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Alright everyone, welcome back to Phys 608, Laser Spectroscopy. Today, 

we embark on a very important topic, which forms Chapter 3.5 of our 

discussion: Homogeneous and Inhomogeneous Line Broadening. This is a 

fundamental concept in all forms of spectroscopy, but it takes on particular 

significance in laser spectroscopy, where the high resolution capabilities of 

lasers often push us to understand the ultimate limits of spectral features. 

Understanding what causes a spectral line to have a certain width, and the 

nature of that width, is absolutely crucial for interpreting experimental 

results and for designing sophisticated spectroscopic techniques. 

As noted, these materials have been prepared by Distinguished Professor 

Doctor M A Gondal for our course here at KFUPM. Let's dive in. 
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So, to begin, let's outline the scope and learning goals for this section on 

line broadening. This first slide sets the agenda. 

Our primary objective, as stated in the first bullet point, is to: Introduce the 

two fundamental categories of spectral-line broadening: 

homogeneous versus inhomogeneous. This distinction is paramount. It's 

not just a semantic difference; it reflects fundamentally different physical 

origins and has profound implications for how we can interact with and 

manipulate these spectral lines using lasers. Homogeneous broadening 

implies that every atom or molecule in our ensemble contributes in 

essentially the same way to the line shape. Think of it as an intrinsic 

property of each individual quantum system under the prevailing conditions. 

In contrast, inhomogeneous broadening arises when different atoms or 

molecules, or different sub-groups within our ensemble, have slightly 

different resonant frequencies. The observed line shape is then a 

composite, an envelope of many individual, narrower lines. We'll unpack 

this in great detail. 



The second goal is to: Build an intuitive and quantitative understanding 

of how each mechanism modifies the observable frequency 

distribution of photons emitted or absorbed by atoms or molecules. 

So, it’s not enough to just name these categories. We need to understand 

the physics behind them. What are the actual processes occurring at the 

atomic or molecular level that lead to a spread of frequencies rather than 

an infinitely sharp 𝛿 function? We'll look at things like finite lifetimes of 

states, collisions between particles, and the thermal motion of particles. 

And we'll develop the mathematical formalisms – the line shape functions – 

that describe these distributions quantitatively. This will allow us to connect 

theory with what we actually measure in the lab. 
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Continuing with our learning goals for this chapter: A crucial aspect will be 

to: Develop the mathematical tools—especially the Lorentzian line 

shape and the Maxwell-Boltzmann Doppler profile—that let us predict 

and fit experimental spectra. Spectroscopy is an experimental science, 

and a key part of it is fitting observed spectral features to theoretical 

models. The Lorentzian profile is the hallmark of homogeneous 

broadening, and we will derive its form and understand its parameters. The 

Gaussian profile, arising from the Maxwell-Boltzmann distribution of 

velocities in Doppler broadening, is the classic example of an 

inhomogeneous lineshape. Mastering these functions, understanding 

where they come from, and knowing how to use them is essential for any 

practicing spectroscopist. 

Next, we will: Examine the role of collisions, differentiating between... 

and here we have three sub-types that are critically important to 

distinguish: 

First, amplitude-perturbing (inelastic) collisions. These are collisions 

where there's an actual exchange of energy. For example, an excited atom 

might collide with another atom and lose its excitation energy, or transition 



to a different state. This directly affects the lifetime of the excited state and, 

as we'll see, contributes to homogeneous broadening by shortening the 

duration of the coherent emission or absorption process. 

Second, phase-perturbing (elastic) collisions. In these collisions, the 

internal energy state of the atom or molecule doesn't change, but the 

phase of its quantum mechanical wave function, which describes its 

oscillating dipole, is randomly interrupted or shifted. Think of an atom 

happily emitting a wave, and then a collision comes along and abruptly 

changes the phase of that wave. This, too, leads to a broadening of the 

spectral line, and it's also a homogeneous effect. The atom itself is still the 

same, but its radiative process has been "kicked." 

And third, velocity-changing collisions that redistribute molecular 

velocities. These are also elastic in the sense that they conserve the 

internal energy of the colliding partners, but they change the kinetic energy, 

specifically the velocity vector of the particle we are interested in. As we'll 

see, this is particularly important when we consider Doppler broadening, as 

it can move an atom from one velocity subgroup to another, effectively 

changing its resonant frequency as seen by the laser. This has implications 

for the overall observed line shape and for certain advanced spectroscopic 

techniques. 
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And finally, the capstone learning goal for this section is to: Connect these 

ideas to practical laser-spectroscopy techniques. We're not just 

learning abstract concepts here. We want to see how understanding 

homogeneous and inhomogeneous broadening allows us to understand, 

and indeed to develop, powerful laser spectroscopy methods. 

We'll talk about different regimes: 



Doppler-limited spectroscopy: This is what you often encounter in simple 

absorption or emission experiments with gases at room temperature. The 

observed linewidth is primarily determined by Doppler broadening. 

Doppler-free spectroscopy: This is where the magic of laser 

spectroscopy really shines. Techniques like saturation spectroscopy, two-

photon spectroscopy, and others have been developed specifically to 

circumvent the Doppler broadening and reveal the underlying, much 

narrower, homogeneous linewidth. This is how we achieve ultra-high 

resolution. 

And Dicke-narrowed regimes: This is a fascinating phenomenon where, 

under certain conditions, collisions, which we usually think of as broadening 

a line, can actually narrow the Doppler profile. This occurs when the mean 

free path of the atoms becomes smaller than the wavelength of the 

radiation. 

So, that's our roadmap for this chapter. It’s a rich and crucial set of topics. 
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Alright, let's start with the very basics. This page asks the fundamental 

question: What Exactly Is a "Spectral Line"? This might seem trivial, but 

a precise definition is important. 

Under the heading Core Concept, we have the definition: A spectral line 

is the distribution of detected photon frequencies associated with a 

quantum transition 𝐸i to 𝐸k in an ensemble of identical particles. 

Let's break this down. 

First, "distribution of detected photon frequencies." This means a spectral 

line is not, in general, a single, infinitely sharp frequency. If we sit there with 

a detector and count photons emitted or absorbed by our sample, we'll find 

that they span a range of frequencies. The spectral line is that plot of how 



many photons we get at each frequency, or the probability of detecting a 

photon at a given frequency. 

Second, "associated with a quantum transition 𝐸i to 𝐸k." Spectroscopy 

fundamentally probes transitions between quantum states. 𝐸i is the energy 

of the initial state, and 𝐸k is the energy of the final state. The nominal, or 

central, frequency of the transition is given by the Bohr condition: 𝜈 =
𝐸k−𝐸i

ℎ
, 

or 𝜔 =
𝐸k−𝐸i

ℏ
. 

Third, "in an ensemble of identical particles." We are almost always dealing 

with a vast number of atoms or molecules – an ensemble. And critically, 

even if these particles are "identical" in terms of their species (e.g., all 

hydrogen atoms), various factors can cause them to interact with light at 

slightly different frequencies, or for the transition in each to have a finite 

frequency width. This is the origin of line broadening. 

Now, let's formalize this with the Formal Probability Density: 

The slide shows: 𝑃𝑖𝑘(𝜔) 𝑑𝜔 is equivalent to the probability that a randomly 

chosen particle emits or absorbs a photon with angular frequency in the 

range 𝜔 to 𝜔 + 𝑑𝜔. 

So, 𝑃𝑖𝑘(𝜔) is our line shape function. It’s a probability density. When you 

multiply it by an infinitesimal frequency interval 𝑑𝜔, you get the actual 

probability. The subscript "ik" reminds us that this is for a specific transition 

from state 𝑖 to state 𝑘. The fact that it's a function of 𝜔, the angular 

frequency, tells us that there's a spread. If there were no broadening, 

𝑃𝑖𝑘(𝜔) would be a Dirac delta function centered at 𝜔0, the Bohr frequency. 

But in reality, it's a function with a finite width. Our goal in this chapter is to 

understand the shapes of 𝑃𝑖𝑘(𝜔) that arise from different physical 

mechanisms. 
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To ensure we're all on the same page, let's define some Essential 

Symbols (with SI Units) that we'll be using throughout this discussion. 

1. 𝐸i — Energy of the initial quantum state. This is measured in Joules, 

symbol 𝐽. This is the energy of the atom or molecule before the 

spectroscopic transition occurs. 

2. 𝐸k — Energy of the final quantum state. Also in Joules, 𝐽. This is the 

energy after the transition. The difference, 𝐸k − 𝐸i, determines the energy of 

the photon involved. 

3. 𝜔 = 2𝜋𝜈 — Angular frequency of the photon. This is measured in radians 

per second, or radians times seconds to the minus one. 𝜔 is related to the 

ordinary frequency 𝜈 (in Hertz) by 𝜔 = 2𝜋𝜈. We often use angular 

frequency in our equations because it simplifies many expressions, 

particularly when ℏ (the reduced Planck constant) is involved. 

4. 𝑃𝑖𝑘(𝜔) — Normalised probability density. The units here are seconds, or 

𝑠. This might seem a bit counterintuitive. Why seconds? Well, remember 

that 𝑃𝑖𝑘(𝜔), 𝑑𝜔 must be a dimensionless probability. Since 𝑑𝜔 has units of 

radians per second (and radians are dimensionless), 𝑃𝑖𝑘(𝜔) must have 

units of one over frequency, which is time. So, seconds. 

Finally, a crucial property of any probability density is its Normalisation 

condition: 

∫ 𝑃𝑖𝑘

∞

0

(𝜔) 𝑑𝜔 = 1. 

This simply means that the probability of the particle emitting or absorbing 

a photon at some frequency within the line profile must be unity, assuming 

the transition occurs. We are accounting for all possibilities within that 

spectral line. This normalization is very important when we define specific 

line shape functions like the Lorentzian or Gaussian; we need to ensure 

they are properly normalized. 
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This page provides a simple but essential visualization. At the top, we see 

an energy level diagram. There are two horizontal lines representing 

quantum energy states. The upper line is labeled 𝐸i, the initial, higher 

energy state. The lower line is labeled 𝐸k, the final, lower energy state. A 

blue arrow points downwards from 𝐸i to 𝐸k, indicating an emission process, 

and it's labeled ℏ𝜔. This signifies that a photon of energy ℏ𝜔 is emitted 

when the system transitions from state 𝐸i to state 𝐸k. If the arrow were 

pointing upwards, it would represent absorption of a photon of the same 

energy. 

The energy difference, 𝐸i − 𝐸k, is precisely equal to ℏ𝜔0, where 𝜔0 is the 

central, or resonant, angular frequency of the transition. 

Below this energy level diagram, we see a simple graph. The horizontal 

axis is labeled Frequency (𝜔). The vertical axis is labeled 𝑃𝑖𝑘(𝜔), which we 

just defined as the normalized probability density of the transition. 

Now, in an idealized world, if there were absolutely no broadening 

mechanisms, all photons emitted or absorbed in this 𝐸i to 𝐸k transition 

would have exactly the same frequency, 𝜔0, which is equal to 
𝐸i−𝐸k

ℏ
. In such 

an idealized case, the spectral line, 𝑃𝑖𝑘(𝜔), would be an infinitely sharp 

spike, a Dirac delta function, centered at 𝜔0. This is represented on the 

graph by a single, sharp vertical red line at the position 𝜔0 on the frequency 

axis. 

This picture is, of course, an oversimplification. In reality, this red line will 

have some finite width and a characteristic shape, which is precisely what 

line broadening is all about. The study of these widths and shapes is what 

we are embarking on. The energy level diagram defines the center of the 

line, ℏ𝜔0, while the broadening mechanisms will determine the spread of 

frequencies around this 𝜔0, giving 𝑃𝑖𝑘(𝜔) its actual functional form. 
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Now we arrive at the first of our two major categories: Defining 

Homogeneous Broadening. This is Slide 3. 

The key idea is stated right at the top: Homogeneous means "the same 

for every member of the ensemble". This is the absolute crux of it. In 

homogeneous broadening, every single atom or molecule in your sample 

has identically the same probability distribution for emitting or absorbing a 

photon as a function of frequency. There isn't one group of atoms that 

prefers slightly lower frequencies and another group that prefers slightly 

higher frequencies. No, every atom is intrinsically broadened in the same 

way. 

Let's look at point 1: Uniform Transition Probability. Mathematically, this 

means that 𝑃𝑖𝑘(𝜔) is identical for all particles initially in state 𝐸i. So, if you 

could isolate any single atom from the ensemble and measure its individual 

line shape (which is conceptually possible, though experimentally 

challenging for a single atom's spectrum without very specialized 

techniques), it would look exactly like the line shape of any other atom, and 

also like the overall macroscopic line shape you observe from the whole 

ensemble. The macroscopic line is simply the sum of identical individual 

contributions, scaled by the number of atoms. 

Now, point 2: Typical Physical Origins. What causes this type of 

broadening? The first one listed is: Natural (radiative) lifetime, 𝜏𝑠𝑝, stems 

from spontaneous emission. Even an isolated atom, completely 

undisturbed by anything else, will have a finite linewidth if the excited state 

𝐸i can decay via spontaneous emission. Spontaneous emission means the 

excited state has a finite lifetime, let's call it 𝜏𝑠𝑝 (tau subscript s p). The 

Heisenberg uncertainty principle, in one of its forms, relates the uncertainty 

in energy (𝛥𝐸) and the uncertainty in time (𝛥𝑡) by 

𝛥𝐸𝛥𝑡 ≈ ℏ. 



If a state has a finite lifetime 𝜏, that lifetime can be considered a 𝛥𝑡. This 

implies an uncertainty in its energy, 𝛥𝐸, of about 

ℏ

𝜏
. 

This energy uncertainty translates directly into a frequency uncertainty, or 

linewidth, 𝛥𝜔, of approximately 

1

𝜏
. 

So, the very fact that an excited state can decay spontaneously means it 

doesn't have an infinitely sharply defined energy, and thus the transition 

frequency is not infinitely sharp. This is called natural broadening. It's an 

intrinsic quantum mechanical property. Every atom capable of spontaneous 

emission from state 𝐸i will experience this broadening in exactly the same 

way. Hence, it's a homogeneous mechanism. The characteristic line shape 

associated with natural broadening is Lorentzian, which we'll discuss 

shortly. 
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Continuing with the typical physical origins and characteristics of 

homogeneous broadening: Another significant cause is Collision-induced 

damping when collisions change amplitude or phase without altering 

particle velocity. We briefly touched on this in the learning goals. Imagine 

our atom or molecule is trying to radiate or absorb a photon. This process 

takes a certain amount of time. If, during this time, the atom collides with 

another particle (another atom, a molecule, an electron, or even the wall of 

the container), that collision can interrupt the radiative process. 

If the collision is inelastic (amplitude-perturbing), it might cause the atom 

to transition to a different energy level, effectively cutting short the emission 

or absorption from the original state 𝐸i. This shortening of the effective 



lifetime of the state, similar to the natural lifetime effect, leads to 

broadening. 

If the collision is elastic (phase-perturbing), the atom remains in state 𝐸i, 

but the phase of its oscillating dipole (which is responsible for interacting 

with light) gets randomly shifted. Think of it like a tiny radiating antenna 

whose oscillation is suddenly jolted. Each such jolt truncates a coherent 

segment of the wave train. The Fourier transform of such an interrupted 

wave train will be broader than that of an uninterrupted one. 

Crucially, for these collisional effects to be considered purely homogeneous 

in this context, we are assuming here that the collision does not 

significantly change the particle's velocity, and therefore doesn't shift its 

Doppler contribution. If all particles experience these collisional 

interruptions statistically in the same way, then this type of broadening is 

also homogeneous. Each particle's individual line shape is broadened, and 

they are all broadened identically. 

Point 3 is the Key Experimental Signature: Every particle exhibits the 

same line shape, so the observed macroscopic profile equals the 

single-particle profile. This is just restating the core definition from a 

practical viewpoint. If you measure the spectrum of your entire ensemble, 

the shape you see (e.g., its width, its functional form like Lorentzian) is the 

same shape that each individual atom or molecule would show if you could 

measure it in isolation but under the same conditions (temperature, 

pressure leading to collisions, etc.). This is a very important distinguishing 

feature from inhomogeneous broadening, as we'll see. 

And finally, point 4: Mathematical Prototype. The Lorentzian discussed 

on the next slide. The characteristic line shape that arises from processes 

like natural lifetime broadening and many types of collisional broadening 

(those that interrupt the coherence time) is the Lorentzian profile. So, when 

you see a Lorentzian line shape in an experiment, it's often a strong 

indicator that homogeneous broadening mechanisms are dominant, or at 



least significantly contributing. We'll now delve into the specifics of this 

Lorentzian shape. 

Page 10: 

Let's now look at Slide 4: The Lorentzian Line Shape. This is the 

mathematical heart of homogeneous broadening. 

The Statement of the Model given here is: For homogeneous 

broadening caused purely by the finite excited-state lifetime... 

The slide starts with this specific case, natural broadening, as the simplest 

and most fundamental origin of a Lorentzian profile. However, as we've 

discussed, certain types of collisional broadening also lead to a Lorentzian. 

So, the Lorentzian is more general, but its simplest derivation comes from 

considering the finite lifetime due to spontaneous emission. 

The equation for the probability density is given as: 

𝑃𝑖𝑘(𝜔) = 𝐴𝑖𝑘  𝐿(𝜔 − 𝜔0) 

Let's break this down. 

• 𝑃𝑖𝑘(𝜔) is what we're trying to define: the probability density for a 

transition between states 𝑖 and 𝑘 as a function of angular frequency 𝜔. It 

has units of seconds. 

• 𝐴𝑖𝑘 is a coefficient we'll define next. 

• 𝐿(𝜔 − 𝜔0) is the normalized Lorentzian line shape function itself. It's a 

function of the detuning, 𝜔 − 𝜔0, where 𝜔0 is the central resonant 

frequency of the transition. This 𝐿 function will give the characteristic 

"shape" of the line. 

Now for the Components & Definitions: 

1. 𝐴𝑖𝑘 — Einstein A-coefficient. Its units are 𝑠−1 (inverse seconds). It 

represents the total spontaneous-emission rate from the initial state 𝑖 to 



the final state 𝑘 (if 𝑘 is lower in energy) or, more generally, it's related to the 

overall decay rate of the coherence between states 𝑖 and 𝑘. If we are 

considering purely natural broadening, then 𝐴𝑖𝑘 is indeed the Einstein A 

coefficient for spontaneous emission from state 𝑖 to state 𝑘. More broadly, if 

other processes (like inelastic collisions) also depopulate state 𝑖, they 

would contribute to an increased effective decay rate, which would take the 

role of 𝐴𝑖𝑘 in determining the overall width. 

However, there's a slight nuance here. 𝑃𝑖𝑘(𝜔) is a normalized probability 

density for the line shape of the 𝑖 to 𝑘 transition. The 𝐴𝑖𝑘 term here, if it's 

just the Einstein A coefficient, relates to the rate of that specific transition. 

The way 𝑃𝑖𝑘(𝜔) is written, 𝐴𝑖𝑘 might be better thought of as a prefactor that 

ensures the correct relationship if 𝐿 is normalized in a particular way. Let's 

see how 𝐿 is defined on the next page. 

It's important to realize that the finite lifetime, one over 𝐴𝑖𝑘 (or one over the 

total decay rate of the upper state, 𝛾), is what fundamentally leads to the 

energy spread and thus the Lorentzian shape due to the uncertainty 

principle. 
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Continuing with the components and definitions of the Lorentzian line 

shape: 

2. 𝜔0 — Central (resonant) angular frequency. 

This is given by the familiar Bohr frequency condition: 

𝜔0 =
𝐸k − 𝐸i

ℏ
 

(or the reduced Planck constant). 

Here, we must be careful with the sign convention. If 𝐸k is the lower state 

and 𝐸i is the upper state for emission, then 𝐸k − 𝐸i is negative, and 𝜔0 

would be negative. Usually, we define 𝜔0 as a positive quantity, so it would 



be the absolute value of 
𝐸k−𝐸i

ℏ
, or 

𝐸upper−𝐸lower

ℏ
. Let's assume 𝜔0 is the positive 

angular frequency corresponding to the energy difference between the two 

levels. It’s the frequency where the transition probability is maximal. Its 

units are radians per second. 

3. 𝐿(𝛥𝜔) — Normalised Lorentzian. 

And here is the explicit mathematical form of the Lorentzian function: 

𝐿(𝛥𝜔) =
1

𝜋
 

1
2
𝛤

(𝛥𝜔)2 + (
1
2
𝛤)

2 

Let's dissect this very carefully. 

* 𝐿(𝛥𝜔) is the Lorentzian function. It's a function of 𝛥𝜔. 

* 𝛥𝜔 is defined in the "where" clause below the equation: 𝛥𝜔 ≡ 𝜔 −𝜔0. 

This is the detuning – how far the current frequency 𝜔 is from the central 

resonant frequency 𝜔0. Its units are radians per second. 

* 𝛤 (uppercase Gamma) is a crucial parameter. It represents the full width 

at half maximum (FWHM) of the Lorentzian profile, in angular frequency 

units (radians per second). We'll see this more clearly when we look at the 

graph. This 𝛤 is directly related to the lifetime or coherence time of the 

transition. For natural broadening, 𝛤 is equal to 𝐴𝑖𝑘, the Einstein A-

coefficient for spontaneous emission from the upper state, or more 

generally, the total decay rate of the population of the excited state, or the 

decay rate of the coherence between the two states. 

* The term 
1

𝜋
 is a normalization factor. It ensures that if you integrate 𝐿(𝛥𝜔) 

with respect to 𝛥𝜔 from minus infinity to plus infinity, you get 1. Or, if you 

integrate with respect to 𝜔 from 0 to infinity (assuming the line is far from 

𝜔 = 0), you also get 1. This makes 𝐿(𝛥𝜔) a properly normalized probability 

density with respect to frequency. The units of 𝐿(𝛥𝜔) must be inverse 



frequency, i.e., seconds, because 𝛥𝜔 is in rad/s and the integral 𝑃 𝑑𝜔 

needs to be dimensionless. The 
1

2
𝛤 in the numerator has units of rad/s. The 

denominator (𝛥𝜔)2 + (
1

2
𝛤)

2
 has units of (rad/s)2. So the fraction has units 

of (rad/s)−1, or seconds per radian (seconds, as radians are 

dimensionless). The 
1

𝜋
 factor is dimensionless. So, 𝐿(𝛥𝜔) indeed has units 

of seconds. 

Now, let's reconsider the equation from the previous page: 

𝑃𝑖𝑘(𝜔) = 𝐴𝑖𝑘  𝐿(𝜔 − 𝜔0) 

If 𝐿 is normalized to integrate to 1 (as this form does), then 𝑃𝑖𝑘(𝜔), if it is 

also to be a normalized probability density, should just be 𝐿(𝜔 − 𝜔0), 

perhaps with a different symbol for 𝛤 that represents the total 

homogeneous width. The 𝐴𝑖𝑘 factor usually represents the rate of the 

transition. Sometimes, 𝑃𝑖𝑘(𝜔) is written to represent not just the shape but 

also the strength, in which case 𝐴𝑖𝑘 might be related to the transition 

probability or cross-section. For now, let's assume 𝑃𝑖𝑘(𝜔) is the normalized 

Lorentzian function 𝐿(𝛥𝜔), and 𝛤 is the total homogeneous width from all 

contributing factors (natural lifetime, collisions, etc.). This is the standard 

convention. The 𝑃𝑖𝑘(𝜔) = 𝐴𝑖𝑘 𝐿(𝜔 − 𝜔0) on slide 10 might be a slight 

misstatement if 𝑃 is meant to be the normalized lineshape and 𝐿 is also 

normalized. More commonly, one would write 

𝑃𝑖𝑘(𝜔) = 𝐿(𝜔 − 𝜔0) 

where 𝐿 itself incorporates the width parameter 𝛤. Or, if 𝐴𝑖𝑘 is to be 

interpreted as something like a transition strength, then 𝐿 must be a shape 

function whose integral might be 1, but the overall 𝑃𝑖𝑘 would not be 

normalized to 1 unless 𝐴𝑖𝑘 = 1. Given that 𝑃𝑖𝑘 was defined as a normalized 

probability density, it's most likely that 𝑃𝑖𝑘(𝜔) is the function 𝐿(𝛥𝜔) with 𝛤 

being the pertinent decay rate. Let's proceed assuming 𝛤 in the Lorentzian 



is the key parameter determining its width, and it is related to inverse 

lifetimes. 
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Continuing with the Lorentzian line shape, this page describes some key 

characteristics. 

First, a very important relationship: Capital Gamma is identically equal to 

𝛤 =
1

𝜏𝑠𝑝
 — Full width at half maximum (FWHM) in angular‐ frequency units. 

Here, 𝜏𝑠𝑝 is specifically identified as the spontaneous emission lifetime. 

This means that for purely natural broadening (no collisions, no other 

dephasing mechanisms), the FWHM of the Lorentzian profile, capital 

Gamma, is simply the inverse of the spontaneous lifetime of the excited 

state. If other homogeneous broadening mechanisms are present, like 

collisional dephasing with a characteristic time 𝑇2 (Tee two), then the total 

homogeneous linewidth Gamma would be given by something like 
1

𝜏𝑠𝑝
+

2

𝑇2
 

(depending on the precise definition of 𝑇2 for phase-perturbing collisions). 

For now, let's stick to the simple case where 𝛤 =
1

𝜏𝑠𝑝
. This directly connects 

a measurable spectral width (𝛤) to a fundamental atomic property (𝜏𝑠𝑝). 

The units of Gamma are radians per second if 𝜏𝑠𝑝 is in seconds. 

Now, for the Visual Characteristics of the Lorentzian profile: 

* Symmetric peak centred at 𝜔0. If you plot 𝐿(𝛥𝜔) versus 𝜔 (or 𝛥𝜔), you'll 

see a bell-shaped curve, but it's not a Gaussian. It's symmetric around its 

peak, which occurs at 𝛥𝜔 = 0, meaning 𝜔 = 𝜔0. The maximum value of 

𝐿(𝛥𝜔) occurs at 𝜔 = 𝜔0. If you substitute 𝛥𝜔 = 0 into the formula for 

𝐿(𝛥𝜔), you get 

𝐿(0) =
1

𝜋
⋅

1
2
𝛤

(
1
2
𝛤)

2 =
1

𝜋
⋅
2

𝛤
=

2

𝜋𝛤
. 



This is the peak height of the normalized Lorentzian. 

* Long algebraic “wings” decreasing as 
1

(𝛥𝜔)2
. This is a very distinctive 

feature of the Lorentzian. As you move away from the center of the line 

(i.e., as 𝛥𝜔 becomes large), the (
1

2
𝛤)

2
 term in the denominator becomes 

negligible compared to (𝛥𝜔)2. So, 𝐿(𝛥𝜔) behaves like 
1

𝜋
⋅

1

2
𝛤

(𝛥𝜔)2
. It falls off as 

one over the square of the detuning. This is a much slower fall-off than a 

Gaussian profile, which falls off exponentially. These "Lorentzian wings" 

mean that even far from resonance, there's still a non-negligible probability 

of interaction. This has important consequences in many spectroscopic 

situations, for example, in power broadening or in the far-wing absorption of 

atmospheric gases. 

So, key takeaways for the Lorentzian: centered at 𝜔0, FWHM is 𝛤, and it 

has these characteristic one-over-𝛥𝜔-squared wings. 
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This page shows a graph of the Lorentzian Line Shape, which beautifully 

illustrates the characteristics we just discussed. 

Let's describe the graph: 

The horizontal axis is labeled 𝜔, representing angular frequency. Several 

points are marked: 𝜔0 (the center), 𝜔0 −
𝛤

2
, 𝜔0 +

𝛤

2
, and further out, 𝜔0 − 𝛤 

and 𝜔0 + 𝛤. 

The vertical axis is labeled 𝐿, representing the value of the Lorentzian 

function, 𝐿(𝜔 − 𝜔0). The peak height, which occurs at 𝜔 = 𝜔0, is labeled as 
2

𝜋𝛤
. This matches what we calculated. 

Another point is marked on the vertical axis: 
1

𝜋𝛤
, which is exactly half the 

peak height. 



The curve itself, shown in blue, is a symmetric peak. 

Now, let's focus on the Full Width at Half Maximum (FWHM). 

There's a horizontal dashed red arrow drawn across the peak, at the height 

corresponding to half the maximum value (i.e., at 
1

𝜋𝛤
 on the vertical axis). 

This arrow extends from a point on the left side of the curve to a point on 

the right. Vertical dashed lines drop from these points to the 𝜔-axis. 

The left intersection with the 𝜔-axis is precisely at 𝜔0 −
𝛤

2
. The right 

intersection with the 𝜔-axis is precisely at 𝜔0 +
𝛤

2
. 

The total width between these two points is (𝜔0 +
𝛤

2
) − (𝜔0 −

𝛤

2
), which 

equals 𝛤. 

This visually confirms that 𝛤 is indeed the Full Width at Half Maximum of 

the Lorentzian profile. This parameter, 𝛤, is what characterizes the "width" 

of the homogeneous broadening. The narrower the 𝛤, the sharper the 

spectral line. 

You can also see the "wings" of the Lorentzian extending out from the 

center. They decrease, but as we discussed, they decrease algebraically 

(as 
1

(𝛥𝜔)2
), not exponentially, so they are more extended than, say, a 

Gaussian of the same FWHM. 

This graphical representation is essential. When you see a spectrum in the 

lab that has this characteristic shape – a sharp peak with extended wings – 

you immediately suspect that a Lorentzian profile, and thus a 

homogeneous broadening mechanism, is at play. 
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Now we turn to the second major category of line broadening, presented on 

Slide 5: Introducing Inhomogeneous Broadening. 



The core definition is given at the top: Inhomogeneous means "different 

subsets of the ensemble contribute different centre frequencies". 

This is the absolute key distinction from homogeneous broadening. In 

homogeneous broadening, every atom or molecule had the same intrinsic 

line shape centered at the same frequency. Here, in inhomogeneous 

broadening, while each individual atom or molecule might still have its own 

(often homogeneous) line shape, the center frequency of that line shape is 

different for different groups of particles within the ensemble. The overall 

observed spectral line is then the sum, or more accurately, the envelope, of 

all these slightly shifted individual contributions. 

Let's look at point 1: Underlying Mechanism. Property that varies from 

particle to particle: here, centre frequency depends on velocity 𝑣. For 

inhomogeneous broadening to occur, there must be some property that is 

not uniform across the ensemble of particles, and this property must affect 

the resonant frequency of the transition. The most common example, and 

the one we will focus on, is the velocity of the particles, denoted by 𝑣. Due 

to the Doppler effect, atoms moving towards a light source see the light 

blue-shifted (higher frequency), and atoms moving away see it red-shifted 

(lower frequency). Since particles in a gas have a distribution of velocities 

(e.g., the Maxwell-Boltzmann distribution), they will have a distribution of 

Doppler shifts, and thus a distribution of their apparent resonant 

frequencies. 

Point 2: Most Important Laboratory Example — Doppler Broadening. 

Indeed, for gases at typical temperatures, Doppler broadening is often the 

dominant inhomogeneous broadening mechanism, especially for optical 

transitions. Its width can be orders of magnitude larger than the natural 

(homogeneous) linewidth. This is why developing Doppler-free 

spectroscopy techniques was such a major breakthrough for high-

resolution spectroscopy. 



Point 3: Implication for Observed Line. This is crucial for understanding 

what we actually measure. 
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Continuing with the implications for the observed line in inhomogeneous 

broadening: 

The statement says: Macroscopic profile is a convolution of the single-

particle homogeneous line with the distribution of velocities. This is a 

very important concept. Let's break it down. 

Each individual particle (or, more precisely, each small group of particles 

with nearly the same value of the varying property, like velocity) has its own 

intrinsic line shape. This intrinsic line shape is often homogeneous (e.g., a 

Lorentzian due to natural lifetime and collisions that don't change its 

velocity class). Let's call this homogeneous line shape 𝑔h(𝜔 − 𝜔′), where 

𝜔′ is the center frequency for that particular particle or subgroup. 

Now, because of the inhomogeneous effect (like Doppler shifts), 𝜔′ is not 

the same for all particles. There's a distribution of these center frequencies, 

let's say 𝑓(𝜔′). 

The observed macroscopic line shape, 𝑃observed(𝜔), is then the sum of all 

these individual 𝑔h contributions, weighted by how many particles have that 

particular 𝜔′. Mathematically, this is a convolution: 

𝑃observed(𝜔) = ∫ 𝑔h(𝜔 − 𝜔′) 𝑓(𝜔′) 𝑑𝜔′ 

In the context of Doppler broadening, the "distribution of velocities" (e.g., 

Maxwell-Boltzmann) directly translates into a distribution of center 

frequencies 𝑓(𝜔′) due to the Doppler shift. Each velocity group has its own 

Lorentzian (the single-particle homogeneous line), and the sum of all these 

Lorentzians, appropriately shifted and weighted by the velocity distribution, 

gives the overall observed Doppler-broadened profile, which is typically a 

Gaussian. 



Point 4: Contrast to Homogeneous Case. 

No single, universal line shape per particle; instead, each velocity 

subclass sees a shifted resonance. 

Well, to be more precise, each particle does have its own intrinsic (often 

homogeneous) line shape. The point is that the center frequency of this 

intrinsic line shape is different for different particles (or different velocity 

subclasses). So, if you were to probe the ensemble with a very narrow-

band laser, only a specific subgroup of particles – those whose Doppler-

shifted resonance matches the laser frequency – would interact strongly. If 

you tune the laser, a different subgroup interacts. 

This is fundamentally different from the homogeneous case, where if you 

tune your laser through the line, all particles respond with the same profile, 

just with varying strength as you move away from their common center 

frequency. 

The three dashes at the bottom indicate there might be more to say or that 

it's a transition to the next idea. The key takeaway is that an 

inhomogeneously broadened line is a "collection" of narrower lines, each 

from a different subset of atoms. This structure is hidden within the overall 

profile but can be revealed by clever spectroscopic techniques. 
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Alright, let's delve into the specifics of the most common example of 

inhomogeneous broadening with Slide 6: Doppler Broadening — 

Fundamental Kinematics. 

First, we look at the Doppler Shift for a Single Particle. 

The equation given is: 

𝜔 = 𝜔0 + 𝐤 ⋅ 𝐯. 

Let's understand each term: 



• 𝜔 is the angular frequency of light as observed by the particle (or 

equivalently, the particle's resonant frequency as observed in the lab frame 

if 𝜔0 is its rest-frame resonant frequency). This is the frequency that 

"matters" for resonant interaction. Its units are radians per second. 

• 𝜔0 is the resonant angular frequency of the particle in its own rest 

frame. This is 

𝐸k − 𝐸i

ℏ
, 

the value we'd measure if the particle were stationary. Units are radians per 

second. 

• 𝑘 is the wave-vector of the probe radiation. The wave-vector 𝑘 points 

in the direction of light propagation, and its magnitude, little 𝑘, is given by 

𝑘 =
2𝜋

𝜆
, 

where 𝜆 is the wavelength of the light. The units of 𝑘 are radians per meter. 

• 𝑣 is the particle velocity vector. Its units are meters per second. 

• 𝐤 ⋅ 𝐯 is the dot product of the wave-vector and the particle velocity 

vector. This term represents the Doppler shift. 𝐤 ⋅ 𝐯 = 𝑘 𝑣 cos(𝜃), where 𝑣 is 

the speed of the particle and 𝜃 is the angle between the particle's velocity 

and the light propagation direction. If the particle is moving towards the light 

source (i.e. 𝜃 = 𝜋 or 180 degrees, so cos(𝜃) = −1, assuming 𝑣 is defined 

as velocity magnitude and direction is handled by the dot product or a 

component), then 𝐤 ⋅ 𝐯 is negative if 𝑣 points opposite to 𝑘. 

Ah, let's be careful. The equation is 

𝜔 = 𝜔0 + 𝐤 ⋅ 𝐯. 



If the particle moves towards the source, 𝑣 and 𝑘 are in opposite directions 

for absorption of a photon coming from the source. Let's simplify by 

choosing the 𝑧-axis along 𝑘. 

The slide says: "choose 𝑣z along 𝑘." This implies we are interested in the 

component of the particle's velocity along the direction of light propagation. 

Let's denote this component as 𝑣z. Then, if 𝑣z is positive (particle moving in 

the same direction as light), the frequency 𝜔 is higher (blue-shifted for the 

particle experiencing an approaching source if it were emitting, or red-

shifted if it's absorbing light from behind). If 𝑣z is negative (particle moving 

opposite to light), 𝜔 is lower (red-shifted for particle, or blue-shifted source 

for absorption). 

Let's rephrase the Doppler shift for clarity, especially for absorption of a 

laser beam by a moving atom. If 𝜔L is the lab-frame laser frequency, the 

atom sees this frequency as 

𝜔atom = 𝜔L (1 −
𝑣z

𝑐
) 

for non-relativistic speeds, where 𝑣z is the velocity component along the 

laser beam's direction (positive if moving with the beam, negative if 

against). For resonance, 𝜔atom must equal 𝜔0. So, 

𝜔L (1 −
𝑣z

𝑐
) = 𝜔0, 

which means 

𝜔L ≈ 𝜔0 (1 +
𝑣z

𝑐
). 

The equation on the slide, 

𝜔 = 𝜔0 + 𝐤 ⋅ 𝐯, 

usually describes the observed frequency 𝜔 if 𝜔0 is the emitted rest 

frequency. If 𝜔0 is the atom's rest resonant frequency and 𝜔 is the lab laser 



frequency it interacts with, then the lab laser frequency 𝜔 needs to be 𝜔0 −

𝐤 ⋅ 𝐯 from the atom's perspective, or the atom's resonant frequency in the 

lab frame is 𝜔0 + 𝐤 ⋅ 𝐯. 

Yes, so if an atom with rest resonant frequency 𝜔0 is moving with velocity 

𝑣, it will resonantly absorb or emit light of lab frequency 

𝜔 = 𝜔0 + 𝐤 ⋅ 𝐯. 

If 𝑣z is the component of velocity along the 𝑘 vector of the light, then 𝐤 ⋅ 𝐯 

becomes simply 𝑘 𝑣z. So, 

𝜔 = 𝜔0 + 𝑘 𝑣z. 

Here, a positive 𝑣z (atom moving in the same direction as the light wave) 

means it resonates with a lab frequency 𝜔 that is higher than 𝜔0 if it's 

absorbing the light from behind it, or it needs to "catch up" to the light 

frequency. 

Let's think about an atom absorbing a laser beam propagating in the +𝑧 

direction. If the atom moves in the +𝑧 direction (𝑣z > 0), it "sees" the laser 

frequency red-shifted. So, for resonance, the lab laser frequency must be 

higher: 

𝜔L =
𝜔0

1 −
𝑣z

𝑐

≈ 𝜔0 (1 +
𝑣z

𝑐
) = 𝜔0 +

𝜔0
𝑐
 𝑣z = 𝜔0 + 𝑘 𝑣z. 

This is consistent. 

If the atom moves in the −𝑧 direction (𝑣z < 0, moving towards the laser), it 

"sees" the laser frequency blue-shifted. So, for resonance, the lab laser 

frequency must be lower: 

𝜔L =
𝜔0

1 +
|𝑣z|
𝑐

≈ 𝜔0 (1 −
|𝑣z|

𝑐
) = 𝜔0 − 𝑘 |𝑣z| = 𝜔0 + 𝑘 𝑣z, 

since 𝑣z itself is negative. This is also consistent. 



So the formula 

𝜔 = 𝜔0 + 𝑘 𝑣z 

correctly gives the lab-frame frequency 𝜔 that an atom with rest-frame 

resonance 𝜔0 and velocity component 𝑣z (along 𝑘) will interact with. 

Now, the crucial part: Velocity Distribution (Thermal Ensemble). 

Particles in a gas at thermal equilibrium are not all stationary, nor do they 

all have the same velocity. Their velocities are described by a statistical 

distribution. 
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Continuing our discussion of Doppler broadening, we now consider the 

velocity distribution. 

* Maxwell-Boltzmann in 1-D: 

Since the Doppler shift 𝜔 = 𝜔naught + 𝑘𝑣z only depends on 𝑣z (the 

component of velocity along the wave-vector 𝑘 of the light), we only need 

the one-dimensional Maxwell-Boltzmann distribution for 𝑣z. This distribution 

gives the probability density 𝑓(𝑣z) of finding a particle with a velocity 

component between 𝑣z and 𝑣z + 𝑑𝑣z. 

The formula for 𝑓(𝑣z) is given as: 

𝑓(𝑣z) = √
𝑚

2𝜋𝑘B𝑇
exp [−

𝑚𝑣z
2

2𝑘B𝑇
] 

Let's break this down: 

* 𝑓(𝑣z) is the probability density function for the velocity component 𝑣z. 

* 𝑚 is the Particle mass in kilograms (kg). Heavier particles will have a 

narrower velocity distribution at the same temperature. 



* 𝑘B (𝑘 subscript 𝐵) is the Boltzmann constant, approximately 1.38 ×

10−23 Joules per Kelvin (J K−1). 

* 𝑇 is the Absolute temperature in Kelvin (K). Higher temperatures lead to 

a broader velocity distribution. 

* The term square root of 
𝑚

2𝜋𝑘B𝑇
 is a normalization factor. It ensures that if 

you integrate 𝑓(𝑣z) 𝑑𝑣z from minus infinity to plus infinity, you get 1. 

* The exponential term, exp [−
𝑚𝑣z

2

2𝑘B𝑇
], is a Gaussian function of 𝑣z. It's 

centered at 𝑣z = 0 (meaning the most probable velocity component along 

any given axis is zero) and its width depends on 
𝑇

𝑚
. 

This 𝑓(𝑣z) tells us how the atoms are distributed according to their velocity 

component 𝑣z. Since each 𝑣z corresponds to a different resonant frequency 

𝜔 = 𝜔naught + 𝑘𝑣z, this distribution of velocities will directly map onto a 

distribution of resonant frequencies. This leads to the Resulting Spectral 

Envelope. 

Because 𝑓(𝑣z) is a Gaussian in 𝑣z, and 𝜔 is linearly related to 𝑣z (𝜔 −

𝜔naught = 𝑘𝑣z), the distribution of resonant frequencies, 𝑃(𝜔), will also be a 

Gaussian function of 𝜔, centered at 𝜔naught. This is the Doppler-broadened 

line shape. 
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So, what is the shape and width of this Doppler-broadened spectral line? 

* Convolution yields a Gaussian Doppler profile with FWHM... 

As we reasoned, since the velocity distribution 𝑓(𝑣z) is Gaussian, and the 

frequency shift is linear in 𝑣z, the resulting spectral line shape due to 

Doppler broadening is also a Gaussian. 



The Full Width at Half Maximum (FWHM) of this Gaussian profile, denoted 

here as 𝛥𝜔𝐷 (Delta omega subscript D for Doppler), is given by the 

formula: 

𝛥𝜔D = 2𝜔0√
2𝑘B𝑇ln2

𝑚𝑐2
. 

Let's carefully examine the terms in this important formula: 

* 𝛥𝜔𝐷 is the FWHM of the Doppler-broadened line in angular frequency 

units (radians per second). * 𝜔0 is the central angular frequency of the 

transition (the rest-frame frequency). The Doppler width is proportional to 

the transition frequency itself. This means higher frequency (e.g., UV, X-

ray) transitions will have a much larger absolute Doppler width than lower 

frequency (e.g., microwave, radiofrequency) transitions, for the same 

temperature and mass. * 𝑘B is the Boltzmann constant (Joules per Kelvin). 

* 𝑇 is the absolute temperature (Kelvin). Higher temperature means greater 

average speeds, larger Doppler shifts, and thus a wider line. 𝛥𝜔D is 

proportional to √𝑇. * ln2 is the natural logarithm of 2, approximately 0.693. 

This factor often appears in relating the standard deviation of a Gaussian to 

its FWHM. (FWHM = 2√2ln2 𝜎). * 𝑚 is the mass of the particle (atom or 

molecule) in kilograms. Heavier particles move slower on average at a 

given temperature, so their Doppler broadening is less. 𝛥𝜔D is proportional 

to 
1

√𝑚
. * 𝑐 is the speed of light in vacuum (meters per second). The term 

𝑚𝑐2 is the rest mass energy of the particle. 

This formula is extremely useful. It allows you to calculate the expected 

Doppler width for any transition, given the particle mass, temperature, and 

transition frequency. In many gas-phase experiments at optical frequencies 

and room temperature, 𝛥𝜔D is significantly larger than the natural linewidth 

𝛤. For example, for visible light and typical atomic masses at room 

temperature, the Doppler width can be hundreds of MHz to several GHz, 



while natural linewidths might be a few MHz. This is why Doppler 

broadening often masks the finer details of the homogeneous line shape. 
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This page presents a beautiful illustration titled Inhomogeneous 

Broadening: Doppler Profile. 

Let's analyze this graph carefully. The horizontal axis is labeled Frequency 

Shift (𝜔 −𝜔0). The center is at 0, corresponding to the rest-frame resonant 

frequency 𝜔0. The axis extends from -150 to +150 in some arbitrary units 

(perhaps MHz or scaled units). The vertical axis is labeled Intensity (a.u.), 

meaning arbitrary units. The peak is normalized to 1.0. 

What we see are two main features: 

1. A series of many narrow, light blue-grey lines or curves. An annotation 

says: "Narrow lines: Homogeneous response of individual velocity 

groups." Each of these narrow lines represents the homogeneous line 

shape (e.g., a Lorentzian with width 𝛤) for a specific, narrow subgroup of 

atoms that all have approximately the same velocity component 𝑣z along 

the direction of observation. Because each velocity group has a different 𝑣z, 

its homogeneous line is Doppler-shifted by 𝑘𝑣z. So, we see a series of 

these homogeneous "packets" or "islands," each centered at a slightly 

different frequency shift. The width of each individual narrow line is the 

homogeneous width, 𝛤. 

2. A broad, solid dark blue curve that forms an envelope over all these 

narrow lines. An annotation points to this curve and says: "Doppler 

Profile." This is the overall observed spectral line shape. It is the sum (or 

convolution) of all the individual, shifted homogeneous lines, weighted by 

the Maxwell-Boltzmann distribution of velocities. As we discussed, this 

resulting envelope is a Gaussian function. Its FWHM is the Doppler width, 

𝛥𝜔D, which is typically much larger than the FWHM (𝛤) of the individual 

narrow homogeneous lines. 



This diagram perfectly visualizes the concept of inhomogeneous 

broadening: the overall broad line (the Doppler Profile) is composed of 

many narrower lines from different velocity classes. The laser, if it's narrow 

enough, can interact selectively with just one or a few of these 

"homogeneous islands" or "velocity groups." This is the basis for 

techniques like hole burning in saturation spectroscopy, where a strong 

laser can deplete the population of a specific velocity group, creating a 

"hole" in the Doppler profile that can be detected by a weaker probe laser. 

The visual makes it clear: the Doppler width 𝛥𝜔D is determined by the 

range of velocities, while the width of the little "spikes" within it is the 

homogeneous width 𝛤. 
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Slide 7: Velocity Sub-Grouping — “Homogeneous Islands" Inside 

Doppler Sea 

1. Conceptual Partition: 

The idea is to Divide the velocity axis into slices of width 𝛥𝑣z. How wide 

should these slices be? The slide gives a criterion: 𝛥𝑣z =
𝛿𝜔n

𝑘
. Let's 

understand this. 

* 𝛥𝑣z (Delta v subscript z) is the width of a velocity slice along the 

observation axis (the 𝑧-axis, which is along the wave-vector 𝑘). * 𝛿𝜔n 

(lowercase delta omega subscript n) is defined as the natural 

(homogeneous) linewidth. This is our capital Gamma from before, or 

more generally, the homogeneous linewidth due to all effects (natural 

lifetime, collisions that don't change 𝑣z). Let's use 𝛤h for homogeneous 

width to be consistent. So, 𝛿𝜔n = 𝛤h. * 𝑘 is the magnitude of the wave-

vector of the light (𝑘 =
𝜔0

𝑐
=

2𝜋

𝜆
). 



What does this equation 𝛥𝑣z =
𝛤h

𝑘
 mean? Recall the Doppler shift formula: 

the shift in frequency, let's call it 𝛺shift, is 𝑘 times 𝑣z. So, a change in 

velocity 𝛥𝑣z corresponds to a change in frequency shift 𝛥𝛺shift = 𝑘𝛥𝑣z. If we 

choose 𝛥𝑣z such that 𝑘𝛥𝑣z is equal to the homogeneous linewidth 𝛤h, then 

all atoms within this velocity slice 𝛥𝑣z will have their center frequencies 

Doppler-shifted into a frequency range that is no wider than their own 

intrinsic homogeneous linewidth. In other words, within such a velocity 

slice, the Doppler spread of center frequencies (𝑘𝛥𝑣z) is comparable to or 

smaller than the homogeneous width 𝛤h of each atom in that slice. 

Therefore, all atoms in this slice can be considered to respond coherently 

or homogeneously to a monochromatic laser field whose frequency falls 

within their collective response band. They form a "homogeneous packet" 

or "island." 

2. Each Slice Behaves Homogeneously: 

This is the consequence of the partitioning. If you pick a laser with a 

linewidth much narrower than 𝛤h, and you tune it to interact with one of 

these velocity slices, all the atoms in that slice will essentially respond 

together, as if they were a single, homogeneously broadened group. 

This concept of velocity sub-grouping is fundamental to understanding 

many laser spectroscopy techniques that aim to overcome Doppler 

broadening, such as saturation spectroscopy. We are essentially 

"dissecting" the inhomogeneous Doppler profile into its constituent 

homogeneous components. 
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Continuing with the idea of velocity sub-grouping: 

The slide states: All particles in slice centred at 𝑣z share a common 

Doppler-shifted resonance. 

Their resonant frequency in the lab frame will be: 



𝜔 = 𝜔0 + 𝑘𝑣z 

Where 𝑣z here is the central velocity of that particular slice. Of course, 

there's a small spread 𝛥𝑣z around this central 𝑣z, leading to a small spread 

𝑘𝛥𝑣z in frequencies, but as we defined on the previous page, this spread is 

on the order of or smaller than the homogeneous linewidth 𝛤h. So, to a 

good approximation, all particles in that slice "see" the laser at effectively 

the same detuning from their individual, identically broadened, 

homogeneous lines. 

3. Mathematical Viewpoint: 

Total profile = sum over Lorentzians of each subgroup, weighted by 

𝑓(𝑣z). 

This reiterates what we saw in the diagram on page 19. The overall 

observed inhomogeneous line shape (e.g., the Doppler profile) is a 

summation (or integral, if we treat 𝑣z as continuous) of the homogeneous 

line shapes (typically Lorentzians with width 𝛤h) from each velocity 

subgroup. Each subgroup's Lorentzian is centered at 𝜔0 + 𝑘𝑣z. And 

importantly, each of these Lorentzians is weighted by 𝑓(𝑣z), which is the 

Maxwell-Boltzmann probability of finding an atom in that velocity subgroup 

𝑣z. This is precisely the convolution we talked about earlier. If the 

homogeneous lines are Lorentzians and the weighting 𝑓(𝑣z) (which 

translates to a distribution of center frequencies) is Gaussian, the resulting 

convolution is known as a Voigt profile. If the homogeneous width 𝛤h is 

much smaller than the Doppler width 𝛥𝜔D, the Voigt profile closely 

approximates a Gaussian. If 𝛤h is much larger, it approximates a 

Lorentzian. 

4. Experimental Relevance: 

Why is this concept of "homogeneous islands" so important 

experimentally? 



Page 22: 

The experimental relevance is profound: Laser spectroscopists target 

individual slices (e.g., saturation spectroscopy) to “beat” Doppler 

broadening. 

This is the key. Because a laser can be made highly monochromatic (its 

linewidth can be much smaller than 𝛤h, and certainly much smaller than 

𝛥𝜔D), it can selectively interact with only one (or a few) of these velocity 

subgroups – one of those "homogeneous islands" within the vast "Doppler 

sea." 

For example, in saturation spectroscopy, a strong "pump" laser beam is 

tuned to a specific frequency 𝜔L. It will primarily interact with and saturate 

the transition for only those atoms whose velocity 𝑣z satisfies 𝜔L =

𝜔naught + 𝑘𝑣z (and also those with 𝑣z such that 𝜔L = 𝜔naught − 𝑘𝑣z if a 

counter-propagating beam is used, which is key for the technique). By 

saturating this subgroup, we modify its population or its ability to absorb. A 

second, weaker "probe" beam can then detect this modification. When both 

beams interact with the same velocity group (typically the 𝑣z = 0 group if 

the beams are counter-propagating and tuned near 𝜔naught), we can 

observe a sharp feature (a "Lamb dip" or a saturation peak) whose width is 

close to the homogeneous linewidth 𝛤h, not the much broader Doppler 

width 𝛥𝜔D. 

This is how we "beat" Doppler broadening – by not trying to address the 

whole inhomogeneous line at once, but by using the laser's selectivity to 

pick out and study a single homogeneous component. This allows for much 

higher resolution and precision in determining the true resonant frequency 

𝜔naught and in studying the underlying homogeneous lineshape. 

The three dashes suggest a transition or end of this particular thought. The 

power of laser spectroscopy often lies in its ability to overcome 



inhomogeneous broadening and reveal the true, underlying physics 

masked by it. 
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Slide 8: Collisional Broadening — Two Fundamental Types. 

We've already touched upon collisions as a source of homogeneous 

broadening, but let's look at them in more detail. Collisions are ubiquitous 

in gas-phase spectroscopy (unless you're in an ultra-high vacuum or a very 

dilute beam) and can significantly affect line shapes. 

The first type is: 1. Inelastic (Amplitude-Perturbing) Collisions. 

* Energy exchange between colliders. This is the defining characteristic. 

In an inelastic collision involving an atom in an excited state (say, our state 

𝐸i), the atom can lose energy to the collision partner, causing it to transition 

to a lower energy state (perhaps 𝐸k, or some other state 𝐸m). This process 

is often called "quenching" if the atom de-excites non-radiatively. It can also 

be that the atom gains energy if the collision partner is sufficiently 

energetic, or transitions between different sub-levels of the same electronic 

state. The key is that the population of the specific state 𝐸i that we are 

probing is changed by the collision. 

* Shortens excited-state lifetime 𝜏 to 𝜏′, where 𝜏′ is less than 𝜏. If 𝜏 was 

the natural lifetime (due only to spontaneous emission), then inelastic 

collisions provide an additional pathway for the atom to leave the excited 

state 𝐸i. This means the actual time an atom spends in state 𝐸i, on 

average, is reduced. The effective lifetime, 𝜏′, becomes shorter than the 

natural lifetime 𝜏. The collisional quenching rate, let's call it 𝛤coll inel, adds to 

the spontaneous emission rate 𝛤nat (which is 
1

𝜏
). So the total decay rate from 

state 𝐸i becomes 

𝛤total = 𝛤nat + 𝛤coll inel, 

and the effective lifetime 𝜏′ is 



𝜏′ =
1

𝛤total

. 

* Result: Increases homogeneous width capital 𝛤. Since the 

homogeneous linewidth (from the uncertainty principle, roughly speaking) is 

inversely proportional to the lifetime (or coherence time), shortening the 

effective lifetime increases the linewidth. So, inelastic collisions contribute 

to homogeneous broadening. The total homogeneous width 𝛤h would be 

𝛤h = 𝛤nat + 𝛤coll inel + other broadening terms. 

This contribution is homogeneous because, typically, all atoms in the 

ensemble are subject to the same statistical rate of such collisions, 

assuming uniform conditions. 

Now for the second type: 2. Elastic (Phase-Perturbing) Collisions. These 

are often even more important for line broadening in many situations. 
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Continuing with the second type of collisional broadening, elastic (phase-

perturbing) collisions: 

* No energy exchange, velocity unchanged. This is the ideal definition of 

a purely phase-perturbing collision in this context. The internal state of the 

atom (𝐸i or 𝐸k) does not change. The atom neither gains nor loses internal 

energy. Furthermore, for it to be purely a phase perturbation without 

introducing inhomogeneous character (like Doppler shifts changing), we 

also assume here that the collision does not significantly alter the atom's 

velocity 𝑣z. This is an idealization; real collisions will often involve some 

velocity change. But the primary effect we are focusing on here is the 

phase interruption. 

* Introduce random phase jumps. Imagine the atom's oscillating dipole 

moment, which is responsible for emitting or absorbing light. It's oscillating 

at roughly the frequency 𝜔naught. A phase-perturbing collision abruptly 



changes the phase of this oscillation without stopping the oscillation itself 

(i.e., without changing the energy state). So, the wave train being emitted 

(or the coherence being built up for absorption) has its phase suddenly 

randomized. 

* Fourier transform of interrupted oscillations leads to additional 

Lorentzian broadening. This is a key insight from Fourier theory. A 

perfectly monochromatic, infinitely long sine wave has an infinitely sharp 

Fourier transform (a delta function in frequency). If you start chopping this 

sine wave into finite segments, or if you randomly interrupt its phase, its 

Fourier spectrum broadens. Each interruption effectively ends one coherent 

segment and starts a new one with a random phase. The shorter the 

average time between these phase-interrupting collisions (let's call this time 

𝑇2, the phase coherence time), the broader the frequency spectrum. This 

type of broadening also results in a Lorentzian line shape. The contribution 

to the homogeneous width from these collisions is typically on the order of 
1

𝑇2
 (or 

2

𝑇2
 depending on definitions). 

Now, the Unified Outcome for both these types of "state-preserving" (in 

terms of 𝑣z) collisions: Both mechanisms preserve the homogeneous 

nature: This means that 𝑃𝑖𝑘(𝜔), which might have been a narrow 

Lorentzian due to just natural lifetime, after considering these collisions, 

becomes a broader Lorentzian. The slide shows: 𝑃𝑖𝑘(𝜔) --- (collisions) ---

> broader Lorentzian. The collisions effectively increase the value of the 

capital 𝛤 parameter in the Lorentzian function. So, the total homogeneous 

linewidth 𝛤h will be a sum of contributions: 

$$\Gamma_\text{h} = \Gamma_{\text{natural}} + 

\Gamma_{\text{coll\_\text{inelastic}}} + 

\Gamma_{\text{coll\_\text{phase}\_\text{perturbing}}}$$ 

All these add up to give a single, overall homogeneous Lorentzian profile 

for each atom, assuming these are the only effects. 
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This page indicates: [IMAGE REQUIRED: Cartoon comparing atomic 

dipole oscillation trains with/without phase interruptions.] 

Okay, since we don't have the image, let me describe what it would ideally 

show and why it's pedagogically useful. Imagine two scenarios depicted 

side-by-side. 

Scenario 1: No Phase Interruptions (or only natural decay) 

• You would see a representation of an atomic dipole oscillating smoothly. 

This could be drawn as a sine wave (representing, say, the expectation 

value of the dipole moment over time). 

• This sine wave would have a constant amplitude (or an amplitude that 

decays exponentially with the natural lifetime 𝜏sp, if we are focusing on the 

emission process). 

• Crucially, the phase of the oscillation would be continuous. The wave 

train would be long and coherent. 

• Below this time-domain representation, you might see its Fourier 

transform in the frequency domain: a relatively narrow Lorentzian peak, 

with a width 𝛤natural. 

Scenario 2: With Phase Interruptions due to Elastic Collisions 

• Again, you'd see an oscillating dipole, perhaps drawn as a sine wave. 

• However, at random intervals (corresponding to the times of collisions), 

the phase of the sine wave abruptly jumps. So, you'd see segments of 

smooth sine waves, but at each "collision point," the wave restarts with a 

new, random phase relative to where it would have been. The amplitude 

might remain largely unchanged between these phase jumps if the 

collisions are purely phase-perturbing. 



• The average duration of these coherent segments is related to 𝑇2, the 

phase coherence time. 

• Below this time-domain picture of interrupted oscillations, you'd see its 

Fourier transform. Because the coherent segments are now shorter on 

average than in Scenario 1, the resulting Lorentzian peak in the frequency 

domain would be visibly broader. Its width would be determined by both 

the natural lifetime and the rate of these phase-interrupting collisions. 

The Pedagogical Value: 

This kind of cartoon is extremely effective for building intuition. It visually 

connects the time-domain picture (the lifetime of the state, the coherence of 

the oscillation) with the frequency-domain picture (the spectral linewidth). 

Students can see that interrupting the coherence in time leads to a 

spreading out in frequency. It makes the Fourier relationship between time 

and frequency much more tangible in the context of line broadening. It also 

helps to solidify why these phase-perturbing collisions, even though they 

don't change the energy state, still contribute to broadening the spectral 

line. They "spoil" the perfection of the emitted or absorbed wave. 

The three dashes again indicate a pause or transition. 

Page 26: 

Now we come to a more complex scenario on Slide 9: Velocity-Changing 

Collisions (VCC) — New Complication. 

So far, when we discussed collisions in the context of homogeneous 

broadening, we either explicitly assumed they didn't change velocity or 

implicitly ignored velocity changes. Now, we confront them directly. 

Velocity-Changing Collisions, or VCCs, can significantly alter line shapes, 

especially when we are trying to do Doppler-free spectroscopy. 

1. Physical Event: 



During collision, centre-of-mass momentum is redistributed implies 

the velocity component 𝑣z shifts by 𝑢z. 

So, an atom (our spectroscopically active particle) collides with another 

particle (a buffer gas atom, for example). In this collision, momentum is 

exchanged. This will, in general, change the velocity vector v of our atom of 

interest. Specifically, the component of velocity along the laser beam (or 

observation axis), 𝑣z, can change. The slide says it shifts by 𝑢z, where 𝑢z is 

the change in the z-component of velocity due to that single collision. This 

𝑢z can be positive or negative, and there will be some probability 

distribution for 𝑢z depending on the collision dynamics and masses. 

2. Transition Between Subgroups: 

Recall our "homogeneous islands" or velocity subgroups within the Doppler 

profile. Each subgroup was characterized by a particular 𝑣z (within a small 

range 𝛥𝑣z). 

Particle moves from slice (𝑣z ± 𝛥𝑣z) to (𝑣z + 𝑢z ± 𝛥𝑣z). 

What this means is that a VCC can take an atom that was in one velocity 

subgroup (centered at 𝑣z) and "kick" it into a different velocity subgroup 

(now centered at 𝑣z + 𝑢z). If the atom was resonating with our laser before 

the collision (because its 𝑣z satisfied the Doppler condition), after the 

collision, its new 𝑣z + 𝑢z might no longer satisfy the condition, or it might 

now satisfy it if it didn't before. 

This is a crucial effect because it means atoms are not staying within their 

original velocity subgroups indefinitely. They are being shuffled around by 

these VCCs. 
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Continuing with Velocity-Changing Collisions: 

3. Resulting Frequency Jump: 



Since the resonant frequency in the lab frame is 𝜔 = 𝜔naught + 𝑘 𝑣z, a 

change in 𝑣z by 𝑢z due to a collision will result in a jump in the resonant 

frequency: 

𝜔 → 𝜔 + 𝑘 𝑢z. 

So, the atom, which was previously interacting with light at frequency 𝜔, 

now needs to interact with light at a different frequency, 𝜔 + 𝑘 𝑢z, to be in 

resonance. This is a direct consequence of its change in velocity. 

4. Important Distinction: 

This frequency shift (𝑘 𝑢z) is not the same as the line shift produced by 

pure phase-perturbing collisions. This is a very important clarification. 

Pure phase-perturbing collisions (the ideal ones we discussed earlier that 

don't change 𝑣z) broaden the homogeneous line profile (e.g., make the 

Lorentzian wider). They might also cause a small shift of the entire 

Lorentzian if the interaction potential during the collision is different for the 

upper and lower states of the transition. This is often called "collisional 

shift" or "pressure shift," and it affects all atoms statistically in the same 

way (if the broadening is homogeneous), shifting the center of the 

homogeneous line. 

The frequency jump 𝑘 𝑢z due to a VCC is different. It's a jump in the center 

frequency of the atom's resonance within the inhomogeneous Doppler 

profile. The atom moves from one "homogeneous island" to another. The 

intrinsic homogeneous width 𝛤h of the atom's response might not even 

change much if the VCC itself is elastic and doesn't significantly shorten 

the coherence time. What changes is its Doppler class. 

So, VCCs cause a redistribution of atoms among the different resonant 

frequencies under the Doppler envelope. This is not a broadening of the 

individual homogeneous packet itself in the same way phase or amplitude 

perturbation does, but rather a "spectral diffusion" or "velocity diffusion" 

process. Atoms diffuse across the Doppler profile. 



This distinction is subtle but critical for understanding how VCCs affect 

high-resolution spectra, particularly in Doppler-free techniques. 
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This slide, also titled Slide 9: Velocity-Changing Collisions (VCC) — 

New Complication, provides visual aids for this concept. It has two panels. 

(a) Velocity slices along Gaussian: 

This panel shows a Gaussian distribution, 𝑁(𝑣z), representing the number 

of atoms as a function of their 𝑧-component of velocity, 𝑣z. This is 

essentially the Maxwell-Boltzmann distribution 𝑓(𝑣z) we saw earlier, scaled 

by the total number of atoms. The horizontal axis is 𝑣z, with 0 at the center. 

Two vertical "slices" or bins are highlighted on this Gaussian. * A blue slice 

is centered at some initial velocity 𝑣z. Its width is labeled as 2𝛥𝑣z. This 

represents one of our "homogeneous islands" or velocity subgroups. * An 

arrow labeled 𝑢z (the change in velocity due to a collision) points from the 

center of the blue slice to the center of a red slice. * The red slice is 

centered at 𝑣z + 𝑢z. It also has a width, presumably 2𝛥𝑣z. 

This diagram visually depicts an atom (or a group of atoms) that was 

initially in the blue velocity slice, undergoing a VCC that changes its 𝑣z by 

an amount 𝑢z, and thereby moving it into the red velocity slice. This directly 

illustrates the "transition between subgroups" we discussed. The atom is no 

longer part of the original velocity class that might have been interacting 

with a laser; it's now in a new class. 

(b) Atom A deflected by atom B, altering 𝑣z: 

This panel shows a more microscopic picture of a collision. * We see two 

atoms, labeled 𝐴 (blue) and 𝐵 (red). Atom 𝐴 has an initial velocity vector 𝑣A. 

Atom 𝐵 might be a buffer gas atom. * They collide. After the collision, atom 

𝐴 is shown moving off with a new velocity vector, deflected from its original 

path. * A vertical axis is shown, labeled 𝑧, representing the direction of 



laser propagation or observation. * Before the collision, atom 𝐴 has a 

certain component of velocity along 𝑧, let's call it 𝑣𝑧,initial. * After the 

collision, atom 𝐴 has a new 𝑧-component of velocity, 𝑣𝑧,final. This is shown 

as a shorter red upward arrow, indicating that in this particular illustrated 

collision, the 𝑧-component of velocity decreased. * The change, 𝑣𝑧,final −

𝑣𝑧,initial, is 𝑢z. In this drawing, 𝑢z would be negative. The diagram labels a 

downward arrow from the tip of 𝑣𝑧,initial to the tip of 𝑣𝑧,final as 𝑢z, and another 

one from origin to 𝑢z on the 𝑣z axis pointing downwards. This seems a bit 

confusing. Let's assume 𝑢z is simply the change in 𝑣z. The original 𝑣z is 

shown, then 𝑢z is shown as a change, resulting in a new 𝑣z which is 

𝑣𝑧,initial + 𝑢z. * The diagram shows an initial 𝑣z (green up), then a 𝑢z (red 

down from the tip of 𝑣z), resulting in a final 𝑣z (from origin to tip of 𝑢z, also 

shown as a vector next to it). More clearly, there's an initial component 𝑣z. 

A collision causes a change 𝑢z (which can be positive or negative, here 

shown as negative if +𝑢z is upwards). The new velocity component is 

𝑣𝑧,new = 𝑣𝑧,initial + 𝑢z. The diagram labels +𝑢z on the axis itself, and then 

shows a vector 𝑢z pointing downwards from the original 𝑣z value to a new 

𝑣z value, which is then 𝑣z − |𝑢z|. So, the shift is by an amount 𝑢z. 

The key message from panel (b) is that a physical collision between two 

particles causes a change in the velocity component relevant to the 

Doppler effect. Panel (a) shows the consequence: this moves the atom 

between different velocity subgroups under the overall Doppler profile. 

These visuals are very helpful in cementing the idea of VCCs. 
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Slide 10: Collision Frequency vs Radiation Interaction Time. 

We now move to Slide 10: Collision Frequency vs Radiation Interaction 

Time. This slide starts to explore the consequences of VCCs by comparing 

relevant timescales. This is crucial because whether VCCs significantly 



impact a spectroscopic measurement often depends on how frequently 

they occur compared to how long the atom interacts with the laser light. 

First, let's define the Mean Free Time Between Collisions. This is 

denoted by capital T. The formula given is: 𝑇 =
𝛬

𝑣‾
 

Let's break this down: 

* Capital T is the average time an atom travels before it suffers a collision 

(any type of collision, though here we are particularly interested in VCCs). 

Units are seconds. 

* Capital Lambda (𝛬) is the Mean free path, measured in meters (m). This 

is the average distance an atom travels between collisions. It depends on 

the density of the gas (and thus pressure and temperature) and the 

collision cross-section between the particles. Higher pressure means 

smaller Lambda. 

* v-bar (𝑣‾) is the Mean thermal speed of the atoms, in meters per second 

(m s−1). This is related to the temperature and mass of the particles (e.g., 

for Maxwell-Boltzmann, 𝑣‾ = √
8𝑘B𝑇

𝜋𝑚
 ). 

So, 𝑇 =
distance

speed
, which makes sense. This capital T tells us, on average, 

how long an atom "lives" with a particular velocity before a collision 

potentially changes it. 
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Now, let's consider the other important timescale: the Interaction Time 

with Laser Field. This is denoted by 𝜏c (tau subscript c). 

The formula given is: 

𝜏c =
𝐿𝑏𝑒𝑎𝑚
𝑣‾

 



Let's analyze this: 

* 𝜏c is the characteristic time an atom spends interacting with the laser 

beam as it transits through it. Units are seconds. 

* 𝐿𝑏𝑒𝑎𝑚 is the Effective length of the illuminated region in meters (m). 

This is essentially the diameter of the laser beam, or the length of the 

interaction region defined by the experiment. 

* 𝑣‾ is again the mean thermal speed of the atoms (meters per second). We 

use 𝑣‾ here as a typical speed for an atom crossing the beam. One might 

also consider the component of velocity perpendicular to the beam for 

transit time, but for an order-of-magnitude estimate, average speed is often 

used if the beam is crossed by atoms moving in various directions or if we 

are considering interaction along the beam for co-propagating atoms. Let's 

assume for now this 𝑣‾ refers to a relevant speed for traversing 𝐿𝑏𝑒𝑎𝑚. 

Now we have two timescales: 

 𝑇: average time between collisions*.  𝜏c: average time the atom spends in 

the laser beam*. 

The interplay between these two timescales defines Two Regimes for the 

effect of VCCs: 

1. 𝑇 ≫ 𝜏c (Collisions Rare During Interaction). 

This means 𝑇 ≫ 𝜏c. The average time between collisions (𝑇) is much 

longer than the time the atom spends interacting with the laser (𝜏c). In this 

case, an atom is very likely to enter the laser beam, interact with it, and exit 

the beam without suffering any velocity-changing collisions during its 

transit. The consequence is: Minimal mixing between velocity slices 

leads to negligible additional broadening. 

If an atom starts in a particular velocity slice 𝑣z when it enters the beam, it 

will most likely stay in that same velocity slice throughout its interaction. So, 

the laser interacts with a "pure" velocity subgroup. VCCs don't have 



enough time to shuffle atoms between velocity subgroups while they are 

being observed by the laser. 

In this regime, if you are doing, for example, saturation spectroscopy, the 

"hole" you burn in a velocity subgroup will remain "clean" for the duration of 

the interaction. The resolution of Doppler-free techniques will be limited 

primarily by the homogeneous width 𝛤h (from natural lifetime, phase-

perturbing collisions that might still occur faster than 𝑇 if 𝑇 is for VCCs, and 

transit time broadening related to 𝜏c itself), but not significantly smeared out 

by VCCs. 
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Now for the second regime, contrasting with the previous one: 

2. Capital 𝑇 is much less than 𝜏c (Frequent Collisions). This means 𝑇 ≪ 𝜏c. 

The average time between collisions (𝑇) is now much shorter than the time 

the atom spends interacting with the laser (𝜏c). This implies that an atom, 

while it is traversing the laser beam, will typically undergo many velocity-

changing collisions. 

The consequence is: Slices get re-populated, shortening effective 

resonance time which leads to extra homogeneous broadening 

observed. Let's unpack this carefully. 

"Slices get re-populated": An atom that was initially in resonance with the 

laser (belonging to a specific 𝑣z slice) might be knocked out of resonance 

by a VCC. Conversely, an atom that was not in resonance might be 

knocked into resonance. So, there's a constant shuffling of atoms into and 

out of the velocity subgroup that is resonant with the laser. 

"Shortening effective resonance time": If an atom is only resonant with the 

laser for a short period 𝑇 (the mean time between VCCs) before being 

knocked out of that velocity class, then 𝑇 acts like a coherence time for that 

specific velocity-resonant interaction. Even if the atom is still in the beam 



for a longer time 𝜏c, it's only "talking to the laser" in that particular velocity 

channel for a time 𝑇. 

"Extra homogeneous broadening observed": If the interaction time with a 

specific velocity class is limited to 𝑇, this leads to an additional broadening 

of the features observed in, for example, saturation spectroscopy. This 

broadening is often considered homogeneous because any atom, once in 

the resonant velocity class, has the same probability per unit time of being 

scattered out by a VCC. The VCC rate (
1

𝑇
) acts like another decay rate, 

adding to the homogeneous linewidth. So, the width of a Lamb dip, for 

instance, might become 𝛤h + (≈
1

𝑇
) if 𝑇 is short enough. This is sometimes 

called "velocity diffusion broadening." 

The three dashes indicate the end of this point. So, the ratio 
𝑇

𝜏c

 is critical. If 

𝑇

𝜏c

≫ 1 (low pressure, narrow beam), VCCs are less problematic for high-

resolution spectroscopy. If 
𝑇

𝜏c

≪ 1 (high pressure, broad beam), VCCs can 

become a significant broadening mechanism, even for Doppler-free 

signals, effectively smearing out the very features we are trying to resolve. 
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Slide 11: Spectroscopic Consequences 

Now we move to Slide 11: Spectroscopic Consequences of these 

velocity-changing collisions. How do they manifest in different types of 

spectroscopic measurements? 

1. Doppler-Limited (Conventional) Spectroscopy: 

This refers to experiments where we are not trying to overcome Doppler 

broadening; we are just measuring the overall Doppler-broadened profile 

(like the Gaussian we saw). The slide says: Velocity-changing collisions 

average out; overall Doppler width essentially unchanged. This might 



seem counterintuitive at first. If VCCs are shuffling atoms between velocity 

groups, why doesn't it change the overall Doppler profile? Think of it this 

way: the Doppler profile is determined by the steady-state Maxwell-

Boltzmann distribution of velocities. While individual atoms are jumping 

between 𝑣z values, the overall distribution 𝑓(𝑣z) remains the same in 

thermal equilibrium. For every atom that gets knocked out of a particular 𝑣z 

slice, another atom (statistically) gets knocked into it. So, the shape of the 

envelope, the Gaussian Doppler profile, and its width 𝛥𝜔D, are primarily 

determined by temperature and mass, and are not strongly affected by the 

rate of VCCs (unless you get into extreme regimes like Dicke narrowing, 

which is a separate effect we'll come to). So, for standard absorption 

spectroscopy in a cell, VCCs don't typically change the observed Doppler 

width. 

2. Doppler-Free Methods (e.g., Saturation Spectroscopy): 

This is where VCCs have a much more direct and often detrimental impact. 

VCC can blur the narrow “hole” or “peak” dug into a velocity 

subgroup, reducing resolution. In saturation spectroscopy, we use a 

pump beam to selectively modify the population of a narrow velocity 

subgroup (𝑣z ≈ 0 for Lamb dips). This creates a "hole" in the population of 

the ground state for that 𝑣z, or a "peak" in the excited state population. A 

probe beam then detects this sharp feature, whose width should ideally be 

the homogeneous width 𝛤h. However, if VCCs are frequent (i.e., 𝑇 is short), 

an atom that was part of the saturated "hole" can be scattered out of that 

𝑣z = 0 subgroup into a 𝑣z ≠ 0 subgroup. Conversely, an unsaturated atom 

from 𝑣z ≠ 0 can be scattered into the 𝑣z = 0 subgroup, "refilling" the hole. 

This "spectral diffusion" due to VCCs effectively broadens the observed 

saturation feature. The hole is no longer as sharp or as deep as it would be 

without VCCs. This reduces the resolution of the Doppler-free 

measurement and can make it harder to extract the true 𝛤h. The broadening 

effect is, as discussed, roughly 1/𝑇𝑉𝐶𝐶 where 𝑇𝑉𝐶𝐶 is the mean time 

between velocity-changing collisions. 



3. Line-Shape Diagnosis: 

Understanding VCCs can also be used as a tool. 
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Continuing with spectroscopic consequences, specifically under Line-

Shape Diagnosis: 

Line-shape fitting or pump-probe timing can quantify VCC rates. Since 

VCCs affect the shapes of Doppler-free signals (e.g., they make Lamb dips 

broader and more "rounded" at the bottom, or affect the recovery of a 

transient grating), careful analysis of these line shapes can allow one to 

extract information about the VCCs themselves. For instance, by modeling 

the effect of velocity diffusion on a saturation spectrum and fitting it to 

experimental data obtained at different pressures (which changes the VCC 

rate), one can determine collision cross-sections for VCCs. Similarly, time-

resolved pump-probe experiments can directly observe the "filling in" of a 

velocity-selected population hole due to VCCs, allowing a measurement of 

the VCC rate (1/𝑇). 

4. Practical Mitigation: If VCCs are detrimental to your high-resolution 

experiment, what can you do about them? Lower buffer-gas pressure or 

use atomic beams to reduce collision frequency. This is 

straightforward. Since collisions cause VCCs, reducing the collision rate will 

mitigate their effects. 

* Lower buffer-gas pressure: The mean free path 𝛬 is inversely 

proportional to pressure. Lowering the pressure increases 𝛬, which 

increases the mean time between collisions 𝑇. If 𝑇 becomes much longer 

than the interaction time 𝜏c, VCC effects are minimized. This is why many 

high-resolution gas-phase experiments are done at low pressures. * Use 

atomic beams: In an atomic beam, atoms travel in a relatively collision-

free environment (especially in a good vacuum). By crossing an atomic 

beam with a laser beam (often perpendicularly to minimize residual Doppler 



broadening along the beam), one can significantly reduce or eliminate 

VCCs during the interaction. This also has the benefit of reducing transit 

time if the beam is well-collimated. Many of the highest-precision 

measurements are done using atomic or molecular beams. 

The three dashes suggest we're moving on to a related but distinct topic. 

The message here is that VCCs are a real concern for high-resolution 

spectroscopy, but their effects can be understood, quantified, and to some 

extent, controlled. 
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Now for a fascinating twist: Slide 12: Dicke Narrowing — When 

Collisions Reduce Width. This seems completely counterintuitive! We've 

spent all this time talking about how collisions broaden spectral lines (either 

homogeneously, or by enabling VCCs which can blur Doppler-free 

features). But here, under specific conditions, collisions can actually make 

a Doppler-broadened line narrower. This phenomenon is known as Dicke 

narrowing, after Robert H. Dicke who first predicted it. 

1. Key Requirement: 

The crucial condition for Dicke narrowing to occur is: 𝛬 < 𝜆 

Or more precisely, often stated as 𝛬 ≪
𝜆

2𝜋
, meaning the mean free path is 

much smaller than 
1

𝑘
, where 𝑘 =

2𝜋

𝜆
 is the wave number. Let's use the slide's 

notation: 𝛬 < 𝜆, where 𝜆 =
2𝜋

𝑘
 is the laser wavelength. So, the mean free 

path of the atom between collisions must be smaller than (or comparable 

to) the wavelength of the radiation being absorbed or emitted. This 

condition implies a relatively high pressure or density of the gas, so that 

collisions are very frequent and the atom only travels a very short distance 

between them. 

2. Physical Picture: 



Frequent velocity randomisation confines phase accumulation which 

suppresses Doppler spread. Let's try to build intuition for this. The 

Doppler effect arises because an atom moves a significant distance (many 

wavelengths) coherently in one direction while interacting with the light 

wave, leading to a cumulative phase shift that we interpret as a frequency 

shift. Now, imagine the atom is undergoing very frequent velocity-changing 

collisions, such that its direction of motion is randomized on a length scale 

shorter than the wavelength of light. It's like the atom is taking a random 

walk, but each step of the walk is very small compared to 𝜆. In this regime, 

the atom doesn't get a chance to build up a consistent Doppler shift in any 

one direction for very long. Its velocity 𝑣z is rapidly changing, averaging out 

to near zero over the time it takes to effectively absorb or emit a photon (if 

that time is longer than many collision times). Because the atom's motion is 

now "diffusive" on the scale of a wavelength rather than "ballistic," it cannot 

maintain a large, coherent Doppler shift. The rapid changes in velocity 

effectively average out the Doppler broadening. The atom is "caged" by 

collisions, and its effective velocity for Doppler shifting purposes is much 

reduced. 

This is a beautiful example of how motional effects can be dramatically 

altered by the collisional environment. The key is that the collisions are so 

frequent that they interrupt the coherent accumulation of Doppler phase 

shift over distances comparable to a wavelength. 
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Continuing with Dicke Narrowing: 

3. Observable Effect: 

Measured line becomes narrower than the naive Doppler width. 

So, if you calculate the Doppler width 𝛥𝜔D using the standard formula (from 

page 18) based on the temperature and mass, you might predict a certain 

Gaussian width. However, if you are in the Dicke narrowing regime (𝛬 < 𝜆), 



the actual observed spectral line will be narrower than this predicted 𝛥𝜔D. It 

will still likely be broader than the homogeneous width 𝛤h, but the Doppler 

contribution to its width is significantly reduced. The line shape in the 

Dicke-narrowed regime is often still approximately Lorentzian, but its width 

is now determined by a combination of the homogeneous width and a 

residual, much-reduced Doppler (or motional) width. 

4. Applications: 

This is not just a theoretical curiosity; Dicke narrowing has practical 

applications. 

High-precision frequency standards in gas cells (e.g., Rubidium, 

Cesium clocks). 

In some atomic clocks and frequency standards that use microwave 

transitions in gas cells, conditions can be achieved (e.g., by using a buffer 

gas at appropriate pressure) where Dicke narrowing is significant. These 

transitions are at much lower frequencies (longer wavelengths 𝜆) than 

optical transitions, so the condition 𝛬 < 𝜆 can be easier to meet. By 

operating in the Dicke-narrowed regime, one can obtain sharper resonance 

lines than would be predicted by simple Doppler theory for that 

temperature, leading to improved stability and accuracy of the frequency 

standard. The buffer gas, in this case, plays a dual role: it helps to confine 

the atoms to the interaction region for longer (reducing transit time 

broadening) and it causes the Dicke narrowing of the Doppler profile. 

So, Dicke narrowing is a striking example of how the interplay between 

atomic motion, collisions, and the wavelength of light can lead to 

unexpected and useful spectroscopic phenomena. It shows that our simple 

pictures sometimes need refinement when we enter different physical 

regimes. 
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This page provides a graph titled Comparison: Doppler Broadening vs. 

Dicke Narrowing. This visual should help solidify the concept. 

Let's describe the graph: 

The horizontal axis is Frequency Detuning (𝛥𝜈). So, this is likely ordinary 

frequency 𝜈, not angular frequency 𝜔. The center is at 0 detuning. 

The vertical axis is Intensity. The peaks are normalized to 1. 

There are two curves shown: 

1. A broad, blue curve labeled "Doppler Broadened." This is the 

standard Gaussian profile that we expect from the Maxwell-Boltzmann 

distribution of velocities in the absence of Dicke narrowing (i.e., when 𝛬 ≫

𝜆). It has a certain FWHM, indicated schematically by a horizontal blue line 

segment across the peak at half maximum. 

2. A narrower, orange-red curve labeled "Dicke Narrowed." This curve 

is shown centered at the same position (0 detuning) but is significantly 

narrower than the blue Doppler-broadened curve. Its FWHM, also indicated 

by a horizontal line segment, is clearly smaller. This represents the line 

shape observed when collisions are frequent enough (𝛬 < 𝜆) to average 

out much of the Doppler effect. 

What this graph tells us: 

It vividly illustrates the effect of Dicke narrowing. Under conditions 

favorable for Dicke narrowing (typically higher pressure of a buffer gas), the 

observed spectral line is significantly sharper than what you would expect 

from the gas temperature alone. The collisions, instead of just broadening 

the line, have effectively "suppressed" a large part of the inhomogeneous 

Doppler broadening. 

The Dicke narrowed line will still have some width, which will be a 

combination of the true homogeneous width (natural + pressure broadening 

from phase/amplitude perturbing collisions) and a residual motional width 



that depends on the diffusion coefficient of the atoms in the gas. But it's 

demonstrably narrower than the full Doppler width. 

This is a powerful visual confirmation that not all collisions are bad for 

resolution! 
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Slide 13: Summary & Next Steps 

* Recognised homogeneous mechanisms (natural, inelastic, elastic 

collisions) lead to Lorentzian profiles with width 𝛤. This is our first 

major takeaway. Homogeneous broadening arises from processes that 

affect every atom in the ensemble in the same way. The quintessential 

example is the natural lifetime limit due to spontaneous emission. Inelastic 

(quenching) collisions that shorten the state lifetime, and elastic (phase-

perturbing) collisions that interrupt the coherence of the radiation process, 

also contribute to homogeneous broadening. The characteristic line shape 

for these mechanisms is the Lorentzian, and its Full Width at Half Maximum 

is denoted by 𝛤 (or 𝛤h for homogeneous). 

* Recognised inhomogeneous mechanism (thermal Doppler) leads to 

Gaussian profile with width 𝛥𝜔D. The second major takeaway. 

Inhomogeneous broadening occurs when different atoms (or subgroups of 

atoms) in the ensemble have different resonant frequencies. The prime 

example in gas-phase spectroscopy is Doppler broadening, arising from 

the thermal motion of atoms and the Maxwell-Boltzmann distribution of their 

velocities. This leads to an overall observed line shape that is typically 

Gaussian, with a FWHM denoted by 𝛥𝜔D (𝛥𝜔D for Doppler). Each point 

under this Gaussian envelope can be thought of as comprising a 

"homogeneous packet" of atoms from a specific velocity class. 

* Velocity-changing collisions (VCCs) bridge the two pictures; their 

influence depends on 
𝑇

𝜏c

. VCCs are collisions that change an atom's 

velocity, thereby moving it from one Doppler-shifted subgroup to another. 



They "bridge" the homogeneous and inhomogeneous pictures because 

they involve atoms that have an intrinsic homogeneous lineshape but are 

being shuffled around within the inhomogeneous Doppler distribution. 

The impact of VCCs depends critically on the ratio of two timescales: 𝑇, the 

mean time between VCCs, and 𝜏c, the interaction time of the atom with the 

laser field (e.g., transit time through the beam). 

If 𝑇 ≫ 𝜏c (collisions rare during interaction), VCCs have minimal effect on 

Doppler-free signals. 

If 𝑇 ≪ 𝜏c (collisions frequent during interaction), VCCs can broaden 

Doppler-free features, effectively adding to the observed homogeneous 

width by an amount related to 
1

𝑇
, due to spectral diffusion. 

This summary neatly captures the core concepts we've covered. 
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Continuing with the summary and looking forward: 

The slide mentions: In special high-pressure, short-path regimes, 

collisions can even narrow lines (Dicke). This is the fascinating Dicke 

narrowing effect we just discussed. When the mean free path 𝛬 becomes 

smaller than the radiation wavelength 𝜆, frequent velocity-changing 

collisions no longer just broaden or shuffle, but they actually confine the 

atom's motion in such a way that the effective Doppler broadening is 

reduced. So, this is a special case where VCCs have a narrowing effect on 

the overall Doppler profile. 

Finally, an Upcoming topic: Saturation Spectroscopy — exploiting 

population dynamics to circumvent Doppler broadening and directly 

measure 𝛤. This is a perfect lead-in to one of the most important 

techniques in laser spectroscopy. We've talked about how Doppler 

broadening (an inhomogeneous effect) often masks the much narrower 

homogeneous linewidth 𝛤. Saturation spectroscopy is a clever, nonlinear 



optical technique that uses a strong "pump" laser to selectively modify the 

populations of a specific velocity subgroup within the Doppler profile 

(typically the 𝑣z = 0 group when using counter-propagating beams). A weak 

"probe" laser then detects this population change. The resulting signal 

(e.g., a Lamb dip) can have a width close to the homogeneous width 𝛤, 

effectively eliminating the Doppler broadening. 

This allows us to: 1. Perform very high-resolution spectroscopy, resolving 

features that would be completely obscured by the Doppler width. 2. 

Directly measure 𝛤, the homogeneous linewidth, which gives us 

information about natural lifetimes, collisional relaxation rates (both 

inelastic and phase-perturbing), and other broadening mechanisms like 

power broadening or transit-time broadening. 

So, understanding the distinction between homogeneous (Lorentzian, width 

𝛤) and inhomogeneous (Gaussian/Doppler, width 𝛥𝜔D) broadening, and 

the role of VCCs, is absolutely essential background for appreciating the 

power and principles of techniques like saturation spectroscopy. 

The three dashes indicate the end of this lecture segment. This has been a 

comprehensive overview of line broadening mechanisms, and I trust it 

provides a solid foundation for our upcoming discussions on advanced 

laser spectroscopy techniques. 

  


