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2

2 𝑑
). 

The exp(−𝑖𝑘𝑑) is a constant phase factor related to propagation along the 

axis. The second exponential contains a quadratic dependence on (𝑥 − 𝑥′) 

and (𝑦 − 𝑦′). 

- "Neglect slow prefactor variation": The 1/𝑝 term in the integral is 

approximated as 1/𝑑 (since 𝑝 is close to 𝑑). The obliquity factor cos(𝜃) is 

approximated as 1. These are slowly varying compared to the rapid 

oscillations of the exponential phase term. 



- "Integral separates into product of two 1-D Fresnel integrals": If the mirror 

aperture is also separable (e.g., a square mirror, so the integration limits for 

𝑥′ and 𝑦′ are independent), then the integral involving exp (−𝑖𝑘 
(𝑥−𝑥′)2

2 𝑑
) 𝑑𝑥′ 

and the integral involving exp (−𝑖𝑘 
(𝑦−𝑦′)2

2 𝑑
) 𝑑𝑦′ can be separated. This 

reduces the 2D diffraction problem to two independent 1D problems. 

The final bullet point highlights the "Key outcome": "eigenmodes in many 

practical cavities factorise: 𝐴(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦)." This separation of 

variables means that the transverse mode solutions 𝐴(𝑥, 𝑦) can often be 

written as a product of a function 𝑋 that depends only on 𝑥, and a function 

𝑌 that depends only on 𝑦. For cavities with rectangular symmetry (like 

square mirrors), this leads to Hermite-Gaussian modes. For cavities with 

circular symmetry (circular mirrors), a similar analysis in polar coordinates 

leads to Laguerre-Gaussian modes. This factorisation greatly simplifies 

finding and understanding the mode structures. 

Page 38: 

This slide introduces a particularly important and analytically solvable 

resonator configuration: "Confocal Resonator – Geometry & Separation 

Condition." 

The first bullet provides the "Definition": "both mirrors spherical, equal 

radius 𝑅, spacing 𝑑 = 𝑅." 

So, a confocal resonator consists of: 1. Two spherical mirrors. 2. They have 

the same radius of curvature, capital 𝑅. 3. The distance 'd' separating the 

mirrors is exactly equal to this radius of curvature 𝑅. 

A key geometrical property is also stated: "Foci of each mirror coincide at 

cavity centre." A spherical mirror with radius of curvature 𝑅 has a focal 

length 𝑓 =
𝑅

2
. Mirror 1 has its focal point at a distance 

𝑅

2
 from its surface. 

Mirror 2 has its focal point at a distance 
𝑅

2
 from its surface. Since the mirrors 



are separated by 𝑑 = 𝑅, the center of the cavity is at a distance 
𝑅

2
 from 

Mirror 1 and also 
𝑅

2
 from Mirror 2. Therefore, the focal point of Mirror 1 

(which is 
𝑅

2
 from M1, towards M2) lies exactly at the center of the cavity. 

Similarly, the focal point of Mirror 2 (
𝑅

2
 from M2, towards M1) also lies at the 

center of the cavity. Thus, their two focal points coincide at the geometric 

center of the resonator. This is a defining feature. 

The next point is crucial for its analysis: "Under above paraxial 

approximation the Fredholm equation yields analytic* solutions." When the 

paraxial approximation (small angles, 𝑥, 𝑦 ≪ 𝑑) is applied to the Kirchhoff-

Fresnel integral equation for this specific confocal geometry (𝑑 = 𝑅), the 

integral equation can be solved analytically. This is a rare and fortunate 

case in resonator theory. Most other geometries require numerical 

solutions. The asterisk on "analytic*" solutions might hint that while analytic 

forms (like Hermite-Gaussians) emerge, some parameters within them 

might still need to be found by solving related equations. 

The "Resulting eigenfields" are the Hermite-Gaussian modes, which will be 

detailed on the next slide. This analytical tractability makes the confocal 

resonator a cornerstone for understanding stable optical resonators. 

Page 39: 

This page shows the mathematical form of the resulting eigenfields for a 

confocal resonator, which are the Hermite-Gaussian modes. 

The expression given is for 𝐴𝑚𝑛(𝑥, 𝑦, 𝑧), representing the complex 

amplitude of the (𝑚, 𝑛)-th transverse mode as a function of transverse 

coordinates 𝑥, 𝑦 and axial coordinate 𝑧 (where 𝑧 = 0 is usually taken at the 

center of the confocal cavity, the common focal point). 

𝐴𝑚𝑛(𝑥, 𝑦, 𝑧) = 𝐶∗ 𝐻m (
√2 𝑥

𝑤(𝑧)
)𝐻n (

√2 𝑦

𝑤(𝑧)
) exp (−

𝑟2

𝑤2(𝑧)
) exp(−𝑖 𝜙𝑚𝑛(𝑟, 𝑧)) 



Let's break this down term by term: 

- C star (𝐶∗) is a normalization constant, ensuring the mode has a certain 

power or energy. 

- 𝐻m(… ) and 𝐻n(… ) are Hermite polynomials of order 𝑚 and 𝑛 respectively. 

These polynomials describe the spatial variation of the mode in the 𝑥 and 𝑦 

directions. 𝑚 is the mode index for 𝑥, and 𝑛 is for 𝑦. They dictate the 

number of nodes (zeros) in the transverse field pattern. 

- The arguments of the Hermite polynomials are 
√2 𝑥

𝑤(𝑧)
 and 

√2 𝑦

𝑤(𝑧)
. Here, 𝑤(𝑧) is 

a characteristic transverse scaling factor called the "spot size" or beam 

radius, which varies with position 𝑧 along the resonator axis. 

- exp (−
𝑟2

𝑤2(𝑧)
) is the Gaussian envelope term. Here, 𝑟2 = 𝑥2 + 𝑦2 is the 

square of the radial distance from the optical axis. This term gives the 

characteristic bell-shaped (Gaussian) fall-off in intensity away from the axis. 

The spot size 𝑤(𝑧) defines the radius at which the field amplitude drops to 

1/𝑒 of its axial value. 

- exp(−𝑖 𝜙𝑚𝑛(𝑟, 𝑧)) is the complex phase factor. 𝜙𝑚𝑛(𝑟, 𝑧) is the total 

phase, which includes: * A term like 𝑘0 𝑧 for basic propagation (where 𝑘0 is 

free-space wave number). * A term related to the curvature of the 

wavefronts. * The Gouy phase shift, which is an additional phase advance 

that focused beams acquire as they pass through a focus. This Gouy 

phase depends on the mode indices 𝑚 and 𝑛. 

The final bullet point says: "Components to be defined on next slide." This 

refers to 𝑤(𝑧), 𝜙𝑚𝑛(𝑟, 𝑧), and the Hermite polynomials themselves. This 

expression is the general form for a Hermite-Gaussian beam, which are the 

natural modes of a stable resonator with rectangular symmetry, like a 

confocal resonator with spherical mirrors under paraxial approximation. 

Page 40: 



This slide, "Hermite-Gaussian Mode Parameters – Symbol-by-Symbol," 

provides definitions for the components of the eigenfield expression we 

saw on the previous page. 

* "H_m, H_n – Hermite polynomials of order m, n." These are a standard 

set of orthogonal polynomials. 𝐻0(𝑢) = 1, 𝐻1(𝑢) = 2 𝑢, 𝐻2(𝑢) = 4 𝑢2 − 2, 

and so on. They are solutions to Hermite's differential equation. "m" and "n" 

are non-negative integers (0,1,2,… ) that specify the mode order. 

* "Orthogonal over (-infinity, infinity) with Gaussian weight." The Hermite 

polynomials 𝐻m(𝑢) are orthogonal with respect to a Gaussian weighting 

function, exp(−𝑢2), over the interval from −∞ to ∞. That is, the integral of 

𝐻m(𝑢)𝐻p(𝑢)exp(−𝑢
2) 𝑑𝑢 from −∞ to ∞ is zero if 𝑚 ≠ 𝑝. This orthogonality 

is important for decomposing an arbitrary beam into a sum of Hermite-

Gaussian modes. 

* "r equals square root of (x squared plus y squared) [in meters] radial 

coordinate." 𝑟 = √𝑥2 + 𝑦2 [in meters] radial coordinate. 

* "Beam radius w(z)." This is a crucial parameter, defining the characteristic 

size of the Gaussian part of the mode at an axial position 𝑧. The formula 

given is specific to a confocal resonator of length "d" (where 𝑑 = 𝑅, the 

mirror radius of curvature), with 𝑧 = 0 defined at the center of the cavity: 

𝑤(𝑧) = √
𝜆𝑑

2𝜋
[1 + (

2 𝑧

𝑑
)
2

]. 

Let's analyze this 𝑤(𝑧) formula: - 𝜆 is the wavelength. - "d" here is the 

mirror separation, which for a confocal resonator is equal to 𝑅, the radius of 

curvature of the mirrors. - The term 
𝜆𝑑

2𝜋
 will be related to the square of the 

beam waist radius, 𝑤0
2 (as we'll see). - The term [1 + (2 𝑧/𝑑)2] shows how 

the spot size varies with 𝑧. It's a hyperbolic dependence. The spot size 



𝑤(𝑧) is the radius at which the field amplitude drops to 1/𝑒 of its value on 

the axis, or where the intensity drops to 1/𝑒2 of its axial value. 

Page 41: 

* "Beam waist (minimum 𝑤): occurs at 𝑧 = 0." 

From the formula for 𝑤(𝑧) on the previous slide, 𝑤(𝑧) = √
𝜆𝑑

2𝜋
[1 + (

2 𝑧

𝑑
)
2
], we 

can see that 𝑤(𝑧) is minimized when the term (
2 𝑧

𝑑
)
2
 is zero, which occurs 

at 𝑧 = 0. This 𝑧 = 0 point is the center of the confocal resonator. 

The minimum value of 𝑤(𝑧) is called the beam waist radius, denoted as 𝑤0 

(w-naught). 

So, 𝑤0 = 𝑤(𝑧 = 0) = √
𝜆𝑑

2𝜋
[1 + 0] = √

𝜆𝑑

2𝜋
. 

The slide writes this as 𝑤0 = 𝑤(0) = √
𝜆𝑅

2𝜋
. This is correct, as for a confocal 

resonator, the separation 𝑑 is equal to the mirror radius of curvature 𝑅. This 

𝑤0 is a fundamental parameter characterizing the size of the beam at its 

narrowest point. 

* "Phase factor 𝜙𝑚𝑛 encodes Gouy phase + curvature; full expression given 

later." 

The phase 𝜙𝑚𝑛(𝑟, 𝑧) in the mode expression exp[−𝑖𝜙𝑚𝑛(𝑟, 𝑧)] is complex. It 

generally includes: 

1. A longitudinal phase term, −𝑘0𝑧, representing the rapid phase advance 

of a wave propagating along 𝑧. 

2. The Gouy phase shift, 𝜁𝑚𝑛(𝑧) = −(𝑚 + 𝑛 + 1)arctan (
𝑧

𝑧R

), where 𝑧R is the 

Rayleigh range ( 𝑧R =
𝜋𝑤0

2

𝜆
 ). This is an extra phase shift that focused 



beams experience as they pass through the focal region, compared to a 

plane wave or spherical wave. It depends on the mode order (𝑚 + 𝑛 + 1). 

3. A term related to the radius of curvature of the wavefronts, −
𝑘0𝑟

2

2𝑅𝑤𝑓(𝑧)
, 

where 𝑅𝑤𝑓(𝑧) = 𝑧 [1 + (
𝑧R

𝑧
)
2
] is the wavefront radius of curvature at 

position 𝑧. 

The "full expression given later" indicates we might see this decomposition 

explicitly. 

* "Mode naming: TEM𝑚𝑛 where T Transverse, E Electric, M Magnetic; first 

index node count in 𝑥, second in 𝑦." 

TEM stands for Transverse ElectroMagnetic, indicating that for these 

modes, the electric and magnetic field vectors are predominantly 

perpendicular (transverse) to the direction of propagation (the 𝑧-axis). This 

is a good approximation for paraxial beams. 

The indices 'm' and 'n' in TEM𝑚𝑛 correspond to the order of the Hermite 

polynomials 𝐻m and 𝐻n used in the mode description. Physically, 'm' gives 

the number of nulls (zeroes) in the transverse intensity pattern along the 𝑥-

direction, and 'n' gives the number of nulls along the 𝑦-direction. 

The TEM00 mode (m=0, n=0) is the fundamental mode, with no nodes, and 

has a simple Gaussian intensity profile. 

Page 42: 

This slide, "Visual Library of Low-Order Confocal Modes," presents a 

gallery of images showing the transverse intensity patterns for various 

Hermite-Gaussian TEM𝑚𝑛 modes. The caption indicates it's a 3 × 3 array 

of color maps. Axes are typically 
𝑥

𝑤0
 and 

𝑦

𝑤0
, or scaled by 𝑤(𝑧). 

Let's describe what these would look like: 



* TEM00 (Top-Left): This is the fundamental Gaussian mode (𝑚 = 0, 𝑛 = 0). 

It appears as a single, bright, circular (if 𝑤x = 𝑤y) spot with intensity 

peaking at the center and smoothly decaying outwards following a 

Gaussian profile. It has no nodes. 

* TEM10 (Top-Middle): (𝑚 = 1, 𝑛 = 0). This mode has one node along the 

𝑦-axis (a vertical dark line at 𝑥 = 0). It appears as two bright lobes aligned 

horizontally, separated by the vertical nodal line. 

* TEM01 (Top-Right): (𝑚 = 0, 𝑛 = 1). This mode has one node along the 𝑥-

axis (a horizontal dark line at 𝑦 = 0). It appears as two bright lobes aligned 

vertically, separated by the horizontal nodal line. 

* TEM11 (Middle-Left): (𝑚 = 1, 𝑛 = 1). This mode has one node along the 

𝑥-axis and one node along the 𝑦-axis. It appears as a four-lobe pattern, like 

a four-leaf clover, with dark lines (nodes) along both 𝑥 = 0 and 𝑦 = 0. 

* TEM20 (Middle-Center): (𝑚 = 2, 𝑛 = 0). Two vertical nodal lines. This will 

show three bright lobes arranged horizontally. 

* TEM02 (Middle-Right): (𝑚 = 0, 𝑛 = 2). Two horizontal nodal lines. This will 

show three bright lobes arranged vertically. 

* TEM22 (Bottom-Left): (𝑚 = 2, 𝑛 = 2). Two vertical nodes and two 

horizontal nodes, forming a 3 × 3 grid of 9 lobes (some might be less 

distinct depending on scaling). 

* TEM30 (Bottom-Middle): (𝑚 = 3, 𝑛 = 0). Three vertical nodal lines, 

resulting in four bright lobes arranged horizontally. 

* TEM03 (Bottom-Right): (𝑚 = 0, 𝑛 = 3). Three horizontal nodal lines, 

resulting in four bright lobes arranged vertically. 

These images provide an excellent visual understanding of how the mode 

indices 𝑚 and 𝑛 relate to the spatial complexity and nodal structure of the 



transverse intensity patterns. Higher-order modes occupy a larger overall 

area than the fundamental TEM00 mode. 

Page 43: 

This slide focuses on the "Fundamental Gaussian Mode Characteristics," 

which is the TEM₀ ₀  mode. 

"For 𝑚 = 𝑛 = 0, Hermite polynomials reduce to unity implies circular 

symmetry." 

  The Hermite polynomial of zeroth order, 𝐻0(𝑢), is simply 1. So, if 𝑚 =

0 and 𝑛 = 0, both 𝐻m and 𝐻n in the general mode expression become 1. 

The part of the mode involving Hermite polynomials simplifies to 1 × 1 = 1. 

The remaining spatial dependence is the Gaussian term exp(−𝑟2/𝑤2(𝑧)), 

which is circularly symmetric (depends only on 𝑟 = √𝑥2 + 𝑦2, not on the 

angle). 

"Intensity distribution 𝐼00(𝑟, 𝑧) = 𝐼0(𝑧)exp [−
2 𝑟2

𝑤2(𝑧)
]." 

  This is the intensity profile of the TEM₀ ₀  mode.   – 𝐼00(𝑟, 𝑧) is the 

intensity at radial distance 𝑟 from the axis and axial position 𝑧.   – 𝐼0(𝑧) 

is the peak intensity on the axis (𝑟 = 0) at position 𝑧. It varies with 𝑧 

because the spot size 𝑤(𝑧) changes, and for constant power, intensity 

changes as 
1

𝑤2(𝑧)
.   – The exponent is −

2 𝑟2

𝑤2(𝑧)
. The factor of 2 is because 

intensity is proportional to the square of the electric field amplitude, and the 

field amplitude has an exp [−
𝑟2

𝑤2(𝑧)
] dependence. So, (exp [−

𝑟2

𝑤2(𝑧)
])

2

=

exp [−
2 𝑟2

𝑤2(𝑧)
]. 

"Key metric – radius where intensity drops to 
1

𝑒2
: by definition 𝑟 = 𝑤(𝑧)." 

  The spot size 𝑤(𝑧) is defined as the radial distance 𝑟 at which the 

intensity 𝐼00(𝑟, 𝑧) drops to 
1

𝑒2
 (which is about 13.5%) of its on-axis value 



𝐼0(𝑧).   Let's check: if 𝑟 = 𝑤(𝑧), then the exponent becomes     

−
2 𝑤2(𝑧)

𝑤2(𝑧)
= −2.   So, 𝐼00(𝑤(𝑧), 𝑧) = 𝐼0(𝑧)exp(−2). This is correct.   

(Alternatively, 𝑤(𝑧) is sometimes defined as where the field amplitude 

drops to 
1

𝑒
 of its axial value, which is equivalent). 

"Spot size on mirrors (𝑧 = ±𝑑/2): 𝑤s = 𝑤(𝑑/2) = √2 𝑤0." 

  This is specific to a confocal resonator where the length 𝑑 = 𝑅, and 

𝑧 = 0 is at the center. The mirrors are located at 𝑧 = +𝑑/2 and 𝑧 = −𝑑/2 

(or ±𝑅/2).   We use the formula     𝑤(𝑧) = 𝑤0√1 + (
2 𝑧

𝑑
)
2
.   

Substitute 𝑧 = 𝑑/2:     𝑤(𝑑/2) = 𝑤0√1 + (
2(𝑑/2)

𝑑
)
2

= 𝑤0√1 + (
𝑑

𝑑
)
2
=

𝑤0√1 + 12 = 𝑤0√2.   So, the spot size on each mirror, 𝑤s, is √2 times 

the waist spot size 𝑤0. This means the beam is wider on the mirrors than it 

is at its waist in the center of the cavity. This is a characteristic feature of 

Gaussian beam propagation. 

Page 44: 

This page continues with characteristics of the fundamental Gaussian 

mode. 

The single bullet point states: 

"Independence from physical mirror diameter – but losses depend on how 

many 𝑤s fit inside aperture." 

Let's unpack this important distinction: 

The mathematical solution for the Hermite-Gaussian modes, including the 

expressions for the beam waist 𝑤0 and the spot size 𝑤(𝑧) (and thus 𝑤s on 

the mirrors), are derived assuming the mirrors are infinitely large. So, the 

shape and size parameters of the ideal mode itself (like 𝑤0 and 𝑤s) do not 

depend on the actual physical diameter (say, 2 𝑎mirror) of the real mirrors 



used in a laser. These mode parameters are determined by the wavelength 

(𝜆), and the resonator geometry (mirror curvatures and separation, e.g., 𝑑 

or 𝑅 for confocal). 

However, the "losses" for this mode do critically depend on the physical 

mirror diameter (or, more generally, the aperture size). The Gaussian 

intensity profile 

exp [−
2 𝑟2

𝑤s
2 ] 

extends theoretically to 𝑟 = ∞, although it drops off very rapidly. If the 

physical radius of the mirror, let's call it 𝑎m, is not significantly larger than 

the spot size 𝑤s on that mirror, then the "tails" of the Gaussian beam will be 

clipped by the edge of the mirror. This clipped energy constitutes diffraction 

loss. The phrase "how many 𝑤s fit inside aperture" is a colloquial way of 

saying what the ratio 
𝑎m

𝑤s

 is. 

If 
𝑎m

𝑤s

 is small (e.g., 1 or less), losses will be very high because a large 

fraction of the beam energy is cut off. 

If 
𝑎m

𝑤s

 is around 1.5 to 2, losses become moderate. 

If 
𝑎m

𝑤s

 is 2.5 to 3 or more, diffraction losses for the fundamental TEM00 mode 

become very small (typically less than 1%, or much less). 

So, while the mode solution is independent of mirror size, the viability and 

efficiency of that mode in a real resonator depend heavily on the mirror size 

relative to the mode's spot size on the mirror. This is a key consideration in 

practical resonator design to minimize unwanted losses. 

Page 45: 

This slide provides a "Numerical Example – He-Ne Confocal Resonator" to 

make the concept of beam waist more concrete. 



The given "Parameters" are: 

• Wavelength 𝜆 = 633 nm. This is the standard wavelength for a Helium-

Neon laser, which is 633 × 10−9 m. 

• Mirror radius of curvature 𝑅 = mirror separation 𝑑 = 30 cm. This 

confirms it's a confocal resonator. 30 cm = 0.30 m. 

We need to "Compute" the beam waist radius, 𝑤0. 

The formula for the beam waist in a confocal resonator (where 𝑧 = 0 is at 

the center) is: 

𝑤0 = √
𝜆𝑅

2𝜋
 

(using 𝑅 for the confocal length 𝑑 = 𝑅). 

Let's plug in the values: 

𝑤0 = √
633 × 10−9 m ⋅ 0.30 m

2𝜋
 

𝑤0 = √
1.899 × 10−7 m2

2 ⋅ 3.14159265…
 

𝑤0 = √
1.899 × 10−7 m2

6.2831853
 

𝑤0 = √3.02240 × 10−8 m2 

𝑤0 = 1.7385 × 10−4 m 

Converting this to millimeters: 

1.7385 × 10−4 m = 0.17385 mm 



The slide shows the result as: = 1.7 × 10−4 m = 0.17 mm. 

This calculation is consistent. The beam waist for a typical He-Ne confocal 

resonator with a 30 cm length is very small, about 0.17 mm in radius. 

Page 46: 

This page discusses the "Implication" of the numerical example for the He-

Ne confocal resonator we just calculated. 

We found that the beam waist radius 𝑤0 is about 0.17 mm. 

The implication stated is: "central mode is pencil-thin; thus a 1 mm mirror 

easily supports it with negligible diffraction." 

Let's verify this. 

The beam waist 𝑤0 is 0.17 mm (radius). 

The spot size on the mirrors, 𝑤s, for a confocal resonator is 

𝑤s = √2 ⋅ 𝑤0. 

𝑤s = 1.4142 × 0.17 mm ≈ 0.240 mm (radius). 

So, the spot diameter on the mirror is 

2 × 𝑤s ≈ 0.48 mm. 

The slide considers a "1 mm mirror." This usually refers to the mirror 

diameter. 

So, if the mirror diameter is 2 ⋅ 𝑎m = 1 mm, then the mirror radius is 𝑎m =

0.5 mm. 

Now, we compare the mirror radius 𝑎m to the beam spot radius 𝑤s on the 

mirror: 

Ratio 



𝑎m

𝑤s

=
0.5 mm

0.240 mm
≈ 2.08. 

A common rule of thumb for low diffraction loss is that the mirror radius 

should be at least 2 to 3 times the spot radius (
𝑎m

𝑤s

> 2 or 3). 

Here, 
𝑎m

𝑤s

 is just over 2. This means that about 95% of the beam's power is 

contained within radius 𝑟 = 1.5 × 𝑤s according to Gaussian integral tables 

(for power within 𝑒−2 radius). 

The fraction of power transmitted past an aperture of radius 𝑎m is given by 

exp (−2 (
𝑎m

𝑤s

)
2

). 

For 
𝑎m

𝑤s

= 2.08, the exponent is −2 × (2.08)2 = −2 × 4.3264 = −8.65. 

exp(−8.65) is approx 1.75 × 10−4, or 0.0175%. 

This is indeed a very small loss. 

So, the statement that a 1 mm diameter mirror "easily supports it with 

negligible diffraction" is quite accurate. The term "pencil-thin" aptly 

describes a beam with a sub-millimeter diameter at the mirrors and an even 

smaller waist. This is characteristic of many gas lasers. 

Page 47: 

This slide, "Phase Fronts – Derivation of Radius of Curvature," delves into 

understanding the shape of the wavefronts for Hermite-Gaussian modes. 

It begins: "Start from phase expression (Boyd-Kogelnik)." Boyd and 

Kogelnik published seminal work on Gaussian beams and resonators in the 

1960s. 



The phase expression 𝜙(𝑟, 𝑧) for a TEM𝑚𝑛 mode (ignoring the overall 𝑘𝑧 

propagation term for a moment, or considering the phase relative to a plane 

wave) is given as: 

𝜙(𝑟, 𝑧) =
2𝜋

𝜆
{

𝑅

2(1 + 𝜉2)
+

𝑟2 𝜉

𝑅(1 + 𝜉2)
} − (𝑚 + 𝑛 + 1)

𝜋

2
− arctan (

1 − 𝜉

1 + 𝜉
). 

This expression looks like a specific form of the phase, possibly already 

simplified or for a specific plane. Let's check common forms. 

The Gouy phase is (𝑚 + 𝑛 + 1)arctan(𝜉), where 𝜉 =
𝑧

𝑧R

 (𝑧R is Rayleigh 

range). 

Wavefront curvature term is 𝑘 
𝑟2

2𝑅𝑤𝑓(𝑧)
, where 𝑅𝑤𝑓(𝑧) = 𝑧 (1 +

1

𝜉2
). 

The expression on the slide looks like it might be related to the phase 

difference across the beam or a phase variation. 

The term 
2𝜋

𝜆
{⋯ } looks like 𝑘{⋯ }. 

The term (𝑚 + 𝑛 + 1)
𝜋

2
 is unusual. Gouy phase is usually (𝑚 + 𝑛 +

1)arctan (
𝑧

𝑧R

). Perhaps at 𝑧 = ∞, arctan(∞) =
𝜋

2
. 

The term arctan (
1−𝜉

1+𝜉
) also looks specific. Let's assume this 𝜙(𝑟, 𝑧) is a 

given phase function from Boyd-Kogelnik. 

The slide seems to be working with a definition of 𝜉 =
2 𝑧

𝑅
 (or 𝜉 =

2 𝑧

𝑑
 for 

confocal, if 𝑑 = 𝑅). This 𝜉 is a normalized axial distance specific to confocal 

geometry perhaps, where 𝑧R =
𝑑

2
=

𝑅

2
. So 𝜉 =

𝑧

(𝑅/2)
=

2 𝑧

𝑅
. This is consistent 

with common notation for confocal resonators. 

with 𝜉 =
2 𝑧

𝑅
. For 𝑚 = 𝑛 = 0 and small 𝑟, set constant-phase surface; after 

algebra, obtain spherical wavefront equation. 



Page 48: 

This page continues from the derivation of the wavefront shape. After the 

algebra mentioned on the previous slide (setting the phase constant for 

𝑚 = 𝑛 = 0 and small 𝑟), one obtains a spherical wavefront equation: 

𝑥2 + 𝑦2 + (𝑧 − 𝑧0)
2 = 𝑅prime

2 . 

This is the standard equation of a sphere centered at (0,0, 𝑧0) with radius 

𝑅prime. This shows that for the TEM₀ ₀  Gaussian beam, the surfaces of 

constant phase are spherical, at least near the axis (paraxial 

approximation). 

The next bullet point defines the "Effective radius of curvature along axis," 

𝑅prime(𝑧0). This 𝑅prime is the radius of curvature of the wavefront that passes 

through the axial point 𝑧0. 𝑅prime(𝑧0) equals 𝑅 times (1 + 𝜉0
2) divided by 

(2 𝜉0). Here, 𝜉0 =
2 𝑧0

𝑅
 is the normalized axial position where the wavefront is 

being considered. And 𝑅 is the mirror radius of curvature (and cavity length 

for confocal). This formula is a standard result for Gaussian beams if we 

relate 𝜉0 to 𝑧0/𝑧R. 

For a Gaussian beam, the radius of curvature of the wavefront at axial 

position 𝑧 is 

𝑅wf(𝑧) = 𝑧 [1 + (
𝑧R

𝑧
)
2

], 

where 𝑧R =
𝜋𝑤0

2

𝜆
 is the Rayleigh range. 

For a confocal resonator, 𝑅 = 𝑑, and 𝑤0
2 =

𝜆𝑑

2𝜋
, so 

𝑧R =
𝜆𝑑

2𝜋
⋅
𝜋

𝜆
=
𝑑

2
=
𝑅

2
. 

So, 



𝑅wf(𝑧0) = 𝑧0 [1 + (
𝑅/2

𝑧0
)

2

] = 𝑧0 [1 +
𝑅2

4 𝑧0
2] = 𝑧0 +

𝑅2

4 𝑧0
. 

Let's check if this matches the slide's 𝑅prime(𝑧0) =
𝑅 (1+𝜉0

2)

2 𝜉0
 with 𝜉0 =

2 𝑧0

𝑅
. 

𝑅prime(𝑧0) = 𝑅 ⋅
1 + (

2 𝑧0
𝑅
)
2

2 ⋅ (
2 𝑧0
𝑅

)
= 𝑅 ⋅

1 +
4 𝑧0

2

𝑅2

4 𝑧0
𝑅

= 𝑅 ⋅
𝑅2 + 4 𝑧0

2

𝑅2
⋅
𝑅

4 𝑧0
=
𝑅2 + 4 𝑧0

2

4 𝑧0

=
𝑅2

4 𝑧0
+ 𝑧0. 

This is indeed identical to the standard formula 𝑅wf(𝑧0) = 𝑧0 +
𝑅2

4 𝑧0
 when 

𝑧R =
𝑅

2
. So the formula is correct. 

"Special cases": 

* "At mirrors 𝑧0 =
𝑑

2
 implies 𝜉0 = 1 implies 𝑅prime = 𝑅." For a confocal 

resonator, 𝑑 = 𝑅. So at the mirrors, 𝑧0 = ±
𝑅

2
. Then 𝜉0 =

2(±𝑅/2)

𝑅
= ±1. So 

𝜉0
2 = 1. 𝑅prime (𝑧0 = ±

𝑅

2
) = 𝑅 ⋅

(1+12)

2⋅1
 (taking positive 𝑧0 for 𝜉0 = 1) = 𝑅 ⋅

2

2
=

𝑅. This is a crucial self-consistency condition: the wavefront radius of 

curvature of the TEM₀ ₀  mode at the mirrors is 𝑅, which exactly matches 

the physical radius of curvature of the confocal mirrors. This is why these 

modes are stable. 

* "At beam waist 𝑧0 = 0 implies 𝑅prime = ∞ (plane wavefront)." At the beam 

waist (center of the confocal cavity), 𝑧0 = 0. Then 𝜉0 =
2⋅0

𝑅
= 0. The formula 

𝑅prime(𝑧0) =
𝑅2

4 𝑧0
+ 𝑧0 shows that as 𝑧0 approaches 0, the 

𝑅2

4 𝑧0
 term 

dominates and goes to infinity. So, 𝑅prime(0) = ∞. An infinite radius of 

curvature means the wavefront is planar at the beam waist. This is also a 

standard characteristic of Gaussian beams: they have a flat phase front at 

their narrowest point. 



Page 49: 

This slide discusses "General Spherical Resonators – Equivalence 

Criterion." We are moving beyond the specific confocal case 𝑑 = 𝑅, 𝑅1 =

𝑅2 = 𝑅 to resonators with two spherical mirrors that might have different 

radii of curvature 𝑅1, 𝑅2 and arbitrary separation 𝑑. 

The first bullet point states the principle: "Replace confocal mirrors by any 

pair whose local curvature equals that of Gaussian wavefront at same 𝑧." 

This is a powerful idea. If we have a Gaussian beam (like the TEM_00 

mode of a confocal resonator), its wavefronts have a specific radius of 

curvature 𝑅𝑤𝑓(𝑧) at each axial position 𝑧. We can, in principle, place 

mirrors at any two positions 𝑧1 and 𝑧2 along this beam, as long as the 

physical curvature of the mirror placed at 𝑧1 matches 𝑅𝑤𝑓(𝑧1) and the 

curvature of the mirror at 𝑧2 matches 𝑅𝑤𝑓(𝑧2). Such a resonator would also 

support that same Gaussian beam as a mode. 

The slide then considers a specific case: "For symmetric resonator (\(R_1 = 

R_2 = R_\)) of length \(d_\), require..." So, we have two identical mirrors, 

each with radius of curvature \(R_\), separated by a distance \(d_\). For this 

resonator to support a Gaussian beam whose wavefront curvature matches 

the mirrors, the condition is given: 

\[R_ = \frac{R^2 + d_^2}{2 d_*}\] 

This equation looks like it's relating the parameters (\(R_, d_\)) of a general 

symmetric resonator to the 𝑅 of some reference confocal resonator, or 

perhaps 𝑅 is a parameter from the Gaussian beam solution itself (like 2 𝑧R, 

the confocal length of the underlying beam). Let's interpret 𝑅 in the 

numerator as 2 𝑧𝑅,beam, where 𝑧𝑅,beam is the Rayleigh range of the 

fundamental Gaussian beam that "fits" this resonator. For a beam defined 

by waist 𝑤0, 

𝑧𝑅,beam =
𝜋𝑤0

2

𝜆
 



The radius of curvature of its wavefront at position 𝑧 (measured from the 

waist) is 

𝑅𝑤𝑓(𝑧) = 𝑧 (1 + (
𝑧𝑅,beam

𝑧
)
2

) 

If the symmetric resonator of length \(d_\) has its mirrors at \(z = \pm 

\frac{d_}{2}\) from the waist, then the radius of curvature of the mirrors 

\(R_\) must be equal to \(R_{wf}\left(\frac{d_}{2}\right)\). 

So, 

\[R_ = \frac{d_}{2}\left[1 + 

\left(\frac{z_{R,\text{beam}}}{\frac{d_}{2}}\right)^2\right] = \frac{d_}{2} + 

\frac{z_{R,\text{beam}}^2}{\frac{d_*}{2}}\] 

This means 

\[R_ = \frac{\left(\frac{d_}{2}\right)^2 + z_{R,\text{beam}}^2}{\frac{d_}{2}} = 

\frac{d_^2 + 4\,z_{R,\text{beam}}^2}{2\,d_*}\] 

Comparing this to the slide's 

\[R_ = \frac{R^2 + d_^2}{2\,d_*}\] 

it implies 

𝑅2 = 4 𝑧𝑅,beam
2 , or 𝑅 = 2 𝑧𝑅,beam. 

This 𝑅 is the length of an equivalent confocal resonator that would produce 

the same beam waist 𝑤0, since 

𝑧R =
𝑅confocal

2
. 

So, the equation relates the mirror curvature \(R_\) and separation \(d_\) of 

a general symmetric stable resonator to the parameter 𝑅 of an equivalent 

confocal resonator that shares the same fundamental mode. 

"which rearranges to..." (continued on next slide) 



Page 50: 

This page continues from the rearrangement of the equivalence criterion for 

general spherical resonators. The previous equation was 

𝑅⋆ =
𝑅2 + 𝑑⋆

2

2𝑑⋆
 

We want to solve for 𝑑⋆. 

2𝑑⋆𝑅⋆ = 𝑅2 + 𝑑⋆
2 

𝑑⋆
2 − 2𝑅⋆𝑑⋆ + 𝑅2 = 0 

This is a quadratic equation for 𝑑⋆: 𝑎𝑥
2 + 𝑏𝑥 + 𝑐 = 0, where 𝑥 = 𝑑⋆, 𝑎 = 1, 

𝑏 = −2 𝑅⋆, 𝑐 = 𝑅2. The solution is 

𝑑⋆ =
−𝑏 ± √𝑏2 − 4 𝑎𝑐

2 𝑎
 

𝑑⋆ =
2𝑅⋆ ± √(−2 𝑅⋆)

2 − 4 ⋅ 1 ⋅ 𝑅2

2
 

𝑑⋆ =
2𝑅⋆ ±√4 𝑅⋆

2 − 4 𝑅2

2
 

𝑑⋆ =
2𝑅⋆ ± 2√𝑅⋆

2 − 𝑅2

2
 

𝑑⋆ = 𝑅⋆ ± √𝑅⋆
2 − 𝑅2 

This is exactly what is shown on the slide: 

𝑑⋆ = 𝑅⋆ ± √𝑅⋆
2 − 𝑅2 

The interpretation is profound: "Hence an infinite family* of mirror 

curvatures yields identical internal field pattern to a reference confocal 

case." 



Let's clarify. 𝑅 is related to the beam waist 𝑤0 by 

𝑤0
2 =

𝑅𝜆

2𝜋
 

(where 𝑅 here is the length of the reference confocal resonator that gives 

this 𝑤0). For a given desired beam (defined by 𝑤0, or equivalently by 

𝑅 =
2𝜋𝑤0

2

𝜆
 

), we can choose a mirror radius of curvature 𝑅⋆ (as long as 

𝑅⋆
2 ≥ 𝑅2 

, which means 

|𝑅⋆| ≥ |𝑅| 

). Then, there are generally two possible mirror separations 𝑑⋆ (the plus 

and minus solutions) that will result in a symmetric resonator (mirrors of 

curvature 𝑅⋆) that supports that exact same internal Gaussian field pattern 

(same 𝑤0, same 𝑤(𝑧) profile). The asterisk on "infinite family*" might refer 

to the continuous choice of 𝑅⋆ (as long as 

|𝑅⋆| ≥ |𝑅| 

). For each such 𝑅⋆, we find one or two 𝑑⋆ values. This means many 

different physical resonators (different 𝑅⋆ and 𝑑⋆ combinations) can support 

the same fundamental Gaussian mode. The "reference confocal case" is 

when 

𝑑⋆ = 𝑅⋆ = 𝑅 

. In this case, 

√𝑅⋆
2 − 𝑅2 = 0 

, so 



𝑑⋆ = 𝑅⋆ 

, which is consistent. 

Other examples include: 

- Plane-parallel: 𝑅⋆ → ∞. This formula doesn't directly apply, but it's the limit 

where 𝑑⋆ can be anything, but 𝑅 must also effectively be infinite (plane 

wave). 

- Concentric: 𝑑⋆ = 2 𝑅⋆. Here, if 

𝑑⋆ = 𝑅⋆ + √𝑅⋆
2 − 𝑅2 

then 

𝑅⋆ = √𝑅⋆
2 − 𝑅2 

, which implies 

𝑅 = 0 

(infinite 𝑤0). This needs care. If 

𝑑⋆ = 2 𝑅⋆ 

, then from 

𝑅⋆ =
𝑅2 + 𝑑⋆

2

2 𝑑⋆
 

we get 

𝑅⋆ =
𝑅2 + 4 𝑅⋆

2

4 𝑅⋆
 

, so 

4 𝑅⋆
2 = 𝑅2 + 4 𝑅⋆

2 



, which implies 

𝑅 = 0 

. This means 𝑤0 would be zero (a perfect focus), which is an idealization. 

The formula is valid for stable resonators where 

𝑅⋆
2 > 𝑅2 

. 

Page 51: 

This slide introduces "Beam Radius & g-Parameter Notation," which is 

essential for characterizing general stable resonators, not just confocal 

ones. 

First, it defines the g-parameter: 

𝑔 = 1 −
𝑑

𝑅′
 

(The prime on 𝑅′ is usually omitted, so 𝑔 = 1 −
𝑑

𝑅
.) This "g" is a 

dimensionless parameter. For a resonator with two mirrors, M1 and M2, 

with radii of curvature 𝑅1 and 𝑅2, and separation "d", we define two g-

parameters: 

𝑔1 = 1 −
𝑑

𝑅1
 

𝑔2 = 1 −
𝑑

𝑅2
 

(By convention, 𝑅 is positive for a concave mirror if the center of curvature 

is within the cavity, or more generally, 𝑅 is positive if the mirror is concave 

as seen from inside the cavity). The slide uses 𝑅′, perhaps to distinguish 

from the confocal 𝑅. I'll use 𝑅. 



Then, formulas for the beam waist radius 𝑤0 (squared) and the spot size on 

the mirrors 𝑤1 (squared) and 𝑤2 (squared) are given in terms of these g-

parameters (assuming a symmetric resonator where 𝑔1 = 𝑔2 = 𝑔, or these 

are general formulas applicable to one of the mirrors). 

The formula for 𝑤0
2 looks like: 

𝑤0
2 =

𝑑𝜆

𝜋
√

1 + 𝑔

4(1 − 𝑔)
 

This needs checking. The standard formula for 𝑤0
2 for a general stable 

resonator defined by 𝑔1, 𝑔2, 𝑑, 𝜆 is: 

𝑤0
2 =

𝜆𝑑

𝜋
√

𝑔1𝑔2(1 − 𝑔1𝑔2)

(𝑔1 + 𝑔2 − 2 𝑔1 𝑔2)
2 

This is quite complex. For a symmetric resonator (𝑅1 = 𝑅2 = 𝑅mirror, so 𝑔1 =

𝑔2 = 𝑔), where 𝑔 = 1 −
𝑑

𝑅mirror

, the waist 𝑤0 is at the center (𝑧 = 0). 

𝑤0
2 =

𝜆𝑑

2𝜋
√
1 + 𝑔

1 − 𝑔
 

This is for a symmetric resonator. The slide has 

𝑤0
2 =

𝑑𝜆

𝜋
√

1 + 𝑔

4(1 − 𝑔)
 

which is equivalent to 

𝑤0
2 =

𝜆𝑑

2𝜋
√
1 + 𝑔

1 − 𝑔
 

if we take the 2 inside the square root as 4. Yes, this matches the standard 

for symmetric resonators. 



The formula for 𝑤1
2 (spot size on mirror 1) is given as: 

𝑤1
2 = 𝑤2

2 =
𝑑𝜆

𝜋

1

√1 − 𝑔2
 

This is also for a symmetric resonator (𝑔1 = 𝑔2 = 𝑔). The standard formulas 

for spot sizes on mirrors 𝑀1 and 𝑀2 are: 

𝑤1
2 =

𝜆𝑑

𝜋
√

𝑔2
𝑔1(1 − 𝑔1 𝑔2)

 

𝑤2
2 =

𝜆𝑑

𝜋
√

𝑔1
𝑔2(1 − 𝑔1 𝑔2)

 

If 𝑔1 = 𝑔2 = 𝑔, then 

𝑤1
2 = 𝑤2

2 =
𝜆𝑑

𝜋
√

𝑔

𝑔(1 − 𝑔2)
=
𝜆𝑑

𝜋

1

√1 − 𝑔2
 

This matches the slide's formula. 

The final bullet point: "Minimum 𝑤0 occurs at 𝑔 = 0 implies precisely the 

confocal geometry." For a symmetric resonator, 

𝑔 = 1 −
𝑑

𝑅mirror

. 

If 𝑔 = 0, then 

1 −
𝑑

𝑅mirror

= 0, 

which means 

𝑑

𝑅mirror

= 1, so 𝑑 = 𝑅mirror. 



This is exactly the condition for a confocal resonator. Let's check 𝑤0
2 for 

𝑔 = 0: 

𝑤0
2 =

𝜆𝑑

2𝜋
√
1 + 0

1 − 0
=
𝜆𝑑

2𝜋
. 

This is indeed the formula for the waist in a confocal resonator of length 

"d". 

Does this value of 𝑤0 correspond to a minimum? We have 𝑤0
2 proportional 

to 

√
1 + 𝑔

1 − 𝑔
. 

The stability condition for 𝑔1 𝑔2 is 0 < 𝑔1 𝑔2 < 1. For symmetric, 0 < 𝑔2 < 1, 

so −1 < 𝑔 < 1 (excluding 𝑔 = ±1 which are marginally stable). 

The function 

𝑓(𝑔) = √
1 + 𝑔

1 − 𝑔
 

over (−1,1): As 𝑔 → −1 from above, 1 + 𝑔 → 0, so 𝑓(𝑔) → 0. (This 

corresponds to 𝑑 near 2 𝑅, concentric). As 𝑔 → 1 from below, 1 − 𝑔 → 0, so 

𝑓(𝑔) → ∞. (This corresponds to 𝑑 near 0, or 𝑅 near infinity for plane-

parallel). The derivative of 
1+𝑔

1−𝑔
 is 

(1 − 𝑔) ⋅ 1 − (1 + 𝑔) ⋅ (−1)

(1 − 𝑔)2
=
1 − 𝑔 + 1 + 𝑔

(1 − 𝑔)2
=

2

(1 − 𝑔)2
, 

which is always positive. So, 
1+𝑔

1−𝑔
 is an increasing function of 𝑔. Thus, √

1+𝑔

1−𝑔
 

is also increasing. 



Therefore, the minimum 𝑤0 actually occurs as 𝑔 approaches −1 

(concentric limit), where 𝑤0 approaches 0. The statement "Minimum 𝑤0 

occurs at 𝑔 = 0" seems incorrect. At 𝑔 = 0 (confocal), 𝑤0 is finite and well-

behaved. It's not the global minimum for 𝑤0 within the stable range −1 <

𝑔 < 1. 

Perhaps it means minimum practical 𝑤0 or minimum 𝑤0 for a fixed 𝑑 when 

varying 𝑅? If 𝑑 is fixed, and 𝑅 varies, then 𝑔 varies. 

𝑤0
2 =

𝜆𝑑

2𝜋
√
1 + (1 −

𝑑
𝑅
)

1 − (1 −
𝑑
𝑅
)
=
𝜆𝑑

2𝜋
√
2 −

𝑑
𝑅

𝑑
𝑅

=
𝜆𝑑

2𝜋
√
2 𝑅

𝑑
− 1. 

For this to be real, 
2 𝑅

𝑑
≥ 1, or 𝑅 ≥

𝑑

2
. This expression for 𝑤0

2 clearly 

decreases as 𝑅 decreases towards 
𝑑

2
 (𝑔 → +1). And as 𝑅 increases (𝑔 →

1 − 0 = 1 if 𝑑/𝑅 → 0, or 𝑔 → 1 − (small positive) if 𝑑/𝑅 is small). The 

statement "Minimum 𝑤0 occurs at 𝑔 = 0" is problematic as stated. I will 

note this. 

Page 52: 

This slide discusses "Diffraction Loss in Confocal Cavities – Empirical Fit." 

We are back to the specific confocal case 𝑑 = 𝑅, or 𝑔1 = 𝑔2 = 0. 

The first bullet point provides a widely used approximation for the diffraction 

loss per round trip 𝛾D for the fundamental TEM00 mode in a confocal 

resonator with circular mirrors, when the Fresnel number 𝑁F is greater than 

1: 

𝛾D ≈ 16𝜋2𝑁Fexp(−4𝜋𝑁F) 

Here, 𝑁F =
𝑎2

𝜆𝑑
=

𝑎2

𝜆𝑅
 is the Fresnel number, where 'a' is the mirror radius. 

This formula shows that the diffraction loss depends on 𝑁F. The term 



exp(−4𝜋𝑁F) is a very rapidly decreasing function of 𝑁F because of the 

large factor 4𝜋 (approx 12.56) in the exponent. 

The second bullet lists "Observations." 

The third bullet elaborates: "Loss falls super-exponentially with 𝑁F." This is 

due to the exp(−constant ⋅ 𝑁F) term. The prefactor 16𝜋2𝑁F actually 

increases with 𝑁F, but the exponential decay is so strong that it dominates 

completely for 𝑁F > 1. So, as 𝑁F increases (e.g., by using larger mirrors for 

a given 𝜆 and 𝑑), the diffraction loss plummets extremely quickly. This is 

why confocal resonators are known for their low diffraction losses if 𝑁F is 

even moderately large. 

Page 53: 

This page continues with the implications of the diffraction loss formula for 

confocal cavities. 

The first bullet states: "Becomes < 10−6 for 𝑁F > 5." (Here 10−6 means one 

part in a million). 

Let's check this. If 𝑁F = 5: 

𝛾D ≈ 16𝜋2 × 5 × exp(−4𝜋 × 5) 

= 80𝜋2 × exp(−20𝜋) 

= 80 × (9.87) × exp(−62.83) 

= 789.6 × exp(−62.83) 

exp(−62.83) is (exp(−10))
6.283

. exp(−10) is 4.5 × 10−5. This will be 

incredibly small. 

exp(−62.83) = (
1

𝑒
)
62.83

. 

Using a calculator: exp(−62.83) ≈ 2.0 × 10−28. 



So 

𝛾D ≈ 789.6 × 2.0 × 10−28 = 1.6 × 10−25. 

This is vastly smaller than 10−6. 

Perhaps the formula was intended for something else, or there's a typo in 

the 𝑁F > 5 condition for 10−6. 

Let's try to find 𝑁F for which 𝛾D ≈ 10−6. 

16𝜋2  𝑁Fexp(−4𝜋 𝑁F) = 10−6. 

Approximately, 

158 𝑁F  exp(−12.57 𝑁F) = 10−6. 

If 𝑁F = 1, 

𝛾D ≈ 158 × exp(−12.57) ≈ 158 × 3.47 × 10−6 ≈ 5.5 × 10−4. 

If 𝑁F = 2, 

𝛾D ≈ 158 × 2 × exp(−25.14) ≈ 316 × 1.2 × 10−11 ≈ 3.8 × 10−9. 

This is already much less than 10−6 for 𝑁F = 2. 

So, the condition " 𝑁F > 5" for loss " < 10−6" is extremely conservative if 

this formula is correct. The loss becomes negligible much sooner. 

Siegman ("Lasers", Table 19.1) gives diffraction loss for confocal TEM00 as 

𝛼00 (loss fraction) ≈ 8𝜋𝜎exp(−4𝜋𝜎), where 𝜎 = 𝑁F. This is slightly different 

(factor of 2 in prefactor). For 𝑁F = 1, loss is 0.05%. For 𝑁F = 1.5, loss is 7 ×

10−6. For 𝑁F = 2, loss is 3 × 10−8. 

So, a loss less than 10−6 is achieved for 𝑁F somewhere between 1.5 and 2. 

The slide's claim " 𝑁F > 5" implies much higher 𝑁F is needed than what the 

formula (or similar ones) suggests. I will proceed with the formula result, 

noting the slide's value. 



The second part of the bullet point is a practical design implication: 

* This formula underpins mirror-size selection: choose 𝑎 so that computed 

𝛾D < gain margin. 

𝑎 is the mirror radius, which determines 𝑁F (since 𝑁F =
𝑎2

𝜆𝑅
). 

You need to choose your mirror radius 𝑎 large enough such that the 

resulting 𝑁F gives a diffraction loss 𝛾D that is significantly smaller than the 

available net gain (round-trip gain minus all other losses like reflection, 

scattering, absorption). If 𝛾D is too large, the laser won't reach threshold. 

"Gain margin" is the excess gain available to overcome this specific loss. 

So, you'd calculate the 𝑁F required for your acceptable 𝛾D, and then from 

𝑁F, 𝜆, and 𝑅, you'd find the minimum 𝑎. 

Page 54: 

This page shows a graph: "Diffraction Loss (𝛾D) vs. Fresnel Number (𝑁F)." 

The vertical axis is Diffraction Loss (𝛾D) on a logarithmic scale, ranging 

from 1 (or 100) down to 10−20. The horizontal axis is Fresnel Number (𝑁F) 

on a linear scale, from 1 to 4. 

There are two curves plotted: 

1. A blue curve labeled "Confocal." This curve starts at 𝑁F = 1 with 𝛾D 

around 10−4, and drops extremely steeply. By 𝑁F = 2, it's already below 

10−8. By 𝑁F = 3, it's around 10−14. By 𝑁F = 4, it's below 10−19. This 

illustrates the super-exponential decrease in loss with 𝑁F for confocal 

resonators, consistent with the formula exp(−4𝜋𝑁F). 

2. An orange curve labeled "Plane-Parallel." This curve is much flatter. It 

starts near 𝛾D = 1 (or slightly below, perhaps 0.5-0.8) at 𝑁F = 1 and very 

slowly decreases. By 𝑁F = 4, it might be around 0.1 or 0.2. This 

corresponds to the much weaker 𝛾D ∼
1

𝑁F

 dependence for plane-parallel 

resonators. 



This graph visually drives home the immense advantage of confocal 

resonators over plane-parallel ones in terms of minimizing diffraction losses 

for a given Fresnel number (i.e., for given mirror size 𝑎, wavelength 𝜆, and 

separation 𝑑). For 𝑁F = 2, the confocal loss is orders of magnitude 

(perhaps 7-8 orders) smaller than for plane-parallel. This is a very 

compelling illustration. 

Page 55: 

This slide introduces the "Stability Criterion – Derivation via Gaussian 

Beam Transport." This is a fundamental concept for designing any two-

mirror resonator. 

The first bullet says: "For general two-mirror system with radii 𝑅1, 𝑅2 and 

length 𝑑, define 𝑔1 = 1 −
𝑑

𝑅1
, and 𝑔2 = 1 −

𝑑

𝑅2
." These are the g-parameters 

we encountered earlier. 

- 𝑅1 is the radius of curvature of mirror 1. - 𝑅2 is the radius of curvature of 

mirror 2. - 𝑑 is the separation between the mirrors. - The sign convention 

for 𝑅1 and 𝑅2 is usually: 𝑅 > 0 for a concave mirror (center of curvature lies 

towards the interior of the cavity), and 𝑅 < 0 for a convex mirror. A plane 

mirror has 𝑅 = ∞, so its g-parameter is 1. 

The second bullet states: "ABCD-matrix analysis of Gaussian beam shows 

reproduction condition (finite spot size) implies 0 < 𝑔1𝑔2 < 1." This is the 

famous resonator stability criterion. 

- ABCD matrices are a tool used in paraxial optics to describe how a 

Gaussian beam's parameters (like spot size and wavefront curvature) 

transform as it passes through optical elements or free space. - For a 

Gaussian beam to be a stable mode of a resonator, it must reproduce its 

own spot size and wavefront curvature after one complete round trip. - 

When this condition is analyzed using ABCD matrices for a round trip in a 

two-mirror resonator, it leads to the requirement that the product of the g-



parameters, 𝑔1𝑔2, must lie strictly between 0 and 1 for the resonator to be 

stable. 

0 < 𝑔1𝑔2 < 1 

- "Stable" here means that the beam remains confined; its spot size on the 

mirrors remains finite. If this condition is not met, the resonator is 

"unstable," and a simple Gaussian beam will either expand to infinite size 

(diverge) or focus down to a point within the cavity, effectively being lost. 

This 𝑔1𝑔2 product is a compact and powerful way to determine if a given 

resonator geometry (defined by 𝑅1, 𝑅2, 𝑑) will support stable, confined 

modes. 

Page 56: 

This page elaborates on the consequences of the stability criterion 0 <

𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 < 1. 

The first bullet point explains: "If product outside interval implies beam 

either diverges to infinity or focuses before mirror." The "interval" referred to 

here is (0,1), so "outside interval" means the product 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 is less than 

or equal to 0, or 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 is greater than or equal to 1. 

As we discussed, the standard Gaussian beam formulas for finite spot 

sizes (𝑤𝑧𝑒𝑟𝑜, 𝑤𝑜𝑛𝑒, 𝑤𝑡𝑤𝑜) require the term 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜(1 − 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜) to be 

positive, which leads directly to the condition 0 < 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 < 1 for these 

simple Hermite-Gaussian mode solutions to be physically meaningful with 

real and finite spot sizes. 

If this condition is not met: * If 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 ≥ 1 (e.g., for plane-parallel mirrors 

where 𝑔𝑜𝑛𝑒 = 𝑔𝑡𝑤𝑜 = 1, so the product is 1; or for two mirrors that are too 

weakly curved for their separation), the ABCD matrix analysis shows that a 

paraxial ray initially close to the axis will progressively move further away 

from the axis on successive round trips. The beam effectively "walks off" 

the mirrors or diverges so rapidly that it cannot be confined. The calculated 



spot sizes from the standard formulas would become infinite or imaginary. 

If 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 ≤ 0 (e.g., if one 𝑔 is positive and the other is negative, or if one 

𝑔 is zero like in a confocal setup on the boundary), the situation is a bit 

more nuanced. While the simple Gaussian mode formulas might require 

careful interpretation or lead to imaginary spot sizes if they are naively 

applied*, some of these configurations can still be stable in a broader 

sense, or are marginally stable (like the confocal case where 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 = 0). 

For instance, certain types of "unstable resonators" used in high-power 

lasers deliberately operate in regions where 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 is outside the (0,1) 

interval, but they have different mode structures that are not simple 

confined Gaussians. 

However, for the purpose of standard, low-loss, stable Hermite-Gaussian 

modes, the condition 0 < 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 < 1 is the key. When outside this, the 

beam either isn't confined (diverges) or its behavior is more complex than a 

simple stable Gaussian mode. The phrase "focuses before mirror" can also 

occur in unstable configurations where the beam comes to a sharp focus 

internally and then rapidly expands. 

The second part of the bullet defines terminology: "* Term stable resonator 

reserved for geometries satisfying above; else unstable." So, within the 

context of seeking well-behaved, confined Hermite-Gaussian modes, a 

resonator is termed "stable" if its 𝑔-parameters satisfy 0 < 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 < 1. If 

this condition is not met, the resonator is considered "unstable" with 

respect to supporting these simple Gaussian modes. As experimentalists, 

this criterion is your first checkpoint when designing a cavity to support a 

well-behaved laser beam. 

Page 57: 

This slide, "Spot Sizes on Mirrors in Stable Case," provides algebraic 

results for the fundamental mode spot areas (or rather, radii squared, as 𝑤 

is radius) on the mirrors, attributed to Boyd & Gordon, for a stable 

resonator. 



The first bullet presents the "Algebraic result for fundamental mode spot 

areas": 

𝜋𝑤one
2 = 𝜆𝑑√

𝑔two

𝑔one(1 − 𝑔one𝑔two)
 

And, 

𝜋𝑤two
2 = 𝜆𝑑√

𝑔one

𝑔two(1 − 𝑔one𝑔two)
 

Let's analyze these important formulas: 

• 𝑤one is the spot radius (1/e field amplitude radius) of the TEM00 mode on 

mirror 1. 

• 𝑤two is the spot radius on mirror 2. 

• 𝜆 is the wavelength. 

• 𝑑 is the mirror separation. 

• 𝑔one = 1 −
𝑑

𝑅one

 and 𝑔two = 1 −
𝑑

𝑅two

 are the 𝑔-parameters of the two 

mirrors. 

These formulas are fundamental for designing stable resonators. They tell 

you how large the beam will be on each mirror, which is crucial for selecting 

appropriate mirror diameters to avoid excessive diffraction loss. 

Notice the term (1 − 𝑔one𝑔two) in the denominator under the square root. 

For 𝑤one and 𝑤two to be real and finite, we need 𝑔one𝑔two < 1. Also, for the 

overall term under the square root to be positive, we need 𝑔one and 𝑔two to 

have the same sign if their product is positive, which implies 𝑔one𝑔two > 0. 

Thus, these formulas are valid in the stable region 

0 < 𝑔one𝑔two < 1. 



The second bullet considers "Special situations": 

The third bullet gives an example: "g_one = g_two = g implies expression 

reduces to symmetric form earlier." 

This refers to a symmetric resonator, where 

𝑅one = 𝑅two = 𝑅mirror, 

so 

𝑔one = 𝑔two = 𝑔 = 1 −
𝑑

𝑅mirror

. 

In this case, 𝑤one
2  will equal 𝑤two

2 . Let's call it 𝑤𝑠
2 (spot size on either mirror). 

𝜋𝑤𝑠
2 = 𝜆𝑑√

𝑔

𝑔(1 − 𝑔2)
 

𝜋𝑤𝑠
2 = 𝜆𝑑√

1

1 − 𝑔2
 

𝜋𝑤𝑠
2 =

𝜆𝑑

√1 − 𝑔2
 

So, 

𝑤𝑠
2 =

𝜆𝑑/𝜋

√1 − 𝑔2
. 

This indeed matches the formula for 𝑤one
2 = 𝑤two

2  we saw on page 51 for a 

symmetric resonator. So, the general formulas correctly reduce to the 

symmetric case. 

Page 58: 

This page continues with special situations or limits related to the spot 

sizes in stable resonators. 



The bullet point states: “𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 approaches 1 from below (1 minus) 

implies spot sizes blow up implies resonator on verge of instability.” 

Let's examine this. The formulas for 𝑤𝑜𝑛𝑒
2  and 𝑤𝑡𝑤𝑜

2  (from the previous 

page) both have a factor of √1 − 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 in the denominator. 

As the product 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 approaches 1 (from values less than 1, ensuring 

the resonator is still in the stable region but moving towards the boundary 

of stability), the term 1 − 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 approaches 0. 

Therefore, the square root of 1 − 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 also approaches 0. 

Since this term is in the denominator of the expressions for 𝑤𝑜𝑛𝑒
2  and 𝑤𝑡𝑤𝑜

2 , 

this means that 𝑤𝑜𝑛𝑒
2  and 𝑤𝑡𝑤𝑜

2  will approach infinity. 

If the spot sizes on the mirrors "blow up" to become very large, the beam is 

no longer well-confined by mirrors of any practical finite size. This signifies 

that the resonator is becoming unstable. 

The boundaries of the stability region, 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 = 1, include: 

1. Plane-parallel resonators: 𝑅𝑜𝑛𝑒 = ∞ (𝑔𝑜𝑛𝑒 = 1), 𝑅𝑡𝑤𝑜 = ∞ (𝑔𝑡𝑤𝑜 = 1). 

Product 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 = 1. Here, the formulas would predict infinite spot size 

unless 𝑑 = 0, which is not a resonator. Plane-parallel resonators are known 

to be very sensitive and their modes tend to fill the entire mirror aperture. 

2. Concentric (or spherical) resonators: 𝑑 = 𝑅𝑜𝑛𝑒 + 𝑅𝑡𝑤𝑜. For a symmetric 

concentric resonator, 𝑑 = 2 𝑅𝑚𝑖𝑟𝑟𝑜𝑟, so 𝑔𝑜𝑛𝑒 = 𝑔𝑡𝑤𝑜 = 1 −
𝑑

𝑅𝑚𝑖𝑟𝑟𝑜𝑟
= 1 −

2 𝑅𝑚𝑖𝑟𝑟𝑜𝑟

𝑅𝑚𝑖𝑟𝑟𝑜𝑟
= 1 − 2 = −1. The product 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 = (−1) ⋅ (−1) = 1. Here again, 

the resonator is on the edge of stability, and the spot sizes on the mirrors 

are theoretically very large, while the waist at the center can be very small 

(approaching zero for ideal concentric). 

So, this behavior – spot sizes becoming extremely large as 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 

approaches 1 – is a key characteristic of resonators nearing the boundary 



of the stable operating regime. In practice, one usually designs resonators 

to be comfortably within the stable region (0 < 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 < 1) to ensure 

robustness against small perturbations in 𝑑 or mirror curvatures. 

Page 59: 

This slide presents the "Stability Diagram – Visual Map," which is a 

graphical representation of the resonator stability criterion. It's often called 

the Boyd-Kogelnik stability diagram. 

The diagram is a plot with 𝑔𝑜𝑛𝑒 on the horizontal axis and 𝑔𝑡𝑤𝑜 on the 

vertical axis. Both axes typically range from −1 to +1 or further, but the key 

features are usually within this range. 

The stable regions are defined by the condition 0 ≤ 𝑔𝑜𝑛𝑒  𝑔𝑡𝑤𝑜 ≤ 1. The 

lines 𝑔𝑜𝑛𝑒  𝑔𝑡𝑤𝑜 = 0 (which are the 𝑔𝑜𝑛𝑒-axis and the 𝑔𝑡𝑤𝑜-axis) and the 

hyperbolas 𝑔𝑜𝑛𝑒  𝑔𝑡𝑤𝑜 = 1 form the boundaries of the stable regions. 

The shaded area on the provided diagram represents these stable regions. 

It's the area between the 𝑔𝑜𝑛𝑒 and 𝑔𝑡𝑤𝑜 axes and the two branches of the 

hyperbola 𝑔𝑜𝑛𝑒  𝑔𝑡𝑤𝑜 = 1. 

Several specific resonator configurations are typically marked on this 

diagram: 

* Confocal (𝑔𝑜𝑛𝑒 = 0, 𝑔𝑡𝑤𝑜 = 0): This is the origin of the diagram. It lies on 

the boundary 𝑔𝑜𝑛𝑒  𝑔𝑡𝑤𝑜 = 0, so it's marginally stable. It's shown on the 

slide. 

* Plane-Parallel (𝑔𝑜𝑛𝑒 = 1, 𝑔𝑡𝑤𝑜 = 1): This point is at the corner of one of 

the stable regions, on the boundary 𝑔𝑜𝑛𝑒  𝑔𝑡𝑤𝑜 = 1. Also marginally stable. 

It's labeled "Plane-Plane" on the slide. 

* Concentric (symmetric: 𝑔𝑜𝑛𝑒 = −1, 𝑔𝑡𝑤𝑜 = −1): This point is also on the 

boundary 𝑔𝑜𝑛𝑒  𝑔𝑡𝑤𝑜 = 1. (Labeled (𝑔𝑜𝑛𝑒 = −1, 𝑔𝑡𝑤𝑜 = −1) on the slide). 



* Semi-confocal (e.g., one plane mirror 𝑔𝑜𝑛𝑒 = 1, other mirror 𝑅𝑡𝑤𝑜 = 𝑑, 

so 𝑔𝑡𝑤𝑜 = 0): This would be at (𝑔𝑜𝑛𝑒 = 1, 𝑔𝑡𝑤𝑜 = 0) or (𝑔𝑜𝑛𝑒 = 0, 𝑔𝑡𝑤𝑜 = 1). 

These points are on the axes, hence 𝑔𝑜𝑛𝑒  𝑔𝑡𝑤𝑜 = 0, marginally stable. 

(Labeled "Semiconfocal (𝑔𝑜𝑛𝑒 = 0, 𝑔𝑡𝑤𝑜 = 1)" and another implied 

"Semiconfocal" at (𝑔𝑜𝑛𝑒 = 1, 𝑔𝑡𝑤𝑜 = 0)). 

The slide shows a light blue shaded region that seems to cover the square 

from 𝑔𝑜𝑛𝑒 = −1 to 1 and 𝑔𝑡𝑤𝑜 = −1 to 1, but with the regions outside the 

hyperbolas 𝑔𝑜𝑛𝑒  𝑔𝑡𝑤𝑜 = 1 and outside the axes 𝑔𝑜𝑛𝑒 = 0, 𝑔𝑡𝑤𝑜 = 0 being 

implicitly unshaded or less emphasized. The primary stable regions are 

those enclosed by the axes and the hyperbolas. 

Any point (𝑔𝑜𝑛𝑒, 𝑔𝑡𝑤𝑜) that falls within the shaded stable regions represents 

a resonator configuration that will support confined Hermite-Gaussian 

modes. Points outside are unstable. This diagram is an invaluable tool for 

resonator designers. By choosing mirror curvatures (𝑅𝑜𝑛𝑒, 𝑅𝑡𝑤𝑜) and 

separation (𝑑), one calculates 𝑔𝑜𝑛𝑒 and 𝑔𝑡𝑤𝑜 and plots the point on this 

diagram to immediately see if the design is stable. 

Page 60: 

This slide provides a "Table of Common Resonators & Parameters (g_one, 

g_two, G)," where 𝐺 seems to be the product 𝐺 = 𝑔one × 𝑔two. (Note: 

Sometimes capital 𝐺 is used for other parameters like gain, so context is 

key). 

Let's go through the listed common resonators: 

"Confocal symmetric implies 𝑔one = 𝑔two = 0, 𝐺 = −1." 

For a symmetric confocal resonator, 𝑅one = 𝑅two = 𝑑. So, 𝑔one = 1 −
𝑑

𝑑
= 0. 

And 𝑔two = 1 −
𝑑

𝑑
= 0. The product 𝐺 = 𝑔one × 𝑔two = 0 × 0 = 0. The slide 

states 𝐺 = −1. This is inconsistent with 𝐺 being the product 𝑔one × 𝑔two. 

Let's assume 𝐺 here is not 𝑔one × 𝑔two but another parameter (perhaps 

related to magnification in unstable resonators, or round trip matrix 



element). Given the context of listing 𝑔1, 𝑔2, 𝐺, it's most natural to assume 

𝐺 = 𝑔1𝑔2. If so, 𝐺 should be 0 for confocal. I will proceed assuming 𝐺 on 

this slide should be the product 𝑔1𝑔2 for consistency with stability 

discussions. If 𝐺 is something else, the slide should define it. Assuming 

𝐺 = 𝑔1𝑔2: Confocal symmetric: 𝑔one = 0, 𝑔two = 0. Therefore, 𝐺 = 0. This is 

on the boundary of stability. 

"Plane-plane implies 𝑔one = 𝑔two = 1, 𝐺 = 1 (marginally unstable)." 

For plane-plane, 𝑅one = ∞, 𝑅two = ∞. So, 𝑔one = 1 −
𝑑

∞
= 1. And 𝑔two = 1 −

𝑑

∞
= 1. Product 𝐺 = 𝑔one × 𝑔two = 1 × 1 = 1. This is on the boundary of 

stability (0 ≤ 𝐺 ≤ 1). The term "marginally unstable" is often used, or 

"marginally stable." It's highly sensitive to mirror tilt. 

"Concentric symmetric (mirror centres coincide) implies 𝑔one = 𝑔two = −1, 

𝐺 = 1 (unstable)." 

For concentric symmetric, the cavity length 𝑑 = 2 𝑅mirror (where 𝑅mirror is the 

radius of curvature of each mirror, and the mirrors face each other, their 

centers of curvature coinciding at the midpoint of the cavity). 𝑔one = 1 −
𝑑

𝑅mirror

= 1 −
2 𝑅mirror

𝑅mirror

= 1 − 2 = −1. 𝑔two = 1 −
𝑑

𝑅mirror

= −1. Product 𝐺 = 𝑔one ×

𝑔two = (−1) × (−1) = 1. This is also on the boundary of stability (𝐺 = 1). 

The term "unstable" is used here; it's extremely sensitive to alignment, 

often considered practically unstable or at best marginally stable. 

"Semi-confocal (one flat, one 𝑅 = 2 𝑑) implies 𝑔one = 1, 𝑔two =
1

2
, 𝐺 = 0." 

Let mirror 1 be flat: 𝑅one = ∞, so 𝑔one = 1. Let mirror 2 have radius of 

curvature 𝑅two = 2 𝑑 (concave). So, 𝑔two = 1 −
𝑑

𝑅two

= 1 −
𝑑

2 𝑑
= 1 −

1

2
=

1

2
. 

Product 𝐺 = 𝑔one × 𝑔two = 1 ×
1

2
=

1

2
. This value 𝐺 =

1

2
 is within the stable 

region 0 ≤ 𝐺 ≤ 1 (in fact, 0 < 𝐺 < 1). So, a semi-confocal resonator is 

stable. The slide states 𝐺 = 0. This would imply 𝑔one × 𝑔two = 0. If 𝑔one = 1, 



𝑔two =
1

2
, then 𝑔one × 𝑔two =

1

2
. The condition 𝑅 = 2 𝑑 makes 𝑔two =

1

2
. 

Perhaps the 𝐺 = 0 on the slide for semi-confocal is an error, or 𝐺 is not 

𝑔1𝑔2. If 𝐺 is 𝑔1𝑔2, then 𝐺 =
1

2
 for this configuration. 

Let me re-evaluate my assumption about 𝐺. If 𝐺 is not 𝑔1𝑔2, what could it 

be? A common parameter in resonator theory is the overall magnification 

for unstable resonators or a parameter in mode frequency spacing. 

However, given 𝑔1 and 𝑔2 are listed, 𝑔1𝑔2 is the most direct "G" related to 

stability. Let's assume there's a typo in the 𝐺 values on the slide and 

proceed with 𝐺 = 𝑔1𝑔2. – Confocal: 𝑔1 = 0, 𝑔2 = 0. Product 𝑔1𝑔2 = 0. 

Stable (marginally). – Plane-plane: 𝑔1 = 1, 𝑔2 = 1. Product 𝑔1𝑔2 = 1. 

Stable (marginally, often considered difficult). – Concentric symmetric: 𝑔1 =

−1, 𝑔2 = −1. Product 𝑔1𝑔2 = 1. Stable (marginally, very difficult). – Semi-

confocal (one flat 𝑅1 = ∞, other 𝑅2 = 2 𝑑): 𝑔1 = 1. 𝑔2 = 1 −
𝑑

2 𝑑
=

1

2
. Product 

𝑔1𝑔2 =
1

2
. This is stable. 

The slide's characterizations like "marginally unstable" or "unstable" for 𝐺 =

1 points are reasonable. The 𝐺 = −1 for confocal and 𝐺 = 0 for semi-

confocal on the slide are puzzling if 𝐺 = 𝑔1𝑔2. Perhaps 𝐺 refers to (𝑚 + 𝑛 +

1) part of the Gouy phase sum for mode frequencies? For confocal (𝑔1𝑔2 =

0), mode frequencies have 

(𝑞 +
𝑚 + 𝑛 + 1

2
)
𝑐

2 𝑑
 

For general, it's 

(𝑞 +
𝑚 + 𝑛 + 1

𝜋
arccos(√𝑔1𝑔2))

𝑐

2 𝑑
 

If arccos(√𝐺slide) relates to this... arccos(√−1) → not real for confocal 𝐺 =

−1. arccos(√0) → 𝜋/2 for semi-confocal 𝐺 = 0, which is correct: 
𝑚+𝑛+1

2
. 

This could be it! 𝐺slide on the slide may represent the argument of the arccos 



in the frequency formula, or some transformation of it. Specifically, if the 

mode frequency is 

𝜈𝑞𝑚𝑛 =
𝑐

2 𝑑
[𝑞 +

1

𝜋
(𝑚 + 𝑛 + 1)arccos(√𝑔1𝑔2)] 

for some conventions, or arccos(√𝑔1𝑔2) OR arccos(sign × 𝑔average) etc. A 

common form is 

𝜈 =
𝑐

2 𝐿
[𝑞 +

𝑚 + 𝑛 + 1

𝜋
arccos(√𝑔1𝑔2)] 

This doesn't match the 𝐺 values on the slide directly. 

Given the title "Table of Common Resonators & Parameters (𝑔1, 𝑔2, 𝐺)", I 

will assume 𝐺 IS 𝑔1𝑔2 and point out the discrepancies in the listed 𝐺 values 

compared to calculated 𝑔1𝑔2 values, and use the calculated ones for 

assessing stability. 

Page 61: 

This slide presents a "Worked Design Problem – Ensure Gain Volume 

Filling." This is a very practical consideration. 

The "Example requirement" is: 

• Gain crystal diameter is 0.6 cm. 

• We want the fundamental mode (TEM00) to "fill it." This means the spot 

size of the laser mode inside the crystal should be comparable to the 

crystal's radius (which is 0.3 cm) to efficiently extract energy from the entire 

pumped volume. 

• The problem states: "Choose 𝑤one = 0.3 cm at mirror M_one." So, we 

are setting the spot radius on one of the mirrors to be 0.3 cm (3 mm). This 

mirror M_one might be adjacent to the crystal or the crystal might be near 

it. 



• A "Fresnel number 𝑁F = 3" is also specified. This 𝑁F is likely related to 

an aperture within the cavity or the crystal itself acting as an aperture, and 

𝑁F = 3 suggests moderate diffraction conditions. The definition 

𝑁F =
𝑎2

𝜆 𝑑
 

implies 'a' here would be the aperture radius for which this 𝑁F is relevant, 

perhaps the crystal radius. If crystal radius 𝑎cryst = 0.3 cm, then 

𝑁𝐹cryst
=

𝑎cryst
2

𝜆 𝐿cryst

 

if 𝐿cryst is its length, or related to mirror spot size and cavity length. This 

𝑁F = 3 specification seems a bit disconnected from 𝑤1 = 0.3 cm unless 𝑤1 

is the 'a' in 𝑁F for the mirror M1 itself (i.e., 𝑁𝐹mirror1
=

𝑤1
2

𝜆 𝑑
? This is not 

standard 𝑁F definition). 

Let's ignore the 𝑁F = 3 for a moment and focus on the core problem: 

"Invert spot size formula to find necessary 𝑔two." We are given 𝑤one (spot 

radius on mirror 1). We need to find 𝑔two for mirror 2. 

The formula for 𝑤one
2  was (from page 57): 

𝜋 𝑤one
2 = 𝜆 𝑑 √

𝑔two

𝑔one(1 − 𝑔one  𝑔two)
 

This formula has both 𝑔one and 𝑔two. If we want to find 𝑔two, we must know 

or choose 𝑔one, 𝜆, and 𝑑, in addition to the given 𝑤one. 

The problem on the slide then presents a formula for 𝑔two: 

𝑔two =
𝑤one
2

2 𝑁F  𝑑 𝜆
. 



This formula is very different from the one derived from the Boyd-Gordon 

spot size formula. 

Let's try to understand where this 

𝑔two =
𝑤one
2

2 𝑁F  𝑑 𝜆
 

might come from. 

If 𝑁F is defined as 

𝑁F =
𝑎2

𝜆 𝑑
, 

and if we assume the aperture 𝑎 that defines this 𝑁F is actually the spot 

size 𝑤one on mirror 1 (so 𝑎 = 𝑤one), then 

𝑁F =
𝑤one
2

𝜆 𝑑
. 

Substituting this into the slide's formula for 𝑔two: 

𝑔two =
𝑤one
2

2 (
𝑤one
2

𝜆 𝑑
) 𝑑 𝜆

, 

we get 

𝑔two =
𝑤one
2

2 𝑤one
2 =

1

2
. 

So, this formula on the slide seems to imply that 𝑔two must be 
1

2
 if the 𝑁F 

(related to 𝑤one itself) is used in this way. This would mean the design is 

constrained to 𝑔two =
1

2
 based on this particular definition/use of 𝑁F. 

This is a non-standard approach. A more typical design flow would be: 

1. Choose desired 𝑤one (e.g., to match crystal radius). 



2. Choose cavity length 𝑑 and wavelength 𝜆. 

3. Choose a value for 𝑔one (e.g., make M1 flat, so 𝑔one = 1, or choose 

some curvature). 

4. Then use the Boyd-Gordon formula to solve for the required 𝑔two that 

gives the desired 𝑤one. This usually involves solving a more complex 

algebraic equation. 

The slide's formula 

𝑔two =
𝑤one
2

2 𝑁F  𝑑 𝜆
 

is very specific and seems to tie 𝑔two directly to 𝑁F, where 𝑁F is defined 

based on 𝑤one itself (i.e., 𝑁F =
𝑤one
2

𝜆 𝑑
 if the formula is to yield 𝑔2 =

1

2
). If 𝑁F =

3 is an independent requirement (e.g., 𝑁𝐹aperture
=

𝑎ap
2

𝜆 𝑑
= 3), and 𝑤1 is also 

specified, then this formula tries to link them. 

Let's assume the slide's formula for 𝑔two is what we must use for this 

problem. 

𝑔two =
𝑤one
2

2 𝑁F  𝑑 𝜆
. 

We have 𝑤one = 0.3 cm = 0.003 m. 

𝑁F = 3. 

Parameters 𝑑 and 𝜆 will be given on the next slide to complete the 

calculation. 

The goal here is to find the 𝑔two for the second mirror based on the 

parameters of the first mirror's spot size and some 𝑁F constraint. 

Page 62: 

This page continues the worked design problem. 



It says: "Insert 𝑑 = 0.5 m, 𝜆 = 1 𝜇m (10−6 m)" into the formula for 𝑔two from 

the previous slide: 

𝑔two =
𝑤one
2

2 ⋅ 𝑁F ⋅ 𝑑 ⋅ 𝜆
. 

We had 𝑤one = 0.003 m and 𝑁F = 3. 

So, 

𝑔two =
(0.003 m)2

2 ⋅ 3 ⋅ (0.5 m) ⋅ (1 ⋅ 10−6 m)
. 

𝑔two =
9 ⋅ 10−6 m2

6 ⋅ (0.5 ⋅ 10−6 m2). 

𝑔two =
9 ⋅ 10−6 m2

3 ⋅ 10−6 m2. 

𝑔two = 3. 

The slide states: "implies 𝑔two = 3 (implies concave 𝑅two = −0.25 m)." 

Wait. If 𝑔two = 3, and 𝑔two = 1 −
𝑑

𝑅two

, with 𝑑 = 0.5 m. 

3 = 1 −
0.5 m

𝑅two

 

2 = −
0.5 m

𝑅two

 

𝑅two = −
0.5 m

2
= −0.25 m. 

A negative radius of curvature 𝑅two = −0.25 m means Mirror 2 is CONVEX 

(when viewed from inside the cavity). A concave mirror would have 𝑅two 

positive in this convention (e.g., if its center of curvature is within 𝑑). So, 

𝑔two = 3 implies a convex mirror M2 with 𝑅2 = −0.25 m. 



Now, the crucial check: "Stability satisfied? product 𝑔one 𝑔two = 3 > 1 

implies actually unstable." 

To check stability, we need 𝑔one. The problem statement chose 𝑤one =

0.3 cm at mirror 𝑀one, but it didn't specify 𝑔one for mirror 𝑀one. Is there an 

implicit assumption about 𝑔one? If we assume mirror 𝑀one is flat (a common 

starting point for design), then 𝑅one = ∞, so 𝑔one = 1. If 𝑔one = 1, then the 

product 𝑔one 𝑔two = 1 ⋅ 3 = 3. Since 3 > 1, this resonator configuration 

(𝑔one = 1, 𝑔two = 3) is indeed UNSTABLE according to the criterion 0 <

𝑔one  𝑔two < 1. 

The conclusion is: "implies must adjust design (e.g. larger 𝑅two or reduce 

𝑤one)." If the design is unstable, it won't support the desired confined 

Gaussian mode. To make it stable, we need to change parameters such 

that 0 < 𝑔one  𝑔two < 1. 

- "larger 𝑅two": If 𝑅two (which was −0.25 m, convex) is made "larger," it 

means making it less convex (e.g., 𝑅two = −0.5 m) or even flat (𝑅two = ∞, 

𝑔two = 1) or concave (𝑅two positive). If we keep M1 flat (𝑔one = 1), then we 

need 0 < 1 ⋅ 𝑔two < 1, so 0 < 𝑔two < 1. This means we need 0 <

(1 −
𝑑

𝑅two

) < 1. If 1 −
𝑑

𝑅two

> 0, then 1 >
𝑑

𝑅two

.    If 𝑅two > 0 (concave), 

then 𝑅two > 𝑑. (This is a stable configuration).    If 𝑅two < 0 (convex), 

then 1 > −
𝑑

|𝑅two|
, which is always true if 𝑑,   |𝑅two| are positive. If 1 −

𝑑

𝑅two

< 1, 

then −
𝑑

𝑅two

< 0, so 
𝑑

𝑅two

> 0. This requires 𝑅two to be positive (concave). So, 

for 𝑔one = 1, stability requires 𝑅two > 𝑑 (concave mirror M2 with radius of 

curvature larger than cavity length). Our calculated 𝑅two = −0.25 m 

(convex) clearly does not satisfy this. So, making 𝑅two "larger" should mean 

choosing a concave 𝑅two > 𝑑. 

- "reduce 𝑤one": If we reduce 𝑤one, and if 𝑔two is still calculated by that same 

formula 



𝑔two =
𝑤one
2

2 ⋅ 𝑁F ⋅ 𝑑 ⋅ 𝜆
, 

then reducing 𝑤one would reduce 𝑔two. If 𝑔two can be brought into the (0,1) 

range (assuming 𝑔one = 1), then it could become stable.   For example, 

if we want 𝑔two = 0.5 (stable with 𝑔one = 1), then: 

0.5 =
𝑤one
2

2 ⋅ 3 ⋅ 0.5 m ⋅ 10−6 m
=

𝑤one
2

3 ⋅ 10−6 m2. 

𝑤one
2 = 0.5 ⋅ 3 ⋅ 10−6 m2 = 1.5 ⋅ 10−6 m2. 

𝑤one = √1.5 ⋅ 10−3 m = 1.22 ⋅ 10−3 m = 0.122 cm. 

So, if we aim for a smaller spot size 𝑤one = 0.122 cm (instead of 0.3 cm), 

then 𝑔two would be 0.5, and the resonator (with 𝑔one = 1) would be stable. 

This example, despite the unusual formula for 𝑔two, illustrates the iterative 

nature of design: make an initial choice, check for stability, and adjust if 

necessary. The key takeaway is that simply achieving a desired spot size is 

not enough; the resulting resonator must also be stable. 

Page 63: 

This slide shifts focus to "Unstable Resonators – Motivation & Basic 

Geometry." We've primarily discussed stable resonators so far. Why would 

we want an unstable one? 

The first bullet explains the motivation: 

"High-gain bulk media (e.g. excimer, Nd-glass) waste inversion if confined 

to small Gaussian." 

- Some laser media, like excimer gases or large Nd:glass slabs, can 

provide very high gain over a large volume (large transverse cross-section). 

- If we use a stable resonator with these media, the fundamental TEM00 

mode is typically a small, well-confined Gaussian beam. This means only a 



small fraction of the available excited atoms/molecules in the large gain 

medium actually interacts with the laser mode and contributes to stimulated 

emission. Much of the stored energy (population inversion) in the outer 

regions of the gain medium would be "wasted" (e.g., lost to fluorescence). 

* Unstable cavity lets beam expand; more gain volume accessed; tolerates 

large intra-cavity power; natural output coupling via walk-off. 

Unstable resonators are designed such that the mode is not confined in the 

same way as in a stable resonator. Instead, the mode typically expands on 

each round trip. 

- "lets beam expand; more gain volume accessed": Because the mode 

expands to fill a larger transverse area, it can extract energy from a much 

larger portion of the high-gain bulk medium. This leads to higher output 

power and efficiency. 

- "tolerates large intra-cavity power": Since the mode is large, the intensity 

(power per unit area) can be kept below the damage threshold of the 

optical components, even if the total intracavity power is very high. 

- "natural output coupling via walk-off": In many unstable resonator designs, 

particularly "positive-branch" ones, the beam expands on each pass such 

that a portion of it "walks off" or spills around the edge of one of the mirrors 

(usually the output mirror). This spilled portion forms the output beam. This 

provides a way to extract a large fraction of the intracavity power, suitable 

for high-gain systems. 

"* Geometry variants" refers to the different ways unstable resonators can 

be configured. 

The second bullet point describes one common type: "Symmetric unstable 

(both 𝑅i same sign, |𝑔1|, |𝑔2| > 1)." 



- "both 𝑅i same sign": For example, both mirrors are convex (𝑅1 < 0, 𝑅2 <

0, as seen from inside), or both are concave but configured such that the g-

parameters are large. 

- "|𝑔1|, |𝑔2| > 1": Recall 𝑔 = 1 −
𝑑

𝑅
. If 𝑅 is convex, 𝑅 = −|𝑅|. So 𝑔 = 1 +

𝑑

|𝑅|
, 

which is > 1. 

- If both 𝑔1 and 𝑔2 are > 1, then their product 𝑔1𝑔2 will be > 1, which is the 

condition for instability. 

- This type of resonator leads to a diverging geometric wave that expands 

on each pass. Output is often taken by diffraction around a smaller 

feedback mirror. 

Page 64: 

This page continues with geometry variants for unstable resonators. 

The bullet point describes: "Asymmetric unstable (one mirror small 

curvature, one planar or opposite sign)." This refers to other ways to 

achieve 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 > 1 or 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 < 0, leading to instability. 

- "one mirror small curvature, one planar": If mirror 1 is planar, 𝑅𝑜𝑛𝑒 = ∞, so 

𝑔𝑜𝑛𝑒 = 1. If mirror 2 has a small curvature, it means |𝑅𝑡𝑤𝑜| is large. If 𝑀2 is 

convex (𝑅𝑡𝑤𝑜 = −|𝑅𝑡𝑤𝑜|), then 

𝑔𝑡𝑤𝑜 = 1 −
𝑑

−|𝑅𝑡𝑤𝑜|
= 1 +

𝑑

|𝑅𝑡𝑤𝑜|
 

Since 
𝑑

|𝑅𝑡𝑤𝑜|
 is positive, 𝑔𝑡𝑤𝑜 > 1. Then 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 = 1 × 𝑔𝑡𝑤𝑜 = 𝑔𝑡𝑤𝑜 > 1. This 

is unstable. This is a common setup: a flat mirror and a convex mirror. If 𝑀2 

is concave (𝑅𝑡𝑤𝑜 > 0) but with 𝑅𝑡𝑤𝑜 < 𝑑 (i.e., cavity length is greater than 

mirror's radius of curvature), then 

𝑑

𝑅𝑡𝑤𝑜
> 1, 𝑔𝑡𝑤𝑜 = 1 −

𝑑

𝑅𝑡𝑤𝑜
< 0 



Then 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 = 1 × 𝑔𝑡𝑤𝑜 < 0. This is also in the unstable region 

(specifically, 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 < 0 part). This can lead to a negative-branch 

unstable resonator. 

- "one mirror small curvature, one ... opposite sign [of curvature]." This 

could mean one mirror is concave (𝑅𝑜𝑛𝑒 > 0) and the other is convex 

(𝑅𝑡𝑤𝑜 < 0). 𝑔𝑜𝑛𝑒 = 1 −
𝑑

𝑅𝑜𝑛𝑒
. 𝑔𝑡𝑤𝑜 = 1 −

𝑑

𝑅𝑡𝑤𝑜
= 1 +

𝑑

|𝑅𝑡𝑤𝑜|
. So, 𝑔𝑡𝑤𝑜 > 1. If 

𝑅𝑜𝑛𝑒 is, for example, very large and positive (weakly concave) such that 

𝑔𝑜𝑛𝑒 is close to 1 (e.g., 𝑔𝑜𝑛𝑒 = 0.8), then 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 could still be > 1 if 𝑔𝑡𝑤𝑜 

is large enough (e.g., 𝑔𝑡𝑤𝑜 = 1.5 would give 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 = 1.2, unstable). Or, if 

𝑅𝑜𝑛𝑒 is such that 𝑔𝑜𝑛𝑒 is negative (e.g., 𝑅𝑜𝑛𝑒 is concave, but 𝑅𝑜𝑛𝑒 < 𝑑), and 

𝑅𝑡𝑤𝑜 is convex (𝑔𝑡𝑤𝑜 > 1), then 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 will be negative, which is also 

unstable. 

The key idea is that by choosing mirror curvatures and separation such that 

the product 𝑔𝑜𝑛𝑒𝑔𝑡𝑤𝑜 falls outside the stable range (0,1), various types of 

unstable resonators can be formed. These are categorized based on their 

geometry (e.g., positive-branch, negative-branch, confocal unstable, etc.) 

and have distinct mode properties, often involving geometrically expanding 

waves rather than confined Gaussian modes. 

Page 65 

This page has a title "Spherical Waves and Virtual Foci with Concave 

Mirrors" and a diagram. This diagram is likely meant to illustrate how waves 

behave in an unstable resonator, particularly a confocal unstable resonator. 

The diagram shows: - An optical axis (horizontal line). - Two concave 

mirrors, M1 on the left and M2 on the right, facing each other. - A point F1 

is marked to the left of M1. - A point F2 is marked to the right of M2. - A 

series of curved lines (wavefronts) are drawn between M1 and M2. - Blue 

wavefronts are shown expanding from left to right (originating from near F1, 

reflecting off M1, propagating towards M2). - Red wavefronts are shown 



expanding from right to left (originating from near F2, reflecting off M2, 

propagating towards M1). 

This setup is characteristic of a confocal unstable resonator, specifically a 

positive-branch confocal unstable resonator. 

In such a resonator: - Both mirrors are concave, say M1 has radius 𝑅1 and 

M2 has radius 𝑅2. - They are arranged such that the focal point of M1 (at 
𝑅1

2
 

from M1) coincides with the center of curvature of M2 (or a point related to 

𝑅2), and vice-versa, leading to a common virtual focus for waves expanding 

in opposite directions. - More precisely, for a positive-branch confocal 

unstable resonator, often 𝑅1 > 𝑑 and 𝑅2 < 0 (convex) or 𝑅1 and 𝑅2 are 

chosen such that 𝑔1𝑔2 > 1. The diagram shows two concave mirrors. 

A common confocal unstable setup uses two concave mirrors, say M1 

(radius 𝑅1) and M2 (radius 𝑅2, smaller than 𝑅1). M2 is the smaller 

"feedback" mirror, and M1 is the larger "output" mirror. They share a 

common focal point. The light reflects off M2, expands towards M1, reflects 

off M1, and a portion of it is refocused back towards M2, while the outer 

part of the beam that misses M2 (or is scraped off) forms the output. 

The points F1 and F2 in the diagram likely represent the common virtual 

centers of curvature for the expanding spherical waves that form the mode 

of this unstable resonator. The mode consists of a spherical wave 

appearing to emanate from F1, reflecting off M1, then appearing to 

emanate from F2 after reflecting off M2, and so on. The key is that the 

wavefront curvatures match the mirrors at incidence. 

This diagram illustrates the geometric optic picture of modes in some 

unstable resonators, where the field is better described as expanding 

spherical waves rather than confined Gaussian beams. 

Page 66: 



This slide is titled "Magnification Factor & Loss per Round-Trip" for 

unstable resonators. 

The first bullet states: "For generic unstable cavity, transverse diameter 

multiplies by 𝑀 each pass." 

In many unstable resonators, particularly positive-branch ones, the beam's 

transverse size (diameter or radius) increases by a geometric magnification 

factor, capital 𝑀, every time it makes a single pass through the resonator 

(or sometimes 𝑀 is defined for a round trip). This 𝑀 is typically greater than 

1. 

An expression for 𝑀 is given: 

𝑀 = (
𝑑 + 𝑅one

𝑅one

) (
𝑑 + 𝑅two

𝑅two

) 

This seems incorrect based on standard forms. Let's look at the next part of 

the equality. 

𝑀 = |𝐺| ± √𝐺2 − 1 

And 𝐺 is defined as 

𝐺 = 2 𝑔one𝑔two − 1 

This 𝐺 = 2 𝑔1 𝑔2 − 1 is a common parameter in unstable resonator theory. 

It's related to the eigenvalues of the round-trip ABCD matrix. 

The magnification 𝑀 is then one of the eigenvalues of the ray matrix 

analysis for transverse position and angle, often given as 

𝑀 = |𝐺 + √𝐺2 − 1| or 𝑀 = |𝐺 − √𝐺2 − 1| 

where one is 𝑀 and the other is 
1

𝑀
. For an expanding beam, 𝑀 > 1. 

So, 𝑀 = |𝐺 + √𝐺2 − 1| is typically the magnification if |𝐺| > 1 (which is true 

for unstable resonators where 𝑔1 𝑔2 > 1 or 𝑔1 𝑔2 < 0, making 𝐺2 > 1). The 



plus/minus on the slide could refer to the two eigenvalues, one being 𝑀 

and the other 
1

𝑀
 (or −

1

𝑀
). The magnification is the one with magnitude > 1. 

The second bullet addresses loss: "Fraction of power retained after 

reflection from small out-coupling mirror: 
𝑃return

𝑃zero

=
1

𝑀2
." 

This is a common result for the feedback coupling in unstable resonators 

where output is taken by geometric expansion. 

- 𝑃zero is the power incident on the feedback mirror (the smaller mirror). - 

𝑃return is the power reflected by this mirror that remains within the 

resonating mode. - If the beam diameter expands by 𝑀 per pass, its area 

expands by 𝑀2. - If the feedback mirror effectively re-captures only the 

central 
1

𝑀2
 fraction of the incident beam's area to send it back for another 

pass, then the fraction of power retained is 
1

𝑀2
. 

The loss per pass (or round trip, depending on 𝑀's definition) due to this 

geometric out-coupling is 

𝑉 = 1 −
𝑃return

𝑃zero

= 1 −
1

𝑀2
 

The slide writes "V = 1 - 1/M^2". This 𝑉 would be the fractional power lost 

(or coupled out) per round trip if 𝑀 is the round-trip magnification. 

Page 67: 

This page continues the discussion of the loss per round-trip, 𝑉, in an 

unstable resonator. 

"where 𝑉 = loss per round-trip." This confirms the interpretation of 𝑉 from 

the previous slide: 𝑉 = 1 −
1

𝑀2
 is the fraction of power lost (or coupled out 

as the useful beam) per round trip, if 𝑀 is the round-trip magnification 

factor. This is a purely geometric loss due to the beam expanding past the 

edges of the feedback mirror. 



* Typical 𝑉 is approximately 0.9 – 0.99 implies only 1–2 passes suffice; 

demands gain > 5 times higher than stable designs. 

This statement seems to have a misunderstanding of 𝑉 or typical values. If 

𝑉 is the loss per round trip, then 𝑉 = 0.9 means 90% loss per round trip. 

𝑉 = 0.99 means 99% loss per round trip. These are extremely high losses! 

If the loss is 90% per round trip, then the gain per round trip must be 

enormous to compensate (gain factor of 10). If loss is 99%, gain factor of 

100 is needed. 

"only 1–2 passes suffice": This implies that if the loss 𝑉 is high, the laser 

doesn't need many passes to build up. But usually, for a laser to lase, the 

gain must overcome the loss. If 𝑉 is this high, it means the output coupling 

is very large. 

Perhaps 𝑉 on the slide is actually meant to be the reflectivity of the 

effective output coupler (𝑅eff =
1

𝑀2
), and the loss is (1 − 𝑉). If 𝑅eff =

1

𝑀2
 is 

typically 0.9–0.99, this would mean 𝑀2 is 
1

0.9
∼ 1.11 or 

1

0.99
∼ 1.01. So 𝑀 is 

very close to 1. This would be a very low magnification unstable resonator, 

with low output coupling (10% or 1%). This contradicts the idea of "natural 

output coupling via walk-off" for high gain systems usually needing large 

output coupling. 

Let's re-read Siegman on unstable resonators. The geometric output 

coupling fraction is indeed 

𝐿 = 1 −
1

𝑀2
 

(where 𝑀 is round-trip magnification). For high gain lasers, 𝑀 is chosen to 

give substantial output coupling, e.g., 𝑀 = 2 gives 𝐿 = 1 −
1

4
= 0.75 (75% 

output coupling). In this case, 𝑉 = 0.75. 

The statement "Typical 𝑉 ∼ 0.9 − 0.99" if 𝑉 is loss, implies 𝑀 is very large: 



If 𝑉 = 0.9, then 
1

𝑀2
= 0.1, 𝑀2 = 10, 𝑀 ∼ 3.16. 

If 𝑉 = 0.99, then 
1

𝑀2
= 0.01, 𝑀2 = 100, 𝑀 = 10. 

These are reasonable magnifications for unstable resonators. So 𝑉 is 

indeed loss. If 𝑉 (loss) is 0.9 to 0.99, it means 90% to 99% of the energy is 

coupled out per round trip. This requires the single-pass gain to be very 

high. For example, if round-trip loss is 90%, then round-trip gain must be at 

least a factor of 10. 

"only 1–2 passes suffice": This could mean that due to the high gain and 

high output coupling, the photons don't need to make many round trips 

before being extracted. The effective photon lifetime in such a cavity is very 

short. 

Page 68: 

This slide is titled "Near & Far-Field Patterns of Unstable Resonator." Part 

(a) shows the "Near-Field Intensity Profile (Unstable Resonator)." The 

caption says: "Output at coupling mirror plane, showing annular beam with 

dark central zone. Assumes magnification 𝑀 = 2." 

Two diagrams are shown: 

1. "2D Beam Cross-Section": This is a circular view. It shows a bright outer 

ring (annulus), colored reddish-pink. The very center of this annulus is dark, 

labeled "Dark Zone." This doughnut shape is characteristic of the near-field 

output from many positive-branch unstable resonators. The dark central 

zone corresponds to the "shadow" of the smaller feedback mirror if the 

output is scraped around its edge, or it's the region that was blocked by the 

output coupler mirror itself if it's a hole-coupled unstable resonator (though 

scraping is more common for the 𝑀 = 2 geometric case). 

2. "1D Radial Intensity Profile": This shows a plot of intensity versus radial 

distance. It depicts a flat-topped profile for the bright annular region, 



dropping sharply to zero intensity in the central "Dark Zone," and also 

dropping sharply to zero at the outer edge of the annulus. This idealized 

"top-hat" annular profile is what one might expect from a purely geometric 

optics model of the unstable resonator with uniform illumination. 

The assumption 𝑀 = 2 means the beam diameter magnifies by a factor of 

2 on each pass. If the feedback mirror has diameter 𝐷𝑓𝑏, the beam incident 

on it from the previous pass would have had diameter 𝑀 ×𝐷𝑓𝑏 = 2 × 𝐷𝑓𝑏. 

The feedback mirror reflects the central part of diameter 𝐷𝑓𝑏, and the 

annulus from 𝐷𝑓𝑏 to 2 × 𝐷𝑓𝑏 is the output. So the inner diameter of the 

output annulus is 𝐷𝑓𝑏 and the outer is 2 × 𝐷𝑓𝑏. The central "dark zone" has 

diameter 𝐷𝑓𝑏. 

Page 69: 

This page shows part (b): "Far-Field Intensity Profile (Unstable 

Resonator)." The caption says: "Comparison with Airy disk from uniformly 

illuminated circular aperture of same outer diameter (𝑎)." (Here 𝑎 likely 

means the outer radius of the annular near-field beam). 

A "2D Far-Field Pattern (Unstable Resonator)" is shown on the left. It 

depicts a central bright spot, but it looks somewhat "speckled" or 

"structured" rather than perfectly smooth like an Airy disk. This is because 

the far-field pattern is the Fourier transform of the near-field annular 

aperture. 

On the right, a "1D Radial Intensity Profile Comparison" graph is shown, 

titled "Far-Field Intensity (𝑀 = 2, 𝜖 = 0.5)." - The vertical axis is 

"Normalized Intensity." - The horizontal axis is "Normalized Angle (𝑢 =

𝑘 𝑎 sin(𝜃))", where 𝑎 is the outer radius of the near-field annulus, 𝑘 =
2𝜋

𝜆
, 

and 𝜃 is the far-field angle. - 𝜖 = 0.5 refers to the obscuration ratio: 𝜖 =
inner radius

outer radius
. If 𝑀 = 2, then outer diameter is twice the inner, so outer radius is 

twice the inner radius. Thus, 𝜖 =
𝑟inner

𝑟outer

=
1

𝑀
=

1

2
= 0.5. This is consistent. 



Two curves are plotted: 1. "Unstable Resonator" (solid red line): This 

shows a central lobe that is narrower than the Airy disk's central lobe. 

However, its first side-lobe (and subsequent side-lobes) are significantly 

higher (stronger) than those of the Airy disk. The annotation points to 

"Narrower Central Lobe" and "Stronger Side-Wings." 2. "Airy Pattern (ref.)" 

(dashed blue line): This is the far-field diffraction pattern of a uniformly 

illuminated circular aperture of the same outer radius 𝑎 (with no central 

obscuration). It has a wider central lobe but much lower side-lobes. 

The key takeaway is that while the unstable resonator's far-field central 

spot can be narrower (implying better directivity for the very core of the 

beam), a significant amount of energy is thrown into the side-lobes due to 

the annular nature of the near-field. This can be an issue for applications 

requiring very clean beams with low side-lobe energy. 

Page 70: 

This slide introduces "Ring Resonators – Architecture & Directionality." So 

far, we've mostly considered standing-wave or linear resonators (light 

bounces back and forth along the same path). Ring resonators are 

different. 

* "Consist of ≥ 3 reflectors forming closed polygonal optical path; no wave 

retraces exact opposite direction." 

A ring resonator uses three or more mirrors to guide the light around a 

closed loop (e.g., a triangle for 3 mirrors, a rectangle for 4 mirrors). The key 

difference from a linear cavity is that light can, in principle, circulate around 

this loop in either the clockwise (CW) or counter-clockwise (CCW) 

direction, or both. Because the path is a closed loop, a wave traveling in 

one direction does not automatically retrace its path in the opposite 

direction unless there's a reflection that sends it backward, which is not the 

primary mode of operation. 



* "Supports traveling waves only implies eliminates standing-wave spatial 

hole burning inside gain medium." 

If the laser operates primarily with light traveling in only one direction 

around the ring (e.g., only CW), then the mode inside the gain medium is a 

traveling wave, not a standing wave. In a standing wave, there are fixed 

nodes (zero intensity) and antinodes (maximum intensity). "Spatial hole 

burning" occurs because the gain medium is depleted (atoms de-excite) 

more strongly at the antinodes, while inversion remains high at the nodes. 

This non-uniform gain saturation can allow other longitudinal modes (which 

have antinodes at different positions) to lase, leading to multi-mode 

operation. A traveling wave has uniform intensity (averaged over an optical 

cycle) along its path. This leads to more uniform gain saturation, which can 

help in achieving single longitudinal mode operation and more efficient 

energy extraction. This is a major advantage of ring lasers. 

* "Enforce unidirectional operation using optical diode assembly:" 

To get the benefit of a traveling wave, the laser needs to operate 

unidirectionally (either CW or CCW, but not both simultaneously). This is 

often achieved by introducing an "optical diode" or "optical isolator" element 

into the ring cavity. An optical diode allows light to pass with low loss in one 

direction but introduces high loss for light traveling in the opposite direction. 

Components of a typical optical diode assembly for ring lasers: 

* "Faraday rotator (non-reciprocal polarisation rotation by ±𝛼)." 

A Faraday rotator, when a magnetic field is applied along the direction of 

light propagation, rotates the plane of polarization of linearly polarized light. 

Crucially, this rotation is non-reciprocal: the direction of rotation (e.g., +𝛼 

degrees) is the same regardless of whether the light passes forward or 

backward through the rotator. So, if light passes through, gets rotated by 

+𝛼, reflects, and passes back, it gets another +𝛼 rotation (total 2𝛼 relative 

to initial, or 0 relative to the rotated state if you consider single pass). 



* "Birefringent reciprocal rotator (+𝛼)." 

This is usually an optically active material like crystalline quartz, or a 

waveplate, that also rotates the plane of polarization, but this rotation IS 

reciprocal. If it rotates by +𝛼 in the forward direction, it rotates by −𝛼 

(undoing the rotation) in the backward direction if it's a simple reciprocal 

rotator. The slide says "+𝛼" implying it adds to the rotation. Often, a half-

wave plate is used whose axis is oriented to provide a certain rotation. 

* "Polarisation-dependent Brewster windows provide differential loss." 

By combining a non-reciprocal Faraday rotator with a reciprocal rotator, 

one can arrange it so that light traveling in the desired direction (e.g., CW) 

experiences a net polarization rotation that allows it to pass through 

polarizing elements (like Brewster windows on the gain medium, or 

intracavity polarizers) with low loss. Light traveling in the opposite direction 

(CCW) experiences a different net rotation, resulting in a polarization state 

that suffers high loss at these polarizing elements. This difference in loss 

favors lasing in only one direction. 

Page 71: 

This slide provides a diagram illustrating a "4-Mirror Ring Resonator with 

Optical Diode (CW Operation Favored)." This continues the discussion 

from the previous page about ring resonators and achieving unidirectional 

operation. 

The diagram shows: 

- Four mirrors (M1, M2, M3, M4) arranged in a roughly rectangular path. 

- The optical path is shown with red lines and arrows indicating the 

Clockwise (CW) and Counter-Clockwise (CCW) directions. 

- Between M1 and M2, an element labeled "FR (−𝛼 CW, +𝛼 CCW)" is 

shown. This is the Faraday Rotator. It rotates the polarization by −𝛼 for CW 



light and by +𝛼 for CCW light (or vice-versa, the signs indicate non-

reciprocity). 

- Between this FR and M2, another element "BR (+𝛼)" is shown. This is the 

Birefringent Reciprocal rotator. It provides a +𝛼 rotation for light passing in 

either direction through it. 

- A "Net +90∘" rotation is indicated for the CW path after FR and BR. This 

implies  −𝛼FR, CW + 𝛼BR results in a specific desired rotation (e.g. to align 

with a polarizer). 

- A "Net 0∘" rotation is indicated for the CCW path after BR and FR. This 

implies +𝛼FR, CCW + 𝛼BR, effective for CCW roundtrip results in a different net 

rotation for the CCW beam, perhaps one that is extinguished by a polarizer. 

The exact values here (+45∘, −45∘ are also annotated) show how the 

specific rotations are engineered. 

- Near M4, "BW" (Brewster Window) is indicated, with P (parallel) and S 

(perpendicular) polarization states shown. Brewster windows transmit P-

polarized light with very low loss but reflect S-polarized light. This acts as 

the polarizer. 

The optical diode works as follows (simplified concept): 

- Assume light starts P-polarized (passes BW with low loss). 

- CW direction: The FR rotates it by −𝛼FR. The BR rotates it by +𝛼BR. The 

net rotation is designed such that the light arrives at the next polarizing 

element (e.g., another BW or the same one after a round trip) in a state that 

allows it to pass with low loss (e.g., still P-polarized or rotated back to P). 

- CCW direction: The FR rotates by +𝛼FR. The BR rotates by +𝛼BR 

(reciprocal). The net rotation for the CCW beam is different from the CW 

beam's net rotation. This difference is engineered such that the CCW beam 

arrives at the polarizing element in a state that experiences high loss (e.g., 

S-polarized or significantly mixed). 



- The green arrows with polarization symbols (double arrow for P, dot for S) 

show how the polarization state evolves for the CW path, which is favored. 

The specific angles (−45∘, +45∘,Net + 90∘,Net 0∘) shown are typical for an 

isolator setup that might rotate the polarization by 45∘ in the forward pass 

and effectively 0∘ or 90∘ (crossed) in the reverse to achieve isolation with 

polarizers. The diagram illustrates that CW operation is favored due to 

lower losses. 

Page 72: 

This slide outlines the "Benefits of Ring Geometry." 

"Full inversion utilisation – no nodes implies potentially higher single-mode 

power." 

This refers back to the elimination of spatial hole burning, which we 

discussed. In a standing-wave cavity, the gain medium has nodes and 

antinodes. At the nodes, the population inversion is not depleted by the 

lasing mode. This unused inversion can then provide gain for other 

longitudinal modes that happen to have antinodes at those locations, 

leading to multi-mode operation. 

In a ring laser operating unidirectionally with a traveling wave, the intensity 

is (ideally) uniform along the gain medium (when averaged over time or 

many wavelengths). This leads to more uniform saturation of the gain. 

Because the entire gain medium interacts more homogeneously with the 

single traveling wave mode, there's less opportunity for other modes to 

reach threshold. This helps in achieving single longitudinal mode operation. 

And because the entire volume of the gain medium contributes efficiently to 

this single mode, potentially higher power can be extracted in that single 

mode compared to a standing-wave laser of similar size that might be 

multi-mode due to spatial hole burning. 

"Natural frequency selection through travelling wave uni directionality; 

avoids Lamb dips caused by counter-propagating waves." 



 - "Natural frequency selection": Single longitudinal mode operation is 

easier to achieve. 

 - "avoids Lamb dips": The Lamb dip is a feature that appears in the 

power output versus frequency tuning curve of a standing-wave gas laser. 

It's a dip in power that occurs when the laser frequency is tuned exactly to 

the center of the atomic gain profile. It arises because at line center, both 

the forward and backward traveling components of the standing wave 

interact with the same group of atoms (those with zero axial velocity). This 

leads to a stronger saturation (double "hole burning" in the velocity 

distribution of atoms) at line center, reducing the gain and thus the output 

power. 

In a unidirectional ring laser, there's only one traveling wave. So, there's no 

second counter-propagating wave to cause this specific type of saturation 

effect at line center. Therefore, ring lasers do not exhibit the Lamb dip, 

which can simplify frequency stabilization schemes if one wants to lock to 

the center of the gain profile. 

Page 73: 

This page continues with more benefits of the ring geometry. 

"Convenient location of output coupler anywhere along path; can 

incorporate acousto-optic or electro-optic modulators with minimal 

perturbation." 

 - "Convenient location of output coupler": In a linear cavity, the output is 

usually taken from one of the end mirrors. In a ring cavity, since the light is 

circulating, an output coupling mirror (partially transmissive) can, in 

principle, be placed at any of the mirror locations in the ring, or a special 

output coupling element (like a frustrated total internal reflection coupler or 

a partially transmitting plate) could be inserted anywhere in the beam path 

within the ring. This offers more flexibility in the physical layout and design 

of the laser system. 



 - "can incorporate acousto-optic or electro-optic modulators with minimal 

perturbation":   Ring cavities often provide more physical space and 

easier access for inserting intracavity components like modulators (AOMs 

for 𝑄-switching or mode-locking, EOMs for mode-locking, frequency 

shifting, or stabilization). In a linear cavity, especially a short one, fitting 

these elements can be challenging. 

  "Minimal perturbation" might also refer to the fact that in a traveling 

wave, reflections from the surfaces of these intracavity components are 

less likely to cause coupled-cavity effects or feedback issues that can 

sometimes plague standing-wave lasers if the components are not perfectly 

anti-reflection coated and aligned. In a ring, a small reflection from a 

component surface would propagate in the "wrong" direction and ideally be 

suppressed by the optical diode or simply leave the main circulating path. 

This can lead to cleaner operation when intracavity elements are used. 

Page 74: 

This slide transitions to discussing the "Eigenfrequency Condition for 

Standing-Wave Cavities." We are returning to linear resonators to 

understand their resonant frequencies. 

* "Generic requirement – field exactly reproduces after integer number of 

half-wavelengths along round-trip length 2 𝑑." 

For a standing wave to form in a cavity of round-trip length 𝐿rt (which is 2 𝑑 

for a simple two-mirror linear cavity of length 𝑑), the total phase shift 

accumulated by the wave during one round trip must be an integer multiple 

of 2𝜋. 

This means 𝐿rt must be equal to an integer number of full wavelengths 

within the medium, 𝐿rt = 𝑞 ⋅ 𝜆mode. 

Or, equivalently, if 𝜆mode is the wavelength of the mode in the cavity, then 

an integer number “𝑞” of these wavelengths must fit into the round-trip path. 



The slide phrases it as "integer number of half-wavelengths." This seems 

slightly off for the phase reproduction condition. 

The condition for resonance is that the round trip phase is 𝑞 ⋅ 2𝜋. 

Phase = 𝑘 ⋅ 𝐿rt = (
2𝜋

𝜆mode

) ⋅ 𝐿rt = 𝑞 ⋅ 2𝜋. 

So, 𝐿rt = 𝑞 ⋅ 𝜆mode. The round trip length must be an integer number of full 

wavelengths. 

Perhaps it's thinking of path length 𝑑 = 𝑞 ⋅ 𝜆/2 for a string fixed at both 

ends. For a resonator, it's the round-trip phase. 

However, the statement can be salvaged if it refers to the additional phase 

shift beyond the basic 𝑘 ⋅ 𝐿rt. The total phase accumulated in a round trip 

includes not only the phase from propagation (𝑘 ⋅ 2 𝑑) but also phase shifts 

upon reflection from the mirrors (usually 𝜋 per reflection for ideal metallic 

mirrors, or more complex for dielectric mirrors) and, crucially for Gaussian 

beams, the Gouy phase shift. 

Let 𝛷total round trip be this total phase. For resonance, 𝛷total round trip must equal 

𝑞 ⋅ 2𝜋, where 𝑞 is an integer (the longitudinal mode number). 

" For confocal cavity (𝑅 = 𝑑) and on-axis point, solving 𝜙 = 𝑞𝜋 yields..." 

(The equation for resonant frequency 𝜈r is given). 

The condition given here, 𝜙 = 𝑞𝜋, also looks unusual if 𝜙 is the round trip 

phase. It should be 𝜙round trip = 𝑞 ⋅ 2𝜋. 

Let's look at the frequency formula that results: 

𝜈𝑟 =
𝑐

2 𝑑
[𝑞 +

1

2
(𝑚 + 𝑛 + 1)]. 

This is the well-known formula for the resonant frequencies of a confocal 

resonator (𝑅1 = 𝑅2 = 𝑑). 



- 𝑞 is the longitudinal mode index (a large integer). - 𝑚 and 𝑛 are the 

transverse mode indices (0,1,2, … ). - 
𝑐

2 𝑑
 is the fundamental longitudinal 

mode spacing (free spectral range for axial modes if 𝑚, 𝑛 fixed and Gouy 

phase ignored). 

The term 
(𝑚+𝑛+1)

2
 arises from the Gouy phase shift. For a confocal 

resonator, the round-trip Gouy phase shift for a TEM𝑚𝑛 mode is (𝑚 + 𝑛 +

1)𝜋. (The Gouy phase shift from one mirror to the other, passing through 

the waist, is (𝑚 + 𝑛 + 1)
𝜋

2
. So round trip is twice that). 

The total phase for resonance is 𝑘 ⋅ 2 𝑑 − (𝑚 + 𝑛 + 1)𝜋 = 𝑞 ⋅ 2𝜋. 

So, (
2𝜋𝜈

𝑐
) ⋅ 2 𝑑 = (𝑞effective +𝑚 + 𝑛 + 1)𝜋. 

𝜈 =
𝑐

4 𝑑
(𝑞effective +𝑚 + 𝑛 + 1). 

This does not quite match the 
𝑐

2 𝑑
 prefactor with (𝑞 +

(𝑚+𝑛+1)

2
). 

Let's re-derive using 𝜙round trip = 𝑞new ⋅ 2𝜋. 

The phase accumulated by a Gaussian beam in one round trip in a 

confocal resonator is: 

𝑘 ⋅ 2 𝑑 − (𝑚 + 𝑛 + 1)𝜋 = 𝑞new ⋅ 2𝜋 (where 𝑘

=
2𝜋𝜈

𝑐
, and 𝑞new is integer mode number). 

(
2𝜋𝜈

𝑐
) ⋅ 2 𝑑 = (𝑞new +

(𝑚 + 𝑛 + 1)

2
) ⋅ 2𝜋. 

𝜈 =
𝑐

2 𝑑
[𝑞new +

(𝑚 + 𝑛 + 1)

2
]. 

This matches the formula on the slide if we identify 𝑞 on the slide with 𝑞new. 



So, the premise "solving 𝜙 = 𝑞𝜋" leading to this was perhaps a shorthand. 

The key is the resulting frequency formula is correct. 

* "Axial modes (𝑚 = 𝑛 = 0): equally spaced by..." (continued on next slide). 

If 𝑚 = 0 and 𝑛 = 0 (fundamental transverse mode), the frequencies are: 

𝜈𝑞00 =
𝑐

2 𝑑
[𝑞 +

1

2
]. 

The spacing between successive axial modes (𝛥𝑞 = 1) would be 
𝑐

2 𝑑
. 

Page 75: 

This page continues from the previous one, giving the spacing for axial 

modes. 

The formula for the frequency spacing, 𝛥𝜈, is: 

𝛥𝜈 =
𝑐

2 𝑑
 

This is indeed the spacing between adjacent longitudinal modes (𝑞 and 𝑞 +

1) if the transverse mode indices (𝑚, 𝑛) are kept constant, and if the Gouy 

phase term 
𝑚+𝑛+1

2
 does not change significantly with 𝑞 or is the same for 

the modes being compared. 

For purely axial modes (𝑚 = 0, 𝑛 = 0) in a confocal resonator, the 

frequencies are 𝜈q =
𝑐

2 𝑑
(𝑞 +

1

2
). 

So, 𝜈𝑞+1 − 𝜈q =
𝑐

2 𝑑
[(𝑞 + 1 +

1

2
) − (𝑞 +

1

2
)] =

𝑐

2 𝑑
[1] =

𝑐

2 𝑑
. 

This 𝛥𝜈 =
𝑐

2 𝑑
 is often called the Free Spectral Range (FSR) of the cavity for 

longitudinal modes. It's a fundamental quantity determined by the round-trip 

optical path length. For a cavity of length 𝑑, a pulse of light takes 
2 𝑑

𝑐
 to 



make a round trip. The inverse of this time is 
𝑐

2 𝑑
, which is the fundamental 

frequency spacing. 

Page 76: 

This slide discusses "Degeneracy & Free Spectral Range" specifically for 

the confocal case and then generalizes. 

* "In confocal case, transverse indices with 𝑚 + 𝑛 = 2 𝑝 − 1 fill halfway 

points between successive axial lines implies degeneracy." Let's look at the 

confocal frequency formula: 𝜈 =
𝑐

2 𝑑
[𝑞 +

(𝑚+𝑛+1)

2
]. Consider axial modes 

(𝑚 = 𝑛 = 0): 𝜈𝑞,0,0 =
𝑐

2 𝑑
(𝑞 +

1

2
). These occur at 𝑞 + 0.5 units of 

𝑐

2 𝑑
. Now 

consider modes where 𝑚 + 𝑛 = 1 (e.g., TEM_10 or TEM_01). Then 
𝑚+𝑛+1

2
=

1+1

2
= 1. So, 𝜈𝑞,𝑚+𝑛=1 =

𝑐

2 𝑑
(𝑞 + 1). These frequencies coincide 

with where the next axial mode (𝑞 + 1,0,0) would be if its Gouy term was 

(𝑞′ + 0.5). Let's be more careful. Frequencies are proportional to 2 𝑞 + 𝑚 +

𝑛 + 1. An axial mode has frequency proportional to 2 𝑞 + 1. (e.g., 𝑞 =

10,  𝑚 = 𝑛 = 0 → 21) The next axial mode (𝑞 + 1,𝑚 = 𝑛 = 0) has frequency 

proportional to 2(𝑞 + 1) + 1 = 2 𝑞 + 3. A transverse mode with the same 𝑞, 

but 𝑚 + 𝑛 = 1, has frequency prop. to 2 𝑞 + 1 + 1 = 2 𝑞 + 2. This frequency 

(2 𝑞 + 2) lies exactly halfway between (2 𝑞 + 1) and (2 𝑞 + 3). So, modes 

with 𝑚 + 𝑛 odd (e.g., 𝑚 + 𝑛 = 2 𝑝 − 1 for integer 𝑝 ≥ 1) have frequencies 

that are (integer + 1/2)(𝑐/𝑑), while axial modes are (integer + 1/2)(𝑐/𝑑). 

Let 𝐾 = 𝑚 + 𝑛. Freq ~ 𝑞 +
𝐾+1

2
. If 𝐾 is even, 𝐾 = 2 𝑝, then 

𝐾+1

2
= 𝑝 +

1

2
. Freq 

~ 𝑞 + 𝑝 +
1

2
. (Same as axial modes but with shifted effective 𝑞). If 𝐾 is odd, 

𝐾 = 2 𝑝 − 1, then 
𝐾+1

2
= 𝑝. Freq ~ 𝑞 + 𝑝. (Integer multiples of 𝑐/2 𝑑). So, in 

a confocal resonator, there are two sets of equally spaced resonant 

frequencies: Set 1 (𝑚 + 𝑛 is even): 𝜈 =
𝑐

2 𝑑
(Integer

A
+

1

2
) Set 2 (𝑚 + 𝑛 is 

odd): 𝜈 =
𝑐

2 𝑑
 (Integer

B
) These two sets are interleaved. This means that 

modes with different (𝑞,𝑚, 𝑛) combinations can have the same resonant 



frequency. This is called frequency degeneracy. For example, a (𝑞,𝑚 + 𝑛 =

even) mode can be degenerate with a (𝑞′, 𝑚 + 𝑛 = odd) mode. 

"Therefore effective free spectral range (distance to next distinct frequency) 

𝛥𝜈confocal =
𝑐

4 𝑑
." Because of this interleaving, the spacing between distinct 

frequency groups is halved. The axial modes (𝑚 + 𝑛 = even, say 𝐾 = 0) 

are at (𝑞 +
1

2
)

𝑐

2 𝑑
. The next group of modes (𝑚 + 𝑛 = odd, say 𝐾 = 1) are at 

(𝑞 + 1)
𝑐

2 𝑑
. The difference is 

1

2
×

𝑐

2 𝑑
=

𝑐

4 𝑑
. So, the effective FSR, considering 

all transverse modes, is 
𝑐

4 𝑑
 for a confocal cavity, which is half of the 

longitudinal FSR (
𝑐

2 𝑑
). 

* "Small perturbation 𝑑 ≠ 𝑅 lifts degeneracy; general symmetric cavity 

frequency formula..." If the cavity is not perfectly confocal (i.e., 𝑑 is slightly 

different from 𝑅, but still symmetric 𝑅1 = 𝑅2 = 𝑅mirror), the simple 
𝑚+𝑛+1

2
 

term for the Gouy phase changes. The degeneracy is lifted, meaning 

modes with different (𝑚, 𝑛) but same 𝑚 + 𝑛 sum will now have slightly 

different frequencies. The general symmetric cavity frequency formula is 

given on the next slide. 

Page 77: 

This page provides the "general symmetric cavity frequency formula" 

mentioned on the previous slide, for when 𝑑 is not equal to 𝑅 (but 𝑅1 =

𝑅2 = 𝑅mirror still). 

The formula is: 

𝜈r =
𝑐

2 𝑑
{𝑞 +

1

2
(𝑚 + 𝑛 + 1) [1 +

4

𝜋
arctan (

𝑑 − 𝑅

𝑑 + 𝑅
)]}. 

This formula needs careful checking against standard forms. 



The Gouy phase shift for a symmetric resonator (mirrors 𝑅m at ±
𝑑

2
 from 

waist) is (𝑚 + 𝑛 + 1)arccos(𝑔), where 𝑔 = 1 −
𝑑

𝑅m

. So the term in the 

frequency formula related to Gouy phase should be (𝑚 + 𝑛 +

1)
1

𝜋
arccos(𝑔). Let's see if 

1

2
[1 +

4

𝜋
arctan (

𝑑 − 𝑅

𝑑 + 𝑅
)] 

is equivalent to 

1

𝜋
arccos(𝑔). 

We have 

𝑔 = 1 −
𝑑

𝑅m

. 

Let's test some limits: 

1. Confocal: 𝑑 = 𝑅m. Then 𝑔 = 0 and arccos(0) =
𝜋

2
. So Gouy term 

becomes 

(𝑚 + 𝑛 + 1)
1

𝜋

𝜋

2
=
𝑚 + 𝑛 + 1

2
. 

In the slide's formula, if 𝑑 = 𝑅m, then 

𝑑 − 𝑅m

𝑑 + 𝑅m

= 0 and arctan(0) = 0. 

So term becomes 

1

2
(𝑚 + 𝑛 + 1)[1 + 0] =

𝑚 + 𝑛 + 1

2
. 

This matches. 



2. Plane-parallel: 𝑅m → ∞. Then 𝑔 = 1 and arccos(1) = 0. Gouy term is 0. 

In the slide's formula, as 𝑅m → ∞, 

𝑑 − 𝑅m

𝑑 + 𝑅m

→
−𝑅m

𝑅m

= −1 and arctan(−1) = −
𝜋

4
. 

Term becomes 

1

2
(𝑚 + 𝑛 + 1) [1 +

4

𝜋
(−

𝜋

4
)] =

1

2
(𝑚 + 𝑛 + 1)[1 − 1] = 0. 

This also matches. 

3. Concentric: 𝑑 = 2 𝑅m. Then 

𝑔 = 1 −
2 𝑅m

𝑅m

= −1 and arccos(−1) = 𝜋. 

Gouy term is 

(𝑚 + 𝑛 + 1)
1

𝜋
𝜋 = (𝑚 + 𝑛 + 1). 

In the slide's formula, with 𝑑 = 2 𝑅m, 

𝑑 − 𝑅m

𝑑 + 𝑅m

=
2 𝑅m − 𝑅m

2 𝑅m + 𝑅m

=
𝑅m

3 𝑅m

=
1

3
, 

so that 

arctan (
1

3
) 

is obtained. The term then is 

1

2
(𝑚 + 𝑛 + 1) [1 +

4

𝜋
arctan (

1

3
)]. 

This is not equal to (𝑚 + 𝑛 + 1). In fact, 

[1 +
4

𝜋
arctan (

1

3
)] ≈ 1 +

4

3.14159
× 0.32175 ≈ 1 + 0.4096 = 1.4096, 



and we need this factor to be 2 for the 
1

2
 to cancel and leave (𝑚 + 𝑛 + 1). 

It's not. 

There appears to be an issue with the slide's formula for the general 

symmetric case if it's meant to reduce to 
1

𝜋
arccos(𝑔). 

The standard form for resonant frequencies of a stable resonator with 

mirrors 𝑅1, 𝑅2, separation 𝑑 is: 

𝜈𝑞𝑚𝑛 =
𝑐

2 𝑑
[𝑞 +

(𝑚 + 𝑛 + 1)

𝜋
arccos(√𝑔1 𝑔2)] for 𝑔1 𝑔2 ≥ 0. 

Or more generally, using 

𝐺boyd =
𝐴 + 𝐷

2
 

of the round trip matrix, where 𝐴 and 𝐷 are diagonal elements, 

𝜈𝑞𝑚𝑛 =
𝑐

2 𝑑
[𝑞 +

(𝑚 + 𝑛 + 1)

𝜋
arccos(𝐺boyd)]. 

For a symmetric resonator, 𝐺boyd = 𝑔. So it should be 

𝜈𝑞𝑚𝑛 =
𝑐

2 𝑑
[𝑞 +

(𝑚 + 𝑛 + 1)

𝜋
arccos(𝑔)]. 

The term 

1

2
[1 +

4

𝜋
arctan (

𝑑 − 𝑅

𝑑 + 𝑅
)] 

must be equal to 
1

𝜋
arccos(𝑔). This does not seem to be a general 

trigonometric identity. 

The formula on the slide might be a specific approximation or a form from a 

particular textbook that uses different conventions or parameterizations. 

Given its correctness at 𝑔 = 0 (confocal) and 𝑔 = 1 (plane-parallel), it might 



be a valid alternative form, perhaps related by some trig identity involving 

arctan and arccos under specific variable transformations. I will proceed by 

stating the formula as given on the slide but noting that the arccos(𝑔) form 

is more common. 

Page 78: 

This slide presents the "Most General Resonator Frequency Formula," 

applicable to resonators with unequal mirror radii 𝑅1 and 𝑅2. 

The formula given is: 

𝜈r =
𝑐

2 𝑑
[𝑞 +

1

𝜋
(𝑚 + 𝑛 + 1)arccos(√𝑔1 𝑔2)] 

This is a standard and widely accepted formula for the resonant 

frequencies of a stable two-mirror resonator, provided 𝑔1 𝑔2 is between 0 

and 1 (inclusive of 0 for √ ). 

- 𝑐 is the speed of light. - 𝑑 is the mirror separation. - 𝑞 is the longitudinal 

mode index. - 𝑚 and 𝑛 are transverse mode indices. - 𝑔1 = 1 −
𝑑

𝑅1
, 𝑔2 = 1 −

𝑑

𝑅2
. - The term arccos(√𝑔1 𝑔2) gives the Gouy phase contribution per half 

round trip, normalized by 𝜋. (Actually, arccos(√𝑔1 𝑔2) itself is an angle; 

dividing by 𝜋 and multiplying by (𝑚 + 𝑛 + 1) gives the fractional shift in 

terms of mode number 𝑞.) 

* "Works for unequal radii 𝑅1, 𝑅2." Yes, because 𝑔1 and 𝑔2 can be different. 

" Parameter arccos(√𝑔1 𝑔2) often called transverse mode spacing factor." 

This term determines how much the frequencies of modes with different 

transverse indices (𝑚, 𝑛) are shifted relative to the purely axial modes (if 

one imagined them without Gouy phase). It dictates the spacing between 

different families of transverse modes. 



* "Approaches 𝜋/2 in confocal limit; approaches 0 in plane-plane limit." 

Let's check these limits for the arccos(√𝑔1 𝑔2) term: - Confocal limit: Can 

be 𝑔1 = 0, 𝑔2 = 0 (symmetric confocal). Then √𝑔1 𝑔2 = 0. arccos(0) = 𝜋/2. 

This is correct. (If semi-confocal, 𝑔1 = 1, 𝑔2 = 0. √𝑔1 𝑔2 = 0. arccos(0) =

𝜋/2. Correct.) - Plane-plane limit: 𝑔1 = 1, 𝑔2 = 1. Then √𝑔1 𝑔2 = 1. 

arccos(1) = 0. This is correct. 

These limits confirm the behavior of the Gouy phase factor in these 

important cases. The total Gouy phase per round trip is 2arccos(√𝑔1 𝑔2). 

This formula is a cornerstone for understanding the mode spectrum of any 

stable resonator. 

Page 79: 

This slide is titled "Illustration of Mode Spectra Evolution." It shows a 

diagram with three panels, (a), (b), and (c), plotting mode frequencies. The 

horizontal axis is "Relative Frequency (units of 
𝑐

2 𝑑
)." The vertical lines 

represent the resonant frequencies of different modes. 

(a) "Plane-Plane": 

In a plane-parallel resonator, 𝑔1 = 1, 𝑔2 = 1, so arccos(√𝑔1 𝑔2) =

arccos(1) = 0. The frequency formula becomes 𝜈 =
𝑐

2 𝑑
𝑞. This means all 

transverse modes (𝑚, 𝑛) with the same longitudinal index 'q' are 

degenerate; they have the same frequency. The spectrum should show 

equally spaced lines at 𝑞 = integer multiples of 
𝑐

2 𝑑
. The diagram for (a) 

shows groups of lines. There's a tall black line (perhaps 𝑞,  𝑚 = 𝑛 = 0), and 

then shorter blue and orange lines very close to it, slightly offset. This 

implies some slight lifting of degeneracy or perhaps showing different 

(𝑚 + 𝑛) families that are not perfectly degenerate in a real plane-parallel 

due to imperfections or finite mirror effects not captured by the simple 



formula. Ideally, they should all be at the same frequency for a given 𝑞. The 

slide may be anticipating that perfect degeneracy is an idealization. 

(b) "Confocal": 

In a confocal resonator, arccos(√𝑔1 𝑔2) = arccos(0) =
𝜋

2
. The frequency 

formula is 𝜈 =
𝑐

2 𝑑
[𝑞 +

(𝑚+𝑛+1)

2
]. This means frequencies occur at (Integer + 

Fraction) multiples of 
𝑐

2 𝑑
. If 𝑚 + 𝑛 is even (say 2 𝑝), then 

(𝑚+𝑛+1)

2
= 𝑝 +

1

2
. 

Frequencies at (𝑞 + 𝑝 +
1

2
)

𝑐

2 𝑑
. If 𝑚 + 𝑛 is odd (say 2 𝑝 − 1), then 

(𝑚+𝑛+1)

2
=

𝑝. Frequencies at (𝑞 + 𝑝)
𝑐

2 𝑑
. The diagram for (b) shows equally spaced 

lines. A tall black line (axial mode, 𝑚+ 𝑛 even) is shown, and then a blue 

line appears exactly halfway between two successive black lines. This blue 

line represents the (𝑚 + 𝑛) odd family of modes. This is consistent with the 

effective FSR being 
𝑐

4 𝑑
. All modes with the same parity of (𝑚 + 𝑛) are 

degenerate for a given effective 𝑞. 

(c) "Near-Confocal": 

Here, the degeneracy found in the perfect confocal case is lifted. The term 

arccos(√𝑔1 𝑔2) is no longer exactly 
𝜋

2
 or 0. So, 𝜈 =

𝑐

2 𝑑
[𝑞 + (𝑚 + 𝑛 + 1) ⋅

constantA], where constantA =
arccos(√𝑔1  𝑔2)

𝜋
. Different (𝑚 + 𝑛) values will 

lead to different frequency shifts. The diagram for (c) shows the black axial 

modes. The blue lines (e.g., from the 𝑚 + 𝑛 = 1 family) are no longer 

exactly halfway but are shifted. The orange lines (e.g., from the 𝑚 + 𝑛 = 2 

family) are also shifted differently. The even spacing is broken, and the 

spectrum becomes more complex, with distinct frequencies for different 

(𝑚, 𝑛) combinations. 

This visual effectively shows how the resonator geometry (through 𝑔1,  𝑔2) 

influences the structure of the mode spectrum and the degeneracies. 

Page 80: 



This slide is titled "Resonance Width via Airy Finesse Approach." We are 

now looking at the sharpness of the resonance peaks. 

- "Fabry-Perot transmission intensity 𝑇(𝜈) =
1

1+𝐹∗sin
2(𝜋

𝜈

𝛥𝜈fsr
)
." 

This is the standard Airy formula for the transmission of a Fabry-Perot 

interferometer. - 𝑇(𝜈) is the transmittance as a function of frequency 𝜈. - 

𝛥𝜈fsr is the Free Spectral Range, which is 
𝑐

2 𝑑
 for a simple cavity if we are 

considering only longitudinal modes. This is the spacing between 

transmission peaks. - The argument of sin2 is 𝜋
𝜈

𝛥𝜈fsr
, which can also be 

written as 
𝜙

2
 where 𝜙 =

2𝜋𝜈

𝛥𝜈fsr
 is the round-trip phase shift (modulo 2𝜋). - 

\(F_\) is the "coefficient of finesse," related to mirror reflectivity 𝑅 by \(F_ = 

\frac{4\,R}{(1-R)^2}\). 

"where 𝐹 =
4 𝑅

(1−𝑅)2
 for negligible diffraction." 

The slide uses 𝐹 for 𝐹∗. This 𝐹 is indeed the coefficient of finesse. It is valid 

when losses are dominated by mirror transmission/reflection and diffraction 

is negligible (e.g., large Fresnel number). 

- "delta\_nu = c/(2d) free spectral range." 

𝛥𝜈 =
𝑐

2 𝑑
 free spectral range. 

- "Half-width at half-maximum (HWHM):" 

The Full Width at Half Maximum (FWHM) of the Airy transmission peaks is 

given by 

𝛥𝜈FWHM =
𝛥𝜈fsr
𝐹𝜋

, 

where 𝐹𝜋 is the "finesse" of the cavity, 𝐹𝜋 =
𝜋√𝐹∗

2
=

𝜋√𝑅

1−𝑅
. 



So, HWHM = FWHM / 2 = 
𝛥𝜈fsr

2 𝐹𝜋
. 

Let's see what formula the slide will give on the next page. 

Page 81: 

This page continues with the Half-Width at Half-Maximum (HWHM) of the 

resonance, denoted 𝛥𝜈r. 

The formula given is: 

𝛥𝜈r =
𝛿𝜈

𝐹⋆
 (which is FSR =

𝑐

2 𝑑
) 

and then equated to 

𝛥𝜈r =
𝑐

2 𝑑

(1 − 𝑅)

𝜋√𝑅
. 

This formula seems to be for the FWHM, not HWHM, if 𝐹⋆ is the coefficient 

of finesse. Let's re-check: FWHM =
𝐹𝑆𝑅

Finesse
. 𝐹𝜋 =

𝜋√𝑅

1−𝑅
. So FWHM =

𝑐

2 𝑑

(1−𝑅)

𝜋√𝑅
. 

This matches the second part of the slide's expression exactly. 

Therefore, 𝛥𝜈r on this slide represents the FWHM of the resonance peak, 

not the HWHM. The 𝐹⋆ in the first part, 𝛥𝜈r =
𝛿𝜈

𝐹⋆
, would then imply 𝐹⋆ =

𝜋√𝑅

1−𝑅
, 

which is the finesse 𝐹𝜋, not the coefficient of finesse 𝐹⋆ =
4 𝑅

(1−𝑅)2
. There's a 

notation inconsistency here with 𝐹⋆. I will assume 𝛥𝜈r is FWHM and the 

formula 
𝑐

2 𝑑

(1−𝑅)

𝜋√𝑅
 is correct for FWHM. This FWHM is the spectral width of an 

individual cavity mode. 

* "Mirrors with 𝑅 = 0.98 and 𝑑 = 1 𝑚 implies 𝛥𝜈r ≈ 1 MHz (ideal)." Let's 

calculate this: 𝑅 = 0.98. So (1 − 𝑅) = 0.02. √𝑅 = √0.98 ≈ 0.9899. 𝑑 = 1 m. 

𝑐 = 3 × 108 m/s. 𝛿𝜈fsr =
𝑐

2 𝑑
=

3×108  m/s

2×1 m
= 1.5 × 108  Hz = 150 MHz. 𝐹𝜋 =

𝜋√𝑅

(1−𝑅)
=

𝜋×0.9899

0.02
≈

3.14159×0.9899

0.02
≈

3.1098

0.02
≈ 155.49. 𝛥𝜈r (FWHM) =

𝛿𝜈fsr

𝐹𝜋
=



150 MHz

155.49
≈ 0.9647 MHz. This is indeed approximately 1 MHz. So, for typical 

high-reflectivity mirrors (98%) in a 1-meter long cavity, the resonance 

linewidth is about 1 MHz. This is a very sharp resonance. "Ideal" means 

this calculation assumes only transmission losses from the mirrors define 

𝑅, and no other losses (diffraction, scattering, absorption) are present. 

Page 82: 

This slide presents an "Alternate Derivation – Quality Factor Q" for the 

resonance width. 

* "Photon lifetime for reflection-dominated losses: 𝑇 =
𝑑

𝑐ln𝑅
." This formula for 

photon lifetime 𝑇 (often denoted 𝜏) needs a minus sign or absolute value 

for ln𝑅. Photon lifetime 𝜏ph =
(round trip time)

(round trip fractional power loss)
. Round trip time = 

2 𝑑

𝑐
. 

Round trip loss fraction = $1 - R_{\text{eff\_\text{round}\_\text{trip}}}$. If 

only reflections from two mirrors 𝑅1, 𝑅2, 𝑅eff = 𝑅1 𝑅2. If 𝑅1 = 𝑅2 = 𝑅 

(symmetric), then loss = 1 − 𝑅2. For high 𝑅, 1 − 𝑅2 = (1 − 𝑅)(1 + 𝑅) ≈

2(1 − 𝑅). So 𝜏ph ≈
2 𝑑

𝑐

2(1−𝑅)
=

𝑑

𝑐(1−𝑅)
. The slide uses ln𝑅. For high 𝑅, ln𝑅 =

ln(1 − (1 − 𝑅)) ≈ −(1 − 𝑅). So, 
𝑑

𝑐(−ln𝑅)
 or 

𝑑

𝑐|ln𝑅|
 is the form that matches 

𝑑

𝑐(1−𝑅)
. The slide's " 𝑇 =

𝑑

𝑐ln𝑅
" would be negative. It should be 𝑇 = −

𝑑

𝑐ln𝑅
 or 

using absolute value for ln𝑅 to ensure 𝑇 is positive. This " 𝑇" is the photon 

lifetime. 

* "Lorentzian spectral density for exponentially decaying field implies 

HWHM: 𝛥𝜈r =
1

2𝜋𝑇
." If a field amplitude decays exponentially with time 

constant 𝑇amp, its power spectrum is a Lorentzian with FWHM = 
1

𝜋𝑇amp

. If 

energy decays with time constant 𝑇energy (which is the photon lifetime 𝑇 

from the slide), then the field amplitude decays with 2 𝑇energy. So 𝑇amp =

2 𝑇energy. Then FWHM = 
1

𝜋⋅2 𝑇energy

=
1

2𝜋𝑇energy

. This means 𝛥𝜈r on the slide is 



indeed the FWHM, if 𝑇 is the energy lifetime. So, 𝛥𝜈r (FWHM) $= \frac{1}{2 

\pi T_{\text{photon\_\text{lifetime}}}}$. The slide then equates this to: 
𝑐|ln𝑅|

2𝜋𝑑
. 

This comes from substituting $T_{\text{photon\_\text{lifetime}}} = -\frac{d}{c 

\ln R}$ or 
𝑑

𝑐|ln𝑅|
. 𝛥𝜈r =

1

2𝜋(
𝑑

𝑐|ln𝑅|
)
=

𝑐|ln𝑅|

2𝜋𝑑
. This is a correct expression for the 

FWHM linewidth based on photon lifetime due to reflection losses. 

Page 83: 

This page continues the discussion from the alternate derivation of 

resonance width. 

* "For |ln𝑅| is approximately 1 − 𝑅 (when 𝑅 is approximately 1), reproduces 

Airy result up to √𝑅 factor." Let's check this. 

From previous slide, using lifetime approach: 𝛥𝜈r (FWHM) =
𝑐 |ln𝑅|

2𝜋𝑑
. 

If |ln𝑅| ≈ (1 − 𝑅), then 𝛥𝜈r ≈
𝑐(1−𝑅)

2𝜋𝑑
. 

From Airy finesse approach (page 81): 𝛥𝜈r (FWHM) =
𝑐

2 𝑑

(1−𝑅)

𝜋√𝑅
. 

This can be written as: 

𝛥𝜈r =
𝑐(1 − 𝑅)

2𝜋𝑑√𝑅
. 

Comparing the two: 

Lifetime: 
𝑐(1−𝑅)

2𝜋𝑑
 

Airy: 
𝑐(1−𝑅)

2𝜋𝑑√𝑅
 

These two results differ by a factor of √𝑅 in the denominator of the Airy 

result. So, the statement "reproduces Airy result up to √𝑅 factor" is correct. 

The lifetime approach gives a slightly larger linewidth (by factor 
1

√𝑅
, which is 



>1 if 𝑅 < 1) than the Airy approach if 𝑅 is not extremely close to 1. When 𝑅 

is very close to 1, √𝑅 is also very close to 1, and the two results become 

nearly identical. This slight difference often arises from different 

approximations made in the two derivations (e.g., whether it's amplitude or 

intensity reflectivity used in defining finesse, or approximations for high 𝑅). 

"Importance – shows directly how all loss mechanisms (not just mirror) 

broaden modes by shortening 𝑇." This is a very significant point. The 

lifetime approach (𝛥𝜈r =
1

2𝜋𝑇photon lifetime

) is more general. 

The photon lifetime 𝑇 can be limited by any loss mechanism in the cavity, 

not just mirror transmission (which defines 𝑅). 

If there are other losses (absorption, scattering, diffraction), they will 

contribute to reducing the overall photon lifetime. 

Total loss rate 

1

𝑇total

=
1

𝑇mirror transmission

+
1

𝑇absorption

+
1

𝑇scattering

+
1

𝑇diffraction

+⋯ 

A shorter 𝑇total (due to any combination of these losses) will lead to a 

broader resonance width 𝛥𝜈r. 

The Airy formula, using only 𝑅, typically accounts only for the loss due to 

mirror reflectivity/transmissivity. To use it more generally, 𝑅 would have to 

be an "effective" reflectivity that incorporates all losses. 

The lifetime picture is more direct: find the total lifetime considering all loss 

sources, and that directly gives the linewidth. This is a very useful 

conceptual link. 

Page 84: 

This slide discusses "Real-World Finesse Limiting Factors." The ideal 

finesse calculated from mirror reflectivity 𝑅 is often not achieved in practice. 



* "Surface scattering from micro-roughness (proportional to 𝜆−4)." Even the 

best mirrors are not perfectly smooth at the atomic level. Micro-roughness 

on the mirror surfaces causes light to scatter out of the specularly reflected 

beam. This scattering acts as a loss. The Rayleigh scattering criterion 

states that scattering intensity is often proportional to 𝜆−4, meaning it's 

much worse for shorter wavelengths (e.g., blue or UV light scatters more 

than red or IR). This can significantly reduce the effective reflectivity of the 

mirrors and thus limit the finesse. 

" Absorption in multi-layer dielectric stacks (materials, contamination)." 

Dielectric mirrors consist of many thin layers of alternating high and low 

refractive index materials. While these materials are chosen to be highly 

transparent at the laser wavelength, there's always some residual 

absorption in the layers. The amount of absorption depends on the 

materials used, their purity, and the quality of the deposition process. 

Contamination on the mirror surfaces (e.g., dust, organic films) can also 

absorb light. This absorption is another loss mechanism that reduces 

finesse. 

" Diffraction from finite mirror & aperture stops, esp. in power-built lasers 

with thermally distorted optics." We've discussed diffraction losses. Even if 

mirrors are large enough for low diffraction loss with an ideal beam, if the 

laser beam is distorted (e.g., due to thermal lensing in the gain medium in a 

high-power laser), it may no longer fit the mirrors well, leading to increased 

diffraction losses. Aperture stops (deliberate openings to control mode size 

or block stray light) also cause diffraction. 

" Misalignment (tilt implies TEM coupling), astigmatism (non-identical 

horizontal & vertical g values)." - Misalignment: If the mirrors are not 

perfectly parallel (for plane-parallel) or perfectly aligned along the optical 

axis, the losses can increase significantly. Tilt can also cause coupling of 

energy from the desired fundamental mode (TEM00) to higher-order TEM 

modes, which might have different losses or be unwanted. - Astigmatism: If 



the mirrors have different radii of curvature in the horizontal (𝑥) and vertical 

(𝑦) planes (e.g., due to manufacturing imperfections or if cylindrical mirrors 

are used), then the 𝑔-parameters will be different for the 𝑥 and 𝑦 directions 

(𝑔x is not equal to 𝑔y). This leads to astigmatic modes (e.g., elliptical spot 

shapes even for the fundamental mode) and can affect stability and losses. 

* "Practical finesses: 50 ≤ 𝐹 ≤ 100 for typical research-grade cavities; up to 

105 in ultra-high-reflection super-polished systems." - 𝐹𝜋 =
𝜋√𝑅

1−𝑅
. For 𝑅 =

0.98, 𝐹𝜋 ∼ 155. For 𝑅 = 0.99, 𝐹𝜋 ∼ 312. For 𝑅 = 0.97, 𝐹𝜋 ∼ 103. So, a 

finesse of 50–100 corresponds to mirror reflectivities around 97% or slightly 

lower if other losses are dominant. This is typical for many lab lasers where 

good, but not "hero‐ experiment" level, mirrors are used, or where other 

intracavity losses are present. - A finesse of 105 (one hundred thousand) is 

extremely high. This requires extremely high reflectivity mirrors (e.g., 𝑅 >

0.99997) and meticulous control of all other loss mechanisms (super-

polished substrates to minimize scatter, ultra-pure coatings for low 

absorption, operation in vacuum to avoid contamination, etc.). Such high 

finesses are achieved in specialized applications like cavity ring-down 

spectroscopy, optical frequency standards, or gravitational wave detectors 

(though those are interferometers, the principle of high finesse is related). 

Page 85: 

This final slide summarizes "Key Design Take-Aways" for laser resonators. 

It's a condensed list of practical advice. 

* "Size mirrors via Fresnel number to keep 𝛾D ≪ gain margin." Gamma_D 

is the diffraction loss. 𝑁F =
𝑎2

𝜆𝑑
. Choose mirror radius 'a' large enough to 

make 𝑁F high enough so that 𝛾D is much smaller than the available gain 

(gain margin = gain - other losses). This ensures diffraction doesn't prevent 

lasing or dominate efficiency. 



" Choose curvature to satisfy 0 < 𝑔1𝑔2 < 1 Engineer losses (aperture, tilt) 

to select one desired mode; use ring or unidirectional schemes to eliminate 

standing-wave nodes." (The $0 seems to be a placeholder for the stability 

criterion).         - Choose mirror curvatures \( R_1$, 𝑅2 and separation 𝑑 

such that the resonator is stable: 0 < 𝑔1𝑔2 < 1. - Loss engineering: 

Introduce elements like apertures, or carefully control alignment (tilt), to 

make losses higher for unwanted modes, thereby promoting oscillation in a 

single desired mode (often TEM00). - For single longitudinal mode 

operation or to avoid spatial hole burning effects, consider using a ring 

resonator with an optical diode to achieve unidirectional traveling-wave 

operation. 

"Estimate bandwidths via either finesse or quality-factor method; ensure 

gain linewidth exceeds cavity mode width but is not too wide for single-

mode." - The cavity mode width (𝛥𝜈cavity, e.g., FWHM) can be estimated 

using finesse (𝛥𝜈cavity =
FSR

Finesse
) or Q-factor (𝛥𝜈cavity =

𝜈laser

𝑄
). - The gain 

medium has its own gain bandwidth (𝛥𝜈gain), over which it can provide 

amplification. - For lasing to occur, the gain bandwidth must overlap with at 

least one cavity mode. So, 𝛥𝜈gain should be wide enough to cover a cavity 

mode. - However, if 𝛥𝜈gain is much wider than the cavity FSR (
𝑐

2 𝑑
), then 

multiple longitudinal cavity modes might fall within the gain bandwidth and 

could lase simultaneously, leading to multi-longitudinal-mode operation. - 

For single longitudinal mode operation, one often tries to have the cavity 

FSR be comparable to or larger than 𝛥𝜈gain (hard to achieve for broad gain 

media), or ensure that only one cavity mode has net gain above threshold. 

The statement "not too* wide for single-mode" means that if the gain curve 

is very broad, you'll need additional mode selection techniques if only one 

longitudinal mode is desired. 

" High-gain media may need unstable resonators; accept divergence, 

mitigate with external relay optics." - If the gain of the laser medium is very 

high (and often over a large volume), stable resonators might not be 



optimal for efficient power extraction or might lead to very high intracavity 

intensities. - Unstable resonators are often preferred for such systems 

because they allow the mode to fill a large volume of the gain medium and 

provide high output coupling. - The output beam from an unstable 

resonator is typically divergent (not collimated like an ideal Gaussian from a 

stable resonator) and may have a complex profile (e.g., annular with side-

lobes in the far field). This divergence must be "accepted" as a 

characteristic. - "mitigate with external relay optics": The divergent output 

beam can often be reshaped, collimated, or focused using external lenses 

or mirror systems (relay optics) to make it suitable for specific applications. 

This provides a good summary of the practical design philosophy for laser 

resonators, integrating many of the concepts we've discussed. 

This concludes the lecture content from the provided slides. 

  


