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Alright everyone, welcome to this next segment of our Phys 608 Laser 

Spectroscopy course. Today, we're delving into a very important topic, 

outlined here as Chapter 3, Section 6, focusing on Saturation and Power 

Broadening. This material has been prepared by Distinguished Professor 

Doctor M A Gondal, for our course here at KFUPM, specifically for Term 

251. 

Now, why are these concepts – saturation and power broadening – so 

crucial in the field of laser spectroscopy? As we'll see, they have profound 

implications for the precision and interpretation of our spectroscopic 

measurements, especially when we're working with the high intensities 

often available from laser sources. Understanding these effects is 

paramount to designing experiments correctly and accurately extracting 

information about the atomic or molecular systems we study. So, let's begin 

to unpack these ideas. 
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So, let's formally address the question: Saturation & Power Broadening – 

WHY WE CARE? 

The first bullet point really sets the stage: "Precise spectroscopy 

demands linewidths as narrow as possible. High-power lasers can 

unintentionally enlarge these widths." This is a fundamental challenge 

in high-resolution spectroscopy. We strive for the narrowest possible 

linewidths because they dictate our ability to resolve closely spaced 

spectral features, to determine transition frequencies with utmost accuracy, 

and ultimately, to test fundamental theories of physics or to make very 

sensitive measurements of environmental parameters, for example. 

However, lasers, particularly the powerful ones we often need to get a good 

signal, can introduce a broadening mechanism that is intrinsic to the light-

matter interaction itself when the light is intense. This is not an instrumental 



artifact in the usual sense, like a poorly calibrated spectrometer, but rather 

a physical consequence of the strong driving field. 

The second bullet point tells us that there are "Two closely related 

mechanisms are at play": 

First, "Saturation of the level populations (population equalisation)." 

What do we mean by saturation? Imagine a simple two-level system 

interacting with a resonant light field. The light causes atoms to be excited 

from the lower level to the upper level (absorption) and also stimulates 

them to decay from the upper level back to the lower level (stimulated 

emission). If the light field is weak, the population of the upper level 

remains small. However, if the light field is very intense, the rate of 

stimulated absorption and emission can become so high that it starts to 

significantly alter the populations of the two levels. Specifically, a strong 

field can deplete the lower level and populate the upper level to such an 

extent that the population difference between the two levels is substantially 

reduced. In the extreme limit, the populations can become nearly equal – 

this is what we refer to as "population equalisation." When this happens, 

the net absorption of light decreases because there are fewer atoms in the 

lower state available to absorb, and more atoms in the upper state 

contributing to stimulated emission, which counteracts absorption. So, 

saturation directly impacts the strength of our spectroscopic signal. 

Second, and intricately linked to the first, is "Power (or saturation) 

broadening of the spectral profile." This is a more subtle, but equally 

important, effect. It's not just that the peak absorption decreases; the width 

of the spectral line itself increases as the laser power goes up. So, even if 

you had a system with a very well-defined, narrow natural linewidth, 

applying a high-power laser to probe it can make that line appear broader. 

This "power broadening" or "saturation broadening" directly degrades the 

spectral resolution we can achieve. Why this happens is something we will 

derive and understand in detail. It's related to the fact that a strong field can 

drive transitions even when it's slightly off-resonance, and also, as we'll see 



later, it's connected to the lifetime reduction of the states due to the strong 

interaction. 

Understanding both these mechanisms – the change in population and the 

broadening of the profile – is absolutely essential for anyone doing laser 

spectroscopy. 
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Now, to develop a clear understanding of these phenomena, we need to 

lay down some groundwork and define our approach. 

The first point here is crucial for our initial theoretical development: "We 

concentrate on a strictly homogeneous two-level absorber." Let's 

break this down. 

A "two-level absorber" is a simplification, of course. Real atoms and 

molecules have many energy levels. However, in many spectroscopic 

situations, especially when using a tunable laser, we can selectively 

interact with just two levels that are resonant, or nearly resonant, with the 

laser frequency. This simplification allows us to capture the essential 

physics without getting bogged down in multi-level complexities, at least 

initially. 

The term "homogeneous" is also key. It means that "every absorber 

experiences the same natural width 𝛾." In a homogeneously broadened 

system, all individual atoms or molecules in our ensemble have identical 

transition frequencies and identical lineshapes. The observed macroscopic 

lineshape is then just the lineshape of a single absorber. The natural width, 

𝛾, is determined by processes that affect all absorbers in the same way, 

such as the natural lifetime of the excited state (due to spontaneous 

emission) or collisional broadening (if all atoms experience, on average, the 

same collision rate and environment). This is in contrast to 

"inhomogeneous broadening," where different atoms in the ensemble have 

slightly different resonant frequencies due to, for instance, the Doppler 



effect (different velocities) or varying local environments. By focusing on a 

homogeneous system first, we can isolate the effects of saturation and 

power broadening without the added complication of an underlying 

inhomogeneous distribution. We'll assume this natural width, 𝛾, is the width 

we'd measure in the limit of very low light intensity. 

Next, we have a "Road-map of coming slides": This outlines how we're 

going to build up our understanding systematically. 

1. "Build the two-level rate equation from scratch." Rate equations are 

a powerful and intuitive way to describe how populations in different energy 

levels change over time due to various radiative and non-radiative 

processes. We'll set these up considering absorption, stimulated emission, 

and relaxation processes. 

2. "Derive the saturation parameter 𝑆 and discuss population depletion." 

We will quantify the degree of saturation by introducing a dimensionless 

parameter, typically denoted as capital 𝑆. This parameter will tell us how 

strongly the system is being driven relative to its relaxation rates. We'll see 

how it relates to the depletion of the ground state population and the 

reduction in population difference. 

3. "Extend the argument to frequency-dependent saturation 𝑆𝜔 and 

show how 𝛾 inflates to 𝛾S." Initially, we might consider saturation at perfect 

resonance. However, laser fields have a frequency, and the interaction 

strength can depend on how close this frequency is to the atomic 

resonance. So, the saturation parameter itself can be frequency-

dependent. We'll then see how this frequency-dependent saturation leads 

to a new, broadened linewidth, which we'll call 𝛾S, which is larger than the 

original natural linewidth 𝛾. 
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Continuing with our road-map: 



4. "Re-derive the same broadening with Rabi flopping to illuminate the 

underlying physics." After we've developed the theory using rate 

equations, which are essentially an incoherent picture based on 

populations, we'll take a different perspective. Rabi flopping describes the 

coherent oscillation of populations between two levels when driven by a 

resonant electromagnetic field. This is a more fundamentally quantum 

mechanical picture. By re-deriving the broadening effect from this 

viewpoint, we can gain deeper insights into the physical processes. For 

instance, it connects the broadening to the very act of driving coherent 

oscillations. A faster oscillation (due to a stronger field) implies a shorter 

characteristic timescale, which, through a time-frequency uncertainty type 

of argument, suggests a broader frequency response. 

5. "Conclude with experimentally relevant side-bands in a pump-

probe arrangement." Finally, we'll look at how these effects manifest in 

common experimental setups. In a pump-probe experiment, a strong pump 

laser modifies the atomic system (e.g., saturates it), and a weak probe 

laser measures the altered absorption spectrum. Under certain conditions, 

particularly with a strong pump field, the probe laser doesn't just see a 

broadened line; it can see new spectral features, like sidebands or a 

splitting of the main line. This is related to phenomena like the Autler-

Townes effect or, in the context of fluorescence, the Mollow triplet. These 

are direct, observable consequences of the system being strongly driven. 

The triple dash here simply indicates the end of this introductory section of 

the roadmap. So, this is our plan. We'll start with the basics and build up to 

a comprehensive understanding of how intense light fields affect 

spectroscopic measurements. 
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Alright, now we come to what's labeled as "Refresher – What Limits a 

Linewidth in the First Place?" Before we can talk about how high-power 

lasers broaden linewidths, it’s essential to recall what determines the 



linewidth of a spectral transition even in the absence of such strong field 

effects, i.e., in the low-power limit. 

The first bullet point states: "Line-shapes are affected by many 

unrelated physical processes." This is a crucial point. The observed 

width of a spectral line is often a convolution of several different broadening 

mechanisms. It's our job as spectroscopists to understand these 

mechanisms, and if possible, to isolate or minimize them to achieve the 

highest resolution. 

The slide then categorizes these sources of broadening into homogeneous 

and inhomogeneous sources. 

Let's look at "Homogeneous sources": These are mechanisms that 

broaden the transition in an identical way for all atoms or molecules in the 

sample. Every atom effectively has the same broadened lineshape. 

Examples given are: 

* "natural lifetime (
1

𝜏
, where 𝜏 is the lifetime)": This is perhaps the most 

fundamental broadening mechanism. An excited state, say level 2, has a 

finite lifetime, 𝜏, due to spontaneous emission back to level 1 (or other 

lower levels). The Heisenberg uncertainty principle, in the form 𝛥𝐸𝛥𝑡 ≈ ℏ, 

tells us that a finite lifetime 𝛥𝑡 implies an uncertainty in energy 𝛥𝐸. This 

energy uncertainty translates directly into a frequency width, often called 

the natural linewidth, which is proportional to 
1

𝜏
. So, the shorter the lifetime 

of the excited state, the broader the natural linewidth. This is an intrinsic 

property of the atom or molecule. 

* "collisional de-phasing": Atoms in a gas or liquid are constantly 

colliding. These collisions can interrupt the phase of the atomic oscillation 

(the coherence between the ground and excited states). Each collision 

effectively randomizes the phase, shortening the average time over which 

the atom can coherently interact with the light field. This "dephasing" 



process leads to a broadening of the spectral line. The more frequent the 

collisions, the broader the line. Since, on average, all atoms might 

experience a similar collisional environment, this is often a homogeneous 

effect. 

* "transit-time": This is particularly relevant when, for example, an atomic 

beam crosses a laser beam, or when molecules diffuse through a focused 

laser spot. Each atom only interacts with the laser field for a finite amount 

of time – the transit time it takes to cross the beam. Again, by a time-

frequency uncertainty argument, this finite interaction time leads to a 

broadening of the observed transition. If all atoms have roughly the same 

velocity and traverse the same beam geometry, this can be considered a 

homogeneous effect for that specific group of atoms. 

* "laser bandwidth, etc.": We must also remember that our probe itself, 

the laser, is not perfectly monochromatic. It has its own finite bandwidth or 

linewidth. If the laser linewidth is broader than the true atomic linewidth, 

then the measured linewidth will be dominated by the laser. This is an 

instrumental effect, but it contributes to the observed homogeneous width if 

the laser output is stable. 

Now for "Inhomogeneous sources": These mechanisms cause different 

atoms or molecules in the ensemble to have slightly different resonant 

frequencies. The observed line profile is then a superposition of many 

narrower individual lines, each shifted by a certain amount, resulting in an 

overall broader line. 

Examples include: 

* "Doppler shifts": In a gas, atoms are moving with a distribution of 

velocities (e.g., Maxwell-Boltzmann distribution). Atoms moving towards the 

laser see the light blue-shifted, and atoms moving away see it red-shifted. 

This range of Doppler shifts leads to a significant broadening of the spectral 

line, especially at higher temperatures and for lighter atoms. This is a 



classic example of inhomogeneous broadening because each velocity 

group has a different resonant frequency in the lab frame. 

* "spatial field gradients": If the atoms are in an environment where there 

are spatial gradients in electric or magnetic fields (e.g., due to imperfect 

shielding or applied fields for trapping), and if the atomic energy levels are 

sensitive to these fields (Stark or Zeeman effects), then atoms at different 

positions will experience different shifts in their transition frequencies. This 

also leads to inhomogeneous broadening. 

* "unresolved hyperfine splittings, etc.": Many atomic energy levels 

have hyperfine structure due to the interaction of the nuclear spin with the 

electrons. If these splittings are smaller than other broadening mechanisms 

or the resolution of our spectrometer, they might not be individually 

resolved and will instead contribute to an overall broadening of the 

observed spectral feature. This is inhomogeneous in the sense that we are 

averaging over distinct, but closely spaced, real transitions. 

So, the "natural width" we often talk about is typically the homogeneous 

width due to lifetime effects, potentially modified by collisions, in the 

absence of strong fields. Understanding this baseline is key before we add 

power broadening into the mix. 
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Now, having refreshed our memory on the various sources of linewidth, 

let's simplify our focus for the current discussion on saturation. 

The first point states: "For the moment we suppress every 

inhomogeneous mechanism." This is a strategic simplification. We want 

to understand the intrinsic effects of an intense light field on a transition. 

Inhomogeneous broadening, like Doppler broadening, can often mask 

these more subtle effects or complicate the analysis considerably. So, we 

imagine a scenario where either there are no inhomogeneous effects, or 

we have somehow managed to eliminate them experimentally (e.g., by 



using a collimated atomic beam observed transversely, or through 

techniques like saturation spectroscopy itself, which we'll come to much 

later, that can select a zero-velocity group). 

The asterisk clarifies this mathematically: "Mathematically we keep a 

single Lorentzian function with half-width at half-maximum 
𝛾

2
 (Greek 

letter 𝛾 divided by 2)." A purely homogeneously broadened line, due to 

lifetime or collisional effects, typically has a Lorentzian lineshape. The full 

width at half maximum (FWHM) of this Lorentzian is 𝛾. Therefore, the half-

width at half-maximum (HWHM) is 
𝛾

2
. So, our starting point is a collection of 

identical absorbers, each with this intrinsic Lorentzian profile. 

Now, the crucial part: "Intense radiation alters a homogeneous line by:" 

How does a strong light field change this idealized, single Lorentzian line? 

There are two main ways listed here, which echo what we introduced 

earlier: 

1. "Depleting the lower level more strongly at resonance than in the 

wings." When we tune our intense laser across the spectral line, the 

interaction is strongest when the laser is exactly on resonance (i.e., its 

frequency matches the peak of the Lorentzian). At this point, the rate of 

absorption (and stimulated emission) is highest. This means that the 

depletion of the lower state population and the buildup of the upper state 

population – in other words, saturation – will be most pronounced at the 

line center. As we detune the laser into the "wings" of the Lorentzian (i.e., 

further away from the exact resonance frequency), the interaction strength 

falls off, and so does the degree of saturation. This differential saturation – 

strong at the center, weaker in the wings – is key to understanding how the 

lineshape changes. It's not a uniform reduction in absorption across the 

entire profile. 

2. "Driving coherent Rabi oscillations that smear out the response." 

This refers to the more quantum mechanical picture we alluded to earlier. 



An intense, near-resonant field doesn't just cause random absorptions and 

emissions. It can drive coherent oscillations of the atomic system between 

the ground and excited states. These are Rabi oscillations, or Rabi 

flopping. The stronger the field, the faster these oscillations. If these 

oscillations are occurring on a timescale comparable to or shorter than 

other relaxation times, they fundamentally alter the way the atom responds 

to the light. This rapid driving can effectively "smear out" the spectral 

response, leading to a broadening. This perspective is especially important 

when the field is very strong and coherence effects dominate. 

These two points are really two facets of the same underlying physics of 

strong light-matter interaction. The rate equation approach we'll start with 

primarily captures the first point (population effects), while a full quantum 

treatment (like the density matrix formalism or dressed atom picture, which 

are beyond this immediate discussion but underpin the Rabi oscillation 

idea) more directly addresses the second. However, we'll see that even our 

rate equation approach will predict the broadening. 
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Following from the ways intense radiation alters a homogeneous line, we 

now consider the "Outcome." 

The slide succinctly states: "an apparently wider Lorentzian with a 

reduced peak absorption." 

This is the hallmark of saturation and power broadening for an initially 

homogeneous line. Let's elaborate on these two key changes: 

First, "reduced peak absorption." As we discussed, saturation means 

that the population difference between the lower and upper states 

decreases. Since net absorption is proportional to this population difference 

𝑁1 − 𝑁2, a reduction in this difference directly leads to a reduction in the 

absorption coefficient at the line center, where saturation is strongest. So, if 

you were to scan your laser across the transition, the peak height of your 



absorption signal would be lower with an intense laser than with a weak 

laser. 

Second, "an apparently wider Lorentzian." This is the power broadening 

effect. Because saturation is most effective at the line center, it "eats away" 

at the peak more than it affects the wings of the line. To maintain 

(approximately, as we'll see) the total integrated area under the curve 

(which is related to the oscillator strength, a fundamental atomic property), 

if the peak height goes down, the width must go up. The line effectively 

"flattens and broadens." The important thing is that the shape often 

remains approximately Lorentzian, but it's a Lorentzian corresponding to a 

larger width parameter than the original 𝛾. We will derive how this new, 

power-broadened width depends on the laser intensity and the intrinsic 

properties of the transition. 

The triple dash again indicates a slight pause or transition. So, these are 

the macroscopic observables we expect to see: the absorption signal gets 

weaker at its peak, and the spectral feature itself becomes broader, even if 

it started as a nice, narrow homogeneous line. This has immediate practical 

consequences for resolution and sensitivity in our spectroscopic 

measurements. 
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Now, let's start building our model. The title here is "Prototype Two-Level 

System." This is the foundational model we'll use to understand saturation 

and power broadening. As mentioned, while real systems are more 

complex, the two-level approximation is remarkably powerful for 

understanding resonant light-matter interactions. 

The first bullet point defines our system: "Two discrete, non-degenerate 

energy levels:" 

"Discrete" means the energy levels are well-defined and separated, not 

part of a continuum. 



"Non-degenerate" means that each energy level corresponds to a unique 

quantum state. If there were degeneracy (multiple states with the same 

energy), we'd have to sum over them, which can complicate the 

bookkeeping, though the fundamental ideas of saturation would still apply. 

For simplicity, we assume 𝑔1 = 𝑔2 = 1, where 𝑔 is the degeneracy. 

Next, we label these levels: 

"Lower level |1⟩, energy 𝐸1." We use the ket notation |1⟩ (ket one) to 

represent the quantum state of the lower level, and its energy is 𝐸1. 

"Upper level |2⟩, energy 𝐸2 (with 𝐸2 > 𝐸1)." Similarly, |2⟩ (ket two) is the 

upper level, and its energy 𝐸2 is, of course, greater than 𝐸1. 

The interaction with light involves transitions between these two levels. The 

"Transition angular frequency" is defined by the Bohr frequency 

condition: 

The equation shown is: 

𝜔21 =
𝐸2 − 𝐸1
ℏ

 

Let's break this down: 

𝜔21 (omega sub 2 1) is the resonant angular frequency for the transition 

from state 1 to state 2 (or vice versa). It's an angular frequency, so its units 

would be radians per second. Sometimes you'll see 𝜈21 (nu sub 2 1) for the 

frequency in Hertz, where 𝜔 = 2𝜋𝜈 (omega equals two pi nu). 

𝐸2 − 𝐸1 (E sub 2 minus E sub 1) is the energy difference between the upper 

and lower states. This must be a positive quantity. 

ℏ is the reduced Planck constant (Planck's constant ℎ divided by 2𝜋). It has 

units of Joule-seconds or electronvolt-seconds, for instance. 

This equation is fundamental: for resonant absorption or emission of a 

single photon, the photon's energy, ℏ𝜔 (h-bar omega, where omega is the 



photon's angular frequency), must precisely match the energy difference 

𝐸2 − 𝐸1 between the two levels. So, 𝜔21 is the natural oscillation frequency 

of the two-level system. 

Finally, we need to describe the state of our ensemble of two-level 

systems. We do this using "Population variables (number of atoms per 

cm³)": 

These will be 𝑁1 (N sub 1) and 𝑁2 (N sub 2), representing the number 

density of atoms in the lower level |1⟩ and upper level |2⟩, respectively, 

typically in units of atoms per cubic centimeter or per cubic meter. These 

populations, 𝑁1 and 𝑁2, will change under the influence of the light field and 

relaxation processes, and it's their dynamics that we want to model with 

rate equations. 

This simple two-level system, characterized by its energies 𝐸1 and 𝐸2, its 

transition frequency 𝜔21, and the populations 𝑁1 and 𝑁2, is the workhorse 

for much of our discussion in laser spectroscopy. 
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Continuing with our prototype two-level system, we now define the 

population variables more explicitly and list the "Allowed processes" that 

can change these populations. 

At the top, we see 𝑁1(𝑡), 𝑁2(𝑡) (N sub 1 of t, N sub 2 of t). This emphasizes 

that the populations of the lower level (𝑁1) and the upper level (𝑁2) are, in 

general, functions of time, 𝑡. Our goal with rate equations will be to write 

down 
𝑑𝑁1

𝑑𝑡
 and 

𝑑𝑁2

𝑑𝑡
. 

Now, let's consider the processes that cause atoms to move between 

levels |1⟩ and |2⟩: 

* "Stimulated absorption |1⟩ →|2⟩." This is the process where an atom in 

the lower level |1⟩ absorbs a photon from the incident light field and makes 

a transition to the upper level |2⟩. The rate of this process is proportional to 



the population of the lower level, 𝑁1, and also to the energy density of the 

light field at the transition frequency. This is one of the key processes 

Einstein identified. 

* "Stimulated emission |2⟩ →|1⟩." An atom in the upper level |2⟩ can be 

stimulated by the incident light field to emit a photon that is identical in 

frequency, phase, direction, and polarization to the stimulating photon, and 

in doing so, the atom transitions back to the lower level |1⟩. The rate of this 

process is proportional to the population of the upper level, 𝑁2, and also to 

the energy density of the light field. This is the process that makes lasers 

possible – light amplification by stimulated emission of radiation. 

* "Spontaneous relaxation |2⟩ →|1⟩ (rate 𝑅2)." An atom in the upper level 

|2⟩ can also decay to the lower level |1⟩ by spontaneously emitting a 

photon, even in the absence of an external light field. This photon is 

emitted in a random direction with a random phase. The rate of this 

process is typically characterized by a constant 𝑅2 (capital R sub 2), which 

is related to the Einstein A coefficient (𝐴21). 𝑅2 would have units of per 

second (𝑠−1). For a simple two-level system where spontaneous decay 

only occurs from |2⟩ to |1⟩, 𝑅2 is simply 𝐴21. If there are other decay paths 

from level 2, 𝑅2 would be the sum of all such spontaneous decay rates out 

of level 2 that ultimately feed level 1, or simply the total decay rate out of 

level 2 if we are only concerned with its depopulation. For our two-level 

system, we'll assume it means decay from |2⟩ to |1⟩. 

* "Non-radiative depopulation of |1⟩ (rate 𝑅1)." This is a bit of a catch-all 

term. In a true, isolated two-level system, the ground state |1⟩ might be 

stable. However, in more realistic scenarios, there might be processes that 

remove atoms from state |1⟩ without involving radiation, or perhaps state 

|1⟩ is not the true ground state of a larger multi-level system and can itself 

decay or be transferred to other states. The slide denotes a rate 𝑅1 (capital 

R sub 1) for such processes. More commonly in a strict two-level system, 

𝑅1 might represent processes that repopulate level 1 from some reservoir, 



or 𝑅1 and 𝑅2 might represent overall relaxation rates for levels 1 and 2 back 

towards some equilibrium distribution if they are perturbed. For our purpose 

here, let's interpret 𝑅1 as a general relaxation rate affecting state 1, and 𝑅2 

as a relaxation rate affecting state 2 (primarily spontaneous emission to 

state 1). We will need to be careful how these are precisely defined when 

we write the rate equations. 

* "No other levels are involved; therefore 𝑁 = 𝑁1 + 𝑁2 remains 

constant." Here, 𝑁 (capital 𝑁) represents the total number density of atoms 

participating in the two-level system. If we assume that atoms only shuttle 

between levels |1⟩ and |2⟩, and are not lost to or gained from other levels 

outside this pair, then the sum of the populations 𝑁1 plus 𝑁2 must be a 

constant, equal to the total population 𝑁. This conservation condition is 

very useful in solving the rate equations, as it means 
𝑑𝑁1

𝑑𝑡
 must equal −

𝑑𝑁2

𝑑𝑡
 if 

there are no external feeds or losses from the two-level system as a whole. 

These processes form the basis for writing our differential equations 

describing the population dynamics. 
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This page provides a visual representation of the "Prototype Two-Level 

System" we've been discussing, specifically illustrating the processes 

outlined on the previous page. This diagram is crucial for understanding the 

terms in our upcoming rate equations. 

At the top of the diagram, we see the chapter and section title: "Chap. 3.6 

Saturation & Power Broadening," and "Prototype Two-Level System." 

The diagram itself shows two horizontal lines representing the energy 

levels: 

• The upper line is labeled |2⟩ (ket two) on the left and 𝐸2 (E sub 2) on the 

right, indicating the upper energy level. 



• The lower line is labeled |1⟩ (ket one) on the left and 𝐸1 (E sub 1) on the 

right, indicating the lower energy level. 

The energy difference between these levels is implicitly 𝐸2 − 𝐸1, which 

corresponds to the transition energy ℏ𝜔21 (h-bar omega sub 2 1), as 

labeled vertically on the far right of the energy gap. 

Now let's look at the arrows, which represent the transitions: 

• There's an upward arrow from level |1⟩ to level |2⟩. This represents 

stimulated absorption. It is labeled 𝐵12𝜌(𝜔) (B sub 1 2 rho of omega) or 

sometimes 𝐵12𝜌𝑝(𝜔) (B sub 1 2 rho sub p of omega, where p denotes 

'pump'). This indicates that the rate of absorption is proportional to the 

Einstein 𝐵12 coefficient (for absorption) and the spectral energy density 

𝜌(𝜔) (rho of omega) of the incident light field at angular frequency 𝜔. 

• There's a downward arrow from level |2⟩ to level |1⟩, parallel to the 

absorption arrow. This represents stimulated emission. It is labeled 

𝐵21𝜌(𝜔) (B sub 2 1 rho of omega). The rate is proportional to the Einstein 

𝐵21 coefficient (for stimulated emission) and 𝜌(𝜔). For non-degenerate 

levels, or levels with degeneracies 𝑔1 and 𝑔2, we know that 𝑔1 𝐵12 = 𝑔2 𝐵21. 

If we assume 𝑔1 = 𝑔2, then 𝐵12 = 𝐵21. 

• There's a wavy downward arrow from level |2⟩ to level |1⟩. This 

represents spontaneous emission. It is labeled 𝑅2 (capital R sub 2). This 

is the rate of spontaneous decay from the upper level to the lower level. In 

the simplest case, 𝑅2 = 𝐴21, the Einstein 𝐴21 coefficient for spontaneous 

emission. 

• Finally, there's a dashed downward arrow originating from level |1⟩ 

and pointing further down, away from the two-level system. This is labeled 

𝑅1 (capital R sub 1). This represents a non-radiative depopulation pathway 

or relaxation out of level 1 to some other states not explicitly part of our |1⟩-

|2⟩ system, or perhaps relaxation of the entire system towards some 

thermal equilibrium not defined solely by |1⟩ and |2⟩. This 𝑅1 term is 



sometimes omitted in the very simplest two-level models if |1⟩ is considered 

absolutely stable and there's no mechanism to leave it other than 

absorption to |2⟩. However, its inclusion allows for more general scenarios. 

Alternatively, if |1⟩ is being repopulated from a reservoir, 𝑅1 might represent 

that inflow, but the arrow direction here suggests an outflow. We need to be 

consistent with the rate equations. Given the equations we'll see, 𝑅1 will act 

as a decay rate from level 1, and 𝑅2 as a decay rate from level 2. 

This diagram beautifully encapsulates the key processes: optical pumping 

upwards (absorption), stimulated de-excitation downwards, and 

spontaneous decay downwards. The 𝑅1 term represents other relaxation 

processes that might be present. The energy ℏ𝜔21 is the characteristic 

energy of the transition. This visual aid will be very helpful as we now 

proceed to build the rate equations. 
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Now we're ready to start "Building the Rate Equation – Step by Step," 

as indicated by the title of Slide 4. This is where we translate the processes 

from the diagram into mathematical expressions. 

The first bullet point defines the "Stimulated absorption probability per 

atom per second:" 

The equation given is: 

𝑃12 = 𝐵12𝜌𝑝(𝜔) 

Let's dissect this: 

* 𝑃12 (capital P sub 1 2) represents the rate of transition from level 1 to level 

2 due to stimulated absorption, for a single atom. So, its units are per 

second (𝑠−1). This is essentially a transition rate constant. 

* 𝐵12 (capital B sub 1 2) is the Einstein B coefficient for absorption. The 

slide provides its units: 𝑠−1 𝑚3 𝐽−1 (per second, cubic meters, per Joule), or 

more standardly, 𝑚3 𝐽−1 𝑠−2 (cubic meters per Joule per second squared) if 



𝜌 is energy density per unit volume per unit angular frequency, or 

sometimes different units if 𝜌 is defined per unit frequency (Hz). Let's 

assume the units provided here are consistent with the definition of 𝜌𝑝(𝜔). 

The B coefficient is a fundamental property of the atomic transition; it 

quantifies how strongly that particular transition couples to the radiation 

field. 

 𝜌𝑝(𝜔) (rho sub p of omega) is the "spectral energy density of the pump 

field at frequency 𝜔 (omega)". The 'p' subscript emphasizes that this is 

the radiation field causing* the transitions, often called the pump field. 

"Spectral energy density" means it's the energy per unit volume per unit 

frequency interval. The units given are 𝐽 𝑚−3 Hz
−1

 (Joules per cubic meter 

per Hertz). If 𝜔 is angular frequency, then typically 𝜌(𝜔) would be Joules 

per cubic meter per (radians per second), which is Joules-second per cubic 

meter. There's a common point of confusion here: 𝜌(𝜈) is energy per unit 

volume per unit frequency (Hz), while 𝜌(𝜔) is energy per unit volume per 

unit angular frequency (rad/s). They are related by 𝜌(𝜔) = 𝜌(𝜈)/(2𝜋). The 

Einstein B coefficients are defined differently depending on whether you 

use 𝜌(𝜈) or 𝜌(𝜔). Given the units of 𝐵12 (𝑠−1 𝑚3 𝐽−1) and 𝜌𝑝(𝜔) 

(𝐽 𝑚−3 Hz
−1

), if 𝑃12 is to be in 𝑠−1, then 𝐵12 must be defined for 𝜌𝑝(𝜔) in 

𝐽 𝑚−3 (rad/s)−1. Let's assume 𝐵12 here is the coefficient appropriate for 

𝜌𝑝(𝜔) expressed in terms of energy density per unit angular frequency 

interval. Or, if 𝜌𝑝(𝜔) is indeed per Hertz, then 𝑃12 = 𝐵12
(𝜈)𝜌𝑝

(𝜈)
. We need to be 

careful here. A common definition for 𝐵12 when 𝜌(𝜔) is spectral energy 

density per unit angular frequency (units: 𝐽 𝑠 𝑚−3) is that 𝐵12 has units of 

𝑚3 𝐽−1 𝑠−2. 

Let's assume for consistency with many texts that 𝜌𝑝(𝜔) is the energy 

density per unit angular frequency interval (𝐽 𝑠 𝑚−3). Then 𝐵12 would be 

𝑚3 𝐽−1 𝑠−2. If 𝑃12 is 𝐵12𝜌𝑝(𝜔), then the units would be (𝑚3 𝐽−1 𝑠−2) ×

(𝐽 𝑠 𝑚−3) = 𝑠−1, which is correct for a rate. 



Alternatively, if 𝑃12 = 𝐵12 𝐼(𝜔)/𝑐, where 𝐼(𝜔) is intensity and 𝑐 is speed of 

light, then units also work out. The definition of B coefficients can 

sometimes vary. Let's proceed with the understanding that 𝑃12 is a rate 

(𝑠−1). 

The slide then says: "Define shorthand". This is very common to simplify 

the notation in the rate equations. 
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Continuing from defining the shorthand, the slide introduces it: 

𝑃 = 𝑃12 (convenience symbol for pump rate). 

So, capital 𝑃 will now represent this stimulated transition rate, 𝐵12𝜌𝑝(𝜔). It's 

the probability per unit time that an atom in level 1 will absorb a photon and 

jump to level 2, and also the probability per unit time that an atom in level 2 

will be stimulated to emit a photon and jump to level 1 (assuming 𝐵12 = 𝐵21 

for simplicity if degeneracies are equal, or that 𝑃 implicitly includes the 

correct 𝐵 coefficient for stimulated emission as well). Usually, 𝑃 is taken to 

be the same for stimulated absorption and emission when degeneracies 

are equal. 

Now, the core of this page: "Full differential balance (population gains 

counted positive):" These are the rate equations for the populations 𝑁1 

and 𝑁2. 

First, for the population of the lower level, 𝑁1: 

𝑑𝑁1
𝑑𝑡

= −𝑃𝑁1 − 𝑅1𝑁1 + 𝑃𝑁2 + 𝑅2𝑁2 

Let's interpret each term for 
𝑑𝑁1

𝑑𝑡
 (dee 𝑁 sub 1 by dee 𝑡): 

• −𝑃𝑁1: This term represents the loss of population from level 1 due to 

stimulated absorption. 𝑃 is the rate constant, 𝑁1 is the population in level 1. 



The minus sign indicates it's a loss from level 1. (Atoms leaving level 1 via 

absorption). 

• −𝑅1𝑁1: This term represents the loss of population from level 1 due to 

other relaxation processes characterized by rate 𝑅1, as discussed with the 

diagram. The minus sign indicates loss. 

• +𝑃𝑁2: This term represents the gain of population in level 1 due to 

stimulated emission from level 2. 𝑃 is the rate constant (assuming 𝐵12 =

𝐵21 or appropriate scaling), 𝑁2 is the population in level 2. The plus sign 

indicates a gain for level 1. 

• +𝑅2𝑁2: This term represents the gain of population in level 1 due to 

spontaneous emission (and possibly other relaxations included in 𝑅2) from 

level 2. 𝑅2 is the rate for this process, 𝑁2 is the population in level 2. The 

plus sign indicates a gain for level 1. 

Next, for the population of the upper level, 𝑁2: 

𝑑𝑁2
𝑑𝑡

= +𝑃𝑁1 + 𝑅1𝑁1 − 𝑃𝑁2 − 𝑅2𝑁2 

(Wait, there seems to be a typo here. 𝑅1𝑁1 should not be a gain term for 𝑁2 

if 𝑅1 is a loss from 𝑁1. Let's re-examine the typical form.) 

Let's reconsider the 𝑅1 term. If 𝑅1 is a decay from level 1 (as the arrow in 

the diagram on page 10 suggested, pointing away from the 1-2 system), 

then it shouldn't feed level 2. If 𝑅1 were, for example, a pumping into level 1 

from some external reservoir, that would be different. Assuming the 

diagram on page 10 is accurate where 𝑅1 is a loss from level 1 to outside 

the two-level system, and 𝑅2 is a loss from level 2 (primarily to level 1, but 

could include other channels if 𝑅2 is a total decay rate from level 2), then 

the equations should be: 



𝑑𝑁1
𝑑𝑡

= −𝑃𝑁1 − 𝑅1𝑁1 + 𝑃𝑁2 + 𝐴21𝑁2

+ (contributions to 𝑁1 from 𝑅2 if 

𝑅2 includes decay to other levels that then feed 𝑁1) 

𝑑𝑁2
𝑑𝑡

= +𝑃𝑁1 − 𝑃𝑁2 − 𝑅2𝑁2

− (loss from 𝑁2 to 𝑅1 if 𝑅1 is some common bath, which is unlikely) 

Let's look at the common simplified two-level system rate equations where 

𝑅1 is often taken as a relaxation rate of level 1 (perhaps to a true ground 

state if 1 is metastable) and 𝑅2 is the total relaxation rate of level 2 (𝐴21 

plus non‐ radiative decay). The terms for 
𝑑𝑁2

𝑑𝑡
 usually mirror 

𝑑𝑁1

𝑑𝑡
 but with 

opposite signs for processes linking the two levels, and with their own 

decay terms. If 𝑁 = 𝑁1 +𝑁2 is constant, then 
𝑑𝑁2

𝑑𝑡
= −

𝑑𝑁1

𝑑𝑡
 only if 𝑅1𝑁1 and 

𝑅2𝑁2 are solely internal exchanges or if 𝑅1 = 𝑅2 = 0. The slide states: 

"Each term is individually interpretable": And then it lists for 
𝑑𝑁1

𝑑𝑡
: 

• "-P N₁  → atoms leaving level 1 via absorption." This matches our 

interpretation. 

Let's assume for the moment the equations are written as presented and 

try to make sense of them, or acknowledge a potential common 

simplification/typo. If 𝑁 = 𝑁1 +𝑁2 is constant, then 

𝑑𝑁1
𝑑𝑡

+
𝑑𝑁2
𝑑𝑡

= 0. 

Adding the two equations given on the slide: 

𝑑𝑁1
𝑑𝑡

+
𝑑𝑁2
𝑑𝑡

= (−𝑃𝑁1 − 𝑅1𝑁1 + 𝑃𝑁2 + 𝑅2𝑁2) + (+𝑃𝑁1 + 𝑅1𝑁1 − 𝑃𝑁2 − 𝑅2𝑁2) 



This sum is identically zero: −𝑃𝑁1 cancels +𝑃𝑁1, −𝑅1𝑁1 cancels +𝑅1𝑁1, 

+𝑃𝑁2 cancels −𝑃𝑁2, and +𝑅2𝑁2 cancels −𝑅2𝑁2. This means that with 

these specific equations, 
𝑑(𝑁1+𝑁2)

𝑑𝑡
= 0 is automatically satisfied. This implies 

that the terms 𝑅1𝑁1 and 𝑅2𝑁2 must be interpreted within the closed two-

level system. 

So, in this formulation: 

• 𝑅1𝑁1 must be a loss from level 1 that is exactly compensated by a gain 

for level 2 (the +𝑅1𝑁1 term in 
𝑑𝑁2

𝑑𝑡
). This would mean 𝑅1 is actually an 

incoherent pumping rate from level 1 to level 2, which is unusual notation. 

• Similarly, 𝑅2𝑁2 is a gain for level 1 which must be compensated by a 

loss from level 2 (the −𝑅2𝑁2 term in 
𝑑𝑁2

𝑑𝑡
). This means 𝑅2 is a relaxation rate 

from level 2 to level 1. This is standard (e.g., spontaneous emission 𝐴21 

plus non‐ radiative decay from 2 to 1). 

Let's stick to the slide's interpretation of terms for 
𝑑𝑁1

𝑑𝑡
, which is most 

standard. Page 13 will clarify the terms for 𝑅1𝑁1 and 𝑅2𝑁2. 
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This page continues the interpretation of the terms in the rate equation for 
𝑑𝑁1

𝑑𝑡
 (and implicitly for 

𝑑𝑁2

𝑑𝑡
, since 

𝑑𝑁2

𝑑𝑡
= −

𝑑𝑁1

𝑑𝑡
 with the given forms). 

* "+𝑃𝑁2 → stimulated emission returns atoms to 1." This confirms our 

understanding of the +𝑃𝑁2 term in the equation for 
𝑑𝑁1

𝑑𝑡
. It's a gain for level 

1 due to atoms being stimulated to leave level 2 and arrive in level 1. 

* "−𝑅1𝑁1 → non-radiative loss from 1." This is how the 𝑅1 term is 

interpreted. It's a loss channel for population in level 1, occurring at a rate 

𝑅1, and it's described as "non-radiative." This implies that 𝑅1 is a rate at 

which atoms in level 1 transition to some other state(s) not |2⟩, or perhaps 

relax to a true ground state if |1⟩ is an excited state itself. 



Now, if this is a loss from the two-level system |1⟩ −|2⟩, then the condition 

𝑑(𝑁1+𝑁2)

𝑑𝑡
= 0 (i.e., 𝑁1 +𝑁2 = constant) would only hold if there's a balancing 

inflow, or if 𝑅1 is actually very small, or if the 𝑅1𝑁1 term in the 
𝑑𝑁2

𝑑𝑡
 equation 

on the previous page (which was +𝑅1𝑁1) was a typo and should have been 

related to something else or absent. 

Let's assume the standard rate equations for a two-level system where 𝑁 is 

the total population within the two levels: 

𝑑𝑁1
𝑑𝑡

= −𝑃(𝑁1 − 𝑁2) + 𝐴21𝑁2 − (other losses from 𝑁1) + (other gains to 𝑁1) 

𝑑𝑁2
𝑑𝑡

= +𝑃(𝑁1 − 𝑁2) − 𝐴21𝑁2 − (other losses from 𝑁2) + (other gains to 𝑁2) 

If we use the slide's equation from 
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𝑑𝑁1
𝑑𝑡

= −𝑃𝑁1 − 𝑅1 𝑁1 + 𝑃𝑁2 + 𝑅2 𝑁2 

𝑑𝑁2
𝑑𝑡

= +𝑃𝑁1 + 𝑅1 𝑁1 − 𝑃𝑁2 − 𝑅2 𝑁2 

The term −𝑅1 𝑁1 in 
𝑑𝑁1

𝑑𝑡
 is a loss from 1. The term +𝑅1 𝑁1 in 

𝑑𝑁2

𝑑𝑡
 means 

population lost from 1 via this 𝑅1 process actually appears in level 2. This 

would make 𝑅1 an incoherent pumping mechanism from level 1 to level 2 

(e.g., collisional excitation). This is not "loss from 1" in the sense of leaving 

the system. 

And similarly for 𝑅2: 

* "+𝑅2 𝑁2 → spontaneous decay feeding 1." 

This is standard. 𝑅2 is the rate at which population from level 2 decays 

(spontaneously and perhaps non‐ radiatively) directly into level 1. This is a 



gain for level 1 and a loss for level 2. This matches the 𝑅2 𝑁2 terms in both 
𝑑𝑁1

𝑑𝑡
 (+𝑅2 𝑁2) and 

𝑑𝑁2

𝑑𝑡
 (−𝑅2 𝑁2). 

So, with the equations as written on page 12, which ensure 
𝑑𝑁1

𝑑𝑡
= −

𝑑𝑁2

𝑑𝑡
: 

* 𝑃 represents the stimulated transition rate (absorption 1 → 2, emission 

2 → 1).  𝑅2 represents the relaxation rate from level 2 to* level 1.  𝑅1 must 

represent an incoherent transfer rate from level 1 to* level 2. 

This interpretation makes the system closed (𝑁1 + 𝑁2 = constant). The 

term "non‐ radiative loss from 1" for −𝑅1 𝑁1 (if 𝑅1 is 1 → 2 transfer) is a bit 

misleading; it's a loss from state 1 to state 2. Perhaps "non‐ radiative 

transfer from 1" would be clearer if it goes to state 2. 

Let's assume the equations on page 12 are the intended ones, implying a 

closed system where 𝑅1 is a 1 → 2 incoherent rate and 𝑅2 is a 2 → 1 

relaxation rate. This is critical for the steady‐ state solutions that follow. 

The triple dash suggests the end of this definitional section. The key is that 

whatever these 𝑅1 and 𝑅2 rates are, the structure of the equations 
𝑑𝑁1

𝑑𝑡
=

−
𝑑𝑁2

𝑑𝑡
 is what's used for finding the stationary solution. 
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Slide 5: Stationary Solution of the Rate Equations. 

In many spectroscopic experiments, we are interested in the steady-state 

behavior of the system, where the populations 𝑁1 and 𝑁2 are no longer 

changing in time, under continuous wave (CW) laser illumination. 

The first bullet point defines the Steady state condition: This is 

mathematically expressed as: 

𝑑𝑁i

𝑑𝑡
= 0 (for 𝑖 = 1,2) 



This means that the rate of change of population in level 1 is zero, and the 

rate of change of population in level 2 is zero. The populations have 

reached a constant value. For this to happen, the total rate of processes 

filling a level must exactly balance the total rate of processes emptying it. 

The second bullet point is Enforce particle conservation: This is the 

condition we discussed earlier, crucial for a closed two-level system: 

𝑁1 + 𝑁2 = 𝑁 (total density, constant) 

Here, 𝑁 (capital 𝑁) is the total number density of atoms in our two-level 

system. This equation allows us to express 𝑁2 in terms of 𝑁1 (i.e., 𝑁2 = 𝑁 −

𝑁1) or vice versa, reducing the number of independent variables. 

The third bullet point describes the algebraic procedure: Insert P and 

solve algebraically for 𝑁1: We take one of the rate equations (say, for 
𝑑𝑁1

𝑑𝑡
), set it to zero, and use the conservation relation 𝑁2 = 𝑁 −𝑁1 to 

eliminate 𝑁2. This will give us an algebraic equation that we can solve for 

𝑁1. 

The specific equation shown is derived from setting 
𝑑𝑁1

𝑑𝑡
= 0: From page 12, 

𝑑𝑁1
𝑑𝑡

= −𝑃𝑁1 − 𝑅1𝑁1 + 𝑃𝑁2 + 𝑅2𝑁2 . 

Setting this to 0: 

0 = −𝑃𝑁1 − 𝑅1𝑁1 + 𝑃𝑁2 + 𝑅2𝑁2. 

Substitute 𝑁2 = 𝑁 − 𝑁1: 

0 = −𝑃𝑁1 − 𝑅1𝑁1 + 𝑃 (𝑁 − 𝑁1) + 𝑅2 (𝑁 − 𝑁1). 

Expanding the terms gives: 

0 = −𝑃𝑁1 − 𝑅1𝑁1 + 𝑃𝑁 − 𝑃𝑁1 + 𝑅2𝑁 − 𝑅2𝑁1. 

Now, we want to group terms with 𝑁1 and terms with 𝑁. 



𝑃𝑁1 + 𝑅1𝑁1 + 𝑃𝑁1 + 𝑅2𝑁1 = 𝑃𝑁 + 𝑅2𝑁 

𝑁1(𝑃 + 𝑅1 + 𝑃 + 𝑅2) = 𝑁(𝑃 + 𝑅2) 

𝑁1(2 𝑃 + 𝑅1 + 𝑅2) = 𝑁(𝑃 + 𝑅2). 

The slide shows: 

(𝑃 + 𝑅1)𝑁1 = (𝑃 + 𝑅2)(𝑁 − 𝑁1). 

Let's see how this form arises. It seems to be a rearrangement step or 

perhaps starting from a slightly different but equivalent form if some terms 

were grouped. Let's expand the slide's equation: 

𝑃𝑁1 + 𝑅1𝑁1 = 𝑃𝑁 − 𝑃𝑁1 + 𝑅2𝑁 − 𝑅2𝑁1. 

Collecting 𝑁1 terms on the left: 

𝑃𝑁1 + 𝑅1𝑁1 + 𝑃𝑁1 + 𝑅2𝑁1 = 𝑃𝑁 + 𝑅2𝑁, 

𝑁1(2 𝑃 + 𝑅1 + 𝑅2) = (𝑃 + 𝑅2)𝑁. 

This is the same result I got. So, the equation on the slide is an 

intermediate algebraic step that is correct. Specifically, if we have 

0 = −(𝑃 + 𝑅1)𝑁1 + (𝑃 + 𝑅2)(𝑁 − 𝑁1), 

then 

(𝑃 + 𝑅1)𝑁1 = (𝑃 + 𝑅2)(𝑁 − 𝑁1). 

This comes directly from: 

0 = −𝑃𝑁1 − 𝑅1𝑁1 + 𝑃 (𝑁 − 𝑁1) + 𝑅2 (𝑁 − 𝑁1), 

0 = −(𝑃 + 𝑅1)𝑁1 + (𝑃 + 𝑅2)(𝑁 − 𝑁1). 

This makes sense. The left side, (𝑃 + 𝑅1)𝑁1, represents all processes that 

empty 𝑁1 into 𝑁2 or other states characterized by 𝑅1 (Here, my previous 

interpretation of 𝑅1 as 1 → 2 transfer is consistent with this grouping). And 



(𝑃 + 𝑅2) represents the rates for stimulated emission (𝑃) and relaxation 

(𝑅2) from 𝑁2, which has population (𝑁 − 𝑁1), that feed 𝑁1. 

No, this is not quite right. Let's restart the algebra from 

0 = −𝑃𝑁1 − 𝑅1𝑁1 + 𝑃𝑁2 + 𝑅2𝑁2. 

This is: 

(𝑃 + 𝑅1)𝑁1 = 𝑃𝑁2 + 𝑅2𝑁2 = (𝑃 + 𝑅2)𝑁2 . 

Then, substituting 𝑁2 = 𝑁 − 𝑁1: 

(𝑃 + 𝑅1)𝑁1 = (𝑃 + 𝑅2)(𝑁 − 𝑁1). 

Yes, this is correct. The left side, (𝑃 + 𝑅1)𝑁1, represents the total rate of 

atoms leaving level 1 due to interaction 𝑃 and relaxation 𝑅1. The right side, 

(𝑃 + 𝑅2)(𝑁 − 𝑁1), represents the total rate of atoms arriving in level 1 from 

level 2 (population 𝑁 −𝑁1) via stimulated emission 𝑃 and relaxation 𝑅2. In 

steady-state, these total rates of leaving and arriving must be equal. This is 

the physical meaning of this equation. 

This algebraic equation can now be solved for 𝑁1. 
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Following the algebraic setup, this page shows the results of the 

"Rearrangement yields": 

First, the steady-state population in the lower level, 𝑁1: 

𝑁1 = 𝑁 ⋅
𝑃 + 𝑅2

2 𝑃 + 𝑅1 + 𝑅2
 

Let's verify this from our previous equation: 𝑁1(2 𝑃 + 𝑅1 + 𝑅2) = 𝑁(𝑃 + 𝑅2). 

Indeed, dividing by (2 𝑃 + 𝑅1 + 𝑅2) gives 

𝑁1 = 𝑁 ⋅
𝑃 + 𝑅2

2 𝑃 + 𝑅1 + 𝑅2
 



This is correct. 

Second, the steady-state population in the upper level, 𝑁2: 

𝑁2 = 𝑁 ⋅
𝑃 + 𝑅1

2 𝑃 + 𝑅1 + 𝑅2
 

We can obtain this by using 𝑁2 = 𝑁 − 𝑁1. 

𝑁2 = 𝑁 −𝑁 ⋅
𝑃 + 𝑅2

2 𝑃 + 𝑅1 + 𝑅2
 

𝑁2 = 𝑁 ⋅ (1 −
𝑃 + 𝑅2

2 𝑃 + 𝑅1 + 𝑅2
) 

𝑁2 = 𝑁 ⋅
2 𝑃 + 𝑅1 + 𝑅2 − 𝑃 − 𝑅2

2 𝑃 + 𝑅1 + 𝑅2
 

𝑁2 = 𝑁 ⋅
𝑃 + 𝑅1

2 𝑃 + 𝑅1 + 𝑅2
 

This is also correct. 

So these two equations give us the steady-state populations 𝑁1 and 𝑁2 as 

a function of the total population 𝑁, the pump rate 𝑃 (which depends on 

laser intensity), and the relaxation rates 𝑅1 (from level 1 to level 2, 

incoherently) and 𝑅2 (from level 2 to level 1). 

Now, we look at some "Important limiting cases": These are crucial for 

building intuition about how these populations behave. 

The first limiting case is: * 𝑃 ≪ 𝑅i (weak field) → returns thermal equilibrium 

populations. 

Here, 𝑅i presumably refers to both 𝑅1 and 𝑅2. 

If the pump rate 𝑃 is very small compared to the relaxation rates, it means 

the laser is not significantly perturbing the system from its natural 

equilibrium. 



Let's see what happens if 𝑃 approaches 0: 

𝑁1 → 𝑁 ⋅
0 + 𝑅2

0 + 𝑅1 + 𝑅2
= 𝑁 ⋅

𝑅2
𝑅1 + 𝑅2

 

𝑁2 → 𝑁 ⋅
0 + 𝑅1

0 + 𝑅1 + 𝑅2
= 𝑁 ⋅

𝑅1
𝑅1 + 𝑅2

 

These are the populations determined solely by the balance of the 

relaxation rates 𝑅1 and 𝑅2. 

If the system is in thermal equilibrium at some temperature 𝑇, then the ratio 

𝑁2
𝑁1

=
𝑔2
𝑔1
⋅ exp (−

𝐸2 − 𝐸1
𝑘𝑇

) 

would be given by 
𝑔2

𝑔1
⋅ exp (−

𝐸2−𝐸1

𝑘𝑇
), where 𝑘 is Boltzmann's constant. 

In our specific model where 𝑅1 is an incoherent pump 1 → 2 and 𝑅2 is 

relaxation 2 → 1, then in the absence of the coherent pump 𝑃, the ratio 

𝑁2
𝑁1

=
𝑅1
𝑅2

 

So, 

𝑁1 = 𝑁 ⋅
𝑅2

𝑅1 + 𝑅2
 and 𝑁2 = 𝑁 ⋅

𝑅1
𝑅1 + 𝑅2

. 

This is exactly what we get. 

The weak field limit is important: when the laser is very weak, it doesn't 

significantly change the populations from what they would be due to other 

relaxation/thermal processes. 
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Continuing with the important limiting cases: 



The second case considered is: * 𝑃 ≫ 𝑅i (very strong field) → 𝑁1 = 𝑁2 =
𝑁

2
. 

Medium becomes transparent because the populations equalise. (𝑃 much 

greater than 𝑅i). Again, 𝑅i refers to 𝑅1 and 𝑅2. This is the limit of a very 

intense laser field, where the stimulated rate 𝑃 dominates over all 

relaxation rates. 

Let's look at our expressions for 𝑁1 and 𝑁2 when 𝑃 is very large: 

𝑁1 = 𝑁 ⋅
𝑃 + 𝑅2

2 𝑃 + 𝑅1 + 𝑅2
. 

Divide numerator and denominator by 𝑃: 

𝑁1 = 𝑁 ⋅
1 +

𝑅2
𝑃

2 +
𝑅1
𝑃
+
𝑅2
𝑃

. 

As 𝑃 → ∞ (or 𝑃 ≫ 𝑅1,  𝑅2), the terms 
𝑅2

𝑃
, 
𝑅1

𝑃
 all go to zero. 

So, 

𝑁1 → 𝑁 ⋅
1 + 0

2 + 0 + 0
= 𝑁 ⋅

1

2
=
𝑁

2
. 

Similarly for 𝑁2: 

𝑁2 = 𝑁 ⋅
𝑃 + 𝑅1

2 𝑃 + 𝑅1 + 𝑅2
. 

Divide by 𝑃: 

𝑁2 = 𝑁 ⋅
1 +

𝑅1
𝑃

2 +
𝑅1
𝑃
+
𝑅2
𝑃

. 

As 𝑃 → ∞, 

𝑁2 → 𝑁 ⋅
1 + 0

2 + 0 + 0
= 𝑁 ⋅

1

2
=
𝑁

2
. 



So, indeed, in the limit of a very strong driving field, 𝑁1 = 𝑁2 =
𝑁

2
. 

This is a profound result. It means that the populations in the lower and 

upper states become equal, each holding half of the total available 

population. This is the "population equalisation" we mentioned at the very 

beginning. 

Why does this happen? When 𝑃 is very large, stimulated absorption 

(emptying 𝑁1, filling 𝑁2) and stimulated emission (emptying 𝑁2, filling 𝑁1) 

are both occurring very rapidly. The system is driven so hard that it can't 

distinguish much between the up and down transitions; any atom that 

relaxes down is quickly pumped back up, and any atom pumped up can be 

quickly stimulated back down. The relaxation rates 𝑅1 and 𝑅2, which try to 

establish some other equilibrium, become negligible in comparison. The 

system reaches a state where the upward and downward stimulated rates 

nearly balance, which occurs when 𝑁1 ≈ 𝑁2. 

The consequence is that the "Medium becomes transparent." Why? Net 

absorption of light is proportional to the population difference (𝑁1 −𝑁2) 

times the 𝐵12 coefficient, minus stimulated emission which is proportional to 

𝑁2 times 𝐵21. If we assume 𝐵12 = 𝐵21 (for equal degeneracies), then net 

absorption is proportional to (𝑁1 − 𝑁2). If 𝑁1 = 𝑁2, then (𝑁1 − 𝑁2) = 0. This 

means there is no net absorption of light from the beam. The number of 

photons absorbed per unit time is exactly balanced by the number of 

photons added back into the beam by stimulated emission. The medium 

neither attenuates nor amplifies the beam; it becomes transparent to the 

strong resonant light. This phenomenon is called saturation. The transition 

is saturated. 

The triple dash indicates the end of this thought. These two limits – very 

weak field and very strong field – provide crucial anchor points for 

understanding the behavior of the system. The transition from one regime 

to the other is governed by how 𝑃 compares to 𝑅1 and 𝑅2. 
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Now we arrive at "Slide 6: Introducing the Saturation Parameter S." 

We've seen that the behavior of the system depends on how strong the 

pump rate 𝑃 is compared to the relaxation rates. It's useful to define a 

dimensionless parameter that quantifies this. 

First, let's define the "Population difference (net absorbers)": 

𝛥𝑁 = 𝑁1 − 𝑁2 

(Delta N equals N sub 1 minus N sub 2). 

This 𝛥𝑁 is crucial because, as we just discussed, the net rate of absorption 

of energy from the light field is proportional to this population difference 

(assuming equal degeneracies for simplicity, so 𝐵12 = 𝐵21). If 𝛥𝑁 > 0, 

there's net absorption. If 𝛥𝑁 < 0 (population inversion, 𝑁2 > 𝑁1), there's net 

stimulated emission and thus optical gain. If 𝛥𝑁 = 0, the medium is 

transparent at that frequency. 

Next, we consider the "Unsaturated difference (𝑃 = 0)": 

This is the population difference that would exist in the absence of the 

coherent pump field 𝑃. We denote this as 𝛥𝑁0 (Delta N sub zero). 

Using our expressions for 𝑁1 and 𝑁2 from page 15 when 𝑃 = 0: 

𝑁10 = 𝑁 ⋅ [
𝑅2

𝑅1 + 𝑅2
] 

𝑁20 = 𝑁 ⋅ [
𝑅1

𝑅1 + 𝑅2
] 

So, 

𝛥𝑁0 = 𝑁10 − 𝑁20 = 𝑁 ⋅ [
(𝑅2 − 𝑅1)

(𝑅1 + 𝑅2)
] 

The slide shows this as: 



𝛥𝑁0 = 𝑁 ⋅ [
(𝑅2 − 𝑅1)

(𝑅1 + 𝑅2)
] 

This is correct. This 𝛥𝑁0 represents the "natural" population difference 

established by the incoherent relaxation and pumping processes 𝑅1 (1→2) 

and 𝑅2 (2→1). For net absorption to occur even with a weak probe, we 

typically need 𝛥𝑁0 > 0, which means 𝑅2 > 𝑅1. If 𝑅1 is thermal excitation 

and 𝑅2 is thermal relaxation, 𝑅2 will usually be greater than 𝑅1 at 

reasonable temperatures for an optical transition where 𝐸2 − 𝐸1 ≫ 𝑘𝑇, so 

𝛥𝑁0 ≈ 𝑁. 

Now, the third bullet point: "Substitute steady-state populations:" 

We want to find an expression for the actual population difference 𝛥𝑁 in the 

presence of the pump 𝑃, using the steady-state 𝑁1 and 𝑁2 we found on 

page 15: 

𝑁1 = 𝑁 ⋅
𝑃 + 𝑅2

2 𝑃 + 𝑅1 + 𝑅2
 

𝑁2 = 𝑁 ⋅
𝑃 + 𝑅1

2 𝑃 + 𝑅1 + 𝑅2
 

So, 

𝛥𝑁 = 𝑁1 −𝑁2 = 𝑁 ⋅
(𝑃 + 𝑅2) − (𝑃 + 𝑅1)

2 𝑃 + 𝑅1 + 𝑅2
 

𝛥𝑁 = 𝑁 ⋅
(𝑅2 − 𝑅1)

2 𝑃 + 𝑅1 + 𝑅2
 

This expression for 𝛥𝑁 will be used on the next page to define the 

saturation parameter 𝑆. 

Notice that the numerator 𝑁 ⋅ (𝑅2 − 𝑅1) is exactly 𝛥𝑁0. 

So, we can write: 



𝛥𝑁 = 𝛥𝑁0 ⋅
𝑅1 + 𝑅2

2 𝑃 + 𝑅1 + 𝑅2
 

This relation is very important and will appear on the next page. 
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Continuing from the previous page, we have the expression for the 

population difference 𝛥𝑁 in the presence of the pump: The slide shows this 

relationship as: 

𝛥𝑁 =
𝛥𝑁0

[1 + (
2 𝑃

𝑅1 + 𝑅2
)]

 

Let's verify this from what we derived: 

𝛥𝑁 = 𝛥𝑁0 ⋅ [
𝑅1 + 𝑅2

2 𝑃 + 𝑅1 + 𝑅2
] 

If we divide the numerator and denominator of the fraction inside the 

square brackets by (𝑅1 + 𝑅2), we get: 

𝛥𝑁 = 𝛥𝑁0 ⋅ [
1

(
2 𝑃

𝑅1 + 𝑅2
) + (

𝑅1 + 𝑅2
𝑅1 + 𝑅2

)
] 

𝛥𝑁 = 𝛥𝑁0 ⋅ [
1

1 + (
2 𝑃

𝑅1 + 𝑅2
)
] 

This matches the slide perfectly. This is a very neat and common form. It 

shows that the actual population difference 𝛥𝑁 is the unsaturated 

population difference 𝛥𝑁0, reduced by a factor related to 𝑃 and the 

relaxation rates 𝑅1 and 𝑅2. 

Now, we "Define" the saturation parameter, 𝑆. 



The denominator term (
2 𝑃

𝑅1+𝑅2
) is defined as the saturation parameter 𝑆. So, 

𝑆 =
2 𝑃

𝑅1 + 𝑅2
 

With this definition, the population difference becomes simply: 

𝛥𝑁 =
𝛥𝑁0
1 + 𝑆

 

This is a cornerstone equation in saturation physics! It elegantly shows how 

the population difference, and thus the absorption, is reduced from its 

unsaturated value 𝛥𝑁0 by a factor of (1 + 𝑆) due to the presence of the 

pump field 𝑃, which is embedded in 𝑆. 

• If 𝑆 = 0 (i.e., 𝑃 = 0, no pump), then 𝛥𝑁 = 𝛥𝑁0 (unsaturated). 

• If 𝑆 = 1, then 𝛥𝑁 =
𝛥𝑁0

2
 (population difference is halved). This occurs 

when 2 𝑃 = 𝑅1 + 𝑅2. 

• If 𝑆 ≫ 1 (strong pump), then 𝛥𝑁 ≈
𝛥𝑁0

𝑆
, which tends to 0. (Populations 

equalize). 

The slide also presents an alternative way to write 𝑆: 

𝑆 =
𝑃

𝑅
 

where 

𝑅 =
𝑅1 + 𝑅2

2
. 

𝑅 can be thought of as a "mean relaxation rate" for the two-level system, 

averaging the rate 𝑅1 (which we interpreted as 1 → 2 incoherent transfer) 

and 𝑅2 (2 → 1 relaxation). So, 𝑆 is the ratio of the coherent pumping rate 𝑃 



to this mean relaxation rate 𝑅. This makes the physical meaning of 𝑆 very 

clear. 

Indeed, the next bullet point states: 

• "S is the ratio 'pumping rate per atom' ÷ 'mean relaxation rate'." 

More precisely, 𝑃 is the stimulated transition rate per atom (for one 

direction). The denominator 
𝑅1+𝑅2

2
 is half the sum of the rates that tend to 

restore equilibrium or cause transitions between the levels in the absence 

of 𝑃 (or in competition with 𝑃). When 𝑃 becomes comparable to this mean 

relaxation rate (i.e., 𝑆 ≈ 1), saturation effects become significant. 

Finally, a "Special case: only spontaneous decay from upper level": 

This is a very common scenario, especially for atoms in a vacuum where 

collisional relaxation is negligible. 

• 𝑅1 = 0, 𝑅2 = 𝐴21.   If 𝑅1 = 0, it means there's no incoherent process 

pumping atoms from level 1 to level 2. Level 1 only empties via stimulated 

absorption 𝑃.   𝑅2 = 𝐴21 means that the only way level 2 relaxes is by 

spontaneous emission to level 1, with rate 𝐴21 (the Einstein A coefficient). 

In this very important special case: 

• 𝛥𝑁0 = 𝑁 ⋅
(𝐴21−0)

(0+𝐴21)
= 𝑁. (Assuming level 1 is the ground state, so initially 

all 𝑁 atoms are in 𝑁1, and 𝑁2 = 0 without 𝑃.) 

And the saturation parameter 𝑆 becomes: 

𝑆 =
2 𝑃

0 + 𝐴21
=
2 𝑃

𝐴21
. 

And 𝑅 =
𝐴21

2
. So 𝑆 =

𝑃

𝐴21/2
=

2 𝑃

𝐴21
. Consistent. 

This specific form of 𝑆 is frequently encountered. 



The saturation parameter 𝑆 is thus a central quantity that tells us how 

deeply we are into the saturation regime. 
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Now we connect the saturation parameter 𝑆 to more experimentally 

accessible quantities like laser intensity and atomic cross‐ section. 

The slide says: "Using intensity 𝐼(𝜔) and cross section 𝜎12(𝜔):" 

Recall that our pump rate 𝑃 was defined as 𝑃 = 𝐵12𝜌𝑝(𝜔). The spectral 

energy density 𝜌𝑝(𝜔) can be related to the intensity 𝐼(𝜔) of the laser beam. 

Intensity 𝐼(𝜔) is power per unit area per unit angular frequency interval 

(e.g., W m
−2(rad/s)−1). The relationship is 𝐼(𝜔) = 𝑐 𝑛 𝜌𝑝(𝜔), where 𝑐 is the 

speed of light in vacuum and 𝑛 is the refractive index of the medium (𝑛 ≈ 1 

for gases). Or, if 𝜌𝑝(𝜔) is energy per unit volume per unit angular 

frequency, then 𝐼(𝜔) =
𝑐

𝑛
 𝜌𝑝(𝜔). Let's assume 𝑛 = 1 for simplicity, so 

𝜌𝑝(𝜔) =
𝐼(𝜔)

𝑐
. 

The stimulated rate 𝑃 can also be expressed in terms of the absorption 

cross‐ section 𝜎12(𝜔) (sigma sub 1 2 of omega). The absorption 

cross‐ section is an effective area that an atom presents to incident 

photons for absorption. The rate of photon absorption by a single atom is 

given by the photon flux (photons per unit area per unit time) multiplied by 

the cross‐ section. Photon energy is ℏ𝜔 (h‐ bar omega). Photon flux for a 

given intensity 𝐼(𝜔) (power per area) is 
𝐼(𝜔)

ℏ𝜔
 (photons per area per time, if 

𝐼(𝜔) is just intensity, not spectral intensity). 

If 𝐼(𝜔) is spectral intensity (power per area per frequency interval), then the 

rate of transitions 𝑃 is related to 𝜎12(𝜔) by: 

𝑃 =
𝜎12(𝜔)𝐼(𝜔)

ℏ𝜔
 



This equation is given on the slide. Let's check the units. 𝜎12(𝜔) has units 

of area (e.g., 𝑚2). 𝐼(𝜔) is intensity (e.g., W/m
2
 or J s

−1
m−2). ℏ𝜔 is energy 

(J). So, 𝑃 has units of 𝑚2 × (J s
−1

m−2)/J = 𝑠−1. This is correct; 𝑃 is a rate. 

Here, 𝐼(𝜔) is typically taken as the intensity of the laser at frequency 𝜔, 

integrated over its narrow bandwidth if it's considered 

quasi‐ monochromatic, or it could be a spectral intensity if 𝜎12(𝜔) is 

appropriately defined. Usually, for a laser interacting with a narrow 

transition, 𝐼(𝜔) is simply the total intensity 𝐼 of the laser if its frequency 𝜔 is 

near resonance, and 𝜎12(𝜔) is the cross‐ section at that frequency. So, 𝑃 =
𝜎(𝜔)𝐼

ℏ𝜔
. 

Now, we can substitute this expression for 𝑃 into our formula for 𝑆, 

particularly for the special case we just discussed where 𝑅1 = 0 and 𝑅2 =

𝐴21 (spontaneous emission only). In that case, 𝑆 =
2 𝑃

𝐴21
. Substituting 𝑃: 

𝑆 =
2 𝜎12(𝜔)𝐼(𝜔)

ℏ𝜔𝐴21
 

This equation is also given on the slide, and it's extremely useful. It directly 

relates the saturation parameter 𝑆 to: • 𝜎12(𝜔): the absorption 

cross‐ section at the laser frequency 𝜔 (a property of the atom). • 𝐼(𝜔): 

the intensity of the laser (an experimental parameter we control). • ℏ𝜔: 

the photon energy (defined by the laser frequency). • 𝐴21: the 

spontaneous emission rate (a property of the atom). 

This allows us to calculate 𝑆 if we know the atomic parameters and the 

laser intensity. Often, we define a "saturation intensity" 𝐼sat(𝜔) such that 

𝑆 =
𝐼(𝜔)

𝐼sat(𝜔)
. Comparing with the formula for 𝑆, we can identify: 

𝐼sat(𝜔) =
ℏ𝜔𝐴21
2 𝜎12(𝜔)

 



The saturation intensity 𝐼sat is the intensity at which the saturation 

parameter 𝑆 becomes equal to 1. It's a characteristic intensity for the 

transition. If your laser intensity 𝐼 is much less than 𝐼sat, you are in the weak 

field regime (𝑆 ≪ 1). If 𝐼 is much greater than 𝐼sat, you are in the strong 

saturation regime (𝑆 ≫ 1). 

This connection to intensity and cross‐ section makes the concept of 

saturation very practical for experimentalists. 

Page 20 

This page presents a graph titled "Saturation Behavior of a Two-Level 

System." This graph visually illustrates the key equation 𝛥𝑁 =
𝛥𝑁0

1+𝑆
 that we 

derived. 

Let's describe the graph: 

• The horizontal axis is the Saturation Parameter (𝑆), plotted on a 

logarithmic scale ranging from 10−2 (zero point zero one) to 102 (one 

hundred). This wide range allows us to see the behavior from weak 

saturation to strong saturation. 

• The vertical axis is the Normalized Population Difference (
𝛥𝑁

𝛥𝑁0
). This 

quantity ranges from 0 to 1. When 𝑆 = 0, 
𝛥𝑁

𝛥𝑁0
= 1, meaning the population 

difference is at its unsaturated value. As 𝑆 increases, 
𝛥𝑁

𝛥𝑁0
 decreases. 

• A blue curve shows the relationship: 
𝛥𝑁

𝛥𝑁0
=

1

1+𝑆
. 

Let's trace the curve: 

• At very small 𝑆 (e.g., 𝑆 = 10−2), the value of 
𝛥𝑁

𝛥𝑁0
 is very close to 1. For 

example, if 𝑆 = 0.01, then 
𝛥𝑁

𝛥𝑁0
=

1

1.01
≈ 0.99. This confirms that for weak 

pumping, the population difference is hardly affected. 



• As 𝑆 increases, 
𝛥𝑁

𝛥𝑁0
 starts to drop. 

• A key point is highlighted on the graph with a red dot: (𝑆 = 1,
𝛥𝑁

𝛥𝑁0
=

0.5). This is exactly what the formula predicts: when 𝑆 = 1, 
𝛥𝑁

𝛥𝑁0
=

1

1+1
=

1

2
=

0.5. So, when the saturation parameter is unity, the population difference is 

reduced to half of its unsaturated value. This is often taken as a practical 

definition of the onset of significant saturation. 

• As 𝑆 increases further beyond 1 (e.g., 𝑆 = 10), 
𝛥𝑁

𝛥𝑁0
 drops significantly. 

For 𝑆 = 10, 
𝛥𝑁

𝛥𝑁0
=

1

1+10
=

1

11
≈ 0.09. 

• For 𝑆 = 100, 
𝛥𝑁

𝛥𝑁0
=

1

1+100
=

1

101
≈ 0.01. As 𝑆 approaches infinity, 

𝛥𝑁

𝛥𝑁0
 

approaches zero, meaning complete saturation where 𝑁1 ≈ 𝑁2. 

This graph beautifully visualizes how the effectiveness of the medium as an 

absorber (which depends on 𝛥𝑁) diminishes as the saturation parameter 𝑆 

(which depends on laser intensity) increases. It's a smooth transition from 

the unsaturated regime (𝑆 ≪ 1) to the heavily saturated regime (𝑆 ≫ 1), 

with a characteristic turning point around 𝑆 = 1. 

Understanding this curve is fundamental to interpreting experiments 

involving potentially saturating laser beams. If you measure an absorption 

signal, its strength is directly tied to this 𝛥𝑁. If you increase your laser 

power, you are increasing 𝑆, and you will move along this curve to the right, 

observing a decrease in the normalized population difference and thus a 

decrease in the fractional absorption. 
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Now we connect the saturation of the population difference to the 

macroscopic absorption coefficient. This is "Slide 7: Absorption 

Coefficient under Saturation." 



The first bullet point reminds us of the "Microscopic absorption cross 

section 𝜎12(𝜔) (units: m2)." This, as we discussed, is an atomic property, 

representing the effective area for absorption at frequency 𝜔. 

The second bullet defines the "Macroscopic coefficient", which is the 

linear absorption coefficient 𝛼(𝜔) (alpha of omega). This is what typically 

appears in Beer-Lambert's law (
𝑑𝐼

𝑑𝑧
= −𝛼𝐼). 

The relationship is given as: 

𝛼(𝜔) = 𝜎12(𝜔)𝛥𝑁 

* 𝛼(𝜔) is the absorption coefficient, usually in units of per meter (m−1) or 

per centimeter (cm−1). * 𝜎12(𝜔) is the cross-section (m2). * 𝛥𝑁 is the 

population difference (𝑁1 − 𝑁2) in units of number per unit volume (m−3). 

So the units are m2 ×m−3 = m−1, which is correct for 𝛼(𝜔). 

This equation states that the macroscopic absorption coefficient is simply 

the microscopic cross-section multiplied by the density of net absorbers 

(𝑁1 − 𝑁2). This makes intuitive sense. 

Now, the third bullet point: "Insert 𝛥𝑁 expression:" 

We know that in the presence of a saturating field, 

𝛥𝑁 =
𝛥𝑁0
1 + 𝑆

 

Substituting this into the expression for 𝛼(𝜔): 

𝛼(𝜔) = 𝜎12(𝜔) [
𝛥𝑁0
1 + 𝑆

] 

We can group 𝜎12(𝜔)𝛥𝑁0 together. What is this? It's the absorption 

coefficient we would have if the population difference were its unsaturated 

value 𝛥𝑁0. Let's call this 𝛼0(𝜔) (alpha sub zero of omega), the unsaturated 

absorption coefficient. So, 



𝛼0(𝜔) = 𝜎12(𝜔)𝛥𝑁0 

With this definition, the saturated absorption coefficient 𝛼(𝜔) becomes: 

𝛼(𝜔) =
𝛼0(𝜔)

1 + 𝑆
 

This fundamental equation is shown on the slide. It tells us that the 

absorption coefficient itself is reduced from its unsaturated value by the 

same factor (1 + 𝑆) that reduces the population difference. 

Here, 𝑆 is the on-resonance saturation parameter if 𝛼0(𝜔) is the peak 

unsaturated absorption coefficient. More generally, if we are considering 

off-resonance effects, 𝑆 itself can become frequency dependent, 𝑆(𝜔), as 

we will see later. For now, if we are at a specific frequency 𝜔 (often the line 

center), 𝑆 is the saturation parameter at that frequency. 

The last bullet point confirms our definition: * "𝛼0(𝜔) = 𝜎12(𝜔)𝛥𝑁0 is the 

unsaturated value." 

This result is extremely important. It directly predicts how the measured 

absorption of a material will decrease as you increase the intensity of the 

probing laser beam (because 𝑆 depends on intensity). This is the 

phenomenon of "saturable absorption," and materials exhibiting this are 

called "saturable absorbers," which have many applications, for example, in 

laser Q-switching and mode-locking. For spectroscopy, it means our signal 

strength (absorption) doesn't just scale with 𝑁, it's modified by this (1 + 𝑆) 

factor. 
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This page discusses the "Consequences" of the formula 

𝛼(𝜔) =
𝛼0(𝜔)

1 + 𝑆
 

for the absorption coefficient under saturation. 



The first consequence highlighted is: * "Peak absorption diminishes as 
1

1+𝑆
." This directly follows from the formula. If 𝛼0(𝜔) is the peak unsaturated 

absorption coefficient (i.e., at the line center), then the actual peak 

absorption 𝛼(𝜔) is reduced by this factor (1 + 𝑆). As 𝑆 increases (due to 

higher laser intensity), the peak absorption gets smaller and smaller. For 

example, when 𝑆 = 1, the peak absorption is halved. When 𝑆 is very large, 

the peak absorption approaches zero. 

This leads to the second point, which is the extreme limit: * "In the limit 

𝑆 → ∞, 𝛼 → 0: complete bleaching." (𝑆 approaches infinity, 𝛼 approaches 

zero\). When the saturation parameter 𝑆 becomes very, very large (e.g., 

due to extremely high laser intensity), the denominator (1 + 𝑆) also 

becomes very large. Therefore, 𝛼(𝜔) =
𝛼0(𝜔)

1+𝑆
 approaches zero. This means 

that the material effectively stops absorbing light at that frequency. The 

medium has become transparent, or "bleached." This is the ultimate effect 

of saturation: you can drive the population difference 𝛥𝑁 so close to zero 

that there's virtually no net absorption left. The term "bleaching" is very 

descriptive; it's like the color (absorption) has been removed from the 

material by the intense light. This is exploited in techniques like saturated 

absorption spectroscopy, where a strong pump beam bleaches a path for a 

probe beam, but it's also a caution: if you're trying to measure absorption, 

and your laser is too strong, you might be significantly underestimating the 

true (unsaturated) absorption coefficient because you're already in the 

saturation regime. 

These consequences are direct and experimentally verifiable. The 

reduction in absorption is one of the primary signatures of saturation. The 

next step will be to consider how this affects the lineshape, not just the 

peak height. 
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This page provides another excellent visualization, titled "Slide 7: 

Absorption Coefficient under Saturation" (presumably a continuation or 

detailed view related to the previous Slide 7). 

The graph shows the "Absorption Coefficient (𝛼S) and Lower State 

Population (
𝑁1

𝑁total

) vs. Saturation Parameter (𝑆)". (Here 𝛼S is what we called 

𝛼(𝜔) or 𝛼). 

Let's describe the graph: 

* The horizontal axis is the Saturation Parameter (𝑆), plotted on a linear 

scale this time, ranging from 0 to 15. 

* The vertical axis is Normalized Value, ranging from 0.0 to 1.0. 

* There are two curves plotted: 1. A blue curve representing the 

normalized absorption coefficient: 
𝛼(𝑆)

𝛼0
=

1

1+𝑆
. * At 𝑆 = 0, 

𝛼(𝑆)

𝛼0
= 1 

(unsaturated absorption). * As 𝑆 increases, this curve drops sharply at first, 

then more gradually. For example, at 𝑆 = 1, it's 0.5. At 𝑆 = 3, it's 
1

4
= 0.25. 

At 𝑆 = 9, it's 
1

10
= 0.1. * An annotation points to the tail of this blue curve: 

"𝛼/𝛼0 → 0 (Full Transparency / Complete Bleaching)" as 𝑆 gets large. This 

visually reinforces the concept of bleaching. 2. A red curve representing 

the normalized lower state population: 
𝑁1(𝑆)

𝑁total

=
𝑆+2

2(𝑆+1)
. * Let's verify this 

formula for 
𝑁1

𝑁total

. We had 

𝑁1 = 𝑁 ⋅
(𝑃 + 𝑅2)

(2 𝑃 + 𝑅1 + 𝑅2)
. 

And 

𝑆 =
2 𝑃

𝑅1 + 𝑅2
. 

This means 



𝑃 =
𝑆(𝑅1 + 𝑅2)

2
. 

Let's consider the simple case where 𝑅1 = 0 (no 1 → 2 incoherent pump) 

and 𝑅2 is the relaxation rate from 2 to 1 (e.g., 𝐴21). Then 𝛥𝑁0 = 𝑁total. * Our 

previous 𝑁1 was 

𝑁 ⋅
(𝑃 + 𝑅2)

(2 𝑃 + 𝑅1 + 𝑅2)
. 

Let's assume the 𝑁total here refers to 𝑁. * If 𝑅1 = 0, then 

𝑁1
𝑁
=

(𝑃 + 𝑅2)

(2 𝑃 + 𝑅2)
. 

And 

𝑆 =
2 𝑃

𝑅2
. 

So 

𝑃 =
𝑆𝑅2
2
. 

Substituting 𝑃: 

𝑁1
𝑁
=

𝑆𝑅2
2
+ 𝑅2

𝑆𝑅2 + 𝑅2
=
𝑅2 (

𝑆
2
+ 1)

𝑅2(𝑆 + 1)
=

𝑆
2
+ 1

𝑆 + 1
=

𝑆 + 2

2(𝑆 + 1)
. 

This formula is correct for the case 𝑅1 = 0. * Let's see how 
𝑁1

𝑁
 behaves: * At 

𝑆 = 0 (no pump 𝑃), 

𝑁1
𝑁
=

0 + 2

2(0 + 1)
=
2

2
= 1. 

This means all population is in the lower state, 𝑁1 = 𝑁total, which makes 

sense if 𝑅1 = 0 (no way to get to 𝑁2 without 𝑃) and we assume this is the 

initial state before 𝑃 is applied. * As 𝑆 → ∞ (very strong pump), 



𝑁1
𝑁
→

𝑆

2 𝑆
=
1

2
. 

This means the lower state population approaches 
𝑁total

2
, which is consistent 

with 𝑁1 = 𝑁2 =
𝑁total

2
 in the limit of strong saturation. * The red curve starts at 

1 for 𝑆 = 0 and decreases, approaching an asymptote at 0.5 for large 𝑆. A 

dashed horizontal line is drawn at a normalized value of 0.5, and an 

annotation for the red curve says "
𝑁1

𝑁total

→ 0.5". 

What does this graph tell us? 

The blue curve shows how the absorption coefficient plummets with 

increasing 𝑆. The red curve shows that the lower state population 𝑁1 also 

decreases as 𝑆 increases, but it doesn't go to zero. It goes to 
𝑁total

2
. This is 

the source of the saturation: the "fuel" for absorption (atoms in 𝑁1) is being 

depleted, but not entirely; it's being shared equally with 𝑁2. 

The fact that 𝑁1 only drops to 0.5 𝑁total while 
𝛼(𝑆)

𝛼0
 drops all the way to 0 

emphasizes that absorption depends on the difference 

𝛥𝑁 = 𝑁1 −𝑁2, 

not just on 𝑁1. When 𝑁1 = 𝑁2 =
𝑁total

2
, 𝛥𝑁 is zero, hence 𝛼 is zero, even 

though 𝑁1 is still substantial. 
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Now we make a crucial "Conceptual Jump" from just considering 

saturation of population at a single frequency to how this affects the entire 

spectral line shape. This is "Slide 8: Saturation Broadening – 

Conceptual Jump." 

The first bullet point sets the context: 



"So far we treated a single frequency at a time. Real lasers have finite 

spectral width." 

Actually, the more important point here is that even if the laser is perfectly 

monochromatic, an atomic transition has a lineshape (e.g., a Lorentzian 

profile) meaning it interacts with light over a range of frequencies around 

the line center 𝜔0. When we talked about 𝑃, 𝜎(𝜔), 𝑆, etc., these quantities 

can be frequency-dependent if the laser frequency 𝜔 is detuned from the 

line center 𝜔0. The saturation parameter 𝑆 itself will be largest at resonance 

and smaller in the wings. 

This leads to the second point: 

"Saturation is strongest exactly at 𝜔0 (line centre) because the induced 

rate is highest there." 

The interaction strength (and thus the absorption cross-section 𝜎(𝜔) and 

the stimulated rate 𝑃(𝜔)) is typically peaked at the resonant frequency 𝜔0. 

Therefore, the saturation parameter 𝑆 will also be largest at 𝜔0. If we 

denote 𝑆0 as the saturation parameter exactly on resonance, then 𝑆(𝜔) will 

be 𝑆0 times some lineshape factor that decreases as |𝜔 − 𝜔0| increases. 

The third point describes what happens in the wings: 

"Wings of the Lorentzian are less saturated (smaller 𝑆𝜔)." 

(𝑆 sub omega, meaning 𝑆 as a function of frequency 𝜔). As we move away 

from the line center 𝜔0 into the wings of the Lorentzian profile, the atomic 

response (the cross-section) decreases. For a given laser intensity, this 

means the stimulated rate 𝑃(𝜔) will be smaller, and consequently, the 

frequency-dependent saturation parameter 𝑆𝜔 will be smaller than 𝑆0. So, 

the center of the line is heavily saturated, while the wings are less 

saturated. 

The final bullet point gives the "Result": 



"central part flattens while the area (integrated oscillator strength) 

stays conserved → line broadens outward." 

This is the heart of power broadening. Because the center of the line is 

more saturated, its absorption is reduced more significantly than the 

absorption in the wings. This causes the peak of the spectral line to 

"flatten" or "dip." However, the "integrated oscillator strength" of the 

transition, which is related to the total area under the absorption curve 

∫ 𝛼(𝜔) 𝑑𝜔, is a fundamental atomic property and should remain 

(approximately) conserved, even under saturation. So, if the peak height of 

the absorption profile decreases due to saturation, but the total area under 

the curve must be conserved, then the width of the profile must increase to 

compensate. The line effectively "broadens outward." The energy that 

would have been absorbed at the peak (if it weren't saturated) is now 

effectively redistributed over a wider frequency range in the wings. 

This conceptual jump is vital. Saturation doesn't just reduce the overall 

absorption; it preferentially reduces it at the line center, leading to a change 

in the lineshape – specifically, a broadening. We will now formalize this. 
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Now we're ready to look at the mathematics of this frequency-dependent 

saturation and the resulting broadening. This is "Slide 9: Lorentzian 

Profile & Frequency-Dependent Saturation." 

First, let's define the "Unsaturated homogeneous line (natural plus 

collisional)": We assume that in the absence of a strong saturating field 

(or in the limit of very weak probe light), our homogeneously broadened 

transition has a Lorentzian lineshape. This is given by: 

𝐿(𝜔 − 𝜔0) =
(
𝛾
2
)
2

(𝜔 − 𝜔0)
2 + (

𝛾
2
)
2. 

Let's break this down: 



• 𝐿(𝜔 − 𝜔0) is the Lorentzian lineshape function. It's a function of the 

detuning (𝜔 − 𝜔0) from the line center frequency 𝜔0. 

• 𝜔 (omega) is the variable frequency (e.g., of our laser). 

• 𝜔0 (omega sub zero) is the resonant frequency of the atomic transition 

(the line center). 

• 𝛾 (gamma) is the "full width at half maximum (FWHM)" of this 

unsaturated Lorentzian profile. This 𝛾 is the homogeneous linewidth we 

discussed earlier, arising from natural lifetime and collisional broadening. 

• The term 
𝛾

2
 is therefore the half-width at half-maximum (HWHM). 

• The Lorentzian is normalized such that 𝐿(𝜔 = 𝜔0) = 1 (i.e., at the peak, 

(𝜔 − 𝜔0) = 0, so 𝐿 =
(
𝛾

2
)
2

(
𝛾

2
)
2 = 1). If this 𝐿 is multiplying a peak absorption 

coefficient 𝛼0, then 𝛼(𝜔) = 𝛼0 ⋅ 𝐿(𝜔 − 𝜔0). 

The second bullet point reiterates: 

• "𝛾: full width at half maximum (FWHM)." 

Now, we introduce the concept of a "Local saturation parameter": Since 

the interaction strength depends on frequency (via the Lorentzian 𝐿(𝜔 −

𝜔0)), the saturation parameter itself will be frequency-dependent. Let's call 

this 𝑆𝜔 (S sub omega). The absorption cross-section 𝜎(𝜔) can be written 

as 𝜎0 ⋅ 𝐿(𝜔 − 𝜔0), where 𝜎0 is the peak cross-section at 𝜔0. The pump rate 

𝑃(𝜔) would then be 𝑃0 ⋅ 𝐿(𝜔 − 𝜔0), where 𝑃0 is the pump rate at 

resonance. 

Our original saturation parameter 𝑆 (which we should now perhaps call 𝑆0, 

the on-resonance saturation parameter) was defined as 

𝑆0 =
2 𝑃0

𝑅1 + 𝑅2
. 



The frequency-dependent saturation parameter 𝑆𝜔 will then be: 

𝑆𝜔 =
2 𝑃(𝜔)

𝑅1 + 𝑅2
= [

2 𝑃0
𝑅1 + 𝑅2

] 𝐿(𝜔 − 𝜔0). 

So, 𝑆𝜔 = 𝑆0 ⋅ 𝐿(𝜔 − 𝜔0). 

This is what we'll see on the next page. The "local" saturation parameter 𝑆𝜔 

depends on how far the current frequency 𝜔 is from resonance, through the 

Lorentzian factor. 
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This page continues the development of the frequency-dependent 

saturation parameter 𝑆𝜔. 

First, the equation for 𝑆𝜔 is given, based on our earlier definitions: 

𝑆𝜔 =
𝐵12  𝜌(𝜔)

𝑅‾
 𝐿(𝜔 − 𝜔0) 

Let's analyze this: 

• 𝑆𝜔 (S sub omega) is the saturation parameter at a given frequency 𝜔. 

• 𝐵12 𝜌(𝜔) is our stimulated rate 𝑃(𝜔) (assuming 𝜌(𝜔) is the spectral 

energy density of the pump at frequency 𝜔, which is driving the saturation). 

More accurately, 

𝑃(𝜔) = 𝐵12 𝜌pump 𝐿(𝜔 − 𝜔0) 

if 𝜌pump is broadband, or if 𝜌pump is monochromatic at 𝜔, then 

𝑃(𝜔) = 𝐵12 𝜌pump(𝜔). 

The slide seems to imply that 𝐵12 𝜌(𝜔) here is the on-resonance stimulated 

rate 𝑃0 if 𝐿(𝜔 − 𝜔0) is also present. 

• 𝑅‾  (R-bar) is the mean relaxation rate, 



𝑅‾ =
𝑅1 + 𝑅2

2
, 

that we defined earlier such that the on-resonance saturation parameter 

𝑆0 =
𝑃0

𝑅‾
. 

• 𝐿(𝜔 − 𝜔0) is the unsaturated Lorentzian lineshape function. 

So, if 

𝑃0 = 𝐵12 𝜌(𝜔0) 

is the stimulated rate exactly at resonance (𝜔 = 𝜔0), then the term 
𝐵12  𝜌(𝜔)

𝑅‾
 

should probably be 𝑆0 =
𝑃0

𝑅‾
. The equation on the slide: 

𝑆𝜔 =
𝐵12  𝜌(𝜔)

𝑅‾
 𝐿(𝜔 − 𝜔0) 

This looks like it could be 

𝑆𝜔 = 𝑆0 𝐿(𝜔 − 𝜔0) 

if we define 𝑆0 appropriately. 

Let's assume 𝐵12 𝜌(𝜔) refers to the on-resonance value of the pump 

interaction strength, 𝑃0. So, 

𝑆𝜔 =
𝑃0

𝑅‾
 𝐿(𝜔 − 𝜔0). 

Define peak value: 

𝑆0 = 𝑆𝜔0 (S sub zero equals S sub omega-sub-zero). This means 𝑆0 is the 

saturation parameter evaluated exactly at the line center, 𝜔 = 𝜔0. Since 

𝐿(𝜔0 −𝜔0) = 𝐿(0) = 1, 

then from our assumed formula 



𝑆𝜔 =
𝑃0

𝑅‾
 𝐿(𝜔 − 𝜔0), 

we get: 

𝑆0 =
𝑃0

𝑅‾
 1 =

𝑃0

𝑅‾
. 

This is consistent. 𝑆0 is the on-resonance saturation parameter we've been 

using, where 𝑃0 is the stimulated transition rate at resonance. 

Now, "Frequency variation therefore reads": 

Substituting 𝑆0 =
𝑃0

𝑅‾
 back into 

𝑆𝜔 =
𝑃0

𝑅‾
 𝐿(𝜔 − 𝜔0), 

we get: 

𝑆𝜔 = 𝑆0 𝐿(𝜔 − 𝜔0). 

And plugging in the formula for 𝐿(𝜔 − 𝜔0): 

𝑆𝜔 = 𝑆0   [
(
𝛾
2
)
2

(𝜔 − 𝜔0)
2 + (

𝛾
2
)
2]. 

This equation is clearly shown on the slide and is exactly what we 

expected. It shows that the local saturation parameter 𝑆𝜔 is maximum 

(equal to 𝑆0) at the line center (𝜔 = 𝜔0) and falls off as a Lorentzian as we 

detune from resonance. 

The final point is an important consequence: 

• 𝑆𝜔 → 0 as |𝜔 − 𝜔0| → ∞.   (𝑆𝜔 approaches zero as the absolute 

value of (𝜔 − 𝜔0) approaches infinity).   This means that far out in the 

wings of the line, where the detuning |𝜔 − 𝜔0| is very large, the Lorentzian 

factor 𝐿(𝜔 − 𝜔0) becomes very small. Consequently, 𝑆𝜔 also becomes very 



small, regardless of how large 𝑆0 (the on-resonance saturation) is.   This 

implies that far from resonance, the medium is essentially unsaturated. 

Saturation is a phenomenon that is primarily active near the line center. 

This differential saturation across the profile is what leads to power 

broadening. 
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Slide 10: Deriving the Broadened Linewidth 𝛾s 

Now we reach "Slide 10: Deriving the Broadened Linewidth 𝛾s." This is 

where we see how the linewidth is affected. 

The first bullet point considers the "Power absorbed per unit volume per 

unit frequency": Let 
𝑑𝑊12(𝜔)

𝑑𝑡
 represent this quantity. Each absorption event 

takes an energy ℏ𝜔 from the field. The net rate of absorptions per unit 

volume is 𝑃(𝜔)𝛥𝑁, if 𝑃(𝜔) is 𝐵12𝜌(𝜔) where 𝛥𝑁 is 𝑁1 −𝑁2. However, it's 

often written in terms of the population difference 𝛥𝑁 and the total 

relaxation rate of the population difference. 

The slide gives the expression: 

𝑑𝑊12(𝜔)

𝑑𝑡
= ℏ𝜔 𝑅  [

𝛥𝑁0
1 + 𝑆𝜔

] 

Let's try to understand this. We know 

𝛥𝑁(𝜔) =
𝛥𝑁0
1 + 𝑆𝜔

, 

which is the population difference at frequency 𝜔. The rate of energy 

absorption is proportional to this population difference. Why ℏ𝜔 𝑅? 𝑅 is 

defined as 

𝑅 =
𝑅1 + 𝑅2

2
. 



Let's consider the total power absorbed 𝑃𝑎𝑏𝑠(𝜔). It should be ℏ𝜔 times (rate 

of upward transitions minus rate of downward stimulated transitions). Rate 

of upward transitions from 1 to 2 = 𝑃(𝜔)𝑁1(𝜔). Rate of downward 

stimulated transitions from 2 to 1 = 𝑃(𝜔)𝑁2(𝜔) (assuming 𝐵12 = 𝐵21 for 

equal degeneracies). Net rate of stimulated photon absorption per unit 

volume = 𝑃(𝜔)(𝑁1(𝜔) − 𝑁2(𝜔)) = 𝑃(𝜔)𝛥𝑁(𝜔). So, power absorbed per 

unit volume = ℏ𝜔 𝑃(𝜔)𝛥𝑁(𝜔). 

We know 𝑃(𝜔) = 𝑆𝜔  𝑅 (from 𝑆𝜔 = 𝑃(𝜔)/𝑅). So, 

𝑑𝑊12(𝜔)

𝑑𝑡
= ℏ𝜔 (𝑆𝜔  𝑅) [

𝛥𝑁0
1 + 𝑆𝜔

]. 

This is 

𝑑𝑊12(𝜔)

𝑑𝑡
= ℏ𝜔 𝑅 𝛥𝑁0   [

𝑆𝜔
1 + 𝑆𝜔

]. 

The formula on the slide is missing an 𝑆𝜔 in the numerator compared to my 

derivation. 

Let's re-evaluate. The power absorbed is proportional to 𝛼(𝜔). And 

𝛼(𝜔) =
𝛼0(𝜔)

1 + 𝑆𝜔(𝜔)
 

if 𝑆 is defined locally, and 

𝛼0(𝜔) = 𝜎0 𝐿(𝜔 − 𝜔0) 𝛥𝑁0. 

Power absorbed is related to 𝛼(𝜔)𝐼. Perhaps 
𝑑𝑊12(𝜔)

𝑑𝑡
 refers to something 

slightly different, maybe related to the rate of cycling through the system. 

Let's assume the slide's first equation is a given starting point, which might 

come from a more detailed derivation perhaps involving the total rate at 

which atoms are processed by the field and relaxation. The quantity 



𝛥𝑁0
1 + 𝑆𝜔

 

is indeed 𝛥𝑁(𝜔). So it's ℏ𝜔 𝑅 𝛥𝑁(𝜔). This term is proportional to the 

population difference. 

Now, "Substitute 𝑆𝜔 expression": We have 

𝑆𝜔 = 𝑆0  
(𝛾/2)2

(𝜔 − 𝜔0)
2 + (𝛾/2)2

. 

Substituting this into the denominator of the slide's first equation: 

1 + 𝑆𝜔 = 1 + 𝑆0  
(𝛾/2)2

(𝜔 − 𝜔0)
2 + (𝛾/2)2

, 

1 + 𝑆𝜔 =
(𝜔 − 𝜔0)

2 + (𝛾/2)2 + 𝑆0(𝛾/2)
2

(𝜔 − 𝜔0)
2 + (𝛾/2)2

, 

1 + 𝑆𝜔 =
(𝜔 − 𝜔0)

2 + (𝛾/2)2(1 + 𝑆0)

(𝜔 − 𝜔0)
2 + (𝛾/2)2

. 

So, 

𝛥𝑁0
1 + 𝑆𝜔

= 𝛥𝑁0  
(𝜔 − 𝜔0)

2 + (𝛾/2)2

(𝜔 − 𝜔0)
2 + (𝛾/2)2(1 + 𝑆0)

. 

If we use the slide's formula for 

𝑑𝑊12(𝜔)

𝑑𝑡
= ℏ𝜔 𝑅  

𝛥𝑁0
1 + 𝑆𝜔

, 

then: 

𝑑𝑊12(𝜔)

𝑑𝑡
= ℏ𝜔 𝑅 𝛥𝑁0  

(𝜔 − 𝜔0)
2 + (𝛾/2)2

(𝜔 − 𝜔0)
2 + (𝛾/2)2(1 + 𝑆0)

. 

This does not look like the expression on the slide which is: 



𝑑𝑊12(𝜔)

𝑑𝑡
= ℏ𝜔 𝑅 𝛥𝑁0  

𝑆0(𝛾/2)
2

(𝜔 − 𝜔0)
2 + (𝛾/2)2(1 + 𝑆0)

. 

(A mistake in my transcription of slide? No, the slide has 𝑆0(𝛾/2)
2 in the 

numerator). 

Ah, I see the likely source of my confusion. The first equation on the slide 

must be for 
𝑑𝑊12(𝜔)

𝑑𝑡
 integrated over the line, or it's a particular definition. 

Let's assume the second equation on the slide is the correct expression for 

the spectral power absorption, possibly derived from ℏ𝜔 𝑃(𝜔)𝛥𝑁(𝜔). 

𝑃(𝜔) = 𝑃0 𝐿(𝜔 − 𝜔0) = 𝑃0  
(𝛾/2)2

(𝜔−𝜔0)
2+(𝛾/2)2

. 𝛥𝑁(𝜔) =
𝛥𝑁0

1+𝑆𝜔
=

𝛥𝑁0

1+𝑆0  𝐿(𝜔−𝜔0)
. So, 

ℏ𝜔 𝑃(𝜔)𝛥𝑁(𝜔) = ℏ𝜔 𝑃0 𝐿(𝜔 − 𝜔0) 
𝛥𝑁0

1 + 𝑆0 𝐿(𝜔 − 𝜔0)
. 

We know 𝑃0 = 𝑆0 𝑅, so: 

ℏ𝜔 𝑃(𝜔)𝛥𝑁(𝜔) = ℏ𝜔 𝑆0 𝑅 𝛥𝑁0  
𝐿(𝜔 − 𝜔0)

1 + 𝑆0 𝐿(𝜔 − 𝜔0)
, 

= ℏ𝜔 𝑆0 𝑅 𝛥𝑁0  {

(𝛾/2)2

(𝜔 − 𝜔0)
2 + (𝛾/2)2

1 +
𝑆0(𝛾/2)

2

(𝜔 − 𝜔0)
2 + (𝛾/2)2

}, 

= ℏ𝜔 𝑆0 𝑅 𝛥𝑁0   [
(𝛾/2)2

(𝜔 − 𝜔0)
2 + (𝛾/2)2 + 𝑆0(𝛾/2)

2], 

= ℏ𝜔 𝑆0 𝑅 𝛥𝑁0  
(𝛾/2)2

(𝜔 − 𝜔0)
2 + (𝛾/2)2(1 + 𝑆0)

. 

This matches the second equation on the slide perfectly! 

So, the first equation on the slide, 

𝑑𝑊12(𝜔)

𝑑𝑡
= ℏ𝜔 𝑅  

𝛥𝑁0
1 + 𝑆𝜔

, 



seems to be a conceptual intermediary, but the actual spectral distribution 

of power absorption is given by the second, more complex formula, which 

is correctly derived from ℏ𝜔 𝑃(𝜔)𝛥𝑁(𝜔). This second formula is what we 

need to analyze for the lineshape. 

Page 28: 

Now we analyze the denominator of the expression for the power absorbed 

per unit volume per unit frequency, which we found to be: 

(𝜔 − 𝜔0)
2 + (

𝛾

2
)
2

(1 + 𝑆0) 

The first bullet point on this page states: * "The denominator has exactly 

the structure of a Lorentzian with an enlarged half-width." Let's recall 

the denominator of a standard Lorentzian: (𝜔 − 𝜔0)
2 + (HWHM)2. In our 

case, the denominator is (𝜔 − 𝜔0)
2 + (

𝛾

2
)
2
(1 + 𝑆0). We can rewrite 

(
𝛾

2
)
2
(1 + 𝑆0) as [

𝛾

2
√1 + 𝑆0]

2
. So, if we define a new, "saturated" half-width 

at half-maximum, let's call it 
𝛾s

2
, as: 

𝛾s
2
=
𝛾

2
√1 + 𝑆0 

Then the denominator becomes (𝜔 − 𝜔0)
2 + (

𝛾s

2
)
2
. This is indeed the 

denominator of a new Lorentzian profile, but with a modified HWHM. 

This leads directly to the definition of the broadened FWHM, 𝛾s: 

𝛾s = 𝛾√1 + 𝑆0 (gamma sub s equals gamma times the square root of (one 

plus S sub zero)). 

This is a very important result! It shows that the full width at half maximum 

of the absorption profile, 𝛾s, is increased from the original unsaturated width 

𝛾 by a factor of √1 + 𝑆0. This is power broadening (or saturation 

broadening). The stronger the on-resonance saturation 𝑆0 (which depends 



on laser intensity), the larger the broadening factor √1 + 𝑆0, and thus the 

wider the observed spectral line. 

Now for the "Physical meaning": 

* "At 𝑆0 = 1 the width grows by √2." If 𝑆0 = 1 (when the on-resonance 

pump rate 𝑃0 equals the mean relaxation rate 𝑅‾ , or when the intensity 𝐼 

equals 𝐼sat), then: 

𝛾s = 𝛾√1 + 1 = 𝛾√2 

So, when the saturation parameter is 1, the linewidth is increased by a 

factor of the square root of 2 (approximately 1.414). This is a significant 

broadening. 

* "Scaling is ∝ √𝑃 for large 𝑃 because 𝑆0 ∝ 𝑃." (Scaling is proportional to 

the square root of 𝑃, for large 𝑃, because 𝑆0 is proportional to 𝑃). We know 

that 𝑆0 =
𝑃0

𝑅‾
, and 𝑃0 (the on-resonance stimulated rate) is proportional to the 

laser intensity 𝐼, or power 𝑃 (if beam area is constant). Let's use 𝐼 for 

intensity. So 𝑆0 ∝ 𝐼. For large 𝑆0 (i.e., strong saturation, high intensity), the 

term 1 + 𝑆0 ≈ 𝑆0. So, 𝛾s = 𝛾√1 + 𝑆0 ≈ 𝛾√𝑆0. Since 𝑆0 ∝ 𝐼, then 𝛾s ∝ √𝐼. 

This means that in the highly saturated regime, the observed linewidth 𝛾s 

increases as the square root of the incident laser intensity. This is a key 

signature of power broadening. If you measure linewidth as a function of 

laser power and see it growing as √𝑃, you are likely observing power 

broadening. 

The triple dash indicates a pause. This formula 𝛾s = 𝛾√1 + 𝑆0 is the 

quantitative expression for power broadening in a homogeneously 

broadened two-level system. 

Page 29: 



This slide, "Slide 11: Absorption Profile in the Saturated Regime," 

summarizes the form of the absorption coefficient incorporating power 

broadening. 

The first bullet gives the "Saturated coefficient" 𝛼s(𝜔) (alpha sub s of 

omega): 

𝛼s(𝜔) = 𝛼0(𝜔0) ⋅
(
𝛾
2
)
2

(𝜔 − 𝜔0)
2 + (

𝛾s
2
)
2. 

Let's analyze this expression: 

𝛼s(𝜔) is the absorption coefficient at frequency 𝜔 in the saturated regime. 

𝛼0(𝜔0) is the peak unsaturated absorption coefficient (i.e., at 𝜔 = 𝜔0, and 

𝑆0 = 0). 

The term in the square brackets is a Lorentzian lineshape function, but 

notice the denominator: 

  – (𝜔 − 𝜔0)
2 is the squared detuning from resonance. 

  – (
𝛾s

2
)
2
 is the square of the saturated half-width at half-maximum. 

  We know 𝛾s = 𝛾√1 + 𝑆0. So (
𝛾s

2
)
2
= (

𝛾

2
)
2
(1 + 𝑆0). 

This formula looks like a standard Lorentzian profile with a peak height that 

needs careful consideration and a width 𝛾s. 

However, the peak height of this specific Lorentzian form would be 𝛼0(𝜔0) ⋅

[
(𝛾/2)2

(𝛾s/2)
2
] if the numerator were (

𝛾s

2
)
2
. 

Peak height of 𝛼s(𝜔) (at 𝜔 = 𝜔0) from this formula is 



𝛼0(𝜔0) ⋅
(
𝛾
2
)
2

(
𝛾s
2
)
2. 

Substituting (
𝛾s

2
)
2
= (

𝛾

2
)
2
(1 + 𝑆0): 

Peak height =
𝛼0(𝜔0) ⋅ (

𝛾
2
)
2

(
𝛾
2
)
2
(1 + 𝑆0)

=
𝛼0(𝜔0)

1 + 𝑆0
. 

This is consistent with what we found earlier: the peak absorption is 

reduced by (1 + 𝑆0). 

So, the saturated absorption profile is a Lorentzian, but it's broader (width 

𝛾s) and its peak height is reduced (by a factor 1/(1 + 𝑆0) compared to the 

unsaturated peak 𝛼0(𝜔0)). 

The expression can be written as: 

𝛼s(𝜔) =
𝛼0(𝜔0)

1 + 𝑆0
⋅

(
𝛾s
2
)
2

(𝜔 − 𝜔0)
2 + (

𝛾s
2
)
2 ⋅

(
𝛾
2
)
2

(
𝛾s
2
)
2
⋅ (1 + 𝑆0)

 

? No. 

Let me rewrite the slide's first equation using 𝛾s: 

𝛼s(𝜔) = 𝛼0(𝜔0) ⋅
(
𝛾
2
)
2

(𝜔 − 𝜔0)
2 + (

𝛾s
2
)
2. 

This is a Lorentzian with HWHM =
𝛾

2
√1 + 𝑆0 =

𝛾s

2
. 

And its peak value (at 𝜔 = 𝜔0) is 



𝛼0(𝜔0) ⋅
(
𝛾
2
)
2

(
𝛾s
2
)
2. 

So, 

𝛼s(𝜔) =
𝛼0(𝜔0)

1 + 𝑆0
⋅

(
𝛾s
2
)
2

(𝜔 − 𝜔0)
2 + (

𝛾s
2
)
2. 

The first equation on the slide can be written as: 

𝛼s(𝜔) =
𝛼0(𝜔0)

1 + 𝑆0
⋅

(
𝛾s
2
)
2

(𝜔 − 𝜔0)
2 + (

𝛾s
2
)
2 ⋅

(
𝛾
2
)
2

(
𝛾s
2
)
2
⋅ (1 + 𝑆0)

 

? No. 

Let me rewrite the slide's first equation using 𝛾s: 

𝛼s(𝜔) = 𝛼0(𝜔0) ⋅
(
𝛾
2
)
2

(𝜔 − 𝜔0)
2 + (

𝛾s

2
)
2 

This is the peak unsaturated absorption coefficient 𝛼0(𝜔0) multiplied by a 

frequency-dependent term that is NOT a simple normalized Lorentzian of 

width 𝛾s, because the numerator is (
𝛾

2
)
2
 not (

𝛾s

2
)
2
. 

This form is equivalent to what we derived for the power absorbed, 
𝑑𝑊12(𝜔)

𝑑𝑡
, 

on page 27 (if we divide by 𝐼 and relate constants), because 

𝑑𝑊12(𝜔)

𝑑𝑡
= 𝛼s(𝜔) ⋅ 𝐼(𝜔) 

(if 𝐼(𝜔) is spectral intensity). 



The form was: (constant) ⋅
𝑆0(

𝛾

2
)
2

(𝜔−𝜔0)
2+(

𝛾

2
)
2
(1+𝑆0)

. 

Our 𝛼s(𝜔) is 

𝜎(𝜔)𝛥𝑁(𝜔) = 𝜎0 𝐿(𝜔 − 𝜔0) ⋅
𝛥𝑁0
1 + 𝑆𝜔

 

= 𝜎0𝛥𝑁0  
𝐿(𝜔 − 𝜔0)

1 + 𝑆0 𝐿(𝜔 − 𝜔0)
 

= 𝛼0(𝜔0)
𝐿(𝜔 − 𝜔0)

1 + 𝑆0 𝐿(𝜔 − 𝜔0)
 

= 𝛼0(𝜔0) ⋅
(
𝛾
2
)
2
/𝐷1

1 + 𝑆0 (
𝛾
2
)
2
/𝐷1

 

where 𝐷1 = (𝜔 − 𝜔0)
2 + (

𝛾

2
)
2
. 

= 𝛼0(𝜔0) ⋅
(
𝛾
2
)
2

𝐷1 + 𝑆0 (
𝛾
2
)
2 

= 𝛼0(𝜔0) ⋅
(
𝛾
2
)
2

(𝜔 − 𝜔0)
2 + (

𝛾
2
)
2
+ 𝑆0 (

𝛾
2
)
2 

= 𝛼0(𝜔0) ⋅
(
𝛾
2
)
2

(𝜔 − 𝜔0)
2 + (

𝛾
2
)
2
(1 + 𝑆0)

. 

This matches the first equation on the slide. This is the correct form. 

It is a Lorentzian shape, with HWHM =
𝛾

2
√1 + 𝑆0 =

𝛾s

2
. 

And its peak value (at 𝜔 = 𝜔0) is 



𝛼0(𝜔0) ⋅
(
𝛾
2
)
2

(
𝛾s
2
)
2 =

𝛼0(𝜔0)

1 + 𝑆0
. 

So, 

𝛼s(𝜔) =
𝛼0(𝜔0)

1 + 𝑆0
⋅

(
𝛾s
2
)
2

(𝜔 − 𝜔0)
2 + (

𝛾s
2
)
2. 

Second bullet: "Alternate but equivalent form": 

𝛼s(𝜔) =
𝛼0(𝜔)

1 + 𝑆𝜔
 

Here, 𝛼0(𝜔) is the unsaturated absorption coefficient at frequency 𝜔, so 

𝛼0(𝜔) = 𝛼0(𝜔0)𝐿(𝜔 − 𝜔0) = 𝛼0(𝜔0) ⋅
(
𝛾
2
)
2

(𝜔 − 𝜔0)
2 + (

𝛾
2
)
2. 

And 

𝑆𝜔 = 𝑆0 𝐿(𝜔 − 𝜔0) = 𝑆0 ⋅
(
𝛾
2
)
2

(𝜔 − 𝜔0)
2 + (

𝛾
2
)
2. 

So, 

𝛼s(𝜔) =
𝛼0(𝜔0)𝐿(𝜔 − 𝜔0)

1 + 𝑆0 𝐿(𝜔 − 𝜔0)
. 

This form is perhaps more intuitive. It says that the saturated absorption 

coefficient at any frequency 𝜔 is just the unsaturated coefficient at that 

same frequency, 𝛼0(𝜔), divided by one plus the local saturation parameter 

at that frequency, 𝑆𝜔. 

This is very elegant and was the basis of my derivation earlier. 



It can be shown that these two forms are indeed equivalent. 

𝛼0(𝜔0)𝐿(𝜔 − 𝜔0)

1 + 𝑆0 𝐿(𝜔 − 𝜔0)
= 𝛼0(𝜔0) ⋅

(
𝛾
2
)
2
/𝐷

1 + 𝑆0 (
𝛾
2
)
2
/𝐷

 

where 𝐷 = (𝜔 − 𝜔0)
2 + (

𝛾

2
)
2
. 

= 𝛼0(𝜔0) ⋅
(
𝛾
2
)
2

𝐷 + 𝑆0 (
𝛾
2
)
2 

= 𝛼0(𝜔0) ⋅
(
𝛾
2
)
2

(𝜔 − 𝜔0)
2 + (

𝛾
2
)
2
+ 𝑆0 (

𝛾
2
)
2 

= 𝛼0(𝜔0) ⋅
(
𝛾
2
)
2

(𝜔 − 𝜔0)
2 + (

𝛾
2
)
2
(1 + 𝑆0)

. 

This matches the first form. 

So, both expressions are correct and useful. 

Finally, "Observations:" These will be detailed on the next page. 

Page 30: 

This page continues with the "Observations" about the saturated 

absorption profile 𝛼s(𝜔). 

First observation: * "Peak reduction factor 
1

1+𝑆0
." As we discussed, the 

peak of the saturated absorption profile occurs at 𝜔 = 𝜔0. At this 

frequency, 𝑆𝜔 = 𝑆0. So, 𝛼s(𝜔0) =
𝛼0(𝜔0)

1+𝑆0
. The peak height of the absorption 



line is reduced from its unsaturated value 𝛼0(𝜔0) by the factor 
1

1+𝑆0
. This is 

a direct consequence of saturation at the line center. 

Second observation: * "Area under 𝛼(𝜔) remains (nearly) constant – 

oscillator strength conservation." Here, 𝛼(𝜔) refers to 𝛼s(𝜔). The 

integrated absorption ∫ 𝛼s(𝜔) 𝑑𝜔 is proportional to the oscillator strength of 

the transition, which is a fundamental atomic property and should not 

change due to the intensity of the probing light (as long as the light is not so 

strong as to cause ionization or other non-linear processes that 

fundamentally alter the atomic structure). A Lorentzian profile 𝐿(𝜔) =

𝐻
(𝛤/2)2

(𝜔−𝜔0)
2+(𝛤/2)2

 has an integrated area of 

∫ 𝐿(𝜔) 𝑑𝜔 = 𝐻
(𝛤/2)2 𝜋

𝛤/2
= 𝐻 (

𝛤

2
)𝜋. 

The unsaturated profile is 

𝛼0(𝜔) = 𝛼0(𝜔0)
(𝛾/2)2

(𝜔 − 𝜔0)
2 + (𝛾/2)2

. 

Its area is 𝛼0(𝜔0) (
𝛾

2
) 𝜋. The saturated profile is 

𝛼s(𝜔) =
𝛼0(𝜔0)

1 + 𝑆0

(𝛾s/2)
2

(𝜔 − 𝜔0)
2 + (𝛾s/2)

2 

(using the form that clearly shows peak and width). Its area is 

𝛼0(𝜔0)

1 + 𝑆0
(
𝛾s
2
)𝜋. 

Substitute 𝛾s = 𝛾√1 + 𝑆0: 

Areasaturated =
𝛼0(𝜔0)

1 + 𝑆0
(
𝛾

2
√1 + 𝑆0) 𝜋. 



Areasaturated = 𝛼0(𝜔0) (
𝛾

2
) 𝜋 [

√1 + 𝑆0
1 + 𝑆0

]. 

Areasaturated = Areaunsaturated ⋅
1

√1 + 𝑆0
. 

So, the area actually decreases by a factor of 
1

√1+𝑆0
. This means the 

statement "remains (nearly) constant" needs qualification. It's not strictly 

constant. However, often this effect is discussed in the context where the 

population difference 𝛥𝑁 is reduced, but if we only consider broadening 

due to lifetime effects (e.g. if strong field shortens lifetime), area might be 

conserved. The principle of oscillator strength conservation is fundamental. 

Perhaps the interpretation of "area under 𝛼(𝜔)" here refers to something 

subtly different, or the "nearly" is doing heavy lifting. In many treatments of 

power broadening, especially when derived from a dressed atom picture or 

when considering only the broadening effect without the reduction in 𝛥𝑁, 

the area is stated to be conserved. However, with our rate equation 

approach, which explicitly includes the 𝛥𝑁 = 𝛥𝑁0/(1 + 𝑆) reduction, the 

area under 𝛼s(𝜔) = 𝜎(𝜔)𝛥𝑁(𝜔) is indeed reduced. The phrase "oscillator 

strength conservation" is more about the integral of the cross-section, 

∫ 𝜎(𝜔) 𝑑𝜔, which is related to 𝐴21 and fundamental constants. If the 

number of absorbers 𝛥𝑁 changes, then ∫ 𝛼(𝜔) 𝑑𝜔 will change. Perhaps the 

statement implies that if we could somehow maintain 𝛥𝑁0 and only 

introduce broadening, the area would be conserved. Or, it refers to the fact 

that while the peak drops, the width increases, so the change in area is 

less dramatic than the change in peak height. For 𝑆0 = 1, peak drops by 2, 

area drops by √2 ≈ 1.41. For 𝑆0 = 3, peak drops by 4, area drops by √4 =

2. It's a point that can sometimes cause confusion. Let's proceed with the 

formula derived. 



Third observation: * "Wings asymptotically merge with the unsaturated 

curve because 𝑆𝜔 → 0." Far from resonance (i.e., |𝜔 − 𝜔0| is large), the 

local saturation parameter 𝑆𝜔 = 𝑆0 𝐿(𝜔 − 𝜔0) approaches zero. In this limit, 

𝛼s(𝜔) =
𝛼0(𝜔)

1 + 𝑆𝜔
→
𝛼0(𝜔)

1 + 0
= 𝛼0(𝜔). 

This means that in the far wings of the spectral line, the saturated 

absorption profile 𝛼s(𝜔) becomes identical to the unsaturated absorption 

profile 𝛼0(𝜔). This makes sense: saturation is negligible far from 

resonance, so the absorption there is unaffected. The power broadening 

effect "pulls" some of the absorption from the center out towards the wings, 

but very far out, the line looks like it would have without saturation. 

The triple dash marks the end of these observations. The key takeaways 

are the reduced peak, the increased width, and the merging of the wings 

with the unsaturated profile. 
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Slide 12: Visualising Saturation Broadening 

This page presents "Slide 12: Visualising Saturation Broadening" with a 

graph showing the "Saturation Broadening of Lorentzian Profile." 

Let's describe the graph: 

The horizontal axis is the normalized detuning: 
𝜔−𝜔0

𝛾/2
. This means 0 is the 

line center, +1 and -1 correspond to the HWHM points of the unsaturated* 

Lorentzian. The axis ranges from roughly -5 to +5. 

* The vertical axis is the Relative Absorption Coefficient. It's normalized 

so that the peak of the unsaturated (S=0) line is 1.0. The axis ranges from 

0.0 to 1.0. 

* Several curves are plotted for different values of the on-resonance 

saturation parameter 𝑆0 (which should be 𝑆0): * S = 0 (Blue curve): This is 



the unsaturated Lorentzian. It peaks at 1.0 at the center. Its FWHM 

corresponds to a span of 2 units on this normalized x-axis (from -1 to +1). * 

S = 0.5 (Orange curve): When 𝑆0 = 0.5, the peak height is 
1

1+0.5
=

1

1.5
=

2

3
≈

0.67. The curve is visibly lower and slightly broader than the S=0 curve. * S 

= 1.0 (Green curve): When 𝑆0 = 1.0, the peak height is 
1

1+1
= 0.5. The 

curve is further reduced in height and noticeably broader. The FWHM 

should be 𝛾√2, so the HWHM is (𝛾/2)√2. On our normalized axis, this is 

√2 ≈ 1.41. * S = 4.0 (Red curve): When 𝑆0 = 4.0, the peak height is 
1

1+4
=

1

5
= 0.2. This curve is much flatter and significantly broader. The FWHM 

should be 𝛾√5, so HWHM is (𝛾/2)√5. On the normalized axis, this is √5 ≈

2.24. 

* Dashed horizontal lines are drawn to indicate the FWHM for each curve. 

For example, for the 𝑆 = 0 blue curve, the dashed line is at height 0.5, and 

it intersects the curve at 𝑥 = −1 and 𝑥 = +1. For the 𝑆 = 1 green curve, the 

peak is 0.5, so its FWHM is measured at height 0.25. The dashed line at 

0.25 intersects the green curve at points wider than −1 and +1. 

* An annotation on the right says: "Dashed lines indicate FWHM." And 

below it: "Norm. FWHM = 2√1 + 𝑆0" (using 𝑆0 for S here). This refers to 

the FWHM in units of the original HWHM (𝛾/2). So, 

FWHM

𝛾/2
=
𝛾√1 + 𝑆0
𝛾/2

= 2√1 + 𝑆0. 

This is correct. For 𝑆0 = 0, Norm. FWHM = 2. For 𝑆0 = 1, Norm. FWHM = 

2√2 ≈ 2.82. For 𝑆0 = 4, Norm. FWHM = 2√5 ≈ 4.47. The graph visually 

confirms these increasing widths. 

* Another annotation: "(γ = γ; width increases with S)". This should 

probably be 𝛾s (gamma sub s) for the broadened width, or it means 𝛾 is the 

original width. The statement "width increases with S" is the main point. 



This graph provides an excellent visual summary of power broadening: 1. 

The peak absorption decreases as 𝑆0 increases. 2. The FWHM of the line 

increases as 𝑆0 increases (specifically as √1 + 𝑆0). 3. In the far wings, all 

curves tend to merge, as the effect of saturation diminishes away from 

resonance. 

This clearly shows how an intense laser not only reduces the signal but 

also degrades spectral resolution by broadening the features. 

Page 32: 

"Slide 13: Power Broadening – An Alternative Microscopic View." 

This approach will use the concept of Rabi oscillations, which arises from a 

more quantum mechanical treatment of the light-matter interaction, often 

using a semi-classical model (classical field, quantum atom). 

First step: "Treat the light classically: electric field" 

The laser field is represented as a classical monochromatic 

electromagnetic wave. We are interested in its electric field component 𝐸(𝑡) 

at the position of the atom: 

𝐸(𝑡) = 𝐸0cos(𝜔𝑡) 

- 𝐸(𝑡) is the instantaneous electric field as a function of time 𝑡. 

- 𝐸0 (E sub zero) is the amplitude of the electric field. The intensity of the 

light is proportional to 𝐸0
2. 

- 𝜔 (omega) is the angular frequency of the light. 

- cos(𝜔𝑡) describes the sinusoidal oscillation of the field. 

Second step: "Quantum mechanical two-level interaction Hamiltonian" 

The interaction between the two-level atom and this classical electric field 

is described by an interaction Hamiltonian, 𝐻int(𝑡) (H sub int of t). For an 

electric dipole transition, this is given by the dipole interaction: 



𝐻̂int(𝑡) = −𝐷̂ ⋅ 𝐸(𝑡) 

(H-hat sub int of t equals minus D-hat dot E of t). 

- 𝐻̂int(𝑡) is the interaction Hamiltonian operator. The hat (circumflex) 

denotes an operator. 

- 𝐷̂ is the electric dipole moment operator of the atom. 

- 𝐸(𝑡) is the classical electric field vector we defined above. The dot 

product indicates that the interaction depends on the relative orientation of 

the dipole moment and the electric field. 

This interaction Hamiltonian is then used in the Schrödinger equation (or 

density matrix equations) to find how the atomic state evolves. When this is 

done for a two-level system, a characteristic frequency emerges, related to 

the strength of the interaction. This is the Rabi frequency. 

The slide shows this leading to the Rabi frequency 𝛺R (Omega sub R): 

𝛺R =
𝐷𝑎𝑏𝐸0
ℏ

 

Let's break this down: 

- 𝛺R is the on-resonance Rabi frequency. It has units of angular 

frequency (radians per second). It quantifies the rate at which the 

population coherently oscillates between the two levels when driven by a 

resonant field. 

- 𝐷𝑎𝑏 is the "dipole matrix element (C m)" between the two states |𝑎⟩ and 

|𝑏⟩ (our |1⟩ and |2⟩). 𝐷𝑎𝑏 = ⟨𝑎|𝐷̂z|𝑏⟩ if the field is polarized along 𝑧, for 

example. It represents the strength of the dipole transition. Its units are 

charge times distance, given here as Coulomb-meters (C m). 

- 𝐸0 is the amplitude of the classical electric field. 

- ℏ (h-bar) is the reduced Planck constant. 



The Rabi frequency 𝛺R is directly proportional to the field amplitude 𝐸0 and 

the transition dipole moment 𝐷𝑎𝑏. A stronger field or a stronger transition 

leads to a higher Rabi frequency, meaning faster oscillations. This Rabi 

frequency will be key to understanding power broadening from this 

coherent interaction perspective. 
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Continuing with the alternative microscopic view based on Rabi flopping: 

The first bullet point reiterates the definition of “𝛺R: Rabi flopping frequency 

(rad s
−1

).” (Omega sub R, units of radians per second). This is the angular 

frequency of the coherent population oscillations between the two levels 

when driven by a resonant monochromatic field. 

The second bullet describes what happens to the population: * 

“Population of upper state |𝑏⟩ without damping exhibits Rabi oscillations 

between 0 and 1.” (Here |𝑏⟩ is our upper state |2⟩). If we start with the atom 

in the lower state |𝑎⟩ (our |1⟩) at 𝑡 = 0, and turn on a resonant field 

𝐸0cos(𝜔0𝑡), the probability of finding the atom in the upper state |𝑏⟩, 𝑃b(𝑡), 

will oscillate as: 

𝑃b(𝑡) = sin
2 (
𝛺R𝑡

2
) 

This oscillates between 0 (when 
𝛺R𝑡

2
= 0, 𝜋, 2𝜋, …) and 1 (when 

𝛺R𝑡

2
=

𝜋

2
,
3𝜋

2
, …). The population of the lower state |𝑎⟩, 𝑃a(𝑡), will be cos2 (

𝛺R𝑡

2
), so 

𝑃a(𝑡) + 𝑃b(𝑡) = 1. This periodic transfer of population between the two 

levels is known as Rabi flopping or Rabi oscillations. The crucial part here 

is “without damping.” If there are relaxation processes (like spontaneous 

emission or collisions), these oscillations will be damped, and the system 

will eventually reach a steady state, which is what our rate equations 

described. But the underlying tendency is to oscillate at 𝛺R. 



The third bullet point provides the “Intuition” connecting this to 

broadening: * “stronger field → faster flopping → broader spectral 

response (time-frequency uncertainty).” Let's unpack this intuitive 

argument: * “Stronger field (larger 𝐸0) → faster flopping (larger 𝛺R)”: This 

comes directly from 

𝛺R =
𝐷𝑎𝑏𝐸0
ℏ

. 

* “Faster flopping → broader spectral response”: If the population is 

oscillating rapidly, it means the system is changing its state on a short 

timescale (the period of Rabi oscillation is 

𝑇R =
2𝜋

𝛺R

. 

According to the time-frequency uncertainty principle (𝛥𝐸𝛥𝑡 ≈ ℏ, or 𝛥𝜔𝛥𝑡 ≈

1), a process that occurs on a timescale 𝛥𝑡 is associated with a frequency 

spread 𝛥𝜔 ≈
1

𝛥𝑡
. If the Rabi oscillations are very fast (𝛺R is large, so 𝑇R is 

small), the system doesn't have to be perfectly on resonance to be driven 

effectively. The strong field can "grab" the atom and force it to oscillate 

even if the laser frequency 𝜔 is somewhat detuned from the atomic 

resonance 𝜔0. The range of frequencies over which the atom responds 

effectively will be related to the Rabi frequency 𝛺R itself. Essentially, the act 

of strongly driving the system at frequency 𝛺R introduces a new 

characteristic frequency into the problem. The atom's energy levels can be 

thought of as being "dressed" by the strong field, leading to an effective 

splitting of the levels (Autler-Townes splitting), and the width of the 

response becomes related to 𝛺R. 

So, from this coherent interaction viewpoint, power broadening can be seen 

as a consequence of the rapid Rabi oscillations induced by the strong field. 

The spectral line broadens to roughly the Rabi frequency. We will see how 

this connects to the 𝑆0 parameter from the rate equation approach. 



The triple dash marks a pause. This provides a complementary physical 

picture to the population saturation model. 
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This slide, "Slide 14: Exact Time-Dependent Excitation Probability," 

presents the mathematical result for the probability of finding the atom in 

the upper state when driven by a field that can be on or off resonance. This 

is a standard result from solving the time-dependent Schrödinger equation 

for a two-level system interacting with a classical field, usually within the 

Rotating Wave Approximation (RWA). 

The first bullet introduces the "Probability amplitude 𝑏(𝑡) (rotating-wave 

approximation):" More precisely, what's shown is |𝑏(𝑡)|2, which is the 

probability 𝑃b(𝑡) of being in the upper state |𝑏⟩ (our |2⟩), assuming the 

system started in the lower state |𝑎⟩ (our |1⟩) at 𝑡 = 0. 

The equation for |𝑏(𝑡)|2 is: 

|𝑏(𝑡)|2 =
𝐷𝑎𝑏
2  𝐸0

2

ℏ2 [(𝜔𝑎𝑏 − 𝜔)
2 +

𝐷𝑎𝑏
2  𝐸0

2

ℏ2
]

 sin2 (
1

2
√(𝜔𝑎𝑏 − 𝜔)

2 + 𝛺R
2  𝑡) 

Let's break down this formidable equation: 

|𝑏(𝑡)|2: Probability of being in the upper state at time 𝑡. 

𝐷𝑎𝑏: Transition dipole matrix element. 

𝐸0: Amplitude of the applied electric field. 

ℏ: Reduced Planck constant. 

𝜔𝑎𝑏: Resonant angular frequency of the transition 
𝐸b−𝐸a

ℏ
. This is our 𝜔0. 

𝜔: Angular frequency of the applied laser field. 

(𝜔𝑎𝑏 − 𝜔): Detuning of the laser from resonance. Let's call this 𝛥𝜔 = 𝜔𝑎𝑏 −

𝜔. 



𝛺R =
𝐷𝑎𝑏𝐸0

ℏ
: The on-resonance Rabi frequency, which we just defined. 

  Notice that 
𝐷𝑎𝑏
2  𝐸0

2

ℏ2
 in the denominator of the first fraction is simply 𝛺R

2 . 

So, the equation can be rewritten more compactly using 𝛥𝜔 and 𝛺R: 

|𝑏(𝑡)|2 =
𝛺R
2

(𝛥𝜔)2 + 𝛺R
2   sin

2 (
1

2
√(𝛥𝜔)2 + 𝛺R

2  𝑡) 

Let's analyze this: 

The term 
𝛺R
2

(𝛥𝜔)2+𝛺R
2 is the maximum amplitude of the oscillation. 

   

If the laser is on resonance (𝛥𝜔 = 0), this amplitude is 
𝛺R
2

𝛺R
2 = 1. 

   

If the laser is far off resonance (𝛥𝜔 ≫ 𝛺R), this amplitude becomes (
𝛺R

𝛥𝜔
)
2
 

which is very small. This means an off-resonant field is much less effective 

at exciting the atom. 

The term sin2 (
1

2
𝛺′R 𝑡) describes the oscillation itself. 

   

𝛺′R = √(𝛥𝜔)2 + 𝛺R
2  is called the generalized Rabi frequency or off-

resonance Rabi frequency. It's the frequency at which the population flops 

when there is a detuning 𝛥𝜔. 

   

The sin2 term oscillates between 0 and 1. So, 𝑃b(𝑡) oscillates between 0 

and the amplitude factor 
𝛺R
2

(𝛥𝜔)2+𝛺R
2. 



The second bullet point on the slide considers a special case: 

"At exact resonance 𝜔 = 𝜔𝑎𝑏 (so 𝛥𝜔 = 0) the sine term oscillates with 

frequency 𝛺R." 

  If 𝛥𝜔 = 0, then the generalized Rabi frequency 𝛺′R = √0
2 + 𝛺R

2 = 𝛺R.   

The amplitude factor becomes 
𝛺R
2

𝛺R
2 = 1.   So, |𝑏(𝑡)|2 = 1 ⋅ sin2 (

1

2
𝛺R 𝑡).   

This is exactly the on-resonance Rabi flopping formula we mentioned 

earlier. The population in the upper state oscillates between 0 and 1 with a 

frequency component related to 𝛺R (specifically, the argument of sin2 is 
𝛺Rt

2
, 

so the 𝑃b(𝑡) itself oscillates with angular frequency 𝛺R because sin2(𝑥) =
1−cos(2 𝑥)

2
). 
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This page discusses a consequence of the time-dependent excitation 

probability in the absence of damping. 

* "Without damping the spectrum would develop many sharp 

sidebands (Fourier series of a square wave)." 

Let's elaborate on this. The probability |𝑏(𝑡)|2 we saw on the previous page 

describes oscillations that, in the absence of any relaxation or damping 

mechanisms, would continue indefinitely. If you have a persistent oscillation 

in the time domain, its Fourier transform in the frequency domain will show 

features related to that oscillation frequency. 

Consider the on-resonance case: |𝑏(𝑡)|2 = sin2 (
𝛺R𝑡

2
) =

1−cos(𝛺R𝑡)

2
. 

If you were to probe the system (e.g., by looking at its absorption spectrum 

with a weak second laser, or its fluorescence), the spectrum wouldn't just 

be a single line at 𝜔0. The strong driving field 𝐸0cos(𝜔0𝑡) effectively 

"dresses" the atomic states. The energy levels are split by an amount 



related to ℏ𝛺R (this is the Autler-Townes splitting). A probe laser would see 

transitions not just at 𝜔0, but also at 𝜔0 ± 𝛺R. 

If the driving field is very strong such that the Rabi oscillations are like a 

square wave (atom spends half its time in |𝑎⟩, half in |𝑏⟩, switching rapidly), 

the Fourier series of a square wave contains the fundamental frequency 

(related to 𝛺R) and also its odd harmonics (3𝛺R, 5𝛺R, etc.). This can lead to 

a complex spectrum with multiple sidebands. This is the regime of strong, 

coherent driving. In fluorescence, this can manifest as the Mollow triplet, 

where the central fluorescence peak at 𝜔0 is accompanied by two 

sidebands at 𝜔0 ± 𝛺R, provided 𝛺R is larger than the damping rates. 

The key here is "without damping." In reality, there's always some damping 

(spontaneous emission, collisions, finite laser coherence time). Damping 

will broaden these sharp sidebands and can cause them to merge if the 

damping rate is comparable to or larger than 𝛺R. 

This sets the stage for the next slide, which will introduce relaxation. The 

undamped picture gives us the fundamental frequencies involved (like 𝛺R), 

and damping will determine the observed linewidths of features related to 

these frequencies. 

The triple dash indicates a short pause. This highlights that the purely 

coherent, undamped picture is an idealization, but a useful one for 

identifying the characteristic frequencies induced by the field. 
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Slide 15: Including Relaxation – Time Averaging. 

Now we move to a more realistic scenario by "Slide 15: Including 

Relaxation – Time Averaging." The purely coherent Rabi oscillations are 

an idealization. In any real system, relaxation processes (damping) are 

present and will affect the outcome. 

The first bullet addresses this: 



• "Exponential decay of coherence and population from both levels:" 

Relaxation processes, such as spontaneous emission or collisions, cause 

the populations of the energy levels to decay towards some equilibrium. 

Crucially, they also cause the coherence between the levels to decay. 

Coherence refers to a definite phase relationship between the amplitudes 

of the lower and upper states in a superposition. Rabi oscillations are a 

coherent process. If this coherence is destroyed (dephasing), the 

oscillations will damp out. This decay is often modeled as exponential. 

Second bullet: 

• "We introduce damping constant 𝛾 (s−1)." (𝛾, with units of per 

second). This 𝛾 represents an overall relaxation rate. It could be the rate of 

decay of the coherence between the two levels (often denoted 𝛾⟂ or 1/𝑇2), 

or an average population decay rate (related to 𝛾∥ or 1/𝑇1). In many simple 

models, a single effective damping constant 𝛾 is used to represent the 

combined effect of all relaxation processes that limit the duration of 

coherent interaction. This 𝛾 will be related to the homogeneous linewidth of 

the transition in the absence of power broadening. 

Third bullet: How do we get a steady-state spectral response from the time-

dependent |𝑏(𝑡)|2 when damping is present? 

• "Mean excitation probability obtained via weighted integral": If we 

want to find the average probability of being in the upper state, 𝑃b(𝜔), when 

the system is continuously driven by a laser of frequency 𝜔 and subject to 

relaxation rate 𝛾, we can average the time-dependent probability |𝑏(𝑡)|2 

over time, but weighted by the probability that the coherent interaction has 

survived up to time 𝑡. This survival probability is often taken as 𝑒−𝛾𝑡 (e to 

the power of minus gamma t). 

The formula given is for 𝑃b(𝜔), the mean excitation probability in the upper 

state: 



𝑃b(𝜔) = ∫ 𝛾
∞

0

 𝑒−𝛾𝑡 |𝑏(𝑡, 𝜔)|2 𝑑𝑡 

Let's understand this integral: 

  • 𝑃b(𝜔) is the time-averaged probability of finding the atom in the 

upper state |𝑏⟩ when driven by a field of frequency 𝜔. This is what we 

would measure in a steady-state experiment. 

  • |𝑏(𝑡, 𝜔)|2 is the time-dependent probability of being in state |𝑏⟩ if 

coherence were maintained (from page 34), explicitly showing its 

dependence on the driving frequency 𝜔. 

  • 𝑒−𝛾𝑡 is the probability that the atom has "survived" without 

undergoing a randomizing relaxation event up to time 𝑡. 

  • 𝛾 in front of the integral is a normalization factor. The integral of 

𝛾 𝑒−𝛾𝑡 from 0 to ∞ is 1. This makes it a properly weighted average. It's 

essentially like saying interactions are constantly being re-initiated by 

relaxation events, and we are averaging over many such interaction 

segments, each lasting a random time with an average duration of 1/𝛾. 

Final bullet: 

• "Result after algebra:" Performing this integral with the full expression 

for |𝑏(𝑡, 𝜔)|2 (from page 34) is a non-trivial algebraic exercise. We will see 

the result on the next page. The outcome will be an expression for 𝑃b(𝜔) 

that looks like a Lorentzian profile, where the width depends on both the 

intrinsic damping 𝛾 and the Rabi frequency 𝛺R (i.e., on the laser power). 

This approach of time-averaging the coherent response in the presence of 

damping is a powerful way to bridge the gap between the purely coherent 

Rabi oscillation picture and the steady-state, broadened lineshapes 

observed in experiments. 
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This page presents the "Result after algebra" for the mean excitation 

probability 𝑃b(𝜔) that was set up on the previous slide. 

The expression for 𝑃b(𝜔) is: 

𝑃b(𝜔) =
1

2
[

𝐷𝑎𝑏
2 𝐸0

2/ℏ2

(𝜔𝑎𝑏 − 𝜔)
2 + 𝛾2(1 + 𝑆)

] 

Let's break this down and connect it to familiar terms: 

* 𝑃b(𝜔): The time-averaged probability of the atom being in the upper state 

|𝑏⟩, as a function of the laser frequency 𝜔. * 
𝐷𝑎𝑏
2 𝐸0

2

ℏ2
: This is simply 𝛺R

2 , the 

square of the on-resonance Rabi frequency. * (𝜔𝑎𝑏 − 𝜔)
2: The square of 

the detuning from resonance (𝛥𝜔)2. * 𝛾2: The square of the damping 

constant (related to the homogeneous linewidth). * 𝑆: A saturation 

parameter. Now, how is this 𝑆 defined in this context? 

The slide provides the definition for 𝑆 used in this formula: 

𝑆 =
𝐷𝑎𝑏
2 𝐸0

2

ℏ2𝛾2
 

Let's analyze this 𝑆: 

* Numerator: 
𝐷𝑎𝑏
2 𝐸0

2

ℏ2
= 𝛺R

2 . * Denominator: 𝛾2. 

So, 𝑆 =
𝛺R
2

𝛾2
 or 𝑆 = (

𝛺R

𝛾
)
2
. 

This definition of 𝑆 is very important. It's the square of the ratio of the Rabi 

frequency to the damping rate. 

* If 𝛺R ≪ 𝛾 (weak field), then 𝑆 ≪ 1. The Rabi frequency is small compared 

to the damping rate. Coherent oscillations are quickly damped out. * If 

𝛺R ≫ 𝛾 (strong field), then 𝑆 ≫ 1. Rabi oscillations can occur many times 

before being damped. This is the strong coherent driving regime. 



Now, let's substitute 𝑆 back into the expression for 𝑃b(𝜔): 

𝑃b(𝜔) =
1

2

[
 
 
 
 

𝛺R
2

(𝜔𝑎𝑏 − 𝜔)
2 + 𝛾2 (1 +

𝛺R
2

𝛾2
)
]
 
 
 
 

 

𝑃b(𝜔) =
1

2
[

𝛺R
2

(𝜔𝑎𝑏 −𝜔)
2 + 𝛾2 + 𝛺R

2 ] 

This can also be written by multiplying the numerator and denominator 

inside the main fraction by 
1

𝛾2
: 

$$P_\text{b}(\omega) = \frac{1}{2} \left[ 

\frac{\Omega_\text{R}^{2/\gamma^2}}{\left[(\omega_{ab} - 

\omega)^2/\gamma^2\right] + 1 + 

\left(\Omega_\text{R}^{2/\gamma^2\right)}} \right]$$ 

𝑃b(𝜔) =
1

2
[

𝑆

[(𝜔𝑎𝑏 − 𝜔)/𝛾]
2 + 1 + 𝑆

] 

This 𝑃b(𝜔) is proportional to the absorption lineshape. The denominator 

(𝜔𝑎𝑏 − 𝜔)
2 + 𝛾2(1 + 𝑆) has the form of a Lorentzian. 

The HWHM of this Lorentzian is 𝛾√1 + 𝑆. 

The FWHM is 𝛾eff = 2𝛾√1 + 𝑆. Wait, this should be 𝛾√1 + 𝑆. 

Let HWHMnew = 𝛾√1 + 𝑆. Then FWHMnew = 2𝛾√1 + 𝑆. 

The original FWHM (due to damping 𝛾) would be just 𝛾 (if 𝛾 is HWHM) or 

2𝛾 (if 𝛾 is FWHM). 

Let's assume 𝛾 in this context is the HWHM of the underlying transition if 

𝑆 = 0. Then the lineshape is 1/(𝛥𝜔2 + 𝛾2). 

The power broadened line has a HWHM of 𝛾s = 𝛾√1 + 𝑆. 



So the denominator is (𝜔𝑎𝑏 −𝜔)
2 + 𝛾s

2. 

The final bullet point makes a key observation about 𝑆: 

* "S again appears as the square of the field amplitude normalised to 

damping." Since 𝑆 =
𝛺R
2

𝛾2
 and 𝛺R =

𝐷𝑎𝑏𝐸0

ℏ
, then 𝑆 =

𝐷𝑎𝑏
2  𝐸0

2

ℏ2𝛾2
. 𝐸0

2 is proportional 

to the laser intensity. So, 𝑆 is proportional to intensity. 𝑆 is dimensionless. It 

compares the strength of the coherent driving term (proportional to 𝐸0
2) to 

the strength of the damping (proportional to 𝛾2). This 𝑆 is very similar in 

spirit to the saturation parameter 𝑆 we derived from rate equations (𝑆 =

𝑃0/𝑅). We will see on the next slide how they are connected. If 𝑃0 ∝ 𝐸0
2 and 

𝑅 ∝ 𝛾 (or some function of relaxation rates), then the forms are analogous. 

This result for 𝑃b(𝜔) gives us an absorption lineshape that is a Lorentzian, 

whose width depends on the laser intensity (through 𝑆). This is power 

broadening, derived from a coherent interaction picture with damping. 
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This slide, "Slide 16: Identical Broadening Law from the Rabi Picture," 

connects the result we just obtained from the coherent Rabi picture (with 

damping) to the power broadening law we found earlier using rate 

equations. 

"Because 𝑃b(𝜔) directly scales with the absorption line, we identify the 

same Lorentzian as before, but now with" 

 The mean excitation probability 𝑃b(𝜔) that we found:   

𝑃b(𝜔) =
1

2
 

𝑆

(
𝜔𝑎𝑏 −𝜔

𝛾
)
2
+ 1 + 𝑆

 



 This has a Lorentzian frequency dependence in the denominator:  

(
𝜔𝑎𝑏−𝜔

𝛾
)
2
+ (1 + 𝑆).  Or, as (𝜔𝑎𝑏 −𝜔)

2 + 𝛾2(1 + 𝑆) if we use the form 

from the previous slide. 

 This denominator (𝜔𝑎𝑏 − 𝜔)
2 + 𝛾2(1 + 𝑆) means the lineshape is a 

Lorentzian with a half-width at half-maximum (HWHM) of 𝛾√1 + 𝑆. 

 Therefore, the full width at half-maximum (FWHM) of this line, let's call it 

𝛾s (gamma sub s), is: 

  

𝛾s = 𝛾√1 + 𝑆 

 (Here, 𝛾 would be the FWHM of the transition if 𝑆 = 0, from the damping. 

If 𝛾 on prev slide was HWHM, then 𝛾𝑠,FWHM = 2𝛾HWHM√1 + 𝑆.) 

 Let's be consistent. If 𝛾 in 𝑆 =
𝛺R
2

𝛾2
 is the HWHM from damping, then the 

FWHM of the unbroadened line is 2𝛾.  The power-broadened FWHM will 

be 𝛾s = 2𝛾√1 + 𝑆.  If 𝛾 in 𝑆 =
𝛺R
2

𝛾2
 is already the FWHM due to damping, 

then the power-broadened FWHM is 𝛾s = 𝛾√1 + 𝑆. 

 The slide uses 𝛾√1 + 𝑆, implying 𝛾 is the original FWHM. This is exactly 

the same power broadening law we found from the rate equation approach 

(page 28), where 𝛾 was the unsaturated FWHM and 𝑆0 was the on-

resonance saturation parameter from that model. 

"Connection to the earlier definition:" 

 How does the saturation parameter 𝑆 =
𝛺R
2

𝛾2
 (from the Rabi picture) relate 

to 𝑆0 =
𝑃0

𝑅‾
 (from the rate equations)? 

  



"Replace 
𝐷𝑎𝑏
2  𝐸0

2

ℏ2
 by 

𝐵12𝐼

𝑐
 (classical ↔ Einstein coefficients)." 

  
𝐷𝑎𝑏
2  𝐸0

2

ℏ2
 is 𝛺R

2 .   The Einstein 𝐵12 coefficient is related to the dipole 

moment 𝐷𝑎𝑏 by    

𝐵12 =
𝜋𝐷𝑎𝑏

2

3𝜖0ℏ
2 𝑔1

, 

  (depending on definition of 𝐵 and averaging over orientations). And 

intensity 𝐼 is 
1

2
𝑐𝜖0 𝐸0

2. 

  So, 𝛺R
2 =

𝐷𝑎𝑏
2  𝐸0

2

ℏ2
 can indeed be related to 

𝐵12𝐼

𝑐
. 

  The pump rate 𝑃0 in the rate equation model was    

𝑃0 = 𝐵12𝜌(𝜔0) or 𝑃0 =
𝜎(𝜔0)𝐼

ℏ𝜔0
. 

  And the saturation parameter from rate equations was    

𝑆0 =
2 𝑃0

𝑅1 + 𝑅2
=
𝑃0

𝑅‾
. 

  Let's assume 𝑅‾ , the mean relaxation rate, is proportional to 𝛾 (the 

damping rate or FWHM from the Rabi model). For example, in many cases, 

𝛾 (FWHM) = 𝑅1 + 𝑅2. So 𝑅‾ = 𝛾/2.   Then 𝑆0 =
𝑃0

(𝛾/2)
=

2 𝑃0

𝛾
.   And 𝑃0 

itself is proportional to 
𝛺R
2

𝛾
 if one relates the coherent interaction strength to 

the incoherent pump rate. More directly:   𝑃0 = 𝐵12𝜌(𝜔0) (if 𝐵12 is 

defined for intensity) =
𝜎𝐼

ℏ𝜔
. We know 𝑃0 drives transitions.   𝛺R

2  is also 

proportional to 𝐼 (since 𝐸0
2 ∝ 𝐼).   It's known that for a two-level system, 

the on-resonance stimulated rate 𝑃0 can be written as    

𝑃0 =
1

2

𝛺R
2

𝛾
 



  evaluated at 𝛥𝜔 = 0, giving 𝑃0 =
1

2

𝛺R
2

𝛾
 (This requires 𝛾 to be HWHM 

related to 𝑇2).   If this is the case, then    

𝑆0 =
𝑃0

𝑅‾
= (

𝛺R
2

2𝛾
) /𝑅‾. 

  If 𝑅‾ ≈
𝛾

2
, then 𝑆0 ≈

𝛺R
2

𝛾2
.   The exact correspondence can be intricate 

depending on definitions of 𝛾, 𝑅1, 𝑅2, 𝐵12, etc. 

"One recovers 𝑆 =
𝐵12𝜌(𝜔0)

𝑅‾
= 𝑆0." 

 This means that the 𝑆 from the Rabi picture, 𝑆 =
𝛺R
2

𝛾2
, must be numerically 

equivalent to the 𝑆0 from the rate equation picture, 𝑆0 =
𝐵12𝜌(𝜔0)

𝑅‾
 (where 

𝐵12𝜌(𝜔0) is 𝑃0).  So, the assertion is:   

𝛺R
2

𝛾2
=
𝑃0

𝑅‾
. 

 This equality holds if one carefully defines all terms. For example, often 𝛾 

(the FWHM of the Lorentzian due to damping) is simply 𝑅1 + 𝑅2 if these are 

the only population relaxation channels. And 𝑃0, the incoherent pumping 

rate, is related to the coherent driving 𝛺R and the damping 𝛾 through 

expressions like   

𝑃0 ≈
𝛺R
2

2𝛾
 

 (if 𝛾 is HWHM, 𝑇2 type rate). 

 The key message is that the 𝑆 parameter, whether defined as 
𝛺R
2

𝛾2
 or 

𝑃0

𝑅‾
, 

plays the same role in the broadening formula 𝛾s = 𝛾√1 + 𝑆, and these two 

definitions of 𝑆 are physically equivalent measures of how strongly the 

system is driven relative to its relaxation. 



This unification of the two pictures is a very satisfying result. 
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This page offers a "Conceptual bonus" from the Rabi picture approach. 

The bullet point states: * "Conceptual bonus: we see that the 

broadening stems from the Fourier transform of damped Rabi 

oscillations." 

Let's elaborate on this insight, which is a powerful way to think about power 

broadening. 

In the purely coherent picture (no damping), Rabi oscillations of population 

occur at the generalized Rabi frequency 𝛺′R = √(𝜔 − 𝜔0)
2 + 𝛺R

2 . These 

oscillations would persist indefinitely. When we introduce damping (with 

rate 𝛾), these oscillations no longer last forever. They decay exponentially, 

typically with a time constant related to 1/𝛾 (e.g., 𝑇2 for coherence decay, 

𝑇1 for population decay). So, what we have is a damped oscillation in the 

time domain. 

We know from Fourier analysis that: 

* An undamped sinusoid in time (e.g., cos(𝛺R𝑡)) transforms to a pair of 

delta functions in frequency (at ±𝛺R). * An exponential decay in time (e.g., 

𝑒−𝛾𝑡) transforms to a Lorentzian in frequency (with width 𝛾). * A damped 

sinusoid (e.g., 𝑒−𝛾𝑡cos(𝛺R𝑡)) is the product of these two. The Fourier 

transform of a product in time is the convolution of their Fourier transforms 

in frequency. So, we would convolve the delta functions with the 

Lorentzian. This results in two Lorentzian peaks in the frequency domain, 

centered at ±𝛺R, each with a width determined by 𝛾. This is the Autler-

Townes splitting. 

The power broadening we've been discussing for a single absorption line 

can be thought of as a limiting case or a different manifestation. If we are 



looking at the absorption spectrum 𝑃b(𝜔), which came from integrating 

𝛾𝑒−𝛾𝑡|𝑏(𝑡)|2𝑑𝑡, this averaging process effectively performs the Fourier 

transform. The term |𝑏(𝑡)|2 contains sin2(𝛺′R𝑡/2) which is 
1−cos(𝛺′R𝑡)

2
. So 

we are looking at the Fourier transform of (something related to) a constant 

term and a damped cosine term. The constant term gives a feature at zero 

frequency (in the rotating frame, so at 𝜔0 in lab frame). The damped cosine 

gives features related to ±𝛺′R. 

When 𝛺R is not too large compared to 𝛾, these features merge. The overall 

lineshape of 𝑃b(𝜔) that we found, 
1

2
[

𝑆

(
𝜔𝑎𝑏−𝜔

𝛾
)
2
+1+𝑆

], is a single Lorentzian 

centered at 𝜔𝑎𝑏 (or 𝜔0), but its width 𝛾√1 + 𝑆 now incorporates both the 

original damping 𝛾 and the driving strength 𝑆 =
𝛺R
2

𝛾2
. 

So, the "smearing" or broadening of the spectral line can be intuitively 

understood as arising because the Rabi oscillations are damped. The 

stronger the field (larger 𝛺R), the faster the oscillations it tries to induce. 

Even though these are damped, the "attempt" to oscillate faster means the 

system responds over a broader range of frequencies, as dictated by the 

uncertainty principle or, more formally, by the Fourier transform properties. 

This conceptual link to damped oscillations and Fourier transforms provides 

a deeper physical intuition for why power broadening occurs, beyond just 

the mathematical outcome of the rate equations or the formal solution of 

the damped Bloch equations (which is what underlies 𝑃b(𝜔)). It connects 

the spectral domain (broadening) to the time domain (damped oscillations). 

The triple dash signals the end of this point. 
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Slide 17: Pump-Probe Scenario & Autler-Townes-Type Sidebands. 



Now we move to an experimentally very relevant scenario: "Slide 17: 

Pump-Probe Scenario & Autler-Townes-Type Sidebands." This is 

where the coherent effects of a strong field, like Rabi oscillations, can lead 

to observable new spectral features, not just broadening of a single line. 

First bullet point: 

* "Strong 'pump' laser exactly resonant: large 𝛺R." We imagine an 

experiment with two lasers. The first is a strong "pump" laser, tuned exactly 

to the atomic resonance 𝜔0 (so 𝛥𝜔 = 0 for the pump). "Strong" means that 

the Rabi frequency 𝛺R induced by this pump laser is large. Specifically, it 

should be large compared to the relaxation rates/linewidth 𝛾 (i.e., 𝑆 =
𝛺R
2

𝛾2
≫

1). 

Second bullet point: 

* "Weak tunable 'probe' interrogates the modified absorption profile." 

A second laser, called the "probe" laser, is used. This probe laser is weak, 

meaning it doesn't significantly perturb the system itself (it doesn't cause 

significant saturation or Rabi oscillations on its own). Its frequency 𝜔probe is 

tunable, so we can scan it across the region around 𝜔0 to measure the 

absorption spectrum of the atom as modified by the strong pump laser. 

Third bullet point: What does the probe see? 

* "Populations and coherences are modulated at 𝛺R; probe perceives 

sidebands at" 

𝜔 = 𝜔0 ± 𝛺R 

Because the strong resonant pump is driving Rabi oscillations at frequency 

𝛺R, the populations of the atomic levels are oscillating in time at this 

frequency. More subtly, the atomic coherence (the off-diagonal element of 

the density matrix) is also modulated. 



The atom, when "dressed" by the strong pump field, effectively has its 

energy levels split. The original two levels |𝑎⟩ and |𝑏⟩, separated by ℏ𝜔0, 

are replaced by new dressed states. Transitions between these dressed 

states can occur when probed by the weak laser. 

These new allowed transitions for the probe laser appear at frequencies 

shifted from the original resonance. Specifically, instead of a single 

absorption peak at 𝜔0, the probe laser will see features (absorption or gain, 

depending on details) at frequencies 𝜔0 + 𝛺R and 𝜔0 − 𝛺R. 

This splitting of the absorption line into a doublet (or sometimes a triplet in 

fluorescence, the Mollow triplet) centered around 𝜔0, with a separation of 

2𝛺R, is known as the Autler-Townes effect (or AC Stark splitting, dynamic 

Stark splitting). 

These features at 𝜔0 ± 𝛺R are the "sidebands" referred to. They are a 

direct consequence of the coherent Rabi oscillations driven by the strong 

pump. 

This pump-probe configuration is a standard method in laser spectroscopy 

to observe such strong-field effects. The pump creates the dressed states, 

and the probe measures their spectrum. 
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Continuing with the pump-probe scenario and Autler-Townes sidebands: 

First bullet point: 

* "Requirement for clearly resolved doublet" 

For the two sidebands at 𝜔0 ± 𝛺R to be seen as distinct peaks (a resolved 

doublet), the splitting between them (which is 2𝛺R, or the shift of each from 

center is 𝛺R) must be larger than their individual linewidths. The linewidth of 

these features will be related to the power-broadened homogeneous 

linewidth 𝛾s = 𝛾√1 + 𝑆, where 𝑆 is the saturation parameter related to the 

strong pump. 



So, the condition is given as: 

𝛺R > 𝛾s (Omega sub R must be greater than gamma sub s). 

Actually, the peaks are at ±𝛺R, and each has a width of approximately 𝛾s 

(or related to it). So for them to be resolved, 𝛺R should be significantly 

larger than 𝛾s/2 (their HWHM). Or, the separation 2𝛺R must be greater 

than 𝛾s. So, 𝛺R > 𝛾s/2 is a more accurate condition for resolvability. If 𝛺R is 

not much larger than 𝛾s, the two sidebands will merge with each other and 

possibly with the central feature (if any), resulting in a single, very broad, 

and possibly strangely shaped line. When 𝛺R ≫ 𝛾s, we see two distinct 

peaks. 

Second bullet: "Observed features:" 

What does the probe spectrum look like when 𝛺R is large? 

* "Central dip (sometimes called 'hole burning' or 'Mollow triplet' in 

fluorescence context)." 

For absorption by a probe, if the pump is exactly resonant, the absorption 

at the exact line center 𝜔0 can be strongly suppressed due to saturation by 

the pump. This creates a "dip" or "hole" in the absorption profile at 𝜔0. This 

is related to "hole burning" in Doppler-broadened lines, but here it's in a 

homogeneous line due to the strong resonant pump. In fluorescence, the 

Mollow triplet consists of a central peak at 𝜔0 and two sidebands at 𝜔0 ±

𝛺R. The relative heights depend on parameters. The "central dip" in 

absorption corresponds to this structure. 

* "Two Lorentzian satellites each of width 𝛾s." 

These are the Autler-Townes components. They appear as sidebands 

(satellites) to the original transition frequency. They are located at 

approximately 𝜔0 + 𝛺R and 𝜔0 − 𝛺R. Each of these satellite peaks will have 

a lineshape that is approximately Lorentzian, and their width will be related 

to the saturated linewidth 𝛾s (which includes the original damping 𝛾 and the 



power broadening effect from the strong pump). More precisely, the widths 

are often given in terms of 𝑇1 and 𝑇2 relaxation times, and can be different 

for the central feature and the sidebands in more complex theories, but 𝛾s 

is a good first approximation. 

So, a strong resonant pump doesn't just broaden the line; it can 

fundamentally alter the spectrum by splitting it into multiple components. 

This is a hallmark of the coherent interaction dominating over incoherent 

relaxation. The ability to resolve these components depends on the Rabi 

frequency being large enough compared to the broadened linewidth. 
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This page presents a graph illustrating the "Autler-Townes Doublet 

Absorption Profile." This shows what the probe laser's absorption 

spectrum looks like under the conditions described on the previous pages 

(strong resonant pump). 

Let's describe the graph: 

* The horizontal axis is the detuning of the probe laser frequency 𝜔 from 

the atomic resonance 𝜔0, specifically labeled (𝜔 − 𝜔0). The center is 0. 

Points labeled −𝛺R and +𝛺R are marked, as well as 2𝛺R indicating the 

separation between these points. 

* The vertical axis is Absorption, presumably the absorption of the weak 

probe laser. The scale goes from 0.0 to 1.0 (likely normalized). 

* A blue curve shows the absorption profile. It has two distinct peaks, 

forming a doublet. * These two peaks are centered at 𝜔 − 𝜔0 = −𝛺R and 

𝜔 − 𝜔0 = +𝛺R. So, the absorption maxima are at 𝜔 = 𝜔0 − 𝛺R and 𝜔 =

𝜔0 + 𝛺R. * There is a significant dip in absorption at the line center 

(𝜔 − 𝜔0 = 0). The absorption is very low, almost zero, at the exact original 

resonance frequency 𝜔0. This is the "hole" created by the strong resonant 

pump. * Each of the two peaks appears to be roughly Lorentzian in shape. 

* A vertical double arrow near the right peak indicates its width, labeled 𝛾s 



(gamma sub s). This suggests that the FWHM of each of these Autler-

Townes components is approximately the saturated linewidth 𝛾s. 

What this graph beautifully illustrates is: 

1. The splitting of the original single absorption line into two components 

due to the strong resonant pump. The separation between the peaks of 

these components is 2𝛺R. 

2. The suppression of absorption at the original line center 𝜔0. 

3. The fact that these new spectral features (the sidebands or satellites) 

themselves have a finite width, 𝛾s, which is determined by the natural 

damping processes and power broadening by the strong pump. 

For this doublet to be clearly resolved, as it is in the graph, the Rabi 

frequency 𝛺R must be significantly larger than the width 𝛾s of each 

component (specifically, 𝛺R > 𝛾s/2). This Autler-Townes splitting is a direct 

spectroscopic signature of the system being in the strong, coherent driving 

regime. Measuring the splitting (2𝛺R) allows for a direct determination of 

the Rabi frequency, and thus, if 𝐷𝑎𝑏 is known, the electric field amplitude 𝐸0 

of the pump laser. It's a powerful diagnostic tool in laser spectroscopy. 
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This slide, "Slide 18: Frequently Used Working Equations," serves as a 

useful summary of the key formulas we've derived and discussed related to 

saturation and power broadening. These are the equations one would often 

refer back to when analyzing experiments or solving problems. 

First, the "Saturation parameter" 𝑆: Three equivalent forms are given for 

the on-resonance saturation parameter (which we called 𝑆0, but here just 

𝑆): 

• 𝑆 =
2 𝑃

𝑅1+𝑅2
: This was our definition from the rate equation model, where 𝑃 

is the stimulated transition rate (e.g., 𝐵12𝜌(𝜔0)), and 𝑅1 and 𝑅2 are the 



incoherent relaxation/transfer rates between levels 1 and 2 (𝑅1: 1→2, 𝑅2: 

2→1). 

• 𝑆 =
𝐵12𝜌(𝜔0)

𝑅‾
: This is equivalent to the first, where 𝑃 = 𝐵12𝜌(𝜔0) (on-

resonance pump rate) and 𝑅‾ =
𝑅1+𝑅2

2
 (mean relaxation rate). 

• 𝑆 =
𝐷𝑎𝑏
2 𝐸0

2

ℏ2𝛾2
: This was the definition of 𝑆 from the coherent Rabi interaction 

model with damping. Here, 
𝐷𝑎𝑏𝐸0

ℏ
 is the Rabi frequency 𝛺R, and 𝛾 is the 

damping rate (related to FWHM of the undamped line). So, 𝑆 =
𝛺R
2

𝛾2
. 

Second, the "Population difference" 𝛥𝑁: 

𝛥𝑁 =
𝛥𝑁0
1 + 𝑆

 

This shows how the actual population difference 𝛥𝑁 is reduced from its 

unsaturated value 𝛥𝑁0 by the factor (1 + 𝑆), where 𝑆 is the on-resonance 

saturation parameter. 

Third, the "Saturated absorption coefficient (homogeneous line)": This 

will be continued on the next page. It refers to 𝛼s(𝜔). 

These first few equations encapsulate the core of saturation: how the 

driving field (via 𝑃, 𝜌, or 𝐸0) competes with relaxation (𝑅1, 𝑅2, 𝛾) to 

determine the saturation parameter 𝑆, which in turn governs the reduction 

in the population difference 𝛥𝑁. 
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Continuing with "Frequently Used Working Equations": 

Third (continued from previous page), the "Saturated absorption 

coefficient (homogeneous line)" 𝛼s(𝜔): Two forms are given: 

𝛼s(𝜔) =
𝛼0(𝜔)

1 + 𝑆𝜔
 



This is the very intuitive form: the saturated absorption at frequency 𝜔 is 

the unsaturated absorption at that frequency, 𝛼0(𝜔), divided by one plus 

the local (frequency-dependent) saturation parameter 𝑆𝜔. 

And the local saturation parameter 𝑆𝜔 is given by: 

𝑆𝜔 = 𝑆0 [
(𝛾/2)2

(𝜔 − 𝜔0)
2 + (𝛾/2)2

] 

Here, 𝑆0 is the on-resonance saturation parameter (from page 43). 𝛾 is the 

FWHM of the unsaturated Lorentzian. This shows 𝑆𝜔 = 𝑆0 ⋅ 𝐿(𝜔 − 𝜔0), 

where 𝐿 is the normalized unsaturated Lorentzian. 

Fourth, the "Power-broadened half-width" (this should be FWHM, or 𝛾s/2 

is the HWHM): The slide shows 

𝛾s = 𝛾√1 + 𝑆0 

Here: * 𝛾s is the FWHM of the power-broadened line. * 𝛾 is the FWHM of 

the unsaturated homogeneous line. * 𝑆0 is the on-resonance saturation 

parameter. This is our key formula for power broadening. 

Fifth, the "Rabi frequency (dipole interaction)" 𝛺R: 

𝛺R =
𝐷𝑎𝑏𝐸0
ℏ

 

This defines the on-resonance Rabi frequency in terms of the transition 

dipole moment 𝐷𝑎𝑏, the electric field amplitude 𝐸0 of the laser, and ℏ. This 

frequency is crucial for understanding coherent effects like Autler-Townes 

splitting and for the definition of 𝑆 in the coherent picture (𝑆 =
𝛺R
2

𝛾2
). 

The triple dash indicates the end of this summary. These equations form a 

toolkit for analyzing experiments where saturation and power broadening 

are significant. They connect microscopic atomic properties (𝐷𝑎𝑏, 𝛾, 𝑅1, 𝑅2) 

and laser parameters (𝐸0, 𝜌, 𝜔) to observable macroscopic quantities (𝛥𝑁, 



𝛼s(𝜔), 𝛾s) and intermediate theoretical constructs (𝑆, 𝑃, 𝛺R). Understanding 

and being able to use these relationships is fundamental to quantitative 

laser spectroscopy. 

This concludes this chapter on Saturation and Power Broadening. A very 

important set of concepts, and I hope this detailed walk-through has helped 

to clarify both the underlying physics and the mathematical formalism. 


