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Alright everyone, welcome. We are now embarking on Chapter 5.1, which 

delves into the "Fundamentals of Lasers." This section, prepared by 

Distinguished Professor Dr. M A Gondal for the Physics 608 Laser 

Spectroscopy course, will lay the foundational principles that govern how 

lasers operate. 

Understanding these fundamentals is absolutely crucial before we can 

explore their sophisticated applications in spectroscopy. We'll be covering 

the essential ingredients of a laser, the conditions required for light 

amplification, the role of the optical resonator, and the basic equations that 

describe laser behavior. So, let's begin our journey into the fascinating 

world of lasers. 
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Now, let's start with a crucial question: "Lasers in Spectroscopy — Why Do 

They Matter?" Why have lasers become such indispensable tools in the 

field of spectroscopy, revolutionizing it in many ways? This page outlines 

several key reasons, and I want to elaborate on each because their 

importance cannot be overstated. 

First, lasers "Provide monochromatic radiation with linewidths far below 

10−6 nanometers." Let's break this down. "Monochromatic radiation" means 

light of essentially a single wavelength, or a very narrow range of 

wavelengths. The "linewidth" quantifies this narrowness – how spread out 

in wavelength or frequency the laser light is. A linewidth far below 10−6 

nanometers, which is just one picometer, is exceptionally narrow. To put 

this in perspective, conventional light sources, like lamps, emit light over a 

very broad range of wavelengths. For example, a typical deuterium lamp 

used in UV spectroscopy might have a useful output over tens or hundreds 

of nanometers. Even so-called "line sources" like hollow cathode lamps 

have linewidths orders of magnitude broader than what a laser can 

achieve. 



Why is this extreme monochromaticity so vital for spectroscopy? 

Spectroscopy is all about studying the interaction of light with matter to 

probe energy levels, which are often very sharply defined. If your light 

source is broad, it's like trying to measure a very fine detail with a thick, 

blunt ruler. You simply can't resolve the fine features of an atomic or 

molecular spectrum. The narrow linewidth of a laser allows us to selectively 

excite or probe extremely specific transitions, resolving closely spaced 

energy levels and observing subtle spectral details that would be 

completely smeared out with a conventional source. This high spectral 

resolution is a hallmark of laser spectroscopy. 

Second, lasers "Deliver extremely high spectral radiance (power per unit 

area per unit solid angle per unit bandwidth) exceeding that of conventional 

lamps by greater than 1010." "Spectral radiance" is a critical figure of merit 

for a light source. Let's unpack its components: 

• Power: The total optical power emitted by the source. • Per unit area: 

The power emitted from a specific area of the source. • Per unit solid 

angle: The power emitted into a specific cone of directions. • Per unit 

bandwidth: The power emitted within a specific narrow range of 

wavelengths or frequencies. 

So, spectral radiance tells us how much power we can get, from a small 

spot, going in a specific direction, within a very narrow spectral interval. 

The fact that lasers exceed conventional lamps in spectral radiance by a 

factor of more than ten billion – that's 1010 – is astounding! 

What does this mean practically for spectroscopy? 

• High sensitivity: Because so much light can be concentrated into the 

specific wavelength and direction interacting with your sample, you can 

detect very weak signals or very small amounts of material. • Nonlinear 

spectroscopy: Many advanced spectroscopic techniques, which we will 

discuss later, rely on nonlinear optical effects. These effects typically 

require very high light intensities to become significant. The high spectral 



radiance of lasers provides these necessary high intensities, opening up 

entirely new avenues of spectroscopic investigation that are impossible 

with conventional sources. 

Third, lasers "Supply excellent spatial coherence, which leads to diffraction-

limited beams, enabling long interaction lengths and tight focusing." 

"Spatial coherence" means that the phase of the light wave is well-defined 

and consistent across the wavefront of the beam. Imagine ripples on a 

pond; if they are all perfectly ordered and in step, that's like spatial 

coherence. A consequence of high spatial coherence is that laser beams 

can be "diffraction-limited." This means the beam diverges (spreads out) 

only by the minimum amount dictated by the laws of diffraction, and it can 

be focused down to a very small spot size, also limited only by diffraction. 

What are the benefits for spectroscopy? 

• Long interaction lengths: Because a laser beam can remain highly 

collimated (parallel) over long distances, you can pass it through a long 

path length of your sample. For absorption spectroscopy, according to the 

Beer-Lambert law, the absorbance is proportional to the path length. So, 

long interaction lengths dramatically increase sensitivity for detecting 

weakly absorbing species. • Tight focusing: The ability to focus a laser 

beam to a very small spot (micrometers or even nanometers) creates 

extremely high local intensities. This is vital for nonlinear spectroscopy, as 

mentioned, and also for techniques like laser scanning microscopy or for 

probing very small sample volumes. 

These three properties – extreme monochromaticity, enormous spectral 

radiance, and excellent spatial coherence – are the primary reasons why 

lasers have transformed spectroscopy. 
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Continuing with "Lasers in Spectroscopy — Why They Matter," we have 

two more critical advantages. The fourth key property is that lasers "Allow 



precise control of frequency and phase." This capability is "essential for 

Doppler-free, saturation, and heterodyne techniques." Let's delve into this. 

"Precise control of frequency" means we can tune the laser's emission 

wavelength with very high accuracy and stability, often to within kilohertz or 

even hertz of a desired frequency. "Precise control of phase" means we 

can manage the phase of the electromagnetic wave, which is crucial for 

interferometric measurements. Why is this control so important for these 

advanced techniques? 

- Doppler-free spectroscopy: In a gas, atoms or molecules are moving 

randomly. Due to the Doppler effect, each particle "sees" a slightly different 

light frequency depending on its velocity relative to the beam. This leads to 

Doppler broadening of spectral lines, often obscuring fine details. Doppler-

free techniques, like saturation spectroscopy or two-photon spectroscopy, 

cleverly use the properties of lasers (like counter-propagating beams of 

precisely the same frequency) to interrogate only those atoms or molecules 

with a specific velocity component (usually zero velocity along the beam 

axis), thereby eliminating Doppler broadening and revealing the true, 

natural linewidth of the transition. This requires exquisite frequency control. 

- Saturation spectroscopy: This is a common Doppler-free technique. A 

strong "pump" beam, tuned to an atomic or molecular transition, selectively 

excites (saturates) particles in a narrow velocity group. A weaker "probe" 

beam, often from the same laser or another precisely controlled laser, then 

measures the absorption. The precise frequency control of both beams is 

paramount. 

- Heterodyne techniques: Heterodyne detection involves mixing the signal 

light (e.g., light transmitted through or scattered by a sample) with a strong, 

stable reference laser beam, called a local oscillator, on a detector. The 

detector then produces a beat signal at the difference frequency. This 

technique allows for extremely sensitive detection of weak signals and 

measurement of both amplitude and phase of the light. The phase stability 



and precise frequency control of the local oscillator laser are absolutely 

critical for successful heterodyne detection. 

The fifth major advantage is that lasers "Offer tunability (via dye, 

Ti:sapphire, OPO, etc.)." This tunability allows "access to virtually any 

atomic / molecular transition when combined with nonlinear optics." 

"Tunability" means we can change the output wavelength of the laser, 

ideally over a broad range. While some lasers operate at fixed frequencies 

(like the He-Ne laser at 632.8 nanometers), many important laser types are 

tunable: 

- Dye lasers: These use organic dyes as the gain medium and can be 

tuned over tens to hundreds of nanometers, typically in the visible and 

near-UV/IR spectral regions, by changing the dye or tuning elements within 

the cavity. 

- Titanium-sapphire lasers (often written Ti:Al2O3, pronounced Ti-sapphire): 

These are solid-state lasers with a very broad tuning range, typically from 

about 650 nanometers to 1100 nanometers in the near-infrared. They are 

workhorses for many applications. 

- Optical Parametric Oscillators (OPOs): These are devices based on 

nonlinear optical crystals that can convert a fixed-frequency pump laser into 

two tunable output beams (signal and idler) whose frequencies sum to the 

pump frequency. OPOs can provide tunable output over very wide ranges, 

from the UV to the mid-infrared. 

The ability to tune the laser wavelength is incredibly powerful because 

different atoms and molecules have their characteristic transitions at 

different wavelengths. A tunable laser allows a spectroscopist to "dial in" to 

the specific transition of interest. Furthermore, "when combined with 

nonlinear optics," the wavelength coverage can be extended even further. 

Nonlinear optical processes like: 



- Frequency doubling (Second Harmonic Generation, SHG): Converts light 

to twice its frequency (half its wavelength). For example, green laser 

pointers are often infrared lasers whose output is frequency-doubled. 

- Sum Frequency Generation (SFG) and Difference Frequency Generation 

(DFG): Mix two laser beams in a nonlinear crystal to produce output at the 

sum or difference of their frequencies. 

By using these nonlinear techniques with tunable lasers, spectroscopists 

can generate coherent radiation at virtually any wavelength needed to 

probe a vast array of atomic and molecular transitions, from the deep UV to 

the far-infrared. This "access to virtually any transition" has truly opened up 

the entire electromagnetic spectrum for high-resolution spectroscopic 

study. 
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This page provides a wonderful visual summary of the key laser properties 

we've just discussed, comparing lasers to conventional lamp sources and 

illustrating the benefits. 

Let's first look at the top graph, titled "Laser vs. Lamp Spectrum 

(Monochromaticity & High Radiance)." The vertical axis represents 

"Intensity" in arbitrary units, and the horizontal axis is "Wavelength" in 

nanometers, ranging from 400 nanometers (blue light) to 700 nanometers 

(red light), covering the visible spectrum. 

We see two distinct spectral profiles: * The "Lamp Spectrum" is shown as a 

broad, gentle blue curve, peaking around 550 nanometers but spread out 

over the entire visible range. This illustrates the wide range of wavelengths 

emitted by a typical broadband lamp. In stark contrast, the "Laser Line" is 

depicted as an extremely sharp, tall red spike, also centered around 

550 nanometers in this example. The key here is its incredible narrowness. 

An annotation states "𝛥𝜆 < 10−6 nm" – that is, "Delta lambda is less than 

10−6 nanometers" – emphasizing the picometer-level or better linewidth we 



discussed. While the height of the laser line here is shown as 

approximately five times the peak of the lamp spectrum, this is purely 

illustrative for visibility; the true distinction in spectral radiance* is far more 

dramatic. As another annotation points out: "Spectral Radiance: Laser is 

greater than 1010 times that of a Lamp." This underscores the immense 

concentration of power within that tiny spectral bandwidth for a laser. 

To the right of this graph, a list summarizes these "Key Laser Properties": * 

"Monochromatic (𝛥𝜆 ≪ 10−6 nm)" – Delta lambda is much, much less than 

10−6 nanometers. We see this in the narrow red spike. * "High Spectral 

Radiance (> 1010 × conventional)" – Greater than 1010 times conventional 

sources. This is represented by the concept of packing so much energy 

into that narrow spike. * "Spatially Coherent (Diffraction-limited beams)" – 

We'll see this in the next diagram. * "Precisely Controllable 

(Frequency/Phase)" – Essential for advanced techniques. * "Tunable 

(Broad Wavelength Access)" – Illustrated in the bottom right diagram. 

Now, let's move to the bottom left, under "Spatial Coherence & Long 

Interaction." We see a schematic: a "Laser Source" emits a beam that is 

depicted as highly collimated (parallel rays) with an initial diameter 𝑑 ≈

1 mm (d is approximately 1 millimeter). This beam passes through an 

"Absorption Cell" containing the sample. The beam remains well-collimated 

over a "Long Interaction Length (e.g., 𝐿 = 1 − 100 cm)" – L equals 1 to 100 

centimeters. An annotation highlights this as an "Excellent Spatial 

Coherence → Highly Collimated Beam." This ability to maintain a narrow, 

directed beam over significant distances is a direct result of spatial 

coherence and is crucial for sensitive measurements, particularly in 

absorption spectroscopy. 

Finally, at the bottom right, we have "Frequency Tunability." This is 

illustrated with a "Frequency Tuning Knob" superimposed on a dial that 

spans spectral regions: "UV" (ultraviolet), "VIS" (visible), "NIR" (near-

infrared), and "IR" (infrared), indicating a "Wide Tunable Range." Below 



this, text explains: "Access to virtually any transition (with NLO)" – NLO 

stands for NonLinear Optics – "e.g., Dye, Ti:Sapphire, OPO." This visually 

reinforces the idea that by choosing the right type of laser (like Dye, 

Titanium-Sapphire, or an Optical Parametric Oscillator) and potentially 

employing nonlinear optical techniques, we can generate laser light across 

a vast portion of the electromagnetic spectrum. 

So, this page beautifully encapsulates why lasers are so powerful for 

spectroscopy: they provide light that is incredibly pure in color, intensely 

bright within that color, highly directional, precisely controllable, and widely 

tunable. 
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Now we're moving on to "Slide 2: Minimum Ingredients of Any Laser." What 

are the fundamental components and conditions required to build a device 

that can produce this special kind of light we call laser light? There are 

essentially three core ingredients, plus the resonator which we'll detail 

shortly. 

The first, and perhaps most central, ingredient is the "Active medium." This 

is defined as a "material that can amplify light." The active medium, also 

sometimes called the gain medium, is the heart of the laser. It's a collection 

of atoms, ions, molecules, or specific centers in a solid-state material that 

can be energized, or "excited," to a state where they can release that 

energy in the form of light through a process called stimulated emission. 

This stimulated emission is what leads to light amplification. The choice of 

active medium determines the range of wavelengths the laser can produce 

and many of its other characteristics. Examples range from gases like 

helium and neon in a He-Ne laser, to crystals like Nd:YAG (Neodymium-

doped Yttrium Aluminum Garnet), to semiconductors in diode lasers, or 

liquids like organic dyes in dye lasers. 

The second point elaborates on a property of this active medium: it 

"Contains discrete energy levels 𝐸i, 𝐸k of atoms, ions, molecules, or solid-



state centers." (𝐸i, 𝐸k). Laser action relies on transitions between well-

defined, quantized energy levels within the constituents of the active 

medium. When we talk about 𝐸i and 𝐸k, we're typically referring to a lower 

energy level (𝐸i) and an upper energy level (𝐸k) that are involved in the 

lasing transition. The energy difference between these levels, 𝐸k − 𝐸i, 

dictates the energy, and thus the frequency (or wavelength), of the photons 

that will be emitted, according to Planck's relation 𝐸 = ℎ𝜈 (Energy equals 

Planck's constant times frequency). Without these discrete energy levels, 

we wouldn't have the specific, well-defined wavelengths characteristic of 

lasers. 

The third essential ingredient is an "Energy pump." This is an "external 

energy source that drives population inversion." Now, this is critical. Under 

normal thermal equilibrium conditions, lower energy levels are always more 

populated than higher energy levels, following the Boltzmann distribution. If 

light of the transition frequency passes through such a medium, it will be 

absorbed more than it is amplified. To achieve light amplification (gain), we 

need to reverse this situation for the specific pair of energy levels 𝐸i and 𝐸k. 

We need more atoms (or molecules, etc.) in the upper energy level 𝐸k than 

in the lower energy level 𝐸i. This non-equilibrium condition is called 

"population inversion." The energy pump is the mechanism by which we 

supply energy to the active medium to create and maintain this population 

inversion. The pump "lifts" atoms from lower energy states to the upper 

lasing level 𝐸k (or to levels that rapidly feed 𝐸k). 

The fourth point provides "Examples" of such energy pumps: 

 • "Electrical discharge": This is common in gas lasers. An electric 

current is passed through the gas, and collisions between electrons and 

gas atoms/molecules excite them to higher energy levels. Think of a neon 

sign – that's an electrical discharge exciting neon atoms, though not 

necessarily creating a population inversion for lasing in that simple case. In 



lasers like He-Ne or CO₂  (carbon dioxide) lasers, the discharge 

parameters are carefully controlled to achieve inversion. 

 • "Optical flashlamp": Intense flashes of light from a lamp (like a xenon 

flashlamp) can be used to pump solid-state lasers (like ruby or Nd:YAG) or 

dye lasers. The atoms in the gain medium absorb the pump light and are 

excited. 

 • "Chemical reaction": In some lasers, known as chemical lasers (e.g., 

HF, or hydrogen fluoride lasers), the energy released during an exothermic 

chemical reaction directly populates the upper laser level, creating 

population inversion. 

 • "Another laser": It's very common to use one laser to pump another. 

For example, high-power diode lasers are often used to pump solid-state 

lasers like Nd:YAG or Ti:sapphire lasers. This offers high efficiency and 

selectivity in pumping. 

So, to summarize this slide, we need an active medium with discrete 

energy levels, and an energy pump to create a population inversion in that 

medium. These are the prerequisites for light amplification. 
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Slide 2: Minimum Ingredients of Any Laser 

Continuing with "Slide 2: Minimum Ingredients of Any Laser," we now come 

to the crucial component that turns a light amplifier into an oscillator, that is, 

a laser. 

This is the "Optical resonator." It's "typically two or more mirrors forming a 

Fabry-Pérot cavity of length 𝑑." 

An optical resonator, or optical cavity, is an arrangement of mirrors that 

confines light, allowing it to make multiple passes through the active 

medium. The simplest and most common type is the Fabry-Pérot 

resonator, which consists of two mirrors aligned parallel to each other, 



separated by a distance 𝑑, with the active medium placed between them. 

One mirror is usually a high reflector (close to 100% reflectivity), and the 

other is a partial reflector (the output coupler), which allows a fraction of the 

light to escape as the laser beam. While two mirrors are typical, more 

complex resonator designs can involve more optical elements. 

The next bullet point explains the vital roles of this optical resonator: It 

"Provides feedback, selects longitudinal and transverse modes, and 

increases photon dwell time." Let's break these functions down: 

* "Provides feedback": This is the most fundamental role. As photons are 

generated in the active medium via stimulated emission, they travel 

towards the mirrors. The mirrors reflect these photons back into the active 

medium. These reflected photons can then stimulate further emission, 

leading to an avalanche effect and a buildup of light intensity. This positive 

feedback is what transforms an amplifier (which would just boost an 

incoming signal once) into an oscillator (which generates its own sustained 

output). 

* "Selects longitudinal and transverse modes": A resonator doesn't just 

amplify any light; it selectively amplifies light that "fits" certain conditions. * 

Longitudinal modes refer to specific resonant frequencies (or wavelengths) 

that can form stable standing waves within the cavity. Only light at these 

frequencies will constructively interfere and build up in intensity. The 

spacing of these modes depends on the cavity length 𝑑. * Transverse 

modes (like TEM00, TEM01, etc. – Transverse ElectroMagnetic modes) 

describe the spatial intensity pattern of the beam in the plane perpendicular 

to its propagation. The curvature of the mirrors and any apertures within the 

cavity determine which transverse modes are stable and have low loss. 

Often, lasers are designed to operate in the fundamental TEM00 mode, 

which has a desirable Gaussian beam profile. 

* "Increases photon dwell time": By reflecting photons back and forth, the 

resonator significantly increases the time that photons spend interacting 



with the active medium (the "dwell time"). This allows for a much greater 

cumulative amplification. Even if the gain per pass through the active 

medium is small, many passes can lead to substantial overall gain, 

sufficient to overcome losses and sustain laser oscillation. 

So, the active medium provides the potential for amplification, the pump 

creates the necessary population inversion, and the optical resonator 

provides the feedback and mode selection that channels this amplified 

energy into a coherent, directional laser beam. 
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This page, still part of "Slide 2: Minimum Ingredients of Any Laser," 

presents a "Schematic Cross-Section of a Fabry-Pérot Laser," which 

beautifully visualizes the components we've just discussed. 

Let's examine the diagram. We see two parallel mirrors, labeled 𝑅, which 

stands for reflectivity. These mirrors define the "Optical Resonator." The 

distance between these mirrors is labeled 𝑑, representing the "Cavity 

Length." 

Positioned between these mirrors is a light blue rectangular block labeled 

"Active Medium." The length of this active medium is denoted by 𝐿 (capital 

L), labeled as "Active Medium Length." Notice that in this schematic, 𝐿 < 𝑑, 

meaning the active medium does not necessarily fill the entire cavity, which 

is often the case in real lasers. 

Orange arrows, labeled "Energy Pump," are shown impinging on the active 

medium from the top and bottom. This represents the external energy 

source that, as we discussed, creates the population inversion within the 

active medium. 

A dashed line runs horizontally through the center of the cavity and the 

active medium, representing the optical axis. 



From the right-hand mirror, a thick red arrow labeled "Laser Output" is 

shown emerging along the 𝑧-axis (indicated by a small 'z'). This signifies 

that the right-hand mirror is partially transmissive, acting as the output 

coupler, allowing a portion of the amplified light circulating within the cavity 

to escape as the usable laser beam. The left-hand mirror would typically be 

a high reflector. 

This simple diagram elegantly brings together all the minimum ingredients: 

1. The "Active Medium" (length 𝐿), which is the material capable of 

amplifying light. 2. The "Energy Pump," which energizes the active medium 

to achieve population inversion. 3. The "Optical Resonator" (length 𝑑), 

formed by the two mirrors, which provides feedback, allows for multiple 

passes through the active medium, and helps select the lasing modes. 

The interplay of these components leads to the generation of the "Laser 

Output." This schematic is fundamental to understanding the basic 

structure of most lasers. 
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Slide 3: The Active Medium — Energy Levels and Gain 

Now we turn to "Slide 3: The Active Medium — Energy Levels and Gain." 

Having established the need for an active medium, let's delve deeper into 

how it works, focusing on the energy level populations and the condition for 

achieving gain. 

The first point addresses the situation in "Thermal equilibrium: population 

follows Boltzmann law." 

Under normal conditions, without any external pumping, the distribution of 

atoms or molecules among their various energy levels is governed by 

thermal equilibrium and is described by the Boltzmann law. The equation 

presented is: 



𝑁eq(𝐸) = 𝑁0exp (−
𝐸

𝑘B𝑇
) 

Let's read this out carefully: "N sub e q of capital E, equals N sub zero, 

times the exponential of, minus capital E divided by the product of k sub B 

and capital T." 

Now, let's deconstruct each term: 

• 𝑁eq(𝐸) (N sub e q of capital E): This is the population density (number of 

atoms or molecules per unit volume) in an energy level 𝐸, when the system 

is in thermal equilibrium. Its units would typically be something like inverse 

cubic centimeters (cm−3). 

• 𝑁0 (N sub zero): This represents the population density of the ground 

state (the lowest energy level). It also has units of inverse cubic 

centimeters. 

• exp: This is the exponential function. 

• 𝐸 (capital E): This is the energy of the specific level whose population 

we are considering, relative to the ground state energy (which is often 

taken as zero). Its units are Joules. 

• 𝑘B (k sub B): This is the Boltzmann constant, a fundamental physical 

constant. Its value is given on the slide. 

• 𝑇 (capital T): This is the absolute temperature of the medium, in Kelvin. 

The Boltzmann law tells us that at any finite temperature, higher energy 

levels are exponentially less populated than lower energy levels. For laser 

action, we need to overcome this natural tendency. 

The second bullet point clarifies the constants used: 

• 𝑁0 (N sub zero): ground-state population density $\( \text{cm}^{-3}$\) 

• 𝑘B (k sub B): Boltzmann constant, which is 1.38 × 10−23 J K
−1

 



• 𝑇 (capital T): absolute temperature [𝐾] 

The third, and most crucial point on this slide, is the "Population inversion 

condition." For an active medium to provide gain (i.e., to amplify light), we 

must create a situation where there are more atoms (or molecules) in the 

upper lasing energy level than in the lower lasing energy level, when 

accounting for the degeneracies of these levels. This is population 

inversion. The condition is given by the inequality: 

𝑁k > (
𝑔k

𝑔i

)𝑁i 

Let's read this: "N sub k, is greater than, the ratio of g sub k over g sub i, all 

times N sub i." 

Let's deconstruct this: 

• 𝑁k (N sub k): This is the population density of the upper lasing level 

(energy 𝐸k). 

• 𝑁i (N sub i): This is the population density of the lower lasing level 

(energy 𝐸i). 

• 𝑔k (g sub k): This is the degeneracy of the upper lasing level 𝐸k. 

Degeneracy means there are 𝑔k distinct quantum states that all have the 

same energy 𝐸k. 

• 𝑔i (g sub i): This is the degeneracy of the lower lasing level 𝐸i. 

The condition can be rewritten as 

𝑁k

𝑔k

>
𝑁i

𝑔i

 

This means that the population density per state in the upper level must be 

greater than the population density per state in the lower level. If this 

condition is met, then an incoming photon of the correct frequency is more 

likely to cause a stimulated emission (atom goes from 𝐸k to 𝐸i, releasing a 



photon) than to be absorbed (atom goes from 𝐸i to 𝐸k, consuming a 

photon). This is the fundamental requirement for light amplification. 
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Continuing our discussion on "Slide 3: The Active Medium — Energy 

Levels and Gain," we build upon the concept of population inversion. 

The first point here clarifies a term we just used: 𝑔j (g sub j): degeneracy of 

level j. As mentioned, the degeneracy of an energy level "j" refers to the 

number of distinct quantum states that share that same energy 𝐸j. For 

example, in atoms, electron spin or orbital angular momentum can lead to 

degenerate energy levels. These degeneracies are important because they 

affect the statistical likelihood of finding an atom in a particular energy level, 

and they influence the rates of transitions between levels. 

The second point describes what happens when population inversion is 

achieved: "With inversion, stimulated-emission rate exceeds absorption 

rate:" This is expressed by the inequality: 

𝑊stim = 𝑁k𝐵𝑘𝑖𝜌(𝜈) > 𝑁i𝐵𝑖𝑘𝜌(𝜈) 

Let's carefully read this: " 𝑊stim, equals 𝑁k, times 𝐵𝑘𝑖, times 𝜌(𝜈), which is 

greater than 𝑁i, times 𝐵𝑖𝑘, times 𝜌(𝜈)". 

Let's break down the terms: 

• 𝑊stim (W sub stim): This represents the net rate of stimulated transitions. 

More precisely, the left side is the rate of stimulated emission events per 

unit volume, and the right side is the rate of absorption events per unit 

volume. 

• 𝑁k (N sub k): Population density of the upper lasing level. 

• 𝑁i (N sub i): Population density of the lower lasing level. 

• 𝐵𝑘𝑖 (B sub k i): This is the Einstein B-coefficient for stimulated emission 

from the upper level 𝑘 to the lower level 𝑖. It quantifies the probability per 



unit time, per unit energy density of the radiation field, that an atom in level 

𝑘 will be stimulated to emit a photon and transition to level 𝑖. 

• 𝐵𝑖𝑘 (B sub i k): This is the Einstein B-coefficient for absorption, 

representing the probability for a transition from the lower level 𝑖 to the 

upper level 𝑘 upon interaction with a photon. 

• 𝜌(𝜈) (rho of nu): This is the spectral energy density of the radiation field 

at the transition frequency 𝜈 (nu). It represents the amount of 

electromagnetic energy per unit volume per unit frequency interval. Its units 

are typically Joules per meter cubed per Hertz. 

The Einstein B-coefficients 𝐵𝑘𝑖 and 𝐵𝑖𝑘 are related by their degeneracies: 

𝑔k𝐵𝑘𝑖 = 𝑔i𝐵𝑖𝑘. If we incorporate this into the population inversion condition 
𝑁k

𝑔k

>
𝑁i

𝑔i

, it directly leads to 𝑁k𝐵𝑘𝑖 > 𝑁i𝐵𝑖𝑘. Multiplying both sides by 𝜌(𝜈) 

gives the inequality shown. This confirms that when population inversion is 

achieved (considering degeneracies correctly), the rate of stimulated 

emission indeed exceeds the rate of absorption. 

The third bullet point provides the units for these coefficients: 

• 𝐵𝑖𝑘, 𝐵𝑘𝑖: Einstein B-coefficients have units of [m3 J−1s−2] (meters cubed 

per Joule per second squared). 

• 𝜌(𝜈) (rho of nu): spectral energy density has units of [J m−3 Hz−1] 

(Joules per meter cubed per Hertz). 

Finally, the crucial outcome: "Result: passing electromagnetic wave is 

amplified instead of attenuated." This is the very definition of an active 

medium providing gain. Because stimulated emission events (which add 

photons identical to the incident photons) outnumber absorption events 

(which remove photons), the net effect is an increase in the intensity of the 

light wave as it propagates through the medium. This is the fundamental 

process that makes lasers possible. 
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This page, still part of "Slide 3: The Active Medium — Energy Levels and 

Gain," presents a very instructive diagram titled "Energy Level Populations 

and Stimulated Emission." This visual helps solidify the concepts we've 

been discussing. 

Let's describe the diagram. The vertical axis represents "Energy (𝐸)," 

increasing upwards. The horizontal axis represents "Population (𝑁)" of the 

energy levels, increasing to the right. 

Three discrete energy levels are shown as horizontal dotted lines: * 𝐸0 (E 

sub zero) at the bottom, labeled "(Ground State)." * 𝐸1 (E sub one) above it, 

labeled "(Lower Laser Level)." * 𝐸2 (E sub two) at the top, labeled "(Upper 

Laser Level)." 

Two different population distributions are depicted: 

1. A solid blue line shows the "Boltzmann Distribution." It starts with a high 

population at the ground state 𝐸0 and shows a decreasing population as 

energy increases to 𝐸1 and then to 𝐸2. This represents the normal situation 

in thermal equilibrium, where lower energy levels are more populated than 

higher ones. 

2. A dashed red line illustrates "Population Inversion." This line shows that 

the population of the upper laser level 𝐸2 is significantly greater than the 

population of the lower laser level 𝐸1. The annotation confirms this: 

"Population Inversion (𝑁k > 𝑁i)," where 𝑁k would correspond to the 

population of 𝐸2 and 𝑁i to 𝐸1. This inverted state is, of course, not the 

natural equilibrium state and must be achieved by pumping. 

The diagram then illustrates the process of stimulated emission: An 

incoming photon, represented by an orange arrow labeled ℎ𝜈 (h nu), 

interacts with an atom that is in the upper laser level 𝐸2 (where the 

population is high due to inversion). This interaction stimulates the atom to 

transition down to the lower laser level 𝐸1. 



Crucially, in this process, the atom emits a second photon that is identical 

to the incident photon – same frequency, same direction, same phase, and 

same polarization. This is shown by two orange arrows emerging 

downwards from 𝐸2, labeled 2 ℎ𝜈 (two h nu), and the process is labeled 

"Stimulated Emission" with a green downward arrow indicating the atomic 

transition from 𝐸2 to 𝐸1. 

The diagram effectively contrasts the normal Boltzmann distribution, where 

absorption would dominate, with the population-inverted scenario, where 

stimulated emission dominates for photons of energy ℎ𝜈 = 𝐸2 − 𝐸1. This 

process of getting two photons out for one incident photon (when 

interacting with an excited atom) is the microscopic basis of light 

amplification in a laser. The key is to first establish that population inversion 

between 𝐸2 and 𝐸1. 

Page 11: 

Slide 4: Energy-Pumping Mechanisms — Achieving Inversion. 

We now move to "Slide 4: Energy-Pumping Mechanisms — Achieving 

Inversion." We've established that population inversion is essential for laser 

action. This slide discusses the various methods, or mechanisms, used to 

pump energy into the active medium to create this non-equilibrium state. 

The first method listed is "Optical pumping with broadband flashlamp — 

used in ruby lasers." Optical pumping means using light from an external 

source to excite the atoms or molecules in the active medium. A 

"broadband flashlamp," like a xenon or krypton flashlamp, emits intense 

pulses of light over a wide range of wavelengths. Some of this light will 

match the absorption bands of the active medium, exciting its constituents 

to higher energy levels, which then might decay into the upper laser level 

𝐸k, leading to population inversion. The very first laser, the ruby laser 

demonstrated by Theodore Maiman in 1960, used this method. It's still 

used for some solid-state and dye lasers, particularly when high pulse 

energies are needed. 



The second mechanism is "Electrical discharge in low-pressure gas 

mixtures — He-Ne, Ar
+

, CO2." In gas lasers, a common pumping method is 

to pass an electrical current through the gas – an electrical discharge. 

Energetic electrons in the discharge collide with the gas atoms or 

molecules. These collisions can excite the atoms/molecules directly to the 

upper laser level, or to other levels that then transfer their energy to the 

upper laser level (often via collisions with another gas species, as in the 

Helium-Neon laser). 

  * "He-Ne" (Helium-Neon) lasers are classic examples, where helium 

atoms are excited by electron impact and then resonantly transfer their 

energy to neon atoms, creating inversion on specific neon transitions (like 

the famous red 632.8 nm line). 

  * "Ar
+
" (Argon ion) lasers use a high-current discharge to ionize argon 

atoms and then excite the argon ions to states that can lase, producing 

blue and green light. 

  * "CO2" (Carbon dioxide) lasers, which are very powerful infrared 

lasers, use an electrical discharge in a mixture of CO2, nitrogen, and 

helium. Nitrogen molecules are excited by electron impact and then 

efficiently transfer their vibrational energy to CO2 molecules, creating 

inversion. 

The third type is "Chemical pumping — HF, DF, and excimer lasers." In 

chemical lasers, the energy for population inversion comes directly from the 

exothermic energy released during a chemical reaction. 

   "HF" (Hydrogen Fluoride) and "DF" (Deuterium Fluoride) lasers are 

examples where reactions like \(\text{F} + \text{H}_2 \rightarrow \text{HF}^{} 

+ \text{H}\) produce molecules directly in excited states capable of lasing. 

These can be very high-power lasers. 

  * "Excimer lasers" (from "excited dimer") use molecules that are stable 

only in their excited state, like KrF (Krypton Fluoride) or ArF (Argon 



Fluoride). An electrical discharge creates these excited molecules, which 

then lase as they dissociate to their unstable ground state. Excimer lasers 

typically emit in the ultraviolet and are used in applications like 

semiconductor lithography and eye surgery. 

Fourth, we have "Laser-pumped solid-state or dye media — Ti:sapphire 

pumped by frequency-doubled Nd:YAG." This is a very important and 

widely used technique: using one laser to pump another. This allows for 

very efficient and selective excitation of the active medium. 

  * "Solid-state media" like Ti:sapphire (Titanium-doped sapphire, 

Ti:Al₂ O₃ ) or Nd:YAG can be pumped by other lasers, often diode lasers or 

other solid-state lasers. 

  * "Dye media" (organic dyes in solution) are almost always optically 

pumped, frequently by another laser (like a pulsed Nd:YAG laser or a CW 

argon ion laser). 

  * The specific example given, "Ti:sapphire pumped by frequency-

doubled Nd:YAG," is a common setup. A Nd:YAG laser produces infrared 

light (e.g., at 1064 nm). This light is then passed through a nonlinear crystal 

to double its frequency, producing green light (at 532 nm). This green light 

is efficiently absorbed by the Ti:sapphire crystal, pumping it to create a 

population inversion and enabling tunable laser output in the red and near-

infrared. 

Each of these pumping mechanisms has its own advantages, 

disadvantages, and specific applications, but all share the common goal of 

creating that crucial population inversion. 
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Continuing with "Slide 4: Energy-Pumping Mechanisms," this page 

highlights a crucial design consideration and notes a missing visual. 



The first point states a "Key design goal: deposit energy selectively into 

upper laser level while depleting lower level swiftly (short 𝜏eff)." Let's break 

this down because it encapsulates much of the art and science of laser 

design. 

* "Deposit energy selectively into upper laser level": The pump energy 

should, as much as possible, go into populating the desired upper laser 

level 𝐸k (or levels that quickly feed it). If the pump energy excites many 

other levels that don't contribute to the lasing transition, or that lead to 

losses, the laser will be inefficient. So, matching the pump source 

characteristics (e.g., wavelength for optical pumping, electron energy 

distribution for discharge pumping) to the absorption properties of the 

active medium is critical for selectivity. 

* "while depleting lower level swiftly (short 𝜏eff)" – 𝜏eff (tau sub effective) 

refers to the effective lifetime of the lower laser level 𝐸i. For efficient and 

continuous population inversion 𝑁k > (
𝑔k

𝑔i

)𝑁i, the population 𝑁i of the lower 

laser level must be kept as low as possible. If atoms arriving in 𝐸i (after 

stimulated or spontaneous emission from 𝐸k) linger there for a long time, 𝑁i 

will build up and can eventually terminate the inversion. Therefore, a key 

design goal is to ensure that the lower laser level 𝐸i has a very fast 

relaxation pathway, typically to the ground state or some other lower 

energy level, so that it empties quickly. This "short 𝜏eff" for the lower level is 

a hallmark of an efficient four-level laser system, which we'll discuss more 

later. It prevents a "bottleneck" at the lower lasing level. 

The second point indicates: "[IMAGE REQUIRED: Table-style graphic 

listing pump types versus representative lasers, with arrows from pump 

energy to specific transition levels.]" 

Since this image is not present, I will describe what it would ideally convey. 

Such a graphic would be extremely helpful for students. It would likely be a 

table where, for instance, rows list different pump types (e.g., flashlamp, 



electrical discharge, diode laser pumping) and columns list representative 

laser systems (e.g., Ruby, He-Ne, Nd:YAG, Ti:sapphire). 

Crucially, within the cells of this table, or accompanying it, there would be 

simplified energy level diagrams for each laser type. Arrows would illustrate 

how the specific pump energy is absorbed by the active medium (e.g., an 

arrow from a "pump band" down to the upper laser level 𝐸k) and then 

indicate the lasing transition (an arrow from 𝐸k down to 𝐸i), and finally, the 

rapid decay from 𝐸i to a lower level (often the ground state). 

For example, for a He-Ne laser, it would show electron impact exciting 

Helium atoms, then resonant energy transfer from Helium to Neon atoms, 

populating a specific upper level in Neon. Then it would show the lasing 

transition in Neon, and subsequent decay pathways. For a diode-pumped 

Nd:YAG laser, it would show the absorption of the diode laser light by 

Neodymium ions into a pump band, followed by rapid non-radiative decay 

to the metastable upper laser level, then the lasing transition, and then 

decay from the lower laser level. 

Such a visual would effectively connect the abstract concept of pumping 

mechanisms to concrete examples and their underlying energy level 

dynamics. 

--- 
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We now arrive at "Slide 5: Spontaneous vs. Stimulated Emission — 

Microscopic View." This slide revisits these two fundamental radiative 

processes, but from the perspective of their probabilities or rates per 

particle, which are characterized by the Einstein coefficients. 

The first point concerns spontaneous emission: "Spontaneous emission 

probability per excited particle" is given by 𝐴𝑘𝑖 [s
−1]. 

Let's unpack this: 



* "Spontaneous emission" is the process by which an atom or molecule in 

an excited energy level (say, level k) decays to a lower energy level (level i) 

on its own, without any external trigger, by emitting a photon. The emitted 

photon has an energy equal to the energy difference between the levels 

(𝐸k − 𝐸i). Importantly, spontaneously emitted photons are radiated in 

random directions and have random phases. * "Probability per excited 

particle": 𝐴𝑘𝑖 (A sub k i) is the Einstein A-coefficient for the transition from 

level k to level i. It represents the probability per unit time that a single atom 

in level k will spontaneously decay to level i by emitting a photon. * [s−1] 

(per second): The units of 𝐴𝑘𝑖 are inverse seconds, signifying a rate. The 

reciprocal of 𝐴𝑘𝑖, which is 
1

𝐴𝑘𝑖
, is the radiative lifetime (𝜏rad, tau sub rad) of 

level k with respect to this specific transition to level i. If there are multiple 

spontaneous decay paths from level k, the total spontaneous decay rate is 

the sum of the 𝐴𝑘𝑖 coefficients for all possible lower levels i. 

The second point addresses stimulated emission: "Stimulated emission 

probability density per excited particle" is given by 𝐵𝑘𝑖𝜌(𝜈) [s
−1]. 

Let's break this down: 

* "Stimulated emission" occurs when an atom already in an excited state 

(level k) is "stimulated" by an incoming photon of the correct frequency 𝜈 =
𝐸k−𝐸i

ℎ
 to transition to a lower energy state (level i). In doing so, it emits a 

second photon that is an exact replica of the incident photon – same 

frequency, same direction, same phase, and same polarization. This is the 

process responsible for light amplification in lasers. * "Probability density 

per excited particle": The term 𝐵𝑘𝑖𝜌(𝜈) (B sub k i times rho of nu) gives the 

probability per unit time that a single atom in level k will undergo stimulated 

emission to level i, in the presence of a radiation field of spectral energy 

density 𝜌(𝜈) at the transition frequency. * 𝐵𝑘𝑖 (B sub k i) is the Einstein B-

coefficient for stimulated emission. It quantifies the intrinsic strength of the 

transition's interaction with the radiation field leading to stimulated 



emission. Its units depend on how 𝜌(𝜈) is defined (e.g., per unit frequency 

or per unit wavelength). As we saw on page 9, if 𝜌(𝜈) is energy per unit 

volume per unit frequency, 𝐵𝑘𝑖 has units like $\text{m}^{3\,\text}{J}^{-

1}\text{s}^{-2}$. * 𝜌(𝜈) (rho of nu) is the spectral energy density of the 

incident radiation field at frequency 𝜈. The more intense the stimulating 

field (i.e., the larger 𝜌(𝜈)), the higher the rate of stimulated emission. * [s−1] 

(per second): The product 𝐵𝑘𝑖𝜌(𝜈) has units of a rate (inverse seconds), 

representing the stimulated emission rate per particle. 

The term "probability density" on the slide might be a bit imprecise if it 

refers to 𝐵𝑘𝑖 alone; 𝐵𝑘𝑖 itself is a coefficient, and the product 𝐵𝑘𝑖𝜌(𝜈) is the 

actual rate (or probability per unit time). The key is that the stimulated 

emission rate is proportional to both the 𝐵𝑘𝑖 coefficient (an atomic property) 

and the density of stimulating photons 𝜌(𝜈) (a field property). 

This microscopic view, focusing on the A and B coefficients, is fundamental 

to understanding the competition between spontaneous and stimulated 

emission, which is at the heart of laser operation. 
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Continuing with "Slide 5: Spontaneous vs. Stimulated Emission — 

Microscopic View," this page explores the consequences of these 

processes in the context of a laser. 

The first point states: "Inversion increases 𝐵𝑘𝑖𝜌(𝜈) → overwhelmingly 

directs emission into modes where 𝜌(𝜈) is large." 

Let's analyze this statement carefully. "Inversion" refers to population 

inversion (
𝑁k

𝑔k

>
𝑁i

𝑔i

). Inversion itself doesn't directly increase the value of 𝐵𝑘𝑖 

(which is an atomic constant) or 𝜌(𝜈) (the radiation field density) for a 

single atom. 

Rather, what inversion does is ensure that the net rate of stimulated 

emission, which is proportional to (𝑁k𝐵𝑘𝑖 − 𝑁i𝐵𝑖𝑘)𝜌(𝜈), becomes positive 



and significant. When this happens, stimulated emission becomes the 

dominant process by which excited atoms release their energy as photons. 

The second part of the statement, "→ overwhelmingly directs emission into 

modes where 𝜌(𝜈) is large," is crucial. Stimulated emission is proportional 

to 𝜌(𝜈). In a laser cavity, the optical resonator is designed to support 

specific resonant modes, and within these modes, the photon density 𝜌(𝜈) 

can build up to very high values. Therefore, if population inversion exists, 

stimulated emission will preferentially add photons to those cavity modes 

that already have a high photon density. This is a positive feedback 

mechanism: more photons in a mode lead to more stimulated emission into 

that same mode, further increasing the photon density. This is how a laser 

"chooses" to emit light into specific, well-defined modes rather than 

randomly like spontaneous emission. 

The second point reinforces this: "Optical resonator provides large 𝜌(𝜈) for 

its eigen-frequencies → feedback loop." The optical resonator is not just a 

pair of mirrors; it's a frequency-selective device. It has specific resonant 

frequencies, called "eigen-frequencies" (our longitudinal modes 𝜈q =
𝑞𝑐

2 𝑑
 

from before), where light can build up to a high intensity, meaning a large 

𝜌(𝜈). Photons at these eigen-frequencies are trapped effectively, making 

many passes through the gain medium. This high 𝜌(𝜈) at the eigen-

frequencies then drives strong stimulated emission at these same 

frequencies, provided there's population inversion. This creates the 

"feedback loop": photons at resonant frequencies stimulate more of the 

same, leading to oscillation. 

The third point describes the macroscopic result: "Above threshold, 

stimulated processes dominate, making output highly directional and 

coherent." "Above threshold" means the gain from stimulated emission is 

sufficient to overcome all the losses in the cavity (mirror transmission, 

scattering, absorption, etc.). Once this condition is met, laser oscillation 

begins, and stimulated emission becomes by far the dominant emission 



process. The consequences of stimulated emission dominating are 

precisely the unique characteristics of laser light: 

• "Highly directional": Because stimulated photons are emitted in the 

exact same direction as the stimulating photons, and the resonator axis 

defines a preferred direction for photon buildup, the output laser beam is 

very well-collimated and has low divergence. 

• "Highly coherent": Stimulated photons are also emitted with the same 

phase and frequency as the stimulating photons. This leads to both:   – 

Temporal coherence: The light waves maintain a predictable phase 

relationship over time (related to monochromaticity).   – Spatial 

coherence: The light waves maintain a predictable phase relationship 

across different points on the wavefront. 

These properties distinguish laser light from the incoherent, randomly 

directed light produced by spontaneous emission in conventional light 

sources. 
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This page, still under "Slide 5: Spontaneous vs. Stimulated Emission — 

Microscopic View," presents a graph titled "Emission Rates vs. Photon 

Frequency (𝜈) for an Inverted Medium." This graph is excellent for 

visualizing how the interplay between the gain medium and the optical 

resonator shapes the emission spectrum. 

Let's describe the graph: 

The vertical axis is "Spectral Emission Rate" in arbitrary units. The 

horizontal axis is "Photon Frequency (𝜈)" (nu). The center of the x-axis is 

marked as 𝜈0 (nu sub zero), representing the center frequency of the 

atomic transition. Points like 𝜈0 − 𝛤A (nu sub zero minus Capital Gamma 

sub A) and 𝜈0 + 𝛤A (nu sub zero plus Capital Gamma sub A) are also 

marked, likely indicating some characteristic width associated with the 

atomic transition itself. 



Three curves are plotted, illustrating different emission components: 

1. The blue solid line is labeled "Spontaneous Emission (∝ 𝐴𝑘𝑖𝑔(𝜈))" – 

proportional to 𝐴𝑘𝑖 times 𝑔(𝜈). This curve is broad and bell-shaped, 

centered at 𝜈0. It represents the natural lineshape 𝑔(𝜈) of spontaneous 

emission from the inverted medium. Its width 𝛤A is characteristic of the 

atomic transition (e.g., Doppler or pressure broadened). 

2. The orange dashed line is labeled "Stimulated Emission (broadband/low 

𝜌(𝜈))". This curve essentially follows the shape of the spontaneous 

emission profile. It shows what the stimulated emission rate would look like 

if the radiation density 𝜌(𝜈) were low and spectrally broad – it would simply 

mimic the atomic lineshape 𝑔(𝜈), scaled by 𝐵𝑘𝑖𝜌(𝜈). 

3. The red solid line is the most important one. It's labeled "Stimulated 

Emission (cavity-enhanced 𝜌(𝜈))". This curve shows a dramatically sharp 

and intense peak, also centered at 𝜈0 (which is also indicated as a cavity 

resonance in this depiction). This illustrates the effect of the optical 

resonator. The resonator enhances the photon density 𝜌(𝜈) very 

significantly, but only at its specific resonant frequencies (cavity modes). 

Several annotations provide further insight: 

A legend on the left clarifies the curves. 

"Stimulated rates ∝ 𝐵𝑘𝑖𝑔(𝜈)𝜌(𝜈)" – proportional to 𝐵𝑘𝑖 times 𝑔(𝜈) times 

𝜌(𝜈). This reminds us of the dependence of stimulated emission on the 

atomic properties (𝐵𝑘𝑖, 𝑔(𝜈)) and the field (𝜌(𝜈)). 

"Inversion makes 𝐵𝑘𝑖𝜌(𝜈) dominate where 𝜌(𝜈) is large (e.g., cavity 

mode)." This is the key take-away. Population inversion ensures that 

stimulated emission can be the dominant process. The cavity ensures that 

𝜌(𝜈) is very large specifically at the cavity mode frequencies. The 

combination of these two effects leads to the very strong, sharply peaked 

red curve. 



An arrow points from the red peak to an annotation "𝜌(𝜈) enhancement at 

cavity resonance (𝜈0)". 

What this graph beautifully demonstrates is that while the atomic transition 

itself has a natural (broader) lineshape 𝑔(𝜈) for both spontaneous and 

potentially stimulated emission, the presence of an optical resonator 

dramatically alters the actual stimulated emission spectrum. 

The resonator acts like a filter and an amplifier for its own modes. Thus, in 

an inverted medium placed within a resonator, stimulated emission is 

overwhelmingly channeled into these narrow, high-intensity cavity modes, 

leading to the characteristic sharp spectral output of a laser. The broad 

spontaneous emission (blue curve) is still present, but it's usually a much 

weaker background "noise" compared to the intense, spectrally narrow 

laser light (red curve). 
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Slide 6: Optical Resonator — Storage and Mode Selection 

We now move to "Slide 6: Optical Resonator — Storage and Mode 

Selection." This slide delves deeper into the properties and functions of the 

optical resonator, which, as we've seen, is crucial for laser operation. 

The first point states: "Two parallel mirrors form standing-wave cavity." This 

describes the classic Fabry-Pérot resonator, the simplest and most 

common type. When light waves are confined between two parallel mirrors, 

they reflect back and forth. If the distance between the mirrors is an integer 

multiple of half-wavelengths of the light, then the waves traveling in 

opposite directions will interfere constructively to form a "standing wave" 

pattern. This means specific points in the cavity will always have maximum 

light intensity, and others (nodes) will always have zero intensity. Only light 

that forms such standing waves can resonate effectively within the cavity. 

The second point elaborates on this: "Allowed longitudinal modes satisfy" 

the condition: 



𝜈q =
𝑞 𝑐

2 𝑑
 

where 𝑞 ∈ ℤ (q is an element of the set of integers). Let's break down this 

fundamental equation for longitudinal modes: * 𝜈q (nu sub q): This is the 

frequency of the q-th allowed longitudinal mode. * 𝑞: This is an integer (..., -

2, -1, 0, 1, 2, ...), often called the mode number. It represents the number of 

half-wavelengths of the light that fit exactly into the cavity length. For optical 

frequencies and typical cavity lengths, 𝑞 is a very large integer (e.g., 105 to 

109). * 𝑐: This is the speed of light in the medium filling the cavity (or in 

vacuum if the cavity is empty). * 𝑑: This is the optical length of the cavity – 

the distance between the mirrors. 

This equation tells us that only discrete frequencies, 𝜈q, can form stable 

standing waves and thus resonate within the cavity. These are the 

longitudinal modes. The frequency spacing between adjacent longitudinal 

modes (e.g., between 𝜈q and 𝜈𝑞+1) is called the Free Spectral Range 

(FSR), and it's equal to 

𝑐

2 𝑑
. 

The third point introduces another type of mode: "Mirror radii and apertures 

set transverse mode pattern (TEM𝑚𝑛)." Besides the longitudinal modes 

(which determine the allowed frequencies), optical resonators also support 

"transverse modes." These describe the intensity distribution of the 

electromagnetic field in the plane perpendicular (transverse) to the direction 

of light propagation along the cavity axis. * TEM𝑚𝑛 (T E M sub m n) is the 

common designation for these Transverse ElectroMagnetic modes. 'm' and 

'n' are integers (0, 1, 2, ...) that specify the number of nodes (points of zero 

intensity) in two orthogonal directions (e.g., x and y) across the beam 

profile. * The fundamental mode is TEM00 (T E M sub zero zero), which has 

a Gaussian intensity profile (brightest at the center, falling off smoothly). 

Higher-order modes (like TEM01 or TEM11) have more complex patterns 



with one or more nodes. * The "mirror radii" (i.e., the curvature of the 

mirrors, if they are not flat) and any "apertures" (size-limiting openings) 

within the cavity play a crucial role in determining which transverse modes 

are stable (i.e., can propagate back and forth without excessive loss) and 

what their spot sizes are. Often, laser designers aim for TEM00 operation 

because it provides the best beam quality (lowest divergence, ability to be 

focused to the smallest spot). 

The fourth point summarizes a key function: "Resonator acts as frequency-

selective filter with linewidth determined by finesse 𝐹." The resonator 

doesn't just allow the discrete frequencies 𝜈q; it acts like a very sharp filter 

around each of these frequencies. The "linewidth" of each resonant mode 

(how narrow the peak is in frequency space) is determined by the "finesse" 

(𝐹) of the cavity. 

Finesse is a measure of the "sharpness" of the cavity resonances. It 

depends primarily on the reflectivity of the mirrors: higher reflectivity leads 

to higher finesse. A high-finesse cavity will have very narrow resonant 

linewidths, meaning it is highly frequency-selective. It also implies that 

photons make many round trips within the cavity before being lost, leading 

to a longer photon storage time. 
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Continuing our discussion of "Slide 6: Optical Resonator — Storage and 

Mode Selection," this page elaborates on two important characteristics: the 

Q-factor and the output coupling. 

The first point highlights the "High Q-factor." 

Q stands for Quality factor, a general concept used to describe resonators 

in many areas of physics and engineering (e.g., LCR circuits, microwave 

cavities, mechanical oscillators). For an optical resonator, the Q-factor is 

defined as: 



𝑄 = 2𝜋 ×
energy stored

energy lost per cycle
 

Let's read this: "Capital Q equals two pi, times the ratio of, energy stored in 

the cavity, divided by energy lost per optical cycle." 

* "Energy stored": This is the electromagnetic energy contained within the 

resonant mode inside the cavity. * "Energy lost per cycle": This is the 

amount of energy that escapes or is dissipated from the cavity during one 

period of the light wave. 

A "High Q-factor" means that the energy stored is large compared to the 

energy lost per cycle. In other words, high Q implies low losses and a long 

energy decay time (or photon lifetime) within the cavity. High Q cavities are 

essential for lasers because they allow the light intensity to build up 

significantly. 

The Q-factor is directly related to the finesse (F) and the resonant 

frequency 𝜈0: 

𝑄 ≈
𝜈0

𝛥𝜈cav

 

where 𝛥𝜈cav is the linewidth (FWHM) of the cavity resonance. So, a high Q 

means a narrow cavity linewidth. 

The consequence of a high Q-factor is that it "enhances photon lifetime → 

greater amplification per pass." 

Well, not quite "per pass," but rather "greater cumulative amplification." A 

longer photon lifetime means that photons make more round trips within the 

cavity before being lost. Each pass through the active medium provides an 

opportunity for stimulated emission. So, more round trips allow for a greater 

overall amplification of the light, making it easier to reach the lasing 

threshold (where gain overcomes total losses) and achieve efficient laser 

operation. 



The second point concerns how we get useful light out of the laser: 

"Coupling mirror (partial reflector) allows controlled extraction of laser 

power." 

For a laser to be useful, some of the light circulating within the cavity must 

be allowed to escape in a controlled manner. This is achieved by making 

one of the cavity mirrors (called the "output coupler") partially transmissive, 

meaning it reflects most of the light but transmits a small, well-defined 

fraction. 

The choice of the output coupler's reflectivity 𝑅 is a critical design 

parameter. * If 𝑅 is too high (too close to 100%), very little light escapes, 

resulting in low output power, even if the internal cavity intensity is high. * If 

𝑅 is too low (too much transmission), the losses from the cavity will be too 

high. This might prevent the laser from reaching threshold at all, or it might 

lead to inefficient operation because photons don't spend enough time in 

the cavity to be significantly amplified. 

So, there's an optimum reflectivity for the output coupler that maximizes the 

extracted laser power for a given active medium and pump level. This 

"controlled extraction" is what gives us the usable laser beam. 
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This page provides an excellent visual summary for "Slide 6: Optical 

Resonator — Storage and Mode Selection," combining a schematic of the 

cavity with a frequency-domain representation of mode selection. 

At the top of the slide, under the heading "Two parallel mirrors form a 

standing-wave cavity:", we see a diagram of a Fabry-Pérot resonator. 

On the left is "M1 (𝑅 ≈ 100%)" – Mirror 1 with reflectivity approximately 

100%. This is the high reflector. 



On the right is "M2 (Output Coupler, 𝑅 < 100%)" – Mirror 2, the output 

coupler, with reflectivity less than 100%, allowing some light to be 

transmitted. 

The distance between the mirrors is "𝑑 (cavity length)." 

Inside the cavity, several blue sinusoidal patterns are drawn, representing 

different standing wave patterns (longitudinal modes) of light. Orange 

arrows indicate the forward and backward propagating waves that form 

these standing waves. For example, one mode shows three half-

wavelengths fitting into 𝑑, another might show four. 

A red arrow labeled "Output Laser Beam" is shown emerging from M2, 

signifying the useful laser output. 

Below this physical schematic, we see a graph titled "Frequency Domain: 

Mode Selection." 

The vertical axis is labeled "Gain / Intensity." 

The horizontal axis is labeled "Frequency (𝜈)". 

A broad, orange, bell-shaped curve represents the "Gain Profile of Active 

Medium." This shows the range of frequencies over which the active 

medium can provide amplification, peaking at some central frequency. 

Superimposed on this are vertical blue lines. These represent the discrete 

"Allowed longitudinal modes" of the cavity, which we know are spaced by 

𝛥𝜈 =
𝑐

2 𝑑
 (Delta nu equals 

𝑐

2 𝑑
). The slide labels some of these modes as 

𝜈𝑞−1, 𝜈𝑞, and 𝜈𝑞+1. The spacing between them is explicitly labeled "𝛥𝜈 =
𝑐

2 𝑑
". 

A dashed horizontal line is labeled "Lasing Threshold." This line represents 

the level of gain required to overcome all the losses in the cavity. 

The crucial insight from this graph is that lasing will only occur for those 

longitudinal cavity modes (blue lines) whose gain (as given by the height of 



the orange gain profile at that mode's frequency) exceeds the lasing 

threshold. In the diagram, several modes under the peak of the gain curve 

are shown to be above the threshold, implying that this laser would operate 

on multiple longitudinal modes simultaneously. If the gain profile were 

narrower, or the threshold higher, or the modes more widely spaced, fewer 

modes (or even just one) might lase. 

Below the graph, text reiterates key concepts: 

"Allowed longitudinal modes: 𝜈q =
𝑞𝑐

2 𝑑
, 𝑞 ∈ ℤ" 

"Resonator acts as a frequency-selective filter." 

"Mode linewidth is determined by the cavity Finesse (𝐹)." 

This entire page beautifully ties together the physical structure of the 

resonator with its frequency-selective properties and its interaction with the 

gain medium to determine the actual lasing output. 
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Slide 7: Propagation Through Gain Medium — Intensity Evolution 

Now we transition to "Slide 7: Propagation Through Gain Medium — 

Intensity Evolution." This slide begins to quantify how the intensity of a light 

beam changes as it travels through an active (or absorbing) medium. 

The first point sets the scene: "Consider monochromatic beam frequency 𝜈 

(nu) along 𝑧." We are looking at a light beam of a single, well-defined 

frequency 𝜈, propagating in a specific direction, which we label as the 𝑧-

axis. 

The second point introduces the "Differential intensity change" with a 

fundamental equation: 

𝑑𝐼(𝜈, 𝑧)

𝑑𝑧
= −𝛼(𝜈)𝐼(𝜈, 𝑧) 



Let's read this carefully: "dee capital I of nu comma z, by dee z, equals 

minus alpha of nu, times capital I of nu comma z." 

Now, let's deconstruct this differential equation, which is a form of the Beer-

Lambert law: 

* 𝐼(𝜈, 𝑧) (Capital I of nu comma z): This is the intensity of the light beam at 

frequency 𝜈 and at position 𝑧 along its path. Intensity is power per unit area 

(e.g., Watts per square centimeter). 

* 
𝑑𝐼(𝜈,𝑧)

𝑑𝑧
: This is the derivative of the intensity with respect to position 𝑧. It 

represents the rate at which the intensity changes as the beam propagates 

an infinitesimal distance 𝑑𝑧. 

* 𝛼(𝜈) (alpha of nu): This is the crucial parameter called the "absorption 

coefficient" (or attenuation coefficient) of the medium at frequency 𝜈. Its 

units are typically inverse length (e.g., cm⁻ ¹, per centimeter). * If 𝛼(𝜈) is 

positive, then 
𝑑𝐼

𝑑𝑧
 is negative (since 𝐼 is positive), meaning the intensity 

decreases as the beam propagates. This corresponds to absorption or 

attenuation. If 𝛼(𝜈) is negative, which can happen in an active medium with 

population inversion, then −𝛼(𝜈) is positive. In this case, 
𝑑𝐼

𝑑𝑧
 is positive, 

meaning the intensity increases* as the beam propagates. This 

corresponds to amplification or gain. 

So, the sign of 𝛼(𝜈) determines whether we have loss or gain. 

The third point gives the "Solution over length 𝑧" for this differential 

equation: 

𝐼(𝜈, 𝑧) = 𝐼(𝜈, 0)exp[−𝛼(𝜈)𝑧] 

Let's read this: "Capital I of nu comma z, equals capital I of nu comma zero, 

times the exponential of, minus alpha of nu, times 𝑧." 

Breaking it down: 



* 𝐼(𝜈, 𝑧): The intensity at frequency 𝜈 after propagating a distance 𝑧 through 

the medium. 

* 𝐼(𝜈, 0) (Capital I of nu comma zero): The initial intensity of the beam at the 

starting point, 𝑧 = 0. 

* exp: The exponential function. 

* −𝛼(𝜈)𝑧: The argument of the exponential. 

This solution shows that: 

* If 𝛼(𝜈) is positive (absorption), the intensity decays exponentially with 

distance 𝑧: 𝐼(𝑧) = 𝐼(0)𝑒−|𝛼|𝑧. 

* If 𝛼(𝜈) is negative (gain), let 𝛼(𝜈) = −𝑔(𝜈) where 𝑔(𝜈) is a positive gain 

coefficient. Then the equation becomes 𝐼(𝑧) = 𝐼(0)exp[𝑔(𝜈)𝑧]. The 

intensity grows exponentially with distance 𝑧. This exponential growth is the 

essence of light amplification in a laser's active medium. 

This framework is fundamental for describing how light interacts with any 

medium, whether it's a simple absorber or a complex gain medium in a 

laser. 
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Continuing with "Slide 7: Propagation Through Gain Medium — Intensity 

Evolution," this page gives us the explicit form of the absorption (or gain) 

coefficient 𝛼(𝜈) in terms of atomic parameters. 

The first point defines the "Absorption (or gain) coefficient" with the 

equation: 

𝛼(𝜈) = [𝑁i − (
𝑔i

𝑔k

)𝑁k] 𝜎(𝜈) 



Let's read this: "alpha of nu, equals, open square bracket, 𝑁i, minus, open 

parenthesis, 
𝑔i

𝑔k

, close parenthesis, times 𝑁k, close square bracket, all times 

𝜎(𝜈)." 

Now, let's deconstruct this very important expression:     * 𝛼(𝜈) (alpha of nu): 

The absorption coefficient at frequency 𝜈. 

    * 𝑁i (N sub i): Population density of the lower energy level involved in the 

transition. 

    * 𝑁k (N sub k): Population density of the upper energy level involved in 

the transition. 

    * 𝑔i (g sub i): Degeneracy of the lower level. 

    * 𝑔k (g sub k): Degeneracy of the upper level. 

    * 𝜎(𝜈) (sigma of nu): This is the "stimulated-transition cross-section" at 

frequency 𝜈, which we'll discuss in the next bullet. 

The term in the square brackets, [𝑁i − (
𝑔i

𝑔k

)𝑁k], determines the sign of 𝛼(𝜈): 

    * If 𝑁i > (
𝑔i

𝑔k

)𝑁k: This means 
𝑁i

𝑔i

>
𝑁k

𝑔k

, i.e., the population per state in the 

lower level is greater than in the upper level (the normal situation or 

absorption dominates). The term in the bracket is positive. Thus, 𝛼(𝜈) is 

positive, leading to absorption (attenuation of light). 

    * If 𝑁i < (
𝑔i

𝑔k

)𝑁k: This means 
𝑁i

𝑔i

<
𝑁k

𝑔k

, i.e., population inversion exists 

(population per state in the upper level is greater). The term in the bracket 

is negative. Thus, 𝛼(𝜈) is negative, leading to gain (amplification of light). 

This expression elegantly combines the populations of the two levels, their 

degeneracies, and the interaction strength (via 𝜎(𝜈)) to determine whether 

the medium absorbs or amplifies light at frequency 𝜈. 



The second bullet point defines: "σ(ν) (sigma of nu): stimulated-transition 

cross-section [cm²]" (centimeters squared). The cross-section 𝜎(𝜈) is a 

measure of the effective "area" that an atom or molecule presents to an 

incoming photon for a stimulated transition (either stimulated emission or 

absorption) to occur at frequency 𝜈. A larger cross-section means a 

stronger interaction and thus a larger absorption or gain coefficient for a 

given population difference. It's an intrinsic property of the specific atomic 

or molecular transition and depends on frequency, typically peaking at the 

resonant frequency of the transition and having a lineshape (e.g., 

Lorentzian or Gaussian) around it. 

The third bullet point explicitly states the condition for gain: "If inversion 

satisfies 𝑁k > (
𝑔k

𝑔i

)𝑁i ⇒ 𝛼(𝜈) < 0." Let's read this: "If 𝑁k is greater than, 

open parenthesis 
𝑔k

𝑔i

 close parenthesis times 𝑁i, then this implies that 𝛼(𝜈) 

is less than zero." This is just a rearrangement of the population inversion 

condition we saw earlier. If 
𝑁k

𝑔k

>
𝑁i

𝑔i

, then the term [𝑁i − (
𝑔i

𝑔k

)𝑁k] in the 

expression for 𝛼(𝜈) becomes negative, because (
𝑔i

𝑔k

)𝑁k will be greater than 

𝑁i. Hence, 𝛼(𝜈) becomes negative. 

And the consequence, indicated by an arrow: "→ beam is amplified." When 

𝛼(𝜈) is negative, the exponent in 𝐼(𝑧) = 𝐼(0)exp[−𝛼(𝜈)𝑧] becomes positive, 

leading to exponential growth of intensity. 

The "---" indicates the end of this slide's content. This expression for 𝛼(𝜈) is 

central to understanding laser gain. 
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Slide 8: Round-Trip Analysis — Defining Gain & Losses. 

We now move to "Slide 8: Round-Trip Analysis — Defining Gain & Losses." 

So far, we've considered a single pass of light through the active medium. 



In a laser, light makes many round trips within the optical resonator. This 

slide starts to analyze what happens in one full round trip. 

The first point sets the parameters: "Active medium length 𝐿; resonator 

length 𝑑 (possibly 𝑑 > 𝐿)."   • 𝐿 (Capital L): The length of the active 

medium, the region where gain occurs.   • 𝑑 (small d): The total length 

of the optical resonator, i.e., the distance between the mirrors. 

It's important to note that the active medium might not fill the entire 

resonator (𝐿 ≤ 𝑑). For instance, in a gas laser, the discharge tube (active 

medium) is typically shorter than the mirror separation. 

The second point defines the "Pure gain over round-trip (no extraneous 

loss):" 

𝐺(𝜈) = exp[−2𝛼(𝜈)𝐿] 

Let's read this: "Capital G of nu, equals the exponential of, minus two times 

𝛼(𝜈), times capital 𝐿." Let's analyze this:   • 𝐺(𝜈) (Capital G of nu): 

This is the factor by which the light intensity is multiplied after one complete 

round trip solely due to interaction with the active medium of length 𝐿. The 

beam passes through the active medium twice in one round trip (e.g., 

forward pass of length 𝐿, reflection, backward pass of length 𝐿).   • 

𝛼(𝜈): This is the absorption coefficient we defined on the previous page. If 

𝛼(𝜈) is negative (due to population inversion), say 𝛼(𝜈) = −𝑔(𝜈) where 

𝑔(𝜈) is the positive gain coefficient, then the exponent becomes 

−2(−𝑔(𝜈))𝐿 = 2 𝑔(𝜈)𝐿. In this case,      

𝐺(𝜈) = exp[2 𝑔(𝜈)𝐿] 

    which will be greater than 1, representing net amplification over 

the round trip.   • The "−2𝛼(𝜈)𝐿" assumes 𝛼(𝜈) is defined such that it's 

positive for absorption. So, if there's gain, 𝛼(𝜈) itself is negative. 

This 𝐺(𝜈) represents the ideal gain if there were no other losses in the 

cavity. 



The third point introduces reality: "Real cavities have distributed losses 

summarised by dimensionless 𝛾." (gamma). In any real laser resonator, 

there are always losses other than just the potential absorption within the 

active medium itself (if it weren't pumped). These "extraneous" losses are 

unavoidable. 𝛾 (gamma) is a dimensionless parameter that quantifies the 

total fractional energy loss per round trip due to all these other factors. 

The fourth point lists the "Sources" of these losses 𝛾:   • "Mirror 

transmission (1 − 𝑅)": Mirrors are not perfect reflectors. Even the high 

reflector might have a reflectivity 𝑅 slightly less than 1. The output coupler 

is designed to transmit a certain fraction (𝑇 = 1 − 𝑅, neglecting absorption 

in the mirror) of the light to produce the laser beam; this is a deliberate and 

necessary loss from the cavity's perspective, contributing to 𝛾.   • 

"Window absorption": If the active medium is enclosed by windows (e.g., 

Brewster windows on a gas laser tube), these optical components can 

absorb a small fraction of the light passing through them.   • 

"Scattering": Imperfections on the surfaces of mirrors or windows, or 

scattering centers within the active medium itself, can scatter light out of 

the main beam path, contributing to loss.   • "Diffraction clipping": The 

laser beam has a finite size. If the mirrors or other apertures within the 

cavity are too small, some of an expanding beam's energy can be lost 

("clipped") at the edges due to diffraction. Higher-order transverse modes 

are particularly susceptible to this. 

All these loss mechanisms are lumped together into the round-trip loss 

factor 𝛾. For lasing to occur, the round-trip gain 𝐺(𝜈) must be large enough 

to overcome these total round-trip losses represented by 𝛾. 
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Continuing with "Slide 8: Round-Trip Analysis — Defining Gain & Losses," 

this page builds on the concepts of gain and loss to describe the net effect 

over a round trip. 



The first bullet point considers the "Exponential decay of intensity in empty 

resonator:" 𝐼 = 𝐼0𝑒
−𝛾𝑦 

Let's read this: "Capital I equals I sub zero, times 𝑒−𝛾𝑦." And it's clarified: 

"where 𝑦: number of round-trips." This equation describes how the intensity 

of light would decay in a passive cavity – one that either has no active 

medium, or where the active medium is not pumped (so 𝛼(𝜈) is positive or 

zero). 

  * 𝐼0 (I sub zero) is the initial intensity.   * 𝐼 is the intensity after 'y' 

round trips.    𝛾 (gamma) here is the dimensionless loss per round 

trip*. The form 𝑒−𝛾𝑦 implies that $(1-\gamma_{\text{fractional_\text{loss}}}) 

\approx e^{-\gamma_{\text{exponent_\text{loss}}}}$. More precisely, if 𝛾 

represents the fractional loss per round trip, then after 𝑦 round trips, 𝐼 =

𝐼0(1 − 𝛾)𝑦. For small 𝛾, (1 − 𝛾) ≈ 𝑒−𝛾, so (1 − 𝛾)𝑦 ≈ (𝑒−𝛾)𝑦 = 𝑒−𝛾𝑦. So, 𝛾 

here is effectively the exponential decay constant per round trip. 

This shows that in the absence of gain, the light intensity within the cavity 

will die out exponentially due to these inherent losses. 

The second bullet point then considers the "Combined effect (single round-

trip)" when both gain from the active medium and these other cavity losses 

are present: 𝐼(𝜈, 2 𝑑) = 𝐼(𝜈, 0)exp[−2𝛼(𝜈)𝐿 − 𝛾] 

Let's read this: "Capital 𝐼 of 𝜈 comma two d, equals capital 𝐼 of 𝜈 comma 

zero, times the exponential of, open square bracket, minus two 𝛼(𝜈) times 

capital 𝐿, minus 𝛾, close square bracket." 

Let's analyze this crucial equation:   * 𝐼(𝜈, 0): The intensity of light at 

frequency 𝜈 at the start of a round trip.   * 𝐼(𝜈, 2 𝑑): The intensity after 

one complete round trip (covering a total cavity path length of 2 𝑑, though 

the gain medium itself is length 𝐿, traversed twice).   * The exponent 

[−2𝛼(𝜈)𝐿 − 𝛾] determines the net change in intensity.     * 

−2𝛼(𝜈)𝐿: This is the gain term from the active medium over one round trip 

(as defined on the previous slide by 𝐺(𝜈) = exp[−2𝛼(𝜈)𝐿]). If 𝛼(𝜈) is 



negative (gain), this term is positive.     * −𝛾: This represents the 

effect of all other losses per round trip. Since 𝛾 is defined as a loss factor, it 

appears with a minus sign in the exponent for intensity reduction. 

For the laser to oscillate, the intensity must at least remain constant, and 

ideally grow, from one round trip to the next. This means the overall 

argument of the exponential must be greater than or equal to zero: 

−2𝛼(𝜈)𝐿 − 𝛾 ≥ 0 

This implies that the gain term must overcome the loss term: 

−2𝛼(𝜈)𝐿 ≥ 𝛾 

Since 𝛼(𝜈) is negative for gain (say, 𝛼(𝜈) = −𝑔(𝜈) where 𝑔(𝜈) is positive 

gain coefficient), this condition becomes: 

2 𝑔(𝜈)𝐿 ≥ 𝛾 

This is the fundamental condition for lasing threshold: the round-trip gain 

(2 𝑔(𝜈)𝐿) must equal or exceed the round-trip losses (𝛾). When gain 

exactly equals loss, the laser is at threshold. When gain exceeds loss, the 

intensity builds up. 

The "---" indicates the end of this slide. This equation beautifully 

summarizes the balance of gain and loss in a laser cavity. 
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Now we arrive at "Slide 9: Laser Threshold — Step-by-Step Derivation." 

This slide formalizes the condition for net amplification and derives the 

threshold population inversion. 

The heading "Condition for Net Amplification" sets the stage. 

Step 1 is: "Net gain required:" 

−2 𝐿𝛼(𝜈) > 𝛾 



Let's read this: "Minus two times capital L times alpha of nu, is greater than 

gamma." This is precisely the condition we derived at the end of the last 

page for the light intensity to grow over a round trip. 

 • −2 𝐿𝛼(𝜈): This represents the round-trip gain provided by the active 

medium of length 𝐿. Remember, 𝛼(𝜈) is the absorption coefficient; if it's 

negative (due to population inversion), then −2 𝐿𝛼(𝜈) becomes a positive 

gain factor in the exponent.  • 𝛾: This is the total dimensionless loss per 

round trip from all other sources (mirrors, scattering, etc.). 

So, for net amplification, the round-trip gain must exceed the round-trip 

losses. 

Step 2 is: "Substitute 𝛼(𝜈) expression:" 

We recall from page 20 that the absorption coefficient 𝛼(𝜈) is given by: 

𝛼(𝜈) = [𝑁i −
𝑔i

𝑔k

𝑁k] 𝜎(𝜈) 

Substituting this into our net gain condition: 

−2 𝐿 [𝑁i −
𝑔i

𝑔k

𝑁k] 𝜎(𝜈) > 𝛾 

We can bring the minus sign inside the square brackets by reversing the 

terms: 

2 𝐿 [
𝑔i

𝑔k

𝑁k −𝑁i] 𝜎(𝜈) > 𝛾 

The slide presents a slightly different algebraic form, but one that is 

equivalent if we define the population inversion carefully. The slide writes: 

2 𝐿 [𝑁k −
𝑔k

𝑔i

𝑁i] 𝜎(𝜈) > 𝛾 



Let's analyze the term in the square brackets on the slide: [𝑁k −
𝑔k

𝑔i

𝑁i]. For 

this term to be positive (which is needed for the left side to represent gain), 

we need 

𝑁k >
𝑔k

𝑔i

𝑁i . 

This is exactly the condition for population inversion 

𝑁k

𝑔k

>
𝑁i

𝑔i

. 

So, if we define an "effective population inversion density" 

𝛥𝑁eff = 𝑁k −
𝑔k

𝑔i

𝑁i , 

then the condition becomes 

2 𝐿𝛥𝑁eff𝜎(𝜈) > 𝛾. 

This form is consistent and often used. The key is that the term [𝑁k −
𝑔k

𝑔i

𝑁i] 

must be positive for gain to occur. 

Step 3 is: "Define inversion density". 

This foreshadows that the term we just discussed, [𝑁k −
𝑔k

𝑔i

𝑁i], will be 

formally defined as the population inversion density relevant for this gain 

equation. We'll see this explicit definition on the next page. This step-by-

step derivation is leading us directly to the minimum population inversion 

required for lasing. 
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Slide 9: Laser Threshold — Step-by-Step Derivation 

Continuing with "Slide 9: Laser Threshold — Step-by-Step Derivation," this 

page completes the derivation. 



First, we see the definition of the inversion density, following from Step 3 on 

the previous page: 

𝛥𝑁 = 𝑁k −
𝑔k

𝑔i

𝑁i 

Let's read this: "Capital Delta N equals N sub k, minus, open parenthesis g 

sub k divided by g sub i close parenthesis, times N sub i." 

This 𝛥𝑁 (Capital Delta N) is the specific definition of population inversion 

density that makes the gain expression from the previous page 2 𝐿 𝛥𝑁 𝜎(𝜈). 

When this 𝛥𝑁 is positive, we have gain. 

Step 4 is to find the "Threshold inversion." This is the minimum value of 𝛥𝑁 

required for lasing to begin. It's found by setting the round-trip gain equal to 

the round-trip losses (the threshold condition): 

2 𝐿 𝛥𝑁𝑡ℎ𝑟 𝜎(𝜈) = 𝛾 

Solving for 𝛥𝑁𝑡ℎ𝑟 (Delta N sub t h r), we get: 

𝛥𝑁𝑡ℎ𝑟 =
𝛾

2 𝜎(𝜈) 𝐿
 

Let's read this: "Capital Delta N sub t h r, equals gamma, divided by, the 

product of two, sigma of nu, and capital L." 

Let's deconstruct this important result for the threshold population inversion 

density:   * 𝛾 (gamma): The dimensionless round-trip loss. Higher 

losses mean a higher threshold inversion is needed.   * 𝜎(𝜈) (sigma of 

nu): The stimulated-transition cross-section at frequency 𝜈. A larger cross-

section (stronger interaction) means a lower threshold inversion is needed.   

* 𝐿 (Capital L): The length of the active medium. A longer gain medium 

means a lower threshold inversion density is needed (as the total gain is 

proportional to 𝐿). 



This formula is fundamental to laser design. It tells us quantitatively what 

level of population inversion we must achieve in our active medium, given 

its properties (𝜎, 𝐿) and the quality of our resonator (𝛾). 

Step 5 states: "Laser oscillation possible only if 𝛥𝑁 > 𝛥𝑁𝑡ℎ𝑟". This is boxed 

to emphasize its importance: "Capital Delta N must be greater than Capital 

Delta N sub t h r." The actual population inversion density (𝛥𝑁) achieved in 

the medium by pumping must exceed this calculated threshold value 

(𝛥𝑁𝑡ℎ𝑟) for the laser to start oscillating and produce output. If 𝛥𝑁 is less 

than 𝛥𝑁𝑡ℎ𝑟, the gain will not be sufficient to overcome the losses, and 

lasing will not occur. 

Finally, the slide clarifies the units of the symbols involved: 

"All symbols: 𝛥𝑁 [cm−3], 𝜎 [cm2], 𝐿 [cm], 𝛾 [dimensionless]." 

  * 𝛥𝑁 (Delta N) is a population inversion density, in units of per 

centimeter cubed.   * 𝜎 (sigma) is a cross-section, in units of 

centimeters squared.   * 𝐿 is a length, in units of centimeters.   * 𝛾 

(gamma) is a dimensionless fractional loss per round trip. 

These units are consistent, making 𝛥𝑁𝑡ℎ𝑟 indeed a density (cm−3). 

This threshold condition is one of the most important results in basic laser 

theory. 
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Slide 10: Numerical Illustration — He-Ne Laser Example 

Now we proceed to "Slide 10: Numerical Illustration — He-Ne Laser 

Example." This slide applies the threshold inversion formula we just derived 

to a practical example, the Helium-Neon laser, which is a very common and 

well-understood laser system. 

First, the "Parameters" for this specific He-Ne laser example are given: 



• "𝐿 = 10 cm" (Capital L equals 10 centimeters). This is the length of the 

active gain medium (the gas discharge tube). 

• "𝛾 = 0.10" (10% loss per round-trip). This means that 10% of the light 

intensity is lost from the cavity on each round trip due to factors like mirror 

transmission, scattering, etc. 

• "𝜎 = 1.0 × 10−12 cm2" (sigma equals one point zero times ten to the 

minus twelve centimeters squared). This is the stimulated emission cross-

section for the lasing transition in neon (likely the 632.8 nm red line). This is 

a relatively large cross-section, which is favorable for achieving laser 

action. Note that 𝜎(𝜈) is just written as 𝜎, implying it's evaluated at the peak 

of the gain curve. 

Next, we "Plug into threshold formula." The formula is: 

𝛥𝑁thr =
𝛾

2𝜎𝐿
 

(Capital Delta N sub t h r equals gamma, divided by the product of two 

sigma L). 

Let's perform the calculation with the given values: 

$$\Delta N_{\text{thr}} = \frac{0.10}{2 \times \left(1.0 \times 10^{-12}\, 

\text{cm}^{2\right)} \times \left(10\, \text{cm}\right)}$$ 

Denominator = 2 × 1.0 × 10 × 10−12 cm3 = 20 × 10−12 cm3

= 2 × 10−11 cm3. 

𝛥𝑁thr =
0.10

2 × 10−11 cm3 

𝛥𝑁thr =
1 × 10−1

2 × 10−11
 cm−3 

𝛥𝑁thr =
1

2
× 1010 cm−3 



𝛥𝑁thr = 0.5 × 1010 cm−3 = 5 × 109 cm−3. 

The slide shows the calculation as: "𝛥𝑁thr =
0.10

2×1.0×10−12×10
= 5 × 109 cm−3" 

(equals five times ten to the nine per centimeter cubed). 

Our calculation matches the slide. This means that for this specific He-Ne 

laser to begin lasing, a population inversion density of 5 billion atoms per 

cubic centimeter must be achieved between the upper and lower lasing 

levels of neon (factoring in their degeneracies as per our definition of 𝛥𝑁). 

This numerical example helps to make the abstract formula for threshold 

inversion more concrete. 
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Continuing with "Slide 10: Numerical Illustration — He-Ne Laser Example," 

this page contextualizes the threshold inversion density we just calculated. 

The first point provides information about the total number of neon atoms 

available: "Neon partial pressure $p = 0.2\,\text{mbar} \Rightarrow 

\text{total neon density } N_{\text{Ne}} \approx 5 \times 10^{15}\,\text{cm}^{-

3}."       (p equals zero point two millibar, implies \( N_{\text{Ne}}$, the total 

Neon density, is approximately five times ten to the fifteen per centimeter 

cubed). A partial pressure of 0.2 millibar (which is 20 Pascals) for neon in a 

typical He-Ne gas mixture at operating temperature (a few hundred Kelvin) 

would indeed correspond to a total neon number density of this order of 

magnitude (
𝑁

𝑉
=

𝑃

𝑘B𝑇
). So, we have a vast reservoir of about 5 quadrillion 

neon atoms per cubic centimeter. 

The second point then calculates the "Required inversion fraction:" This is 

the ratio of the threshold population inversion density 𝛥𝑁thr to the total neon 

density 𝑁Ne. " 
𝛥𝑁thr

𝑁Ne

≈
5×109  cm−3

5×1015  cm−3" Let's do the math: 

5 × 109

5 × 1015
=
5

5
×
109

1015
= 1 × 109−15 = 1 × 10−6. 



The slide result is: "≈ 1 × 10−6" (approximately one times ten to the minus 

six). This is a very small fraction! It means that only about one in a million 

neon atoms needs to be in the effectively inverted state (contributing to 

𝛥𝑁thr) for the laser to reach threshold. 

The third point provides the crucial interpretation of this small fraction, 

indicated by an arrow: "→ remarkably small fraction suffices because gain 

cross-section is large and losses moderate." This is a key insight into why 

He-Ne lasers are practical and can operate continuously with relatively 

modest pumping. 

 • "gain cross-section is large": As we noted, 𝜎 ≈ 10−12 cm2 is a fairly 

large value. This means that each inverted atom is quite effective at 

participating in stimulated emission. If 𝜎 were much smaller, a much larger 

𝛥𝑁thr would be needed for the same 𝐿 and 𝛾. 

 • "losses moderate": A 10% round-trip loss (𝛾 = 0.10) is a reasonable 

value for a well-constructed cavity. If losses were significantly higher, 𝛥𝑁thr 

would also need to be higher. 

Because of these favorable factors, only a tiny fraction of the available 

neon atoms needs to be actively participating in the population inversion at 

any given time. This makes it feasible to sustain this level of inversion 

continuously with an electrical discharge pump. 

This example illustrates how the interplay of atomic properties (𝜎), cavity 

design (𝐿,  𝛾), and pump effectiveness determines the practicality of a laser 

system. 
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This page concludes "Slide 10: Numerical Illustration — He-Ne Laser 

Example" with a final important takeaway. 

The bullet point states: "Demonstrates practicality of continuous-wave 

operation in He-Ne gas discharge." 



This directly follows from our finding on the previous page that only a very 

small fraction (around 10−6) of neon atoms needs to be involved in the 

population inversion to reach the lasing threshold. 

Because such a small fraction is required: 

* The pumping mechanism (the electrical discharge in the He-Ne gas 

mixture) does not need to be extraordinarily powerful or efficient to achieve 

and maintain this level of inversion. 

* It's possible to sustain this inversion continuously over time, rather than 

only in short pulses. 

This is why He-Ne lasers are well-known for their ability to operate in 

"continuous-wave" (CW) mode, meaning they produce a steady, 

uninterrupted laser beam. If a very large fraction of atoms needed to be 

inverted, it might only be possible to achieve this for brief periods using 

intense pulsed pumping, as is the case for some other laser systems (e.g., 

those with very low gain cross-sections or very high losses, or 3-level 

systems). 

The He-Ne laser, being one of the earliest gas lasers and one of the first to 

achieve CW operation at visible wavelengths, beautifully exemplifies how 

laser design principles can lead to practical and reliable devices. 

The "---" indicates the end of the content for this slide and this specific 

numerical example. 
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We now advance to "Slide 11: Frequency Dependence of Gain — Line 

Shape." So far, we've often treated the gain coefficient or cross‐ section as 

a single value. However, in reality, these quantities are 

frequency‐ dependent, and this dependence is crucial for understanding 

the spectral characteristics of lasers. 



The first point states: "Stimulated-transition cross-section relates to Einstein 

B-coefficient and homogeneous/inhomogeneous line profile 𝑔(𝜈 − 𝜈0)." 

Let's break this down: 

• 𝜎(𝜈), the stimulated-transition cross-section, is not a constant but varies 

with the frequency 𝜈 (nu) of the light. 

• It's fundamentally related to the Einstein B-coefficient (𝐵𝑘𝑖 for stimulated 

emission or 𝐵𝑖𝑘 for absorption), which represents the intrinsic strength of 

the radiative transition between two energy levels. 

• The frequency dependence comes from the "line profile" or "lineshape 

function," denoted here as 𝑔(𝜈 − 𝜈0) (g of nu minus nu zero). This function 

describes the shape of the spectral line associated with the transition. It's 

typically peaked at a central resonant frequency 𝜈0 (nu zero) and falls off as 

the frequency 𝜈 moves away from 𝜈0. The integral of 𝑔(𝜈 − 𝜈0) over all 

frequencies is usually normalized to unity. 

• The lineshape 𝑔(𝜈 − 𝜈0) can arise from two main types of broadening 

mechanisms:   – Homogeneous broadening: All atoms or molecules in 

the active medium behave identically, having the same resonant frequency 

and linewidth.   – Inhomogeneous broadening: Different atoms or 

molecules (or groups of them) have slightly different resonant frequencies, 

leading to an overall broader line composed of many narrower individual 

contributions. 

The second point provides an expression for the "Unsaturated gain 

coefficient," 𝛼(𝜈), which now explicitly shows its frequency dependence: 

𝛼(𝜈) = 𝛥𝑁 𝜎𝑖𝑘(𝜈) = 𝛥𝑁 (
ℎ𝜈

𝑐
)𝐵𝑖𝑘  𝑔(𝜈 − 𝜈0) 

Let's read this: "alpha of nu, equals Capital Delta N times sigma sub i k of 

nu, which equals Capital Delta N, times, open parenthesis h nu divided by c 

close parenthesis, times B sub i k, times g of nu minus nu zero." 



Here, 𝛼(𝜈) is being used to denote the gain coefficient (positive for gain). 

• 𝛥𝑁: This is the population inversion density, as defined previously (e.g., 

𝑁k −
𝑔k

𝑔i

𝑁i for the levels k and i). 

• 𝜎𝑖𝑘(𝜈) (sigma sub i k of nu): This is the frequency-dependent stimulated 

emission cross-section (even though subscript is ik, with 𝛥𝑁 for inversion, 

it's effectively for stimulated emission from k to i). 

• The second part of the equation, 𝛥𝑁 (
ℎ𝜈

𝑐
)𝐵𝑖𝑘  𝑔(𝜈 − 𝜈0), expresses this 

cross-section in terms of more fundamental parameters:   – h: Planck's 

constant.   – 𝜈: Frequency of light.   – c: Speed of light.   – 

𝐵𝑖𝑘: The Einstein B-coefficient for the transition (again, with 𝛥𝑁, context 

implies 𝐵𝑘𝑖 for emission).   – 𝑔(𝜈 − 𝜈0): The lineshape function. 

This equation shows that the gain coefficient 𝛼(𝜈) directly inherits its 

frequency dependence from the lineshape function 𝑔(𝜈 − 𝜈0). The gain will 

be strongest where 𝑔(𝜈 − 𝜈0) is largest. 

The third point confirms this: "Peak amplification at line centre 𝜈0." 

Naturally, since the lineshape function 𝑔(𝜈 − 𝜈0) is typically peaked at the 

central resonant frequency 𝜈0 of the atomic or molecular transition, the gain 

coefficient 𝛼(𝜈) will also be maximum at 𝜈 = 𝜈0. Lasers will preferentially 

oscillate at or near this peak gain frequency, if allowed by the resonator 

modes. 

The fourth point begins to specify the types of lineshapes: "Homogeneous 

broadening → Lorentz profile, width 𝛤L." (Capital Gamma sub L). 

• "Homogeneous broadening" occurs when all active atoms or molecules 

in the sample experience the same local environment and thus have 

identical transition frequencies and linewidths. Examples of homogeneous 

broadening mechanisms include:   – Natural broadening (or lifetime 

broadening): Due to the finite lifetime of the excited state (related to the 

spontaneous emission rate 𝐴𝑘𝑖), there's an inherent uncertainty in its 



energy, leading to a broadening of the spectral line. This is a fundamental 

limit.   – Collisional broadening (or pressure broadening): In gases and 

liquids, collisions between active atoms/molecules and other particles can 

interrupt the phase of the emitted light wave or shorten the effective lifetime 

of the states, leading to broadening. This type of broadening increases with 

pressure.   – In solids, interaction with lattice vibrations (phonons) can 

also lead to homogeneous broadening. 

• When homogeneous broadening is dominant, the lineshape function 

𝑔(𝜈 − 𝜈0) typically takes the form of a "Lorentz profile" (also known as a 

Lorentzian or Breit-Wigner lineshape). 

• 𝛤L (Capital Gamma sub L) represents the characteristic width of this 

Lorentzian profile, usually the Full Width at Half Maximum (FWHM). 
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Slide 11: Frequency Dependence of Gain — Line Shape 

Continuing with "Slide 11: Frequency Dependence of Gain — Line Shape," 

this page discusses the other major type of broadening. 

The bullet point states: "Inhomogeneous broadening (Doppler) → Gaussian 

profile, width 𝛥𝜈D." (Delta nu sub D). 

Let's break this down: 

"Inhomogeneous broadening" occurs when different atoms or molecules (or 

groups of them) within the active medium experience slightly different local 

environments or conditions, causing their individual resonant frequencies 

𝜈0 to be slightly shifted relative to each other. The overall observed spectral 

line is then a superposition (an envelope) of many narrower, 

homogeneously broadened lines from these different groups of atoms. 

The most prominent example of inhomogeneous broadening, especially in 

gas lasers, is "Doppler broadening." Gas atoms are in constant random 

thermal motion. Atoms moving towards an observer (or a light beam) see 



the light frequency up-shifted (blueshifted), while atoms moving away see it 

down-shifted (redshifted) due to the Doppler effect. Since there's a 

distribution of velocities (typically a Maxwell-Boltzmann distribution), there 

will be a corresponding distribution of perceived resonant frequencies. 

When Doppler broadening is the dominant inhomogeneous mechanism, 

the resulting lineshape function 𝑔(𝜈 − 𝜈0) takes the form of a "Gaussian 

profile." 

𝛥𝜈D (Capital Delta nu sub D) represents the characteristic width (FWHM – 

Full Width at Half Maximum) of this Gaussian profile due to Doppler 

broadening. This width is proportional to the central frequency 𝜈0 and the 

square root of 
Temperature

Mass of the atom/molecule
. So, higher temperatures and lighter 

particles lead to greater Doppler broadening. 

Understanding whether a laser transition is primarily homogeneously or 

inhomogeneously broadened is crucial because it affects how the laser 

behaves, particularly in terms of its power output characteristics and its 

ability to operate on single or multiple frequencies (modes). 

For example, in an inhomogeneously broadened gain medium, different 

cavity modes can be amplified by different velocity groups of atoms, a 

phenomenon known as "spatial hole burning" when considering standing 

waves, or spectral hole burning if a narrow frequency burns a "hole" in the 

gain profile. 
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This page, still part of "Slide 11: Frequency Dependence of Gain — Line 

Shape," provides a visual "Comparison of Normalized Lorentzian and 

Gaussian Line Shapes." 

Let's describe the graph: 



The vertical axis is labeled "Normalized Line Shape 𝑔(𝜈 − 𝜈0)" (g of nu 

minus nu zero). It ranges from 0 to 1.0, indicating that both lineshapes are 

normalized to have a peak value of 1 at the line center. 

The horizontal axis is labeled "𝜈 − 𝜈0" (nu minus nu zero), representing the 

frequency offset from the line center 𝜈0. The center is at 0. The axis is also 

marked with units like −2𝛤1, −𝛤1, 0, 𝛤1, 2𝛤1, where 𝛤1 (Capital Gamma sub 

1) is likely representing the Half Width at Half Maximum (HWHM) or is 

related to the FWHM. (The previous slides used 𝛤L and 𝛥𝜈D for FWHM). 

Two curves are plotted: 

1. The blue curve is labeled "Lorentzian (Homogeneous)." It is sharply 

peaked at 𝜈 − 𝜈0 = 0, with a value of 1.0. As you move away from the 

center, it falls off, but its distinguishing feature is its relatively "heavy" or 

"broad" wings. That is, the Lorentzian profile decays more slowly than a 

Gaussian in the far wings (large |𝜈 − 𝜈0|). Specifically, a Lorentzian falls off 

as 

1

(𝜈 − 𝜈0)
2 + (

𝛤
2
)
2, 

so for large offsets, it’s like 

1

(𝜈 − 𝜈0)
2
. 

2. The red curve is labeled "Gaussian (Inhomogeneous)." It is also peaked 

at 𝜈 − 𝜈0 = 0 with a value of 1.0. Compared to the Lorentzian (when they 

have the same FWHM), the Gaussian appears more "pointed" near the 

peak and falls off much more rapidly in the wings. A Gaussian profile has 

the form 

exp [− (
𝜈 − 𝜈0
𝑤

)
2

], 



where 𝑤 is related to the width. This exponential decay in the wings is 

much faster than the algebraic decay of the Lorentzian. 

An important annotation on the graph states: "Plot assumes equal FWHM: 

𝛤L = 𝛥𝜈D = FWHM." This means that for this specific comparison, the 

parameters of the Lorentzian (𝛤L, its Full Width at Half Maximum) and the 

Gaussian (𝛥𝜈D, its FWHM) have been chosen such that their FWHMs are 

identical. This allows for a fair visual comparison of their shapes. If they 

didn't have the same FWHM, one would simply look broader than the other 

overall. 

This visual comparison is very instructive. While both are bell-shaped 

curves, the difference in their wing behavior is significant and has 

implications for phenomena like gain saturation and the extent of the 

frequency range over which a laser might still have some gain, even if 

small. 
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Slide 12: Resonator Loss Factor 𝛾 — Frequency Behaviour 

We now proceed to "Slide 12: Resonator Loss Factor 𝛾 — Frequency 

Behaviour." Just as the gain 𝛼(𝜈) is frequency-dependent, the total round-

trip loss factor 𝛾 can also vary with frequency, 𝛾(𝜈). This slide explores the 

reasons for this. 

The first point notes: "Mirror reflectivity depends on wavelength via coating 

design." Laser mirrors are typically not simple metallic reflectors but use 

"dielectric coatings." These consist of multiple thin layers of transparent 

dielectric materials with different refractive indices, carefully designed with 

specific thicknesses (often quarter-wavelengths or half-wavelengths). 

These layers create interference effects that can lead to extremely high 

reflectivity (e.g., > 99.9%) but usually only over a specific range of 

wavelengths (or frequencies). Outside this design range, the reflectivity can 

drop significantly. Since the loss factor 𝛾 includes contributions from mirror 



transmission (1 − 𝑅), any frequency dependence of 𝑅 will directly translate 

into a frequency dependence of 𝛾. 

The second point is: "Diffraction losses vary with mode order → higher-

order modes often suppressed." As we discussed, optical resonators 

support transverse modes TEM𝑚𝑛. Higher-order transverse modes (those 

with larger 𝑚 and 𝑛 values) generally have a larger spatial extent – they are 

wider beams. If the mirrors or other components in the cavity have a finite 

aperture (size), these wider higher-order modes are more likely to be 

"clipped" at the edges, leading to "diffraction losses." The fundamental 

TEM00 mode, being the most compact, typically experiences the lowest 

diffraction losses. While this isn't a direct dependence on frequency 𝜈 itself, 

if the laser is trying to operate on a higher-order mode (which might have a 

slightly different resonant frequency due to modal dispersion), its 

associated diffraction loss might be higher. More commonly, this effect is 

used to suppress higher-order modes by appropriately sizing apertures, 

encouraging the laser to operate in the desired TEM00 mode. So, 𝛾 

effectively becomes higher for these undesired modes. 

The third point is crucial for understanding cavity behavior: "Total 𝛾(𝜈) 

therefore has minima aligned with resonator eigen-frequencies." This refers 

to the intrinsic behavior of the Fabry-Pérot resonator itself. The cavity is 

designed to resonate at specific longitudinal mode frequencies 𝜈q (its 

eigen-frequencies). At these resonant frequencies, light waves 

constructively interfere, leading to efficient energy storage and thus minimal 

loss for those specific frequencies. For frequencies that are slightly off-

resonance, destructive interference occurs, leading to higher losses from 

the cavity. So, the resonator itself imposes a frequency-dependent loss that 

looks like a series of sharp dips (low loss) at each 𝜈q, and higher loss in 

between. This is often described by the Airy function for a Fabry-Pérot 

interferometer's transmission, which implies the loss within the cavity is 

minimized at these resonances. 



The fourth point brings gain and loss together: "Intersection of −2 𝐿𝛼(𝜈) 

and 𝛾(𝜈) curves dictates actual laser spectrum." Recall the threshold 

condition for lasing: the round-trip gain (let's call it 𝐺𝑅𝑇(𝜈) = −2 𝐿𝛼(𝜈), 

where 𝛼(𝜈) is negative for gain) must exceed the round-trip losses 𝛾(𝜈). 

So, 𝐺𝑅𝑇(𝜈) > 𝛾(𝜈). The actual frequencies at which the laser will oscillate 

are those where this condition is met. 

* −2 𝐿𝛼(𝜈) (or 2 𝐿𝑔(𝜈) if 𝑔 is positive gain coefficient) represents the gain 

profile, typically a bell-shaped curve determined by the atomic lineshape. * 

𝛾(𝜈) represents the total loss profile, which will have minima at the cavity 

eigen-frequencies and may also vary more broadly due to mirror coatings. 

The "intersection" of these two curves (or more accurately, the regions 

where the gain curve lies above the loss curve) will determine the range of 

frequencies that can lase. The laser will tend to oscillate most strongly 

where the difference [Gain(𝜈) − Loss(𝜈)] is maximized. 
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Slide 12: Resonator Loss Factor 𝛾 — Frequency Behaviour 

Continuing with "Slide 12: Resonator Loss Factor 𝛾 — Frequency 

Behaviour," this page discusses an important consequence for laser 

operation. The single bullet point here states: "Single-mode operation 

requires cavity and gain bandwidth to support only one intersection." 

Let's elaborate on this critical concept. As we saw from the previous 

discussion, lasing occurs at frequencies where the gain curve 𝐺RT(𝜈) is 

above the loss curve 𝛾(𝜈). The loss curve 𝛾(𝜈) has minima at each of the 

cavity's longitudinal mode frequencies 𝜈q. If the gain profile 𝐺RT(𝜈) 

(determined by the active medium's lineshape) is broad enough to be 

above the loss minima of several adjacent longitudinal modes, then the 

laser will oscillate simultaneously on all those modes. This is "multi-mode 

operation." The output spectrum would consist of several discrete 

frequencies corresponding to these lasing modes. For many applications, 



particularly in high-resolution spectroscopy or for achieving very high 

coherence, "single-mode operation" is desired, meaning the laser outputs 

only a single longitudinal mode (and typically also a single transverse 

mode, TEM00). To achieve this, the laser system must be designed such 

that the condition 𝐺RT(𝜈) > 𝛾(𝜈) is satisfied for only one longitudinal mode. 

The "one intersection" in the slide's phrasing refers to the gain curve only 

rising above the loss curve for a single one of the cavity's resonant 

frequencies. 

This can be achieved in several ways: 

1. Short cavity: Make the cavity length 𝑑 very small. This increases the 

spacing between longitudinal modes (Free Spectral Range, FSR = 
𝑐

2 𝑑
). If 

the FSR becomes comparable to or larger than the gain bandwidth of the 

active medium, then only one mode might fall within the region of sufficient 

gain. 

2. Narrow gain bandwidth: If the active medium inherently has a very 

narrow gain profile, it might only provide gain over a range smaller than the 

FSR, naturally selecting a single mode. 

3. Introduce intracavity frequency-selective loss elements: This is a 

common technique. Elements like an etalon (another Fabry-Pérot device) 

or a birefringent filter can be placed inside the laser cavity. These elements 

introduce additional losses that are highly frequency-dependent, effectively 

making 𝛾(𝜈) very high for all but one (or a few closely spaced) desired 

longitudinal modes. This "forces" the laser to operate on the single mode 

that experiences the lowest net loss. 

Achieving stable single-mode operation is a significant topic in laser design 

and is essential for many advanced spectroscopic applications. 
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This page presents a graph that beautifully illustrates the concept from 

"Slide 12: Resonator Loss Factor 𝛾(𝜈) — Frequency Behaviour," 

specifically how the gain and loss profiles interact to determine the lasing 

spectrum. 

The graph is titled "Resonator Loss Factor 𝛾(𝜈) — Frequency Behaviour."   

* The vertical axis is labeled "Gain / Loss," ranging from 0.0 to 1.0 in 

arbitrary units.   * The horizontal axis is labeled "Frequency (𝜈)" (nu). 

Several points are marked along this axis relative to a central frequency 𝜈: 

𝜈 − 3FSR, 𝜈 − 2FSR, 𝜈 − 1FSR, 𝜈, 𝜈 + 1FSR, 𝜈 + 2FSR, 𝜈 + 3FSR, where 

FSR stands for Free Spectral Range, the spacing between cavity modes. 

Three curves are plotted: 

1. The blue solid curve, which is broad and shaped like an inverted 

parabola, is labeled "−2 𝐿𝛼(𝜈) (Gain)." This represents the gain profile of 

the active medium. It's highest at the central frequency 𝜈 and falls off to the 

sides. (As before, −2 𝐿𝛼(𝜈) is positive because 𝛼(𝜈) is negative for gain). 

2. The red solid curve is labeled "𝛾(𝜈) (Total Loss)." This curve shows a 

series of sharp dips, or minima. These minima occur precisely at the 

frequencies 𝜈 − 3FSR, 𝜈 − 2FSR, ..., 𝜈 + 3FSR, etc., which represent the 

resonant eigen-frequencies of the optical cavity. Between these resonant 

frequencies, the loss 𝛾(𝜈) is significantly higher. This illustrates the 

frequency-selective nature of the resonator – it has low loss only at its 

modes. 

3. Several vertical green lines are drawn, each topped with a small yellow 

dot at its base. These are labeled "Lasing Region (Gain > Loss)." These 

green lines exist only at the cavity resonant frequencies (where the red loss 

curve dips) and where the blue gain curve is higher than the red loss curve 

at that specific mode frequency. The yellow dots seem to indicate the 

magnitude of the gain available at those specific lasing modes. 

What this graph vividly demonstrates is the condition for lasing: 



Lasing occurs only at those discrete cavity mode frequencies where the 

gain provided by the active medium (blue curve) exceeds the total losses of 

the cavity at that mode frequency (the minima of the red curve). 

In this particular illustration:   * At the central frequency 𝜈, the gain is 

well above the loss minimum, so this mode will lase strongly.   * The 

modes at 𝜈 ± 1FSR also have gain significantly above their loss minima, so 

they will lase.   * The modes at 𝜈 ± 2FSR also appear to have gain just 

above their loss minima, so they might also lase, perhaps more weakly.    

The modes at 𝜈 ± 3FSR have gain (blue curve) that is below the loss 

minimum (red curve) at those frequencies. Therefore, these modes will not* 

lase. 

This laser would therefore be operating on multiple longitudinal modes (at 

least 5 in this depiction). To achieve single-mode operation, one would 

need to modify the system (e.g., by narrowing the gain curve or introducing 

additional losses) such that only one of these green "Lasing Region" lines 

remains. This plot is a cornerstone for understanding laser spectral output. 
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Slide 13: Enter Rate Equations — Tracking Populations & Photons 

We now transition to a new topic with "Slide 13: Enter Rate Equations — 

Tracking Populations & Photons." While our previous analysis of gain and 

threshold was based on steady-state conditions and energy balance, rate 

equations provide a more dynamic picture of how the populations of energy 

levels and the number of photons in the cavity evolve over time. 

The first point sets the context: "Consider four-level system—simplest 

practical laser scheme." A four-level laser system (as opposed to a three-

level system) is often considered the simplest practical scheme for 

achieving efficient continuous-wave (CW) lasing. In a typical four-level 

scheme: 



  * Atoms are pumped from a ground state |0⟩ to a higher energy pump 

band |3⟩. 

  * They then rapidly decay (non-radiatively) from |3⟩ to a metastable 

upper laser level |2⟩. 

  * The lasing transition occurs from |2⟩ to a lower laser level |1⟩. 

  * Crucially, level |1⟩ then rapidly decays (non-radiatively) to the 

ground state |0⟩. 

The advantage is that the lower laser level |1⟩ remains largely unpopulated 

because of its fast decay. This makes it much easier to achieve population 

inversion (𝑁2 > 𝑁1) between levels |2⟩ and |1⟩, compared to a three-level 

system where the lower laser level is the ground state (requiring more than 

half the atoms to be pumped out of the ground state for inversion). 

Examples of four-level lasers include Nd:YAG. 

The second point is "Define:" followed by a list of parameters that will be 

used in the rate equations. 

  * "P: pump rate into level |2⟩ [atoms cm
−3

 s−1]."     (Capital P, 

into ket |2⟩. Units: atoms per centimeter cubed per second).     This 

𝑃 represents the rate at which atoms are supplied to the upper laser level 

|2⟩ per unit volume per unit time, due to the external pumping mechanism. 

Even if pumping is to a higher level |3⟩ (as in the diagram on page 36), if 

the decay from |3⟩ to |2⟩ is very fast, 𝑃 can be considered the effective rate 

of population arrival into |2⟩. 

  * "R_i: non-radiative relaxation rate out of level |𝑖⟩ [s−1]."     (R 

sub i, out of ket |𝑖⟩. Units: per second).     This 𝑅i represents the rate 

constant for atoms in energy level |𝑖⟩ to decay to lower levels via processes 

that do not involve the emission of a photon (e.g., collisions, phonon 

emission in solids). For instance, 𝑅2 would be the non-radiative decay rate 



from the upper laser level |2⟩, and 𝑅1 would be the (desirably fast) non-

radiative decay rate from the lower laser level |1⟩. 

  * "A₂ ₁ : spontaneous rate between |2⟩ and |1⟩ [s−1]."     (A sub 

two one, between ket |2⟩ and ket |1⟩. Units: per second).     This is 

the Einstein A-coefficient for spontaneous emission from the upper laser 

level |2⟩ directly to the lower laser level |1⟩. This process contributes to 

populating level |1⟩ and depopulating level |2⟩, but the emitted photons are 

typically lost from the lasing mode (emitted in random directions). 

These definitions set up the variables we will use to describe the dynamics 

of the laser system. 
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Slide 13: Enter Rate Equations — Tracking Populations & Photons 

Continuing with "Slide 13: Enter Rate Equations — Tracking Populations & 

Photons," this page defines one more crucial variable and states an 

important approximation. 

The first bullet point defines: "n: photon density inside cavity 

[photons cm
−3]." 

(small n. Units: photons per centimeter cubed). 

This "n" represents the number of photons per unit volume that are present 

in the lasing mode(s) within the optical resonator. The time evolution of this 

photon density, 
𝑑𝑛

𝑑𝑡
, will be one of the key equations in our rate equation set, 

as it describes how the laser light builds up or decays. 

The second bullet point makes a critical clarification about the applicability 

of the rate equation approach: "Neglect quantum coherence → population-

rate approximation valid for many cw lasers." 

This is a very important underlying assumption. 



  * "Neglect quantum coherence": In a full quantum mechanical 

description of light-matter interaction (e.g., using the density matrix 

formalism), one considers not only the populations of the energy levels 

(diagonal elements of the density matrix) but also the "coherences" 

between levels (off-diagonal elements). These coherences describe the 

phase relationships induced by the light field between the quantum states.    

"Population-rate approximation": Rate equations, by their nature, only deal 

with the populations of energy levels (𝑁1, 𝑁2, etc.) and the number* (or 

density '𝑛') of photons. They do not explicitly track these quantum 

coherences. This is a simplification.   * "valid for many cw lasers": This 

approximation is generally valid under conditions where any induced 

coherences decay very rapidly (i.e., dephasing times are very short) 

compared to the timescales of population changes due to pumping and 

stimulated emission. This is often true for continuous-wave (CW) lasers 

operating well above threshold, where the photon field is strong and can be 

treated somewhat classically, and for systems where collisions or other 

interactions cause rapid dephasing. 

For situations involving very short pulses, or phenomena where quantum 

coherence is paramount (like Rabi oscillations or self-induced 

transparency), a more sophisticated treatment beyond simple rate 

equations (such as the Maxwell-Bloch equations) would be necessary. 

However, for understanding the basic dynamics, threshold conditions, and 

steady-state output power of many common lasers, the rate equation 

approach is both powerful and intuitive. 
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This page, still part of "Slide 13," presents the "Four-Level Laser System 

Diagram" along with "Rate Equation Parameters," visually laying out the 

energy levels and transitions we'll be modeling. 

Let's examine the diagram: 



Four distinct energy levels are shown as horizontal lines, labeled using ket 

notation:   * |0⟩ (Ground State) at the very bottom.   * |1⟩ (Lower 

Lasing Level) above the ground state.   * |2⟩ (Upper Lasing Level) 

above level |1⟩. This is a metastable state from which lasing will occur.   

* |3⟩ (Pump Band) at the highest energy shown. 

Various arrows depict the movement of atomic populations between these 

levels:   * Pumping: A thick green horizontal arrow labeled 

𝑃 [atoms cm
−3

 s−1] (P in units of atoms per centimeter cubed per second) 

originates from the ground state |0⟩ and points towards the pump band |3⟩, 

with the process labeled "Optical Absorption." This indicates that the pump 

energy excites atoms from the ground state up to level |3⟩.   * Fast 

Relaxation to Upper Laser Level: A dashed gray arrow points downwards 

from |3⟩ to |2⟩, labeled "Fast Relaxation." This signifies that atoms pumped 

to |3⟩ quickly and efficiently (often non-radiatively) transfer to the upper 

laser level |2⟩. This is a common feature in practical four-level systems; 

level |2⟩ is where the population accumulates for lasing.   * Lasing 

Transition: A prominent red curved arrow points downwards from |2⟩ to |1⟩. 

This is labeled "Lasing 𝐴21 (+ Stim. Em.)." This represents the transition 

where laser light is produced. It includes both spontaneous emission (rate 

𝐴21) and, crucially, stimulated emission (which will depend on the photon 

density 𝑛).   * Decay from Upper Laser Level (Non-radiative): Another 

arrow, a blue curved one labeled 𝑅2 (Non-rad. Decay), is shown originating 

from level |2⟩ and pointing downwards, possibly towards |1⟩ or even 

bypassing to |0⟩. This represents non-radiative decay paths from the upper 

laser level that do not contribute to lasing photons. (The earlier definition of 

𝑅i was generic; here 𝑅2 is specifically for level 2).   * Fast Decay of 

Lower Laser Level: A crucial blue curved arrow, labeled 𝑅1 (Fast Decay), 

points downwards from the lower lasing level |1⟩ to the ground state |0⟩. 

This rapid depopulation of level |1⟩ is essential for maintaining population 

inversion between |2⟩ and |1⟩. 



This diagram clearly illustrates the population flow in a typical four-level 

laser: 

1. Pump from |0⟩ to |3⟩. 2. Fast relaxation from |3⟩ to |2⟩ (upper laser 

level). 3. Lasing transition (stimulated and spontaneous emission) from 

|2⟩ to |1⟩. 4. Fast relaxation from |1⟩ (lower laser level) to |0⟩. 

The rates 𝑃, 𝐴21, 𝑅1, and 𝑅2 (and the stimulated emission rate, which will 

involve a 𝐵-coefficient and photon density 𝑛) will form the basis of our rate 

equations. 
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Slide 14: Complete Rate-Equation Set 

Now we arrive at "Slide 14: Complete Rate-Equation Set." This slide 

presents the coupled differential equations that describe the time evolution 

of the populations of the lower and upper laser levels, and the photon 

density in the cavity, based on the four-level system we just saw. 

We'll denote 𝑁1 as the population density of level |1⟩ (the lower laser level) 

and 𝑁2 as the population density of level |2⟩ (the upper laser level). 𝑛 is the 

photon density in the lasing mode. Let's use 𝐵′ as a shorthand for 𝐵21  ℎ𝜈, 

where 𝐵21 is an Einstein-like coefficient and ℎ𝜈 is the photon energy, such 

that 𝐵′𝑛 represents a rate of stimulated transition. 

First, for the "Population of lower laser level |1⟩:" 

The rate equation is: 

𝑑𝑁1
𝑑𝑡

= (𝑁2 −𝑁1)𝐵21 𝑛 ℎ𝜈 + 𝑁2  𝐴21 −𝑁1 𝑅1 

Let's read this: "d N one by d t, equals, open parenthesis N two minus N 

one close parenthesis, times B two one n h nu, plus N two A two one, 

minus N one R one." 



Let's break down each term on the right-hand side, which contributes to the 

rate of change of 𝑁1: 

  * (𝑁2 − 𝑁1)𝐵21 𝑛 ℎ𝜈: This term represents the net rate of population 

change in 𝑁1 due to stimulated processes (emission from 𝑁2 to 𝑁1 and 

absorption from 𝑁1 to 𝑁2). If (𝑁2 − 𝑁1) is positive (inversion), this term is 

positive, meaning 𝑁1 increases due to net stimulated emission from 𝑁2. If 

(𝑁2 −𝑁1) is negative, 𝑁1 decreases due to net absorption to 𝑁2. This 

formulation implies 𝐵21 accounts for both processes with the (𝑁2 −𝑁1) 

factor. 

  * 𝑁2 𝐴21: This term is straightforward. Atoms in the upper level 𝑁2 

spontaneously decay to level 𝑁1 at a rate 𝐴21, thus increasing the 

population of 𝑁1. 

  * −𝑁1 𝑅1: This term represents the decay of population from level 𝑁1 

(e.g., to the ground state) via non-radiative processes, at a rate 𝑅1. This 

decreases the population of 𝑁1. This rapid decay is vital for a four-level 

laser. 

Second, for the "Population of upper laser level |2⟩:" 

The rate equation is: 

𝑑𝑁2
𝑑𝑡

= 𝑃 − (𝑁2 −𝑁1)𝐵21 𝑛 ℎ𝜈 − 𝑁2 𝐴21 −𝑁2  𝑅2 

Let's read this: "d N two by d t, equals P, minus, open parenthesis N two 

minus N one close parenthesis, times B two one n h nu, minus N two A two 

one, minus N two R two." 

Breaking down the terms: 

  * 𝑃: This is the pump rate, supplying population to the upper level 𝑁2. 

  * −(𝑁2 −𝑁1)𝐵21 𝑛 ℎ𝜈: This is the same stimulated transition term as 

above, but with a minus sign. If there's net stimulated emission from 𝑁2 to 



𝑁1 (i.e., 𝑁2 − 𝑁1 > 0), this term is negative, representing the depopulation 

of 𝑁2. 

  * −𝑁2  𝐴21: Spontaneous emission from 𝑁2 to 𝑁1 also depopulates 𝑁2. 

  * −𝑁2  𝑅2: Non-radiative decay from 𝑁2 (to levels other than 𝑁1 

through the lasing transition, or to 𝑁1 non-radiatively) at a rate 𝑅2 also 

depopulates 𝑁2. 

Third, for the "Photon density inside cavity:" 

The equation for 
𝑑𝑛

𝑑𝑡
 will be on the next slide. These two equations for 

𝑑𝑁1

𝑑𝑡
 

and 
𝑑𝑁2

𝑑𝑡
 describe how the populations of the lasing levels change due to 

pumping, spontaneous emission, stimulated emission/absorption, and non-

radiative decay. The term (𝑁2 −𝑁1)𝐵21 𝑛 ℎ𝜈 couples these two equations 

together and also couples them to the photon density 𝑛. 
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Continuing with "Slide 14: Complete Rate-Equation Set," this page 

presents the third crucial rate equation: the one for the photon density 𝑛 

inside the cavity. 

The equation is: 

𝑑𝑛

𝑑𝑡
= −𝛽𝑛 + (𝑁2 −𝑁1)𝐵21𝑛ℎ𝜈 

Let's read this: "d n by d t, equals minus beta n, plus, open parenthesis N 

two minus N one close parenthesis, times B two one n h nu." 

Let's break down the terms on the right-hand side, which contribute to the 

rate of change of the photon density 𝑛: 

* −𝛽𝑛 (minus beta n): This term represents the loss of photons from the 

cavity. * 𝑛 is the photon density (photons per unit volume). * 𝛽 (beta) is the 

photon loss rate constant, with units of 𝑠−1 (per second). It accounts for all 



mechanisms by which photons are removed from the lasing mode, such as 

transmission through the output coupler (useful output), absorption within 

cavity components, and scattering out of the mode. 𝛽 is the reciprocal of 

the photon lifetime (𝜏p or 𝜏c) in the cavity: 𝛽 =
1

𝜏p

. * +(𝑁2 − 𝑁1)𝐵21𝑛ℎ𝜈: This 

is the source term for photons, representing the net rate of photon 

generation per unit volume due to stimulated emission. * (𝑁2 − 𝑁1): The 

effective population inversion density. If this is positive, net stimulated 

emission occurs. * 𝐵21𝑛ℎ𝜈: This must represent the rate of stimulated 

emission events per unit of this inversion that contributes one photon to 𝑛 

for each event. The presence of 𝑛 itself in this term (𝐵21𝑛ℎ𝜈) makes the 

generation rate proportional to the existing photon density, which is the 

hallmark of stimulated emission – photons stimulate the creation of more 

identical photons. The factor 𝐵21ℎ𝜈 here acts as a rate coefficient (with 

units of volume per time, e.g., cm³/s) when multiplied by the population 

inversion (𝑁2 − 𝑁1). 

Following the equation, two important points are made: 1. 𝛽 [𝑠−1]: photon 

loss rate due to mirror transmission + intracavity absorption. This confirms 

our interpretation of 𝛽 as the total photon loss rate constant from the cavity, 

encompassing all loss mechanisms. 

2. Coupling between matter and field explicitly visible via (𝑁2 −𝑁1)𝐵21𝑛ℎ𝜈. 

When it appears with a plus sign in 
𝑑𝑛

𝑑𝑡
, it means photons are being 

created*. When it appears with a minus sign in 
𝑑𝑁2

𝑑𝑡
 (as on the previous 

page), it means the upper laser level population 𝑁2 is being depleted*. 

When it appears with a plus sign in 
𝑑𝑁1

𝑑𝑡
 (previous page), it means the lower 

laser level population 𝑁1 is being populated*. 

This single term beautifully encapsulates the energy conversion process: 

atomic excitation energy (from the population inversion) is converted into 

electromagnetic energy in the form of photons in the lasing mode. The 

strength of this conversion process depends on the magnitude of the 



inversion (𝑁2 − 𝑁1) and, critically, on the existing photon density 𝑛 (the 

stimulation). 

The "---" indicates the end of this slide. This set of three coupled rate 

equations (for 𝑁1, 𝑁2, and 𝑛) forms a powerful, albeit simplified, model for 

understanding laser dynamics. 
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Now we move to "Slide 15: Relating 𝛽 to Cavity Loss 𝛾." We have two 

different ways of describing losses in the laser cavity: * 𝛽 (beta): The 

photon loss rate constant (s−1) from the rate equations, describing 

continuous exponential decay of photons. * 𝛾 (gamma): The dimensionless 

fractional energy loss per round-trip, used in our earlier threshold analysis. 

This slide aims to connect these two parameters. 

The first point defines "One round-trip time:" 

𝑇 =
2 𝑑

𝑐
 

Let's read this: "Capital T equals two d, divided by c." * 𝑇 (Capital T): The 

time it takes for light to complete one full round trip inside the optical 

resonator. * 𝑑 (small d): The length of the resonator (mirror-to-mirror 

distance). * 𝑐 (small c): The speed of light in the medium filling the cavity. 

This is a standard definition for the round-trip time. 

The second point reiterates: "Fractional energy loss per round-trip 𝛾." 

(gamma). This is the 𝛾 we used before, for example, in 

𝛥𝑁thr =
𝛾

2𝜎𝐿
 

It represents the fraction of photons (or energy) lost from the cavity during 

one round-trip time 𝑇. 



The third point says: "Equate exponential decays:" We have two 

perspectives on how photon intensity (or number) decays in a passive 

cavity: 

1. From the rate equation 

𝑑𝑛

𝑑𝑡
= −𝛽𝑛, 

the solution is an exponential decay of the photon density 𝑛(𝑡) over 

continuous time 𝑡: 

𝑛(𝑡) = 𝑛(0)𝑒−𝛽𝑡 

2. From the round-trip loss perspective, if 𝛾 is the fractional loss per round 

trip, then after 𝑦 round trips, the intensity 𝐼 is 𝐼0(1 − 𝛾)𝑦. If 𝛾 is small, 

(1 − 𝛾) ≈ 𝑒−𝛾. So, after 𝑦 round trips, 𝐼 ≈ 𝐼0(𝑒
−𝛾)𝑦 = 𝐼0𝑒

−𝛾𝑦. 

The slide uses this exponential form directly: 

𝐼 = 𝐼0𝑒
−𝛾𝑦 with 𝑦 =

𝑡

𝑇
 

Here, 𝑦 is the number of round trips, which can be expressed as 

continuous time 𝑡 divided by the time per round trip 𝑇. 

So, substituting 𝑦 =
𝑡

𝑇
, the round-trip decay equation becomes: 

𝐼(𝑡) = 𝐼0exp (−𝛾
𝑡

𝑇
) 

Now, if 𝑛(𝑡) from the rate equation and 𝐼(𝑡) from the round-trip analysis 

represent the same decaying quantity (photon number or energy), their 

exponential decay rates must be equivalent. 

Comparing the exponents: 

𝛽𝑡 = 𝛾 
𝑡

𝑇
 



Dividing by 𝑡 (assuming 𝑡 ≠ 0), we get: 

𝛽 =
𝛾

𝑇
 

This provides the crucial link between the continuous decay rate 𝛽 and the 

per-round-trip loss 𝛾. 
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Continuing from "Slide 15: Relating 𝛽 to Cavity Loss 𝛾," this page 

formalizes the relationship we just derived. 

The first point begins with "Hence," indicating a conclusion from the 

previous step. 

The derived relationship is: 

𝛽 =
𝛾

𝑇
= 𝛾 (

𝑐

2 𝑑
) 

Let's read this: " 𝛽 equals 𝛾 divided by capital 𝑇, which equals 𝛾, times, 

open parenthesis 𝑐 divided by two 𝑑 close parenthesis." 

This follows directly from 𝛽 =
𝛾

𝑇
 and substituting the expression for the 

round-trip time 𝑇 =
2 𝑑

𝑐
. 

So, 

𝛽 =
𝛾

(2 𝑑/𝑐)
=

𝛾𝑐

2 𝑑
 

This equation provides a direct mathematical link between: 

* 𝛽 (beta): The photon loss rate constant from the rate equations (units 

𝑠−1). * 𝛾 (gamma): The dimensionless fractional loss per round-trip. * 𝑐: The 

speed of light. * 𝑑: The cavity length. 

The second bullet point emphasizes the significance of this relationship: 



"Convenient link between macroscopic loss coefficient 𝛾 and microscopic 

photon decay rate 𝛽." 

* "macroscopic loss coefficient 𝛾": Gamma is often determined from 

macroscopic properties of the resonator, such as mirror reflectivities 

($R_{\text{output\_\text{coupler}}}$, $R_{\text{high\_\text{reflector}}}$) and 

estimated scattering/absorption losses. For instance, 𝛾 might be 

approximated as (1 − 𝑅1 𝑅2) + other losses. It describes the overall 

performance of the cavity in terms of how much energy it loses per round 

trip. * "microscopic photon decay rate 𝛽": Beta is a parameter that appears 

in the differential rate equations, which model the laser dynamics at a more 

"microscopic" level (tracking population and photon densities over 

continuous time). 

This equation, 

𝛽 =
𝛾𝑐

2 𝑑
 

allows us to bridge these two perspectives. We can estimate 𝛾 from the 

physical design of the cavity and then calculate 𝛽 to use in the rate 

equations, or vice versa. This ensures consistency between different 

models of laser operation. 

The "---" indicates the end of this slide's content. This connection is vital for 

quantitative laser modeling. 
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Now we move to "Slide 16: Steady-State Solutions — Pump Power 

Balance." After understanding the dynamic rate equations, it's often useful 

to analyze the laser's behavior in the "steady state," where populations and 

photon density are constant over time. This is relevant for continuous-wave 

(CW) lasers. 

The first point defines the "Stationary regime:" 



𝑑𝑁1
𝑑𝑡

=
𝑑𝑁2
𝑑𝑡

=
𝑑𝑛

𝑑𝑡
= 0. 

(
𝑑𝑁1
𝑑𝑡

,  
𝑑𝑁2
𝑑𝑡

,  
𝑑𝑛

𝑑𝑡
 all equal zero) 

This is the mathematical condition for steady state: all time derivatives of 

the system variables (𝑁1, 𝑁2, and 𝑛) are set to zero. The system has 

reached an equilibrium where the rates of processes populating each level 

or the photon mode are exactly balanced by the rates of processes 

depopulating them. 

The second point states: "Adding population equations yields pump-

relaxation balance:" 

Let's recall the rate equations for 𝑁1 and 𝑁2 from page 37 (using 𝐵′ as 

shorthand for 𝐵21ℎ𝜈): 

𝑑𝑁1
𝑑𝑡

= (𝑁2 −𝑁1)𝐵′𝑛 + 𝑁2𝐴21 −𝑁1𝑅1 = 0 (in steady state) 

𝑑𝑁2
𝑑𝑡

= 𝑃 − (𝑁2 −𝑁1)𝐵′𝑛 − 𝑁2𝐴21 −𝑁2𝑅2 = 0 (in steady state) 

If we add these two equations: 

[(𝑁2 − 𝑁1)𝐵′𝑛 + 𝑁2𝐴21 − 𝑁1𝑅1]

 +[𝑃 − (𝑁2 − 𝑁1)𝐵′𝑛 − 𝑁2𝐴21 − 𝑁2𝑅2] = 0 + 0
 

The terms (𝑁2 − 𝑁1)𝐵′𝑛 cancel out. 

The terms 𝑁2𝐴21 also cancel out. 

We are left with: 

−𝑁1𝑅1 + 𝑃 − 𝑁2𝑅2 = 0. 

Rearranging this gives the equation on the slide: 

𝑃 = 𝑁1𝑅1 +𝑁2𝑅2. 



This equation provides a simple balance: in steady state, the total pump 

rate 𝑃 (atoms per unit volume per second being supplied to the upper laser 

level system) is exactly balanced by the sum of relaxation rates out of 

levels 𝑁1 and 𝑁2 via processes 𝑅1 and 𝑅2 respectively. These 𝑅1 and 𝑅2 

are typically non-lasing decay paths. This equation essentially says that all 

atoms pumped into the system must eventually find a way out through 

these relaxation channels, in addition to any lasing processes. 

The third point states: "Adding upper-level and photon equations gives:" 

Let's take the steady-state equations for 
𝑑𝑁2

𝑑𝑡
 and 

𝑑𝑛

𝑑𝑡
: 

(1) 

𝑑𝑁2
𝑑𝑡

= 𝑃 − (𝑁2 − 𝑁1)𝐵′𝑛 − 𝑁2𝐴21 − 𝑁2𝑅2 = 0, 

(2) 

𝑑𝑛

𝑑𝑡
= −𝛽𝑛 + (𝑁2 − 𝑁1)𝐵′𝑛 = 0. 

From equation (2), assuming 𝑛 ≠ 0 (i.e., the laser is operating above 

threshold), we can divide by 𝑛 to get: 

−𝛽 + (𝑁2 − 𝑁1)𝐵′ = 0  ⇒ (𝑁2 − 𝑁1)𝐵′ = 𝛽. 

So, the term (𝑁2 −𝑁1)𝐵′𝑛 in equation (1) can be replaced by 𝛽𝑛. 

Substituting this into equation (1): 

𝑃 − 𝛽𝑛 − 𝑁2𝐴21 −𝑁2𝑅2 = 0. 

Rearranging this gives the equation on the slide: 

𝑃 = 𝛽𝑛 + 𝑁2(𝐴21 + 𝑅2). 

This is another crucial power balance equation. It states that the total pump 

rate 𝑃 is channeled into two main paths: 



• 𝛽𝑛: This term represents the rate at which photons are lost from the 

cavity (per unit volume). In steady state above threshold, this loss must be 

balanced by generation, and a significant fraction of this 𝛽𝑛 is the useful 

laser output. So, 𝛽𝑛 is proportional to the output laser power. 

• 𝑁2(𝐴21 + 𝑅2): This term represents the rate at which atoms are lost from 

the upper laser level 𝑁2 due to spontaneous emission (𝑁2𝐴21) and non-

radiative decay (𝑁2𝑅2). These are generally "waste" channels from the 

perspective of laser output, as they consume pumped atoms without 

contributing to coherent photons in the lasing mode. 

The fourth point says: "Lower-level relaxation must satisfy" 

This refers to the steady-state condition for 
𝑑𝑁1

𝑑𝑡
= 0: 

(𝑁2 − 𝑁1)𝐵′𝑛 + 𝑁2𝐴21 − 𝑁1𝑅1 = 0. 

Again, substituting (𝑁2 − 𝑁1)𝐵′𝑛 = 𝛽𝑛, we get: 

𝛽𝑛 + 𝑁2𝐴21 −𝑁1𝑅1 = 0. 

This will be shown on the next page. These power balance equations 

provide great insight into laser efficiency and operation. 
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Continuing with "Slide 16: Steady-State Solutions — Pump Power 

Balance," this page presents the result for the lower-level relaxation 

balance and provides a physical interpretation. 

The equation derived from 
𝑑𝑁1

𝑑𝑡
= 0 in steady state (as we worked out on the 

previous page) is: 

𝑁1𝑅1 = 𝛽𝑛 + 𝑁2𝐴21 

Let's re-verify the terms for clarity: 



* 𝑁1𝑅1: This is the rate at which population leaves the lower laser level |1⟩ 

(population density 𝑁1) via relaxation processes (rate constant 𝑅1). * 𝛽𝑛: 

This represents the net rate of stimulated emission from |2⟩ to |1⟩ that 

results in photons being added to the lasing mode 𝑛 and subsequently 

lost/outputted at rate 𝛽𝑛. For every such photon, an atom transitions from 

𝑁2 to 𝑁1. * 𝑁2𝐴21: This is the rate at which population arrives in the lower 

laser level |1⟩ due to spontaneous emission from the upper laser level |2⟩ 

(population 𝑁2). 

So, in steady state, the rate at which atoms leave 𝑁1 (𝑁1𝑅1) must exactly 

balance the rate at which they arrive in 𝑁1 (due to net stimulated emission, 

𝛽𝑛, plus spontaneous emission, 𝑁2𝐴21). This makes perfect sense for a 

steady-state population. 

The next bullet point provides the "Physical meaning" for the other power 

balance equation we derived, 𝑃 = 𝛽𝑛 + 𝑁2(𝐴21 + 𝑅2): 

"Physical meaning: pump power splits into useful photon output and 

unavoidable relaxation losses." 

* "Pump power" (𝑃): This is the energy per unit time per unit volume 

supplied to create the excited state population. * "useful photon output" 

(related to 𝛽𝑛): A portion of the pump power is converted into coherent 

photons in the lasing mode, which are then extracted from the cavity as the 

laser beam. 𝛽𝑛 quantifies the rate of these photons. * "unavoidable 

relaxation losses" (related to 𝑁2(𝐴21 + 𝑅2)): Another portion of the pump 

power is inevitably lost through processes that don't contribute to the laser 

output. These include: * Spontaneous emission (𝑁2𝐴21) from the upper 

laser level in random directions. * Non-radiative decay (𝑁2𝑅2) from the 

upper laser level (e.g., due to collisions or conversion to heat). 

Understanding this split is crucial for optimizing laser efficiency – the goal is 

to maximize the fraction of pump power that goes into 𝛽𝑛 and minimize the 

losses. 



The "---" (one at the top, one at the bottom) indicates the slide's content. 

These steady-state relations are powerful tools for analyzing CW laser 

performance. 
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Now we turn to "Slide 17: Stationary Inversion Expression." This slide aims 

to derive an explicit algebraic expression for the steady-state population 

inversion, 𝛥𝑁stat (where "stat" means stationary or steady-state), in terms of 

the pump power 𝑃 and other laser parameters. This expression often 

reveals critical conditions for achieving and maintaining inversion. 

The first bullet point describes the mathematical manipulation: "Multiply first 

rate equation by 𝑅2 and second by 𝑅1, add:" The "first rate equation" refers 

to 
𝑑𝑁1

𝑑𝑡
= 0, and the "second" to 

𝑑𝑁2

𝑑𝑡
= 0 from our steady-state set (page 41). 

Let 𝐵′ = 𝐵21𝑛ℎ𝜈. 

(1) (𝑁2 − 𝑁1)𝐵′ + 𝑁2𝐴21 −𝑁1𝑅1 = 0 (Note: 𝐵′ has 'n' in it from 𝐵21 𝑛 ℎ𝜈, so 

it's 𝐵21ℎ𝜈) 

Let's rewrite to be clearer: (𝑁2 − 𝑁1)(𝐵21ℎ𝜈)𝑛 + 𝑁2𝐴21 − 𝑁1𝑅1 = 0 

(2) 𝑃 − (𝑁2 − 𝑁1)(𝐵21ℎ𝜈)𝑛 − 𝑁2𝐴21 − 𝑁2𝑅2 = 0 

This algebraic derivation to get the slide's expression for 𝛥𝑁stat is non-trivial 

and typically involves solving for 𝑁1 and 𝑁2 and then forming 𝛥𝑁 = 𝑁2 −𝑁1 

(or a degeneracy-weighted version, though the rate equations here used 𝑁1 

and 𝑁2 directly). The slide presents the result of such an algebraic solution 

(likely for 𝛥𝑁 = 𝑁2 −𝑁1): 𝛥𝑁stat =
(𝑅1−𝐴21)𝑃

𝐵12𝑛ℎ𝜈(𝑅1+𝑅2)+𝐴21𝑅1+𝑅1𝑅2
 

Let's read this carefully: "Capital Delta N sub stat, equals, the product of, 

open parenthesis 𝑅1 minus 𝐴21 close parenthesis, times 𝑃, all divided by, 

open parenthesis 𝐵12𝑛ℎ𝜈, times, open parenthesis 𝑅1 plus 𝑅2 close 

parenthesis, plus 𝐴21𝑅1, plus 𝑅1𝑅2 close parenthesis." 

Let's analyze this expression for the steady-state inversion 𝛥𝑁stat: 



  * Numerator: (𝑅1 − 𝐴21)𝑃. This term is proportional to the pump rate 

𝑃, which makes sense – more pumping should lead to more inversion. The 

factor (𝑅1 − 𝐴21) is very significant. 𝑅1 is the decay rate of the lower laser 

level |1⟩, and 𝐴21 is the spontaneous emission rate from the upper level |2⟩ 

to the lower level |1⟩ (which populates |1⟩). For 𝛥𝑁stat to be positive (i.e., for 

inversion to occur) when 𝑃 is positive, we need (𝑅1 − 𝐴21) > 0, or 𝑅1 > 𝐴21. 

  * Denominator: 𝐵12𝑛ℎ𝜈(𝑅1 + 𝑅2) + 𝐴21𝑅1 + 𝑅1𝑅2. (Note: 𝐵12 is used 

here; assuming 𝐵12 relates to 𝐵21 through degeneracies or they are treated 

as similar for this context. Let's interpret 𝐵12𝑛ℎ𝜈 as a term proportional to 

the stimulated emission rate, similar to our (𝐵21ℎ𝜈)𝑛.)     * The term 

𝐵12𝑛ℎ𝜈(𝑅1 + 𝑅2) involves the photon density 𝑛. As 𝑛 increases (i.e., as the 

laser operates further above threshold), this term increases, which tends to 

decrease 𝛥𝑁stat. This is known as gain saturation: as the field intensity 

builds up, it depletes the inversion.     * The terms 𝐴21𝑅1 + 𝑅1𝑅2 are 

combinations of relaxation rates. 

This expression shows that 𝛥𝑁stat depends on the pump power, all the 

relevant decay rates (𝐴21, 𝑅1, 𝑅2), and also on the photon density 𝑛 itself. 

The second point highlights a critical condition derived from this 

expression: "Continuous inversion requires 𝑅1 > 𝐴21". As noted above, for 

𝛥𝑁stat to be positive (assuming 𝑃 > 0 and the denominator is positive), the 

numerator (𝑅1 − 𝐴21) must be positive. This means 𝑅1 > 𝐴21. 

The third point, indicated by an arrow, gives the physical interpretation: "→ 

lower laser level must empty faster than it is refilled by spontaneous 

decay." This is the crucial design principle for a four-level laser:   * 𝑅1 

is the rate at which the lower laser level |1⟩ empties (typically to the ground 

state).   * 𝐴21 is the rate at which level |1⟩ is populated by spontaneous 

emission from the upper laser level |2⟩. If 𝑅1 is not greater than 𝐴21, then 

level |1⟩ will fill up due to spontaneous emission (and also stimulated 

emission once lasing starts) faster than it can empty. This will cause 𝑁1 to 

increase, which will reduce or destroy the population inversion (𝑁2 −𝑁1). 



Therefore, for efficient and continuous lasing, it's essential that the lower 

laser level has a very fast decay rate 𝑅1. 
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Continuing with "Slide 17: Stationary Inversion Expression," this page 

presents a stricter criterion for maintaining inversion, especially in the 

presence of a strong lasing field. 

The first bullet point states: "In presence of strong field, stricter criterion 

𝑅1 > 𝐴21 + 𝐵21𝜌". 

Let's read this: "R one is greater than, A two one plus B two one rho." 

Here:  * 𝑅1 is the decay rate of the lower laser level |1⟩.  * 𝐴21 is the 

spontaneous emission rate from upper level |2⟩ to lower level |1⟩.   𝐵21𝜌 

(B two one times rho): This term represents the rate at which the lower 

level |1⟩ is being populated due to stimulated emission* from level |2⟩.   

* 𝐵21 is the Einstein B-coefficient for stimulated emission.   * 𝜌 (rho) 

represents the energy density of the lasing field (𝜌 is proportional to the 

photon density 𝑛 times ℎ𝜈, so 𝐵21𝜌 is akin to our (𝐵21ℎ𝜈)𝑛 term, the 

stimulated transition rate). 

The second bullet point explains the importance of this: "ensuring inversion 

not quenched by stimulated emission into other modes." 

This phrasing might be slightly misleading. The 𝐵21𝜌 term here primarily 

refers to stimulated emission into the lasing mode itself. As the laser output 

power increases, the photon density 𝜌 within the lasing mode becomes 

very high. This high photon density drives strong stimulated emission from 

𝑁2 to 𝑁1, which is what produces the laser light. However, this same 

process also populates 𝑁1. If 𝑁1 cannot empty fast enough (i.e., if 𝑅1 is not 

large enough), its population 𝑁1 will build up. As 𝑁1 increases, the inversion 

𝛥𝑁 = 𝑁2 − 𝑁1 (or its degeneracy-weighted form) decreases. If 𝛥𝑁 drops 



below the threshold value 𝛥𝑁𝑡ℎ𝑟, lasing will cease – this is "quenching" of 

the inversion. 

So, the condition 𝑅1 > 𝐴21 + 𝐵21𝜌 ensures that even under strong lasing 

conditions, the lower level |1⟩ is depopulated sufficiently rapidly to prevent 

this quenching and maintain the necessary population inversion. 

The phrase "into other modes" might allude to a situation where, if the main 

lasing mode is very strong, there might also be significant amplified 

spontaneous emission (ASE) over a broader range of frequencies or 

directions that could also contribute to populating 𝑁1, but the dominant 

effect for quenching via 𝐵21𝜌 is usually from the lasing mode itself. 

The "---" indicates the end of the slide. This highlights a practical limitation 

in laser design: the lower laser level lifetime is critically important, 

especially for high-power operation. 
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We now proceed to "Slide 18: Threshold Inversion via Rate Equations." We 

previously derived the threshold inversion 𝛥𝑁thr using a simple 

gain‐ equals‐ loss argument. This slide shows how the same result can be 

obtained from the steady‐ state analysis of the rate equations, providing a 

consistency check. 

Step 1: "Set 
𝑑𝑛

𝑑𝑡
= 0 in photon rate equation:" 

The photon rate equation (from page 38) is: 

𝑑𝑛

𝑑𝑡
= −𝛽𝑛 + (𝑁2 −𝑁1)𝐵21𝑛ℎ𝜈. 

Setting 
𝑑𝑛

𝑑𝑡
= 0 for steady state, we get: 

0 = −𝛽𝑛 + (𝑁2 −𝑁1)𝐵21𝑛ℎ𝜈. 

This can be rewritten as: 



(𝑁2 − 𝑁1)𝐵21𝑛ℎ𝜈 = 𝛽𝑛. 

This equation states that in steady state, the rate of photon generation due 

to net stimulated emission, (𝑁2 − 𝑁1)𝐵21𝑛ℎ𝜈, is exactly equal to the rate at 

which photons are lost from the cavity (right side), for a constant photon 

density 𝑛. 

Step 2 on the slide is: "Solve for inversion:" 

Assuming the laser is operating (𝑛 ≠ 0), we can divide both sides of the 

equation by 𝑛: 

(𝑁2 − 𝑁1)𝐵21ℎ𝜈 = 𝛽. 

Now, we define the population inversion density 𝛥𝑁 as (𝑁2 −𝑁1). At 

threshold, this 𝛥𝑁 is the threshold inversion density, 𝛥𝑁thr. So, 

𝛥𝑁thr𝐵21ℎ𝜈 = 𝛽. 

Solving for 𝛥𝑁thr gives us: 

𝛥𝑁thr =
𝛽

𝐵21ℎ𝜈
. 

(Capital Delta N equals beta, divided by the product 𝐵21ℎ𝜈.) 

This expression gives the threshold population inversion in terms of the 

photon loss rate 𝛽 and the product 𝐵21ℎ𝜈, which characterizes the strength 

of stimulated emission per unit inversion per photon. 

Here, 𝐵21 is the Einstein B-coefficient (or a related coefficient specific to 

this rate equation formulation), ℎ is Planck's constant, and 𝜈 is the photon 

frequency. The product 𝐵21ℎ𝜈 effectively acts as a volume per unit time, 

such that when multiplied by 𝛥𝑁 (a density) and 𝑛 (a density), it gives a rate 

of change of density. 

Step 3 is: "Relate 𝛽 to 𝛾 and 𝜎 (using 𝜎 =
ℎ𝜈

𝑐
𝐵21):" 



(𝜎 equals 
ℎ𝜈

𝑐
 times 𝐵21.) 

This step aims to re-express the threshold inversion 𝛥𝑁thr in terms of more 

commonly used macroscopic parameters: 𝛾 (round-trip loss) and 𝜎 

(stimulated emission cross-section). 

The slide provides the relationship between the cross-section 𝜎 and the 

Einstein coefficient 𝐵21 as: 

𝜎 =
ℎ𝜈

𝑐
𝐵21 . 

From this, we can express the product 𝐵21ℎ𝜈: 

𝐵21ℎ𝜈 = 𝜎𝑐. 

Now, substitute this expression for 𝐵21ℎ𝜈 back into our equation for 𝛥𝑁thr: 

𝛥𝑁thr =
𝛽

𝐵21ℎ𝜈
 becomes 𝛥𝑁thr =

𝛽

𝜎𝑐
. 

So, from the rate equations, we've found that the threshold inversion 

density is equal to the photon loss rate 𝛽, divided by the product of the 

stimulated emission cross-section 𝜎 and the speed of light 𝑐. 

This is as far as the explicit steps on this particular slide take us. The final 

connection to 𝛾 and 𝐿 will appear on the next slide, where this result is 

shown to be identical to our previous derivation. 
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Slide 18: Threshold Inversion via Rate Equations 

This page continues "Slide 18: Threshold Inversion via Rate Equations" 

and presents the final form of the threshold inversion, demonstrating 

consistency. 

The equation shown at the top of this page is: 



𝛥𝑁thr =
𝛾

2 𝐿𝜎
 

(Capital Delta N sub t h r, equals gamma, divided by the product of two, 

capital L, and sigma). 

Let's analyze this. 

- 𝛥𝑁thr is the threshold population inversion density. - 𝛾 (gamma) is the 

dimensionless total loss per round-trip in the cavity. - 𝐿 (Capital L) is the 

length of the active gain medium. - 𝜎 (sigma) is the stimulated emission 

cross-section (at the lasing frequency 𝜈). 

The crucial point made next is: "Exactly identical to threshold derived from 

gain-loss balance → confirms internal consistency of rate-equation 

approach." 

This is a very important conclusion. 

Recall that on page 24, using a straightforward argument that round-trip 

gain must equal round-trip loss at threshold (specifically, 2 𝐿𝛥𝑁thr𝜎(𝜈) = 𝛾), 

we derived precisely this same expression: 𝛥𝑁thr =
𝛾

2 𝐿𝜎
. 

Now, starting from the rate equations, we first found 𝛥𝑁thr =
𝛽

𝜎𝑐
 (at the end 

of page 45). 

For this to be equal to 
𝛾

2 𝐿𝜎
, we must have: 

𝛽

𝜎𝑐
=

𝛾

2 𝐿𝜎
 

Dividing both sides by 𝜎 (assuming 𝜎 ≠ 0), we get: 

𝛽

𝑐
=

𝛾

2 𝐿
 

Which means 𝛽 =
𝛾𝑐

2 𝐿
. 



This relationship, 𝛽 =
𝛾𝑐

2 𝐿
, connects the photon loss rate 𝛽 (from the rate 

equations) to the macroscopic round-trip loss 𝛾, the speed of light 𝑐, and 

crucially, the length of the active medium 𝐿. 

Previously, on page 40, we related 𝛽 to 𝛾 using the cavity length 'd': 𝛽 =
𝛾𝑐

2 𝑑
. 

The consistency between 𝛥𝑁thr =
𝛾

2 𝐿𝜎
 and 𝛥𝑁thr =

𝛽

𝜎𝑐
 requires that the 𝛽 

used in the rate equations (or its interpretation in the context of gain 

occurring over length 𝐿 within a cavity of length 𝑑) effectively makes 𝛽 

behave as if it's 
𝛾𝑐

2 𝐿
 when considering the gain dynamics. 

This often implies that the photon density 𝑛 and the populations 𝑁1, 𝑁2 are 

considered uniform over the active medium length 𝐿, and the rate 

equations are normalized to this volume. 

If 𝐿 < 𝑑 (the active medium doesn't fill the cavity), then the factor 
𝐿

𝑑
 (filling 

factor) implicitly gets absorbed into the definition of the effective 𝛽 or the 

effective gain term in the rate equation for 
𝑑𝑛

𝑑𝑡
 if 𝑛 is averaged over the 

whole cavity. 

However, the key message of this slide is that regardless of these 

definitional nuances, the rate equation approach, when taken to its steady-

state threshold condition, yields the exact same expression for the required 

population inversion as the simpler, more intuitive gain-equals-loss model. 

This gives us great confidence in the validity and internal consistency of 

both approaches for describing this fundamental laser parameter. 

--- 
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We now move to "Slide 19: He-Ne Laser — Detailed Power Budget 

Example." This slide will apply the concepts from the rate equations, 



particularly the steady-state power balance, to a Helium-Neon laser to 

understand how the pump power is distributed. 

First, "Given:" values for a He-Ne laser: 

  * 𝑁2 = 1.0 × 1010 cm−3     (N sub two equals one point zero 

times ten to the ten per centimeter cubed).     This is the steady-state 

population density of the upper laser level |2⟩ when the laser is operating. 

This value would itself be a result of the laser being above threshold and 

reaching a saturated gain condition. 

  * 𝐴21 + 𝑅2 = 2.0 × 107 s−1     (A sub two one, plus R sub two, 

equals two point zero times ten to the seven per second).     This is 

the total decay rate from the upper laser level |2⟩ due to spontaneous 

emission to level |1⟩ (𝐴21) and all non-radiative decay processes out of |2⟩ 

(𝑅2). This combined rate represents losses from the upper laser level that 

do not contribute to the useful laser output. 

  * Tube volume 𝑉 = 0.075 cm3 (𝐿 = 10 cm, diameter = 1 mm)     

(Capital V equals zero point zero seven five centimeters cubed, where 

capital L equals 10 centimeters, and diameter is 1 millimeter).     The 

volume of the active gain medium is given. This can be calculated from the 

length 𝐿 and diameter (Area = 𝜋(diameter/2)2). Let's check: Area =

𝜋(0.05 cm)2 ≈ 3.14 × 0.0025 cm2 ≈ 0.00785 cm2. Volume = Area × 𝐿 ≈

0.00785 cm2 × 10 cm ≈ 0.0785 cm3, which is close to 0.075 cm3. This 

volume will be used to convert densities to total numbers or rates. 

Next, calculation of the "Incoherent loss rate (upper-level depletion):" 

This is the total rate at which atoms are lost from the upper laser level 𝑁2 

throughout the entire volume 𝑉, due to the non-lasing decay paths 𝐴21 and 

𝑅2. 

The rate per unit volume is 𝑁2(𝐴21 + 𝑅2). 

The total rate for the whole volume is 𝑁2(𝐴21 + 𝑅2)𝑉. 



Plugging in the given values: 

𝑁2(𝐴21 + 𝑅2)𝑉 = (1.0 × 1010 cm−3) × (2.0 × 107 s−1) × (0.075 cm3) 

= (1.0 × 2.0 × 0.075) × (1010 × 107) s−1 

= 0.15 × 1017 s−1 

= 1.5 × 1016 s−1 

The slide shows: "N₂ (A₂ ₁  + R₂ )V = 1.5 × 10¹⁶ s⁻ ¹" (N sub two times, 

open parenthesis A sub two one plus R sub two close parenthesis, times V, 

equals one point five times ten to the sixteen per second). 

This means that 1.5 × 1016 atoms per second are "wasted" from the upper 

laser level via spontaneous emission and non-radiative decay within the 

entire active volume. Each of these represents a pumped atom that did not 

contribute to laser output. 
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Slide 19: He-Ne Laser — Detailed Power Budget Example 

Continuing with "Slide 19: He-Ne Laser — Detailed Power Budget 

Example," this page calculates the required pump rate based on a target 

output power. 

First, we have the "Target output power 𝑃L = 3 mW at 𝜆 = 633 nm → 

photon rate" (𝑃L equals 3 milliwatts, at 𝜆 equals 633 nanometers). This is 

the desired useful laser output. We need to convert this power into a rate of 

photons per second. 

The energy of a single photon is 𝐸photon =
ℎ𝑐

𝜆
. 

ℎ ≈ 6.626 × 10−34 J ⋅ s (Planck's constant) 

𝑐 ≈ 3.00 × 108  m/s (speed of light) 

𝜆 = 633 nm = 633 × 10−9 m 



𝐸photon =
6.626 × 10−34 J ⋅ s × 3.00 × 108 m/s

633 × 10−9 m
 

𝐸photon ≈
19.878×10−26  J⋅m

633×10−9  m
≈ 0.0314 × 10−17 J ≈ 3.14 × 10−19 J. 

The output power 𝑃L = 3 mW = 3 × 10−3 J/s. 

The photon rate is 𝑃L/𝐸photon. 

Photon rate = 
3×10−3  J/s

3.14×10−19  J/photon
≈ 0.955 × 1016 s−1 ≈ 0.955 × 1016 s−1. 

The slide shows the calculation for "βn" (beta n) which represents the total 

rate of photons being produced in the lasing mode (per unit volume, and 

then implicitly multiplied by volume 𝑉 for the total rate if we match units). βn 

is the rate of photons contributing to the output and other cavity losses. If 𝑃L 

is the output power, then the rate of photons corresponding to 𝑃L is 
𝑃L

ℎ𝑐/𝜆
. 

This rate is what emerges from the output coupler. 

The βn term from the rate equations often represents the total stimulated 

emission rate into the lasing mode that gets lost from the cavity (including 

output coupling, mirror absorption, etc.). If 𝑃L is the useful output power, it's 

a fraction of 𝛽𝑛 𝑉 ℎ𝜈. 

The slide states: "βn = 𝑃L/(ℎ𝑐/𝜆) = 1.0 × 1016 s−1" 

Here, it seems βn is being defined as the total number of output photons 

per second from the entire laser volume. 

So, 
3×10−3  J/s

3.14×10−19  J/photon
≈ 0.955 × 1016 s−1. The slide rounds this to 1.0 ×

1016 s−1. Let's use the slide's value. 

This value represents the rate of photons exiting the laser as useful output. 

Next, the "Required pump rate 𝑃". 



From page 41, one of our steady-state balance equations was: 𝑃density =

𝛽𝑛density + 𝑁2(𝐴21 + 𝑅2). 

This equation is for rates per unit volume. To get the total pump rate for the 

whole volume 𝑉, we multiply by 𝑉: 

𝑃total = (𝛽𝑛density)𝑉 + 𝑁2(𝐴21 + 𝑅2)𝑉. 

The term (𝛽𝑛density)𝑉 is the total rate of photons being generated and 

contributing to the cavity mode losses (including output). The slide has 

calculated 𝑃L/(ℎ𝑐/𝜆) as the useful output photon rate, and labeled this "βn" 

(implying it's the total rate, not density). Let's assume this "βn" represents 

the component of the pumped atoms that successfully become output laser 

photons. 

The previous calculation 𝑁2(𝐴21 + 𝑅2)𝑉 = 1.5 × 1016 s−1 was the rate of 

atoms lost to incoherent processes. 

So, the total pump rate 𝑃 (atoms/s needed for the whole volume) must 

supply both the useful output photons and the incoherent losses: 

𝑃total = (rate of useful output photons) + (rate of incoherently lost atoms 

from 𝑁2). 

𝑃total = (1.0 × 1016 s−1) + (1.5 × 1016 s−1) 

𝑃total = 2.5 × 1016 s−1 

The slide shows: "P = (1.5 + 1.0) × 10¹⁶ = 2.5 × 10¹⁶ s⁻ ¹" 

This means we need to pump 2.5 × 1016 atoms per second into the upper 

laser level system to achieve 3 mW of output power, given the incoherent 

losses. 

Finally, an important observation: 

"Fluorescence (isotropic spontaneous emission) is larger loss channel than 

mirror transmission in this design."   * The incoherent loss rate 



𝑁2(𝐴21 + 𝑅2)𝑉 (which includes spontaneous emission 𝐴21) is 1.5 ×

1016 atoms/s.   * The useful output photon rate (related to mirror 

transmission part of 𝛽𝑛) is 1.0 × 1016 photons/s. 

Since 1.5 × 1016 is greater than 1.0 × 1016, the power lost to fluorescence 

and other non-radiative decays from the upper level is indeed larger than 

the useful power extracted from the laser. This is common in many laser 

systems. Improving efficiency often involves minimizing these incoherent 

loss channels relative to the useful output coupling. 

The "---" indicates the end of the slide. This detailed power budget gives a 

practical feel for where the pump energy goes in a real laser. 
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Slide 20: Key Takeaways Before Moving On. 

We now arrive at "Slide 20: Key Takeaways Before Moving On." This is an 

important slide that summarizes the core concepts we've covered 

regarding the fundamentals of lasers. It's a good point to pause and 

consolidate our understanding. 

The first key takeaway: 

"Population inversion is quantitative: 𝛥𝑁thr links gain cross-section, medium 

length, and cavity loss." (Capital Delta N sub t h r). 

This refers to the crucial formula 

𝛥𝑁thr =
𝛾

2 𝐿𝜎
 

 * "Population inversion is quantitative": It's not just a qualitative concept 

("more atoms in the upper state"). There's a specific, calculable threshold 

value of inversion density 𝛥𝑁thr that must be achieved for lasing. 

 * "links gain cross-section (𝜎)": The effectiveness of each inverted atom 

in contributing to gain. 



 * "medium length (𝐿)": The length over which amplification can occur. 

 * "and cavity loss (𝛾)": The total losses that the gain must overcome. 

This equation is a cornerstone of laser design, telling us what we need to 

achieve in the active medium within a given resonator. 

The second key takeaway: 

"Rate equations provide intuitive bookkeeping of photons and populations, 

predicting threshold and output power." The set of coupled differential 

equations for 
𝑑𝑁1

𝑑𝑡
, 
𝑑𝑁2

𝑑𝑡
, and 

𝑑𝑛

𝑑𝑡
 allows us to model: 

 * "Intuitive bookkeeping": How atoms move between energy levels due 

to pumping, stimulated emission/absorption, spontaneous emission, and 

non-radiative decay, and how photons are generated and lost in the cavity. 

 * "Predicting threshold": By setting the derivatives to zero and solving, 

we can re-derive the threshold conditions (as seen on page 46). 

 * "and output power": By solving the steady-state equations above 

threshold, we can relate the output power to the pump rate and other laser 

parameters (as hinted at in the power budget example). Rate equations 

can also be solved numerically to study dynamic behavior like pulsing or 

laser turn-on transients. 

The third key takeaway: 

"Lower-level depopulation speed is critical — designs favour four-level 

systems over three-level." This emphasizes the importance of the decay 

rate 𝑅1 of the lower laser level |1⟩. 

  "Critical": If the lower laser level does not empty quickly (𝑅1 is small), 

its population 𝑁1 will build up, reducing or quenching the inversion (𝑁2 −

𝑁1). This is particularly problematic in three-level systems where the lower 

laser level is* the ground state, making it very hard to depopulate and 

requiring strong pumping to invert more than half the total atoms. 



 * "designs favour four-level systems": In a four-level system, the lower 

laser level |1⟩ is distinct from the ground state |0⟩, and is designed to have 

a rapid decay 𝑅1 to |0⟩. This keeps 𝑁1 low, making it much easier to 

achieve and maintain population inversion 𝑁2 > 𝑁1 with less pump power. 

This is why many practical CW lasers (like Nd:YAG) are four-level systems. 
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Continuing with "Slide 20: Key Takeaways Before Moving On," this page 

presents two more crucial summary points. 

The fourth key takeaway: "Resonator characteristics (losses, mode 

spacing) intertwine with gain profile to determine spectral output." This 

brings together the properties of the active medium (gain profile 𝛼(𝜈) or 

𝑔(𝜈 − 𝜈0)) and the optical resonator. 

 * "Resonator characteristics":   * "Losses (𝛾(𝜈))": The cavity losses 

are frequency-dependent, with minima at the resonant longitudinal mode 

frequencies.   * "Mode spacing (FSR =
𝑐

2 𝑑
)": The separation between 

these longitudinal modes.  * "intertwine with gain profile": The broad gain 

profile of the active medium acts as an envelope.  * "to determine spectral 

output": Lasing only occurs at those cavity mode frequencies where the 

gain exceeds the losses. This interplay determines which modes lase, how 

many modes lase (single-mode vs. multi-mode operation), and their relative 

intensities, thus defining the laser's output spectrum. We saw this 

visualized on page 33. 

The fifth and final key takeaway is a forward-looking statement: "Mastery of 

these fundamentals is prerequisite for understanding single-mode 

operation, frequency stabilization, and tunable laser architectures in 

subsequent sections." This underscores the importance of everything we've 

covered in this "Fundamentals of Lasers" chapter. 

 * "Mastery of these fundamentals": Concepts like population inversion, 

gain, loss, threshold, resonators, modes, rate equations, and lineshapes.  



* "Prerequisite for understanding":   * "Single-mode operation": How to 

design lasers to operate on a single frequency, which often involves 

manipulating the gain and loss profiles.   * "Frequency stabilization": 

Techniques to actively control and stabilize the precise output frequency of 

a laser, crucial for high-resolution spectroscopy and metrology. This builds 

directly on understanding modes and cavity properties.   * "Tunable 

laser architectures": How different types of lasers (dye, Ti:sapphire, OPOs, 

etc.) are designed to allow their output wavelength to be varied, and the 

principles behind their tuning mechanisms. 

These advanced topics, which are central to laser spectroscopy, all rely on 

a solid grasp of the basic principles discussed so far. 

This concludes our overview of the fundamentals of lasers. These concepts 

will serve as the bedrock for the more advanced topics to come in laser 

spectroscopy. I hope this detailed walkthrough has been illuminating. 

  


